
A Knowledge-Based Design for Structural

Analysis of Printed Mathematical Expressions

Pavan Kumar P.�, Arun Agarwal, and Chakravarthy Bhagvati

School of Computer and Information Sciences
University of Hyderabad, Hyderabad 500 046, India

pavan.ppkumar@gmail.com, {aruncs,chakcs}@uohyd.ernet.in

Abstract. Recognition of Mathematical Expressions (MEs) is a chal-
lenging Artificial Intelligence problem as MEs have a complex two di-
mensional structure. ME recognition involves two stages: Symbol recog-
nition and Structural Analysis. Symbols are recognized in the first stage
and spatial relationships like superscript, subscript etc., are determined
in the second stage. In this paper, we have focused on structural analysis
of printed MEs. For structural analysis, we have proposed a novel ternary
tree based representation that captures spatial relationships among the
symbols in a given ME. Proposed tree structure has been used for val-
idation of generated ME structure. Structure validation process detects
errors based on domain knowledge (mathematics) and the error feedback
is used to correct the structure. Therefore, our validation process incor-
porates an intelligent mechanism to automatically detect and correct the
errors. Proposed approach has been tested on an image database of 829
MEs collected from various mathematical documents and experimental
results are reported on them.

Keywords: Mathematical expressions, structural analysis, ternary tree
representation, domain knowledge, structure validation.

1 Introduction

Mathematical Expressions (MEs) form a significant part in scientific and engi-
neering disciplines. MEs can be offline or online. Offline or Printed MEs take
the form of scanned images while online MEs are written using data tablets.
ME recognition is the process of converting printed or online MEs into some
editable format like LATEX, MathML etc. It is needed for applications like dig-
itizing scientific documents, generating braille script for visually impaired etc.
ME recognition involves two stages: Symbol recognition and Structural analysis.
Symbols are recognized in first stage and structure (spatial relationships) is in-
terpreted in second stage. As mentioned in [3], structural analysis plays a vital
role in the overall ME recognition task.

In [11], we have discussed that mathematical symbols can be composed of
one or more indivisible units called Connected Components (CCs). For example,

� Corresponding author.

M.N. Murty et al. (Eds.): MIWAI 2014, LNAI 8875, pp. 112–123, 2014.
c© Springer International Publishing Switzerland 2014

Structural Analysis of Printed Mathematical Expressions 113

= is composed of two horizontal line CCs. For some symbols, identities depend
on context. For example, a horizontal line CC can be MINUS, OVERBAR,
FRACTION etc., as its identity depends on neighbouring symbols (context). If
it has symbols above and below, it is a FRACTION. If it has symbols only below,
it is an OVERBAR and so on. Symbols that are composed of more than one
CC are called Multi-CC symbols. Symbols whose identities depend on context
are called Context-dependent symbols. In [11], we have shown an architecture
for structural analysis of printed MEs. This design comprises three modules:
Symbol formation, Structure generation and Generation of encoding form like
LATEX. Symbol formation process takes labelled CCs of an ME image as input and
forms Multi-CC symbols as well as resolves the identity of Context-dependent
symbols. Elements of Multi-Line MEs (MLMEs) like matrices and enumerated
functions are also extracted in this module. Structure generation module takes
the formed symbols, analyzes spatial relationships like superscript, subscript etc.,
among them and generates an intermediate tree representation for the given ME.
Third module generates an encoding form like LATEX by traversing ME tree.

In [11], we have discussed only symbol formation process. In this paper, we
have discussed the other two modules. We have also added a new structure vali-
dation module that automatically detects and corrects the errors before encoding
form is generated. The paper is organized as follows: Existing works on struc-
tural analysis are discussed in Section 2. Section 3 gives an overall design of our
approach to structural analysis. Structure generation module is presented in Sec-
tion 4. Section 5 presents structure validation process along with encoding form
generation. Experimental results are summarized in Section 6 and the paper is
concluded in Section 7.

2 Related Work

In [18], a recent survey on ME structural analysis can be found. Existing works
on structural analysis along with their intermediate representations are discussed
below.

