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Abstract. Interval timing plays an important role in every aspect of our
daily life. Intelligent behavior, adaptation and survival of mankind rely
on proper judgment of temporal intervals. Since many decades, Pace-
maker Accumulator Model (PAM) has been the most influential interval
timing model in human time perception domain. It is purely a psycho-
logical model and many researchers from the neurobiology domain at-
tempted to find the biological equivalents of the components of PAM. In
this paper, we propose a computational model of interval timing based
on spiking neurons which is biologically plausible yet preserving the sim-
plicity and strength of psychological models. Preliminary results demon-
strate that the computational model we proposed can mimic empirical
data from psychological experiments.

Keywords: Cognitive modeling, Spiking neural networks, Time percep-
tion, Leaky integrate-and-fire, Scalar property.

1 Introduction

“Timing is everything: in making shots, in making love, in making dinner. Indeed,
it is difficult to conceive of an action that doesn’t require temporal control...In
addition to coordinating complex sequences, timing serves a very basic func-
tion long recognized as a fundamental aspect of the learning process in animals:
anticipation or prediction...” [8]. Time Perception refers to sense of time that
involves experience and passage of time, temporal discrimination and time es-
timation. Time Perception is widely studied in Cognitive Science domains from
varied perspectives. For example, psychologists study time perception as part
of behavioral analysis [4] [28]; neuroscientists study time perception as part of
finding information processing mechanisms in brain [12][10] and computer scien-
tists study time perception as part of computational modeling and development
of autonomous intelligent systems [15].

Multiple neural systems are responsible for processing multiple time scales in
at least 10 orders of magnitude [17]. Buhusi and Meck [2] classify different orders
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of time into circadian timing, interval timing and millisecond timing. The circa-
dian clock that keeps track of sleep-wake cycle, appetite and behavioral rhythms
exists in suprachiasmatic nucleus (SCN) [12]. The millisecond timer responsible
for speech processing and motor coordination exists in cerebellum [2]. The time
scale in the range of seconds to minutes range is referred to as interval timing
and involves conscious time estimation. The neural mechanisms of interval tim-
ing are not clearly identified and Ivry and Schlerf specify that some models are
based on dedicated mechanisms and some models are based on intrinsic mecha-
nisms [10]. Some psychologists categorize timing mechanisms into automatic and
cognitively controlled mechanisms. The circadian timing and millisecond timing
are labeled as automatic timing mechanisms and interval timing is labeled as
cognitively controlled timing.

There are four standard psychophysical investigation methods for studying
time perception: wverbal estimation, interval reproduction, interval production
and interval comparison. Verbal estimation refers to specifying the duration of
a stimulus in time units (usually in seconds) ; interval reproduction refers to re-
producing the duration of the presented stimulus by the repetition of same event
or by other means. Some people refer to time reproduction task as peak-interval
procedure [16], as responses from several trials peak at the criterion duration.
Interval production refers to producing a timing task of the given duration; in-
terval comparison refers to comparing different lengths of the same stimulus or
comparing lengths of two different stimuli [28§].

Interval timing exhibits an important characteristic namely scalar property.
For both psychological and neural models of interval timing, accountability is
achieved by scalar property. Scalar property, a specialized form of Weber’s law,
specifies that the time varying behavior of the subject stretches or scales in pro-
portion to the length of the duration of the stimulus. In other words, it refers to
the linear relationship between the standard deviation of the time estimate and
mean of time estimate. Treisman [24] defines scalar property as the phenomenon
wherein the error in time estimation increases with increased duration of the
stimulus.

The cognitive and neural models of time perception are broadly categorized
into dedicated and intrinsic models [10][27] as shown in Table 1 . Computational
models are feasible for comprehensive understanding of mind and brain. In time
perception realm, there is a lacunae for computational modeling. There are a
very few computational models of interval timing [23] [1] [19]. The computational
model by Taatgen et al. [23] is a procedural model and is built on ACT-R ar-
chitecture. Addyman et al. [1] devised and simulated a computational model for
interval timing in infants using a connectionist memory-decay approach. Oprisan
and Buhusi [19] devised a mathematical model to analyze the characteristics of
cosine oscillators and the role of noise in striatal beat frequency model.

We propose Stochastic Leaky Integrator Model(SLIM) which is based on leaky
integrate-and-fire spiking neuron model and the idea is inspired by PAM. Our
model, SLIM is a hybrid model that combines the features of dedicated and
intrinsic models of timing. It combines a biologically plausible model of neuron
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Table 1. Models of Time Perception

Dedicated Models Intrinsic Models
— In dedicated models, a neural struc-| — In intrinsic models, timing is inherent
ture or components for handling tem- and is part of sensory information pro-
poral information could be a special- cessing.
ized one or a distributed network of| — State dependent network models and
different brain regions or components. energy readout models come under
— Cerebellum, basal ganglia, supplemen- this category.
tary motor area and right prefrontal| — Other examples are Memory-decay
cortex are the examples of special- model proposed by Staddon [22], Dual
ized dedicated mechanisms proposed Klepsydra model by Wackermann and
in various neural models of time per- Ehm [26], Population clocks proposed
ception. by Buonomano and Laje [3], Spec-
— PAM is the seminal cognitive model tral timing model by Grossberg and
that assumes a dedicated clock com- Schmajuk [9].
ponent to deal with time
— Other examples of dedicated models
are Beat Frequency model by Mi-
all [18] and Connectionist Model pro-
posed by Church and Broadbent [5]

activation with counting mechanism in order to handle interval timing as cortical
neurons fire in the range of milliseconds. SLIM is a simple, biologically plausi-
ble computational model for interval timing. Section 2 presents an overview of
spiking neural networks and delineates the feasibility of leaky integrate-and-fire
neuron model as the computational substrate of interval timing.

