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Abstract Anthropogenic activity has affected nearly every environment on the

planet. The changes that have occurred as a consequence of human activities have

altered aquatic habitats by exacerbating already existing extreme environments and

by introducing novel stressors. In some cases, particularly adjacent to heavily

industrialized areas, these changes have introduced sufficient novel selective pres-

sures to drive resident populations to genetically adapt in order to survive in the

altered habitats, while species that were unable to adapt have been extirpated from

these extreme environments. In this chapter, we aim to explore the effects of natural

and novel stressors, resulting from anthropogenic activity, on fish populations. We

will provide an overview of the possible multi-generational outcomes of anthropo-

genic contamination, as well as explore documented examples of population-wide

changes that have occurred. We present case studies, including population

responses to UV light, radionuclides, and metals contamination, as well as adapta-

tional responses to persistent organic pollutants. Through this examination, we aim

to not only give an overview of the existing evolutionary changes in fish

populations in response to anthropogenic contamination, but also identify future

areas of research on the impacts, long-term persistence, and ecological significance

of these effects.

1 Anthropogenic Changes to Aquatic Environments

There is great natural variability in aquatic environments, which has provided the

grounds for the phenomenal diversification and adaptation of fish species to fill

available ecological niches. In addition to adaptation along natural environmental

gradients, some fish possess unique phenotypes, which allow them to survive under

the most extreme environmental conditions. Modern extreme environments include

many aquatic habitats that have been so thoroughly contaminated by human

activities that many aquatic species are unable to survive or reproduce in them.

E.M. Oziolor • C.W. Matson (*)

Department of Environmental Science, Institute for Biomedical Studies, and Center for

Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA

e-mail: cole_matson@baylor.edu

© Springer International Publishing Switzerland 2015

R. Riesch et al. (eds.), Extremophile Fishes, DOI 10.1007/978-3-319-13362-1_11
247

mailto:cole_matson@baylor.edu


These are generally located in heavily industrialized areas or in waterways down-

stream of industrial activity, and are characterized by dramatic reductions in species

diversity. Anthropogenic changes to the climate and environment are increasingly

altering freshwater and marine habitats, and will require adaptive responses from

resident fish populations to allow for their persistence (Moe et al. 2013; Rosenzweig

and Neofotis 2013; Anderegg et al. 2010). As adaptation involves allele frequency

changes over many generations, species with shorter generation times are likely to

adapt more rapidly to ongoing anthropogenic environmental alterations. Thus,

human-induced evolutionary change has been observed more often in simple

unicellular or invertebrate species (Palumbi 2001; Medina et al. 2007).

Human-induced environmental changes can act to exacerbate preexisting

extreme environments by increasing natural stressors, which include, but are not

limited to, salinity/conductivity, temperature, metals, UV radiation, and pH balance

(Kaushal et al. 2005; Poloczanska et al. 2013; Core Writing Team et al. 2007;

Dijkstra et al. 2013; Veron 2008). In addition to augmenting existing extreme

environments, anthropogenic activities have caused compounds with low natural

occurrences to reach concentrations high enough to cause toxicity, thus creating

new selective pressures shaping evolutionary change in natural populations. These

new selective pressures will be referred to hereafter as novel stressors. Some

pollutants, such as synthetic estrogenic compounds, pharmaceuticals,

polychlorinated dibenzo dioxins/furans (PCDD/Fs), polychlorinated biphenyls

(PCBs), and polycyclic aromatic hydrocarbons (PAHs), have known modes of

action affecting the behavior, reproduction, and survival of fish (Knecht

et al. 2013; Incardona et al. 2004, 2011; Clark et al. 2010; Matson et al. 2009;

Wassenberg and Di Giulio 2004a; Nebert et al. 2004; Mennigen et al. 2011).

Sources for these contaminants include heavy industrial activity, which leads to

the production of many persistent organic pollutants (POPs) (Wenning et al. 1993;

Walker et al. 2005), and urban water use, including the release of pharmaceuticals

into freshwater and marine environments (Camacho-Munoz et al. 2014). Many of

these compounds have been shown to adversely affect developmental processes

(Wassenberg et al. 2002), survival (Nacci et al. 2010), and reproduction (Valenti

et al. 2012) at environmentally relevant concentrations. As a result, environments

with high concentrations of contamination pose a threat to resident aquatic biota

(Wassenberg et al. 2002). Environmentally relevant concentrations of estrogenic

compounds have been tested under realistic exposure conditions and have been

shown to be detrimental to populations of fish (Kidd et al. 2007), whereas some

persistent pollutants have already led to evolutionary adaptation in fish populations

in the wild (Wirgin et al. 2011; Nacci et al. 2010). By focusing on the population-

level responses of aquatic organisms to anthropogenic pollution, we account for the

cumulative impacts of these novel extreme environments on organismal survival

and reproduction. As discovery of human-induced phenotypic and genetic change

has increased, attention to the developing field of evolutionary toxicology has also

expanded and is likely to continue to grow, as new anthropogenic stressors are

unleashed upon the environment (Bickham et al. 2000).
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The effects of environmental stressors on populations of fish depend largely on

the magnitude, duration, and frequency of the exposure. Even short-term exposures,

such as transient oil spills or temporary encounters of a contaminated environment

by a migratory species, can lead to trans- or multi-generational effects in organisms