2.1 Intermediate Representation

Lee et al. [8] have proposed a data structure that captures spatial relations
among the symbols of an ME. Each symbol is represented by a structure that
has label information which gives identity of the symbol, and six pointers. These
six pointers are meant to point to six spatially related symbols. Each symbol
forms a node in the tree which is formed by joining pointers of the symbols
appropriately. In this structure, most of the pointers are empty and the tree is
sparse. Hence the data structure is not spatially efficient as well as it cannot
handle all types of MEs like MLMEs. In [14], an ME has been represented in
the form of a directed graph. Each node of the graph corresponds to a symbol
and a link between two nodes has the following information: Labels of node1
and node2 along with spatial relationship between them (one of the above men-
tioned regions). As only links are stored, number of links to be used depends on

114 P.P. Kumar, A. Agarwal, and C. Bhagvati

number of possible relationships among the symbols of an ME, and hence not
fixed and also not known a priori. In addition, it also cannot handle MLMEs.
Zanibbi et al. [19] have proposed a tree structure that contains two types of
nodes: Symbol nodes and Region nodes. Symbol node represents a symbol and
stores its identity. Region node is a child of symbol node that represents symbols
that are spatially related (excluding the horizontally adjacent relation) to sym-
bol node and the type of spatial relation (ABOVE, BELOW, SUPERSCRIPT,
SUBSCRIPT etc.) is stored in the node. The children of region node are again
symbol nodes whose symbols are represented by it and all these symbols are
horizontally adjacent. Tree has region and symbol nodes at alternate levels. To
handle MLMEs, the authors have extended their tree structure [17] to have TA-
BLE (to designate MLMEs), ROW (for rows) and ELEM (for elements) nodes.
In this tree structure, number of children for region nodes is not known a priori
as it depends on the number of symbols in that subexpression.

2.2 Structure Generation

Structure generation process analyzes spatial relations among the symbols of a
given ME and generates its intermediate representation. In [6], LATEX code is di-
rectly generated after analyzing spatial relations without using any intermediate
representation. Lee et al. [8] have proposed a method in which special mathe-
matical symbols like

∑
,
∫

etc., are analyzed first, then matrices are detected
and finally superscripts and subscripts of remaining symbols are captured. They
have detected and extracted the elements of matrices as part of structure gener-
ation. But their approach has not been discussed in a detailed manner. Tian et
al. [16] have performed structure generation of offline MEs using baseline infor-
mation. In [5], a network that represents spatial relations has been constructed
and minimal spanning tree that corresponds to the actual structure has been
obtained. Zanibbi et al. [19] have proposed to construct baseline structure tree
for an ME based on reading order and operator dominance. [15] have presented a
method based on a minimum spanning tree construction and symbol dominance
for online handwritten MEs. Several approaches [1,6,9] have used grammars to
generate structures and hence difficult to tackle erroneous ones.

3 Proposed Design to ME Structural Analysis

Proposed architecture to ME structural analysis is shown in Fig. 1. For a given
input ME image, it is binarized (converted from gray scale to binary image using
Otsu’s method [7]), CCs are extracted [7] and labels are assigned to them. In
the above process, Minimum Bounding Rectangles (MBRs) of CCs are also com-
puted. MBR of a CC is the minimum rectangle bounding it and is represented
by its top-left and bottom-right co-ordinates. As shown in Fig. 1, proposed ap-
proach starts with labelled CCs and comprises four modules namely symbol
formation, structure generation also called as ME tree generation, structure val-
idation and generation of encoding form like LATEX. Structure validation module

Structural Analysis of Printed Mathematical Expressions 115

Fig. 1. Proposed architecture for ME Structural Analysis

Fig. 2. Spatial regions around a mathematical symbol X. TL, A, TR, BL, B and BR
denote top-left, above, top-right, bottom-left, below and bottom-right regions respec-
tively. N – Northern region, S – Southern region, E – East, W – West.

inspects tree structure and gives error feedback (shown as arrows) using domain
knowledge, to symbol formation and structure generation modules. Symbol for-
mation and structure generation processes are repeated until no errors are found
by validation module, after which encoding form is generated.