2 Spiking Neural Networks

A neuron is assumed to be a dynamic element that generates pulses or spikes
whenever its excitation reaches a threshold value. Biological neural systems use
spike timing for information processing. The generated sequence of spikes con-
tains the information and it gets transmitted to the next neuron [7]. Spiking
neurons are the computational units in brain. The presence of output spikes from
the neurons and/ or the timing of the spiking neurons is assumed to be the in-
formation transmission mechanism in spiking neural networks. Though artificial
neural networks are proved to be powerful problem solving tools in the domains
such as bioinformatics, pattern recognition, robotics etc., they suffer in process-
ing large amounts of data and adaptation to the dynamic environment [20].
Maass [14] quotes spiking neural networks as third generation of artificial neural
networks, the first generation of networks being threshold logic units and the
second generation of neural networks being sigmoidal units (see Table 2).



16 K. Anamalamudi, B.R. Surampudi, and M. Maganti

Table 2. Classification of Neural Networks according to [14]

Generation Computational ‘Working Architecture/
Unit Principle Model
First Generation |Threshold Gates Digital output Perceptrons,
(McCulloch-Pitts Hopfield Network,
neurons) Boltzmann machine
Second  Genera-|Sigmoidal Units Real valued outputs which|Multilayer  percep-
tion are interpreted as firing|trons,
rates of natural neurons Radial Basis Func-
tion networks
Third Generation |Spiking Neurons Spike Timing Hodgkin-Huxley
model,
Integrate-and-Fire
model,
Spike response model

2.1 Spiking Neuron Models

The most influential spiking neuron models are: Hodgkin-Huxley Model,
Integrate-and-Fire Model and Spike Response Model. Hodgkin-Huxley Model
is a traditional conductance-based model of spiking neurons. When compared
to Integrate-and-Fire model and Spike response model, it is quite complex to
analyze mathematically. Spike Response model could be demonstrated as a gen-
eralized version of Integrate-and-Fire model. Leaky integrate-and-fire model is a
variant of integrate-and-fire model wherein , a neuron is modeled as a leaky inte-
grator of its input. The neurons in integrate-and-fire model could be stimulated
by some external current or by the input from presynaptic neurons.

We focus on leaky integrate-and-fire model as the nature of leaky integration of
spikes resembles the accumulation of pulses in accumulator of PAM. And, when
the membrane potential reaches a threshold, an output spike is generated and the
no.of spikes that gets generated is in proportion to the length of the stimulus.Eq.
1 describes a simple resistor-capacitor (RC) circuit where the neuron is modeled
as a leaky integrator with the input I(t).

dv
dt
The membrane potentials of the leaky integrate-and-fire neurons are calculated
depending on the input type. Eqs.2, 3, 4 describe the computation of mem-

brane potential with the inputs of constant current, time dependent stimulus
and presynaptic currents respectively.

Tm

= —u(t) + RI(t) (1)

1. Stimulation by a constant input current I(t):
t
v(t) = RI[1 —exp (— >} (2)
Tm
2. Stimulation by a time-varying input current:

V(t) = vy exp (_t _to) 4 B /O e (— i )I(t “sds (3)

Tm Tm Tm
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3. Stimulation by synaptic currents:

L) =Y wyy alt - ") (4)

!

For devising the model of interval timing, we considered the case of ’stimulation
by synaptic currents’; as the sensory stimulus passes through the cortical neurons
and cortical neurons would act as presynaptic neurons for leaky integrate-and-
fire neuron.

3 The Model

After an extensive review of literature on time perception, we identified that
there is a lacunae of computational models of time perception. To fill this gap
in literature, we attempted to devise a computational model that is biologically
plausible based on spiking neurons. In addition, the model should satisfy the
criterion of being lucid and concise for explaining the mechanisms involved in
interval timing like PAM. This led to devising a hybrid model possessing the
properties of dedicated and intrinsic models of time perception. The model is
called Stochastic Leaky Integrator Model (SLIM) because it depicts the stochas-
tic firing nature of cortical neurons and leaky integration of the integrate-and-fire
neuron. The schematic representation of SLIM is presented in Fig. 2.