(Dubansky et al. 2013; Everett et al. 2012; Gao et al. 2011). Chronic exposure of

sufficient magnitude to affect reproductive success or the integrity of genetic

material in individuals can lead to evolutionary adaptation, making individuals

more fit for those environments (Bickham 2011). Evolutionary theory would

predict rapid spread and fixation of preexisting alleles (even when initially rare),

if they conferred a selective advantage in responding to a new anthropogenic

stressor (Bickham 2011; Bickham et al. 2000), while alternatively, the likelihood

of a beneficial de novo mutation becoming common within a fish population in a

century or less is less likely. Either way, we can only evaluate the adaptive changes

after many generations, which makes evolutionary studies difficult when we are

considering anthropogenic stressors introduced into the environment generally less

than a century ago.

2 Organismal Responses to Stressors

When attempting to observe the effects of a stressor on populations of fish, we need

to consider not only the characteristics of the event itself but also the various ways

by which organisms are able to respond. Acclimation refers to a response in which

exposed individuals are capable of dealing with the stressor by altering gene

expression, protein levels or activity, or other physiological processes. In this

case, the organisms can tolerate the stressful event depending on their genetic

makeup and the degree of plasticity of relevant traits. Such changes in expression

or activity can have trans-generational effects, but they are not genetically herita-

ble. Thus, in the absence of the stressor, the changes in gene expression or

physiology are likely to disappear within two generations. Mounting a physiolog-

ical response can have various consequences, including higher energy expenditure,

and long-term costs often depend on the severity and duration of the response.

There exists a middle ground between acclimation and adaptation that may

result in long-term or multi-generational effects of stressors on populations of

fish. The group of responses that encompass non-genetic, yet heritable, changes

that affect the expression or behavior of genes are called epigenetic alterations

(Laird 2003). Epigenetic events are often environmentally driven and include, but

are not limited to, DNA methylation on cytosine nucleotides, acetylation on lysine

residues of histones, and differential microRNA expression (Wolffe and Matzke

1999). Events such as the methylation of cytosine have been observed to increase

mutation rates in those specific genomic regions and provide one of the connections

between short-term exposures and resulting DNA alterations (Fryxell and Moon

2005; Gonzalgo and Jones 1997). Thus, with epigenetics in mind, even short-term

environmental events can result in heritable multi-generational outcomes, including
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altered phenotypes resulting from differential gene expression (Guerrero-Bosagna

and Skinner 2012; Pfennig and Servedio 2013). The field of epigenetics is very

young, but researchers are making major strides in the understanding of this bridge

between acclimation and adaptation. Even though we have a limited understanding

of the impacts of these heritable non-genetic changes, they provide a potentially

very important mechanism by which populations can respond to new stressors more

rapidly than through more traditional evolutionary processes. Including epigenetic

processes within the field of evolutionary toxicology or human-induced evolution

radically expands the number of populations that could potentially be studied.

To study adaptive responses to anthropogenic contaminants, a model organism

is needed that has sufficient genetic variability to provide the capacity for rapid

adaptation to varying selective pressures. Teleost fishes are a unique and rich

system to study novel gene function, partially because of the multiple gene dupli-

cations that have occurred in some lineages, resulting in as many as eight gene

copies of some genes (Pittman et al. 2013). The availability of multiple gene copies

reduces the selective disadvantage normally associated with new mutations. It also

increases the opportunity for differential gene regulation, alternative splicing, or

other post-translational modifications (Pittman et al. 2013). In addition to gene

duplications, the potential for rapid environmental changes in aquatic systems has

also selected for species with the capacity to acclimate and adapt to fluctuating

environmental conditions. One example of this would be the highly variable nature

of estuarine environments favoring euryhaline fish species, which are able to

survive dramatic swings in salinity. Such conditions seem to produce robust species

that have the genetic capability to respond relatively quickly to changes in envi-

ronmental stressors (Pittman et al. 2013). Some euryhaline teleosts have previously

been studied for their capability to tolerate high variability in temperature, salinity,

and pollutants (Crawford and Powers 1992; Whitehead et al. 2011; Nacci

et al. 1999). In the case of thermal adaptation, it has been shown that both

acclimation and genetic alterations contribute to the physiological adaptation in

Atlantic killifish (Fundulus heteroclitus) from different sites (Crawford and Powers

1989). Multiple similar studies suggest that estuarine teleosts may be valuable

model organisms for identifying genetic and physiological responses to novel

stressors. Their adaptability, ubiquitous presence, and short generation times

allow for the investigation of the evolutionary effects of contaminants over rela-

tively short time frames.