As discussed in [11], symbol formation process takes labelled CCs as input and
forms Multi-CC and Context-dependent symbols. MLMEs are also detected and
their elements are extracted. To handle MLMEs, starting and ending delimiters
like (, [, {, | and),], }, | respectively are considered as Context-dependent symbols
as they can be used to enclose sub-expressions or MLMEs. Based on horizontal
and vertical projection profiles [11], CCs between the delimiters are analyzed to
compute rows and elements. If there is only one row and element, it is not an
MLME. Otherwise, labels of the delimiters are changed to those of MLME ones
and all the computed elements in each row are isolated (but their association
with the delimiters is stored) from the main stream of CCs. For example, ÷ is a
Multi-CC symbol and has three CCs (one horizontal line and two DOTs). If these
three CCs are vertically stacked one over another, their MBRs are combined to
form a single composite symbol. Label corresponding to ÷ is assigned to the
composite symbol.

4 ME Tree Structure and Its Generation

Structure generation module takes left to right ordered symbols (from symbol
formation process), analyzes spatial relations and generates an ME tree pro-
posed for the purpose. In [13], we have discussed that symbols in MEs can have
surrounding symbols in its top-left, above and top-right regions as well as in
their bottom-left, below and bottom-right regions. For example, in

∑j
i , sym-

bols i and j are in bottom-right and top-right of
∑

respectively. The region

116 P.P. Kumar, A. Agarwal, and C. Bhagvati

formed by combining top-left, above and top-right regions (bottom-left, below
and bottom-right) in that order is called as Northern (Southern) region. These
regions are shown in Fig. 2. Symbols in northern and southern regions of X align
in its vertical direction.

Definition 1. A mathematical operator is called as Horizontal (H) operator
if it does not have symbols in their northern and southern regions (Eg: +, -,
<,≤,≥,= etc.). Otherwise, it is a Non-Horizontal (NH) operator (Eg:

∑
,
∫
,

FRACTION etc., and accent symbols like HAT, OVERBAR etc.).

Definition 2. A symbol which is not present either in the northern or in the
southern region of any other symbol in an ME is called Baseline symbol. For
example, in a2 + b2 + 2ab, baseline symbols are: a, +, b, +, 2, a, b. Remaining
two symbols 2 and 2 are in the top-right regions of a and b respectively.

4.1 Tree Representation

Proposed representation uses a ternary tree structure. Each symbol is repre-
sented using only three pointers to represent spatial relationships around it. Out
of the three, one pointer is meant to point to the next baseline symbol and the
other two are meant for the entire northern and southern regions respectively. In
most of the MEs, the entire northern or southern region for any symbol forms a
single subexpression. There may be unusual cases, where two different subexpres-
sions are present in the same region (Eg: nCr). There can also be rare cases where
symbols can have more than two different subexpressions (if they have pre-super
and pre-sub scripts in addition to super and sub-scripts) over the northern and
southern regions, but occur rarely in mathematics. Our representation handles
unusual and rare cases in a different manner (discussed later).

Proposed tree node structure to represent a symbol is given by an abstract
data type called as TreeNode with some fields. Each symbol in a given ME forms
a node in the tree that is generated by linking pointers of the symbols based on
their spatial relations. Each field in the data structure is discussed below:

1. Integer field, label gives the identity of a symbol.
2. Two boolean fields, EOE (End of Element) and EOR (End of Row) are used

to handle MLMEs like matrices, enumerated functions etc. EOE is set to
TRUE if a symbol designates end of some element of an MLME. Otherwise,
it is set to FALSE. Similarly, EOR is set to TRUE if a symbol designates
end of some row of an MLME. Otherwise, it is set to FALSE.

3. TreeNode pointer next of any symbol points to its next baseline symbol.
4. nLink of a symbol points to first baseline symbol of northern expression.
5. sLink of a symbol points to first baseline symbol of southern expression.
6. Northern and Southern regions for different symbols are listed below:

(a) FRACTION – Numerator (denominator) corresponds to northern (south-
ern) region.

(b) SQUAREROOT – Degree (contained expression) corresponds to north-
ern (southern) region.

Structural Analysis of Printed Mathematical Expressions 117

Fig. 3. Proposed tree structure for x =
−b+

√
b2−4ac

2a
. Here, x is head of the tree

(c) Accent or Wide accent symbols – Enclosed subexpression is present be-
low (southern) for accent symbols like OVERBAR, OVERBRACE etc.,
and above (northern) for accent symbols like UNDERBAR, UNDER-
BRACE etc.