In PAM (Fig. 1), which is based on Scalar Expectancy Theory (SET), a
Poisson pacemaker continuously emits pulses. The switch is closed on the onset
of a stimulus and the pulses get accumulated in accumulator. During training,
the contents of the accumulator are stored in reference memory. During testing,
the contents of the accumulator are stored in working memory and a response
is generated as an outcome of the ratio comparison between contents of working
memory and reference memory. When there is a sensory stimulus, the cortical
neurons start firing stochastically at irregular intervals [6]. So, it is convenient to
maintain the number of spikes/pulses generated by the cortical neurons during
the presence of stimulus rather than keeping track of spiking times of the neurons
over a time course. Our model SLIM exactly utilizes this property for interval
time estimation. According to SLIM, when there is a stimulus, cortical neurons
start firing and generate spikes. To mimic the random firing nature of cortical
neurons, we used a uniformly distributed random number generator to determine
the number of neurons that fire at any instance of time. During the presence of
stimulus, the potential of the leaky integrate-and-fire (LIF') neuron increases in
proportion to the spiking of presynaptic neurons. When the potential reaches a
threshold, the LIF neuron generates an output pulse and counter keeps track of
these pulses. After reaching threshold, potential is set to a resting value and the
integration of potentials starts again at LIF neuron. This accumulation continues
until the stimulus is presented and after that the contents of counter are shifted
to memory and a response is generated(see Algorithm1).
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Fig. 1. Pacemaker Accumulator Model

Fig. 2. Stochastic Leaky Integrator Model for Interval Timing
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Algorithm 1. Functioning of SLIM

Network Architecture & Initializations:
No. of cortical neurons, M= 100
No. of Leaky integrate-and-fire neurons: 1
Threshold, Th= 50
Resting potential, R= 0.5
Presynaptic weight of each neuron, W= 0.75
Potential, V=0
Counter, S= 0

1: while STIMULUS do

: When there is an external stimulus, the cortical neurons start firing

3: The no. of cortical neurons that fire at a moment are selected by a random
number generator;

4: N= Random(M)

5: The potential of leaky integrate-and-fire neuron is calculated as the weighted
sum of firing neurons.

6: V=NW

T if V>Th then

8: LIF neuron generates a spike and counter is incremented by one

9: S=85+1

10: Potential, V is set to resting potential R
11: V=R

12: else

13: I =NW

14: V=V+I

15: end if

16: end while

17: Shift the values of Counter to Memory;
18: Mem =S

19: return S

4 Results and Discussion

We experimented to model the results of time reproduction task given in [21]
for 8s, 12s and 21s through SLIM. Time duration is plotted on x-axis and the
percentage of response rate is plotted on y-axis. We simulated the model with 100
presynaptic neurons and the number of neurons that get excited at an instance
of time is chosen by a uniformly distributed random number generation function
to demonstrate more realistic the firing of neurons. Fig. 3 shows the result of the
simulations with fized threshold. To mimic the results of behavioral tests done
by Rakitin et al. [21], we also ran the simulations for 80 trials and the outcomes
of these trials are plotted in Fig. 3.

Though there is a significant variance between results of Rakitin et al. exper-
iments and the results of simulations of SLIM, we welcome the stochastic firing
nature of cortical neurons as it is the mundane nature of biological neurons.
Another source of variance is fized threshold. We considered a threshold value of
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Fig. 3. Performance of SLIM with fixed threshold
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Fig. 4. Performance of SLIM with dynamic threshold

50 as it is a quite reasonable assumption that atleast 50% neurons should fire in
order to generate an output spike.

To reduce variance between SLIM results and Rakitin et al. results, we at-
tempted to work with dynamic threshold. Initially the threshold of the simula-
tions start with 50 and later the threshold is reduced by the inhibitory input at
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previous instance. The results of the simulations are much improved by inducing
dynamic threshold which is again a common feature of biological neurons [11][13]
and are shown in Fig. 4. As we focused much on studying the behavior of stochas-
tic leaky integrator as a computational substrate of interval timing that is also
biologically plausible, at present we did not work with training the model. We
hope that if the model is trained with a reasonable number of trials, the re-
sults of the simulations of SLIM would closely resemble the results given by
Rakitin et al.

5 Conclusion and Future Work

The model proposed in this paper, SLIM is simple yet computationally efficient.
Further, it integrates the features of dedicated and intrinsic models of time
perception and these features are represented by spiking cortical neurons and
the counting mechanism respectively.

As the model is based on spiking neurons it is evident that the model is
biologically plausible [25]. To make the model more robust and compatible with
psychological models of time perception, the results from behavioral experiments
by Rakitin et al. were used to assess the performance of SLIM. Initially the
model was tested for 8s, 12s and 21s time durations with fixed threshold of
leaky integrate-and-fire neuron. To improve the results, dynamic threshold that
varies from iteration to iteration and whose value depends on inhibitory input of
previous iteration is considered. Though the results of simulations using dynamic
threshold are much better than the results of simulations using fixed threshold,
the results indicated that there is no close resemblance to the results of Rakitin
et al. experiments. This may be due to lack of training for the model.

Future line of work should focus on incorporating training for the model. It
is assumed that by incorporating training, the model would be congruent with
psychological models. Further it is intended to study the feasibility of spiking
neuron populations for interval timing. At present, we did not focus on time
course of spiking neurons, and in future we intend to explore it to study the
relation between time course and interval timing.
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