A previous summary focused on the mechanistic details of specific examples of

adaptation to contaminants in North American fish populations (Wirgin and

Waldman 2004). In this chapter, we aim to give an overview of anthropogenic

alterations to the environment that are likely to or have already driven evolutionary

adaptations in fish. We will discuss two major categories of anthropogenic envi-

ronmental alterations: alteration of existing natural stressors and the introduction of

novel stressors. In order to more comprehensively cover the possible genetic

influences, we will discuss both short-term responses with multi-generational

effects as well as mutations and shifts in allele frequencies that have led to

evolutionary adaptation in fish species.
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3 Altered Natural Stressors

3.1 UV Light

One of the many natural stressors that has been altered by anthropogenic activity is

UV light penetration into aquatic environments. Factors such as the thickness of the

ozone layer, amount of colored dissolved organic matter, and cloud density dictate

the intensity and the amount of UV light that reaches aquatic organisms (Hader

et al. 2011). Among the well-studied anthropogenic contributions to the increase of

both UV-A (315–400 nm) and UV-B (280–315 nm) radiation is ozone depletion

(Hader et al. 2011; Core Writing Team et al. 2007). The mechanisms of UV toxicity

have been well documented to include dimerizations of thymine DNA bases,

increase of reactive oxygen species (ROS) production, and an increased production

of the adduct 8-hydroxyguanosine—a biomarker of oxidative stress (Durbeej and

Eriksson 2002; Zhang et al. 2004). In addition, UV light has been known to

exasperate the toxicity of some PAHs in various organisms because of common

modes of toxicity or photoactivation of these compounds (Marquis et al. 2009;

Nikkila et al. 1999; Shemer and Linden 2007; Wei et al. 2007). The synergistic

increase in toxicity, however, is also accompanied by higher rates of degradation of

PAHs due to UV light (Xu and Li 2014; Buth et al. 2010; Peachey 2005). Given

these possible adverse effects of UV light, aquatic organisms that are dependent on

light, such as algae, have developed methods to minimize UV exposure via

mycosporine-like amino acids or absorptive surface pigments (Hader et al. 2011).

On the other hand, some fish spend sensitive portions of their development exposed

to sunlight in shallow waters, which leaves them vulnerable to the harmful effects

of UV radiation (Hakkinen et al. 2004).

Since UV exposure can alter diverse molecular pathways, the effects of this

stressor have been studied in various organisms. Increased mortality in aquatic

invertebrates and fish has been observed as an effect of UV exposure, which

suggests that it may be the driver behind evolutionary change (Nikkila

et al. 1999; Jokinen et al. 2011). An example is the intertidal fish Girella laevifrons,
which has been observed to spend large portions of its development in waters

exposed to high levels of UV radiation (Carrasco-Malio et al. 2014). Since Chilean

waters accommodate a multitude of migratory and resident species, biomonitoring

efforts are in place to follow the effects of increasing UV. However, recent

investigations suggest that, despite being one of the few resident species,

G. laevifrons may be an unsuitable species for biomonitoring, due to an apparent

resistance to UV-induced mortality (Carrasco-Malio et al. 2014). Even though

increased enzymatic activity against ROS was uncovered (including superoxide

dismutase, catalase, and lipid peroxidation) along with an increase in DNA damage

in the liver, the researchers did not observe the previously reported mortality in

G. laevifrons in response to larval UV exposure in the laboratory (Carrasco-Malio

et al. 2014). Unfortunately, the results of this experiment are not enough to allow

discrimination between acclimation, epigenetic mechanisms, or genetic causes of
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this apparent protection. A mechanistic explanation or a comparison with a similar

species could allow an in-depth interpretation of the results, but the current evi-

dence is promising in terms of documenting adaptation to UV stress. The hypoth-

esized explanation for the lack of mortality in G. laevifrons is that increasing UV

radiation in this southern hemisphere intertidal zone acted as a selective pressure to

drive this species to adapt to the potentially lethal effects of high UV exposures

(Carrasco-Malio et al. 2014).

3.2 Radionuclides

Another source of radiation pollution, which has increased dramatically through

human activity, is radionuclide contamination. Natural sources of radioactivity

exist and have been shown to have genotoxic effects on human populations resident

in naturally radioactive areas (Forster et al. 2002). On the other hand, anthropogenic

radionuclide contamination has been widely studied and often stems from nuclear

power plant waste or in a few cases from significant disasters, like the Chernobyl

and Fukushima nuclear disasters from 1986 and 2011, respectively (Steinhauser

et al. 2014). As with radiation-exposed human populations, radionuclides have

genotoxic effects on contaminated aquatic biota, with the study focus mainly

being DNA damage (Theodorakis et al. 1997).

An investigation of channel catfish (Ictalurus punctatus) populations from

radiocesium-contaminated nuclear reactor cooling ponds at Chernobyl showed

that fish appear to exhibit