(d) Other symbols – northern (southern) region gives superscript (subscript).

In our representation, label information of a symbol is exploited to resolve its
northern and southern regions. First node (root) of the tree (first baseline sym-
bol) is called head of the tree. That means, nLink and sLink pointers point to
heads of the subtrees for the northern and southern subexpressions respectively.
As northern and southern regions are considered as a whole, proposed tree struc-
ture is simple. Proposed tree structure for an example ME is shown in Fig. 3.
In this figure (and in the subsequent figures), nLink is shown by left link, sLink
by right link and next by horizontal link.

4.2 Logical Proof for Completeness

Proposed tree structure handles unusual and rare cases in the following manner.

1. If two different sub-expressions are present in the same (northern or south-
ern) region, one of them is logically shifted to the other region. Logically
shifted regions are represented by negating the label of first baseline symbol
of the corresponding region. For example, in nCr, if n is logically shifted, its
label is negated and considered as northern child (pointed by nLink) of C.

2. Proposed ME representation handles rare cases using special nodes called
ε-nodes. ε-nodes are used to handle symbols with more than two different
subexpressions over their northern and southern regions. An ε-node also has
a unique label, but does not refer to any symbol. Its nLink and sLink pointers
can point to two more sub-expressions of a symbol, if the symbol has more
than two sub-expressions around it. If a rare symbol has more than two
and less than or equal to four different subexpressions around it, one ε-node
is needed. If it has more than four different subexpressions, two ε-nodes are
needed. ε-nodes are connected to the actual symbol node using next pointers.
For example, let us consider a symbol with four sub-expressions p

q

∑s
r around

it. Here, super and sub scripts r and s, are pointed by
∑

and its pre-super
and pre-sub scripts (top-left and bottom-left) p and q, are pointed by an
ε-node. The ε-node is connected to

∑
using its next pointer which is shown

118 P.P. Kumar, A. Agarwal, and C. Bhagvati

Fig. 4. Proposed tree for p
q

∑s
r where

∑
has pre-super and sub scripts

in Fig. 4. Let us consider another rare complex example:

n
a

b

∏d

c
i=1

. Here,
∏

has

six different subexpressions around it. In these cases, two ε-nodes are used,
one to hold top-left and bottom-left subexpressions and the other one to
hold above and below subexpressions. Symbol node handles the remaining
two subexpressions and ε-nodes are connected using next pointers. These
rare cases almost do not occur in any ME but LATEX can generate them.

3. Representing MLMEs: Our proposed representation handles MLMEs by
generating trees for all the elements (as each element is again an ME) recur-
sively in all the rows and attaching them in a row-major order. That means,
next of starting delimiter (like (, [etc.) of an MLME points to head of tree
for first element in the first row. For any element in any row, next of its last
baseline symbol points to head of tree for the next element in that row and
EOE is set to TRUE for this last baseline symbol. For last element in any
row, next of its last baseline symbol points to head of tree for first element
of next row and EOR is set to TRUE for this last baseline symbol. Pointer
next of last baseline symbol of last element in last row points to the ending
delimiter (like),] etc.) if present (not present for enumerated functions). It
is to be noted that the above recursive process handles even nested MLMEs.

4.3 Spatial Efficiency and Generality

As northern and southern subexpressions are taken as a whole, processing com-
plexity of the proposed tree is reduced. To handle MLMEs, only two bits are
used. Therefore, proposed tree is spatially efficient. In general, mathematical
symbols have atmost two arguments (numerator/denominator for fraction, de-
gree/contained expression for squareroot, super/subscripts for others etc.) and
so our approach is intuitive. Proposed tree structure can also be used to handle
other structures that are similar in nature to MEs. For example, chemical equa-
tions have ionic information (like oxidation state) and the number of instances
of an atom in the northern and southern regions. In [12], LATEX based linear rep-
resentation has been used for ME retrieval. As proposed tree structure is simple
and complete, its linear form (symbol, its northern and southern expressions in
that order recursively) gives a better representation for this application.

Structural Analysis of Printed Mathematical Expressions 119

4.4 Algorithm to Generate ME Tree

Proposed algorithm takes left to right ordered symbols of an ME as input, gen-
erates ME tree and returns a pointer to head of the tree:
TreeNode ∗ generateTree(L: list of Symbols)

1. Find the baseline symbols in L by isolating their northern and southern
subexpressions using the next two steps. These subexpressions are first iso-
lated forNH operators and then for other symbols (as northern and southern
symbols of NH operators are present on their both sides).

2. Scan list L from left to right and if a NH operator say X , is found, do:

(a) Create a tree node of type TreeNode for X .
(b) Inspect the symbols on both sides of X in L and isolate symbols in its

northern and southern regions. If a line segment obtained by joining the
midpoints or centroids of MBRs of two symbols X and Y , is almost
vertical (discussed earlier), then Y is in the northern or southern region
of X . In our implementation, angles from 45◦ to 90◦ are considered
almost vertical.

(c) Isolated vertically aligned symbols are partitioned into northern and
southern ones based on their position with respect to X . If an isolated
symbol is present in the above (below) of X , then it is in the northern
(southern) region of X .

(d) If more than two subexpressions are present over the northern and south-
ern regions, ε-nodes are accordingly added and those subexpressions are
attached to them.

3. Scan the remaining symbols (other than NH operators and their corre-
sponding isolated symbols in step 2) in L from left to right and for each such
symbol, say X :

(a) Create a node of type TreeNode for X .
(b) Isolate symbols (using vertical alignment criteria) in its northern and

southern regions by inspecting on the right side of the current symbol.

4. Connect the nodes created in steps (2) and (3) (baseline symbols) using next
pointers. Let pointer to head of the tree be denoted by H .

5. Traverse through the baseline symbol nodes and for each such node, generate
trees for their northern and southern subexpressions recursively:

(a) Let pointer to the current baseline symbol node be denoted by X (Ini-
tially, X = H). Generate ME tree for northern region of X , if present,
and assign pointer to its head to nLink of X . Let symbol list in the
northern region (captured either in step (2) or (3) above) be denoted by
NR. Therefore, X → nLink = generateT ree(NR).

(b) Similarly, X → sLink = generateT ree(SR), where SR denotes symbol
list in the captured southern region.

(c) Go to the next baseline symbol node. X = X → next. Go to step 5(a).

6. Traverse through baseline symbol nodes and if any MLME delimiter is found,
generate and attach trees of its elements in a row-major order recursively.

7. Return head of the final tree generated for the given ME. return H .

120 P.P. Kumar, A. Agarwal, and C. Bhagvati

Fig. 5. An enumerated function image with its multi-CC symbols and extracted ele-
ments (shown in boxes) after symbol formation process

Fig. 6. ME tree generation for the enumerated function shown in Fig. 5 (a) Initial tree
(b) Final tree after the elements are attached

An enumerated function image is shown in Fig. 5, in which, Multi-CC symbols
are formed as well as its elements are extracted in the symbol formation process
(shown in boxes). Its ME tree generation process is shown in Fig. 6, in which
intial and final trees (before and after element attachment) are shown in Fig.
6(a) and (b) respectively. For rectangular nodes, EOE is set to TRUE and for
double rectangular nodes, EOR is set to TRUE.

5 Structure Validation

Generated ME tree is validated using domain (mathematics) knowledge to verify
correctness of the structure. If any erroneous structure is detected, corresponding
feedback is given to symbol formation or structure generation modules, accord-
ing to the source of error. Common errors that occur in the symbol formation
module are Multi-CC as well as Context-dependent symbols may not be cor-
rectly resolved. Similarly in structure generation module, super or sub-script
relationships may be lost for a symbol. Our validation algorithm is given below:

1. ME tree is traversed in pre-order [4] (visit in the following order: current
node, its nLink, sLink and next recursively) and verified for errors using
domain knowledge. If no errors are found, encoding form is directly gen-
erated. Otherwise, validation module decides if the errors are from symbol
formation or structure generation modules.

2. If an error occurs in symbol formation module, feedback is given to that
module and that process is repeated again by taking that error into account.
Newly formed symbols are sent to structure generation module and the new
tree structure generated is again validated.

3. If the error occurs in structure generation module, a new tree structure is
generated by taking into account the error feedback.

4. The above two steps are repeated until no errors are found.

Structural Analysis of Printed Mathematical Expressions 121

Fig. 7. (a) An ME image (b) LATEX output without validation (c) Regenerated ME
from LATEX output (b) (incorrect) (d) LATEX output with error feedback to symbol
formation process (e) Regenerated ME from LATEX output (d) (corrected)

Validation module uses domain knowledge (mathematical properties encoded
in the form of rules) to detect errors in the tree. The knowledge can always be
updated over time like that for any knowledge-based system [2]. Some of the rules
used are: (1) An expression (or subexpression) should not end with any operator.
(2) Horizontal operators do not have superscript or subscript expressions. (3)
Superscript and subscript expressions of NH operators should not have matrix-
like expressions, except determinants (as determinants are logically scalars). (4)
Elements of a matrix do not have operators alone or they do not have equations.

Generation of Encoding Form: After errors in the ME tree structure are
rectified by validation module, encoding form like LATEX, MathML etc., can
be generated by traversing the tree. In our approach, LATEX code is generated
by maintaining a mapping table that maps a given symbol to its LATEX encoded
symbol. The algorithm to generate encoding form is based on pre-order traversal
on the ME tree: (1) Inspect the label of the current node (which is head of tree
initially) and generate its encoded symbol. (2) Encode its northern and southern
subtrees recursively. (3) Inspect EOR and EOE fields and if they are true, add
row and element delimiters (\\ and & for LATEX) accordingly. (4) Move to the
next baseline symbol and repeat the first three steps.

An ME image is shown in Fig. 7(a). For this ME, delimiters are taken as
MLME ones (determinants) with five rows and two columns by the symbol for-
mation process and its LATEX output (without validation) is shown in Fig. 7(b).
Its regenerated ME is also shown in Fig. 7(c) for better understandability. Vali-
dation module finds an equation in the first element of the last row (x = a) of the
determinant and gives feedback to the symbol formation module that it is not
a determinant. It is considered by symbol formation module and the remaining
procedure is repeated to get correct tree structure. Its LATEX output as well as
its regenerated ME are shown in Figs. 7(d) and (e) respectively.

122 P.P. Kumar, A. Agarwal, and C. Bhagvati

Table 1. Summary of results on our PACME database of 829 MEs

ME type Field
Number of
MEs

Without Validation With Validation

Number of correctly
captured structures

Accuracy (%)
Number of correctly
captured structures

Accuracy (%)

Non-MLMEs

Algebra 251 189 75.3 212 84.4
Trigonometry 116 108 93.1 112 96.6
Geometry 17 13 76.5 17 100
Calculus 374 321 85.8 352 94.1

MLMEs
Matrices 62 50 80.6 53 85.4

Enumerated functions 9 7 77.8 8 88.9
Grand Total 829 688 82.9 754 90.9

6 Experimental Results and Discussion

For our experimentation, we have created a database of 829 ME images called
PACME database [10] that are collected from various mathematical books [20].
Those MEs cover different fields of mathematics like Algebra, Trigonometry, Ge-
ometry, Calculus etc., and range from simple to complex formulae and equations.
Each ME image in the database is binarized and CCs are extracted. Labels of
these CCs are manually stored in a file. Our approach to ME structural analy-
sis has been implemented in C++. As mentioned in Section 3, for a given ME
image, proposed approach binarizes it, extracts the CCs and uses its correspond-
ing file to label those CCs. After CC labelling, it performs the task of structural
analysis. Results on our PACME database of 829 MEs are summarized in Table
1. In that table, percentage accuracies without and with structure validation
are shown separately (to give a complete picture of our database) for each ME
type (MLMEs and Non-MLMEs) and field in that type. Accuracy is the ratio
of the number of correctly captured ME structures to the total number of MEs.
The above experimentation shows that validation process (based on our tree
structure) has given 8% improvement in accuracy.

7 Conclusions and Future Directions

In this paper, we have proposed a ternary tree based representation for structural
analysis of printed MEs. We have shown that the proposed tree is simple, com-
plete and spatially efficient. It can be used to represent other similar structures
like chemical equations and also in applications like ME retrieval. Generated
tree structure is validated using domain knowledge and error feedback is used
to automatically correct the errors. Proposed approach that is based on an ex-
pert system incorporates an intelligent mechanism in the process. Our approach
has been tested on a database of 829 ME images and experimental results are
reported on them. In future, semantic knowledge can be incorporated into vali-
dation process to improve error detection and correction.

References

1. Álvaro, F., Sánchez, J.A., Bened́ı, J.M.: Classification of on-line mathematical sym-
bols with hybrid features and recurrent neural networks. In: International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 1012–1016 (2013)

Structural Analysis of Printed Mathematical Expressions 123

2. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project. Addison-Wesley (1984)

3. Chan, K.F., Yeung, D.Y.: An efficient syntactic approach to structural analysis of
on-line handwritten mathematical expressions. Pattern Recognition 33(3), 375–384
(2000)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT
Press and McGraw-Hill Book Company (1989)

5. Eto, Y., Suzuki, M.: Mathematical formula recognition using virtual link network.
In: ICDAR 2001, pp. 762–767. IEEE Computer Society, Washington, DC (2001)

6. Garain, U., Chaudhuri, B.B.: Recognition of online handwritten mathematical ex-
pressions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics 34(6), 2366–2376 (2004)

7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Educa-
tion Indian Reprint (2003)

8. Lee, H.J., Wang, J.S.: Design of a mathematical expression understanding system.
Pattern Recognition Letters 18(3), 289–298 (1997)

9. MacLean, S., Labahn, G.: A new approach for recognizing handwritten mathemat-
ics using relational grammars and fuzzy sets. IJDAR 16(2), 139–163 (2013)

10. PACME: Printed Mathematical Expression Image Database (2010),
http://dcis.uohyd.ernet.in/~pavanp/mathocr/PrintedMEs.zip

11. Pavan Kumar, P., Agarwal, A., Bhagvati, C.: A rule-based approach to form mathe-
matical symbols in printed mathematical expressions. In: Sombattheera, C., Agar-
wal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS (LNAI),
vol. 7080, pp. 181–192. Springer, Heidelberg (2011)

12. Pavan Kumar, P., Agarwal, A., Bhagvati, C.: A structure based approach for math-
ematical expression retrieval. In: Sombattheera, C., Loi, N.K., Wankar, R., Quan,
T. (eds.) MIWAI 2012. LNCS (LNAI), vol. 7694, pp. 23–34. Springer, Heidelberg
(2012)

13. Pavan Kumar, P., Agarwal, A., Bhagvati, C.: A string matching based algorithm
for performance evaluation of mathematical expression recognition. Sadhana 39(1),
63–79 (2014)

14. Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: Infty-an integrated
OCR system for mathematical documents. In: Proceedings of ACM Symposium on
Document Engineering 2003, pp. 95–104. ACM Press (2003)

15. Tapia, E., Rojas, R.: Recognition of on-line handwritten mathematical expressions
using a minimum spanning tree construction and symbol dominance. In: Lladós,
J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 329–340. Springer, Hei-
delberg (2004)

16. Tian, X., Fan, H.: Structural analysis based on baseline in printed mathematical
expressions. In: PDCAT 2005, pp. 787–790 (2005)

17. Zanibbi, R., Blostein, D., Cordy, J.R.: Directions in recognizing tabular struc-
tures of handwritten mathematics notation. In: Proceedings of IAPR International
Workshop on Graphics Recognition (2001)

18. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
IJDAR 15(4), 331–357 (2012)

19. Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using
tree transformation. IEEE Transactions on PAMI 24(11), 1455–1467 (2002)

20. Zwillinger, D.: CRC Standard Mathematical Tables and Formulae, 30th edn. CRC
Press, Boca Raton (1996)

http://dcis.uohyd.ernet.in/~pavanp/mathocr/PrintedMEs.zip

	A Knowledge-Based Design for Structural Analysis of Printed Mathematical Expressions
	1 Introduction
	2 Related Work
	2.1 Intermediate Representation
	2.2 Structure Generation

	3 Proposed Design to ME Structural Analysis
	4 ME Tree Structure and Its Generation
	4.1 Tree Representation
	4.2 Logical Proof for Completeness
	4.3 Spatial Efficiency and Generality
	4.4 Algorithm to Generate ME Tree

	5 Structure Validation
	6 Experimental Results and Discussion
	7 Conclusions and Future Directions
	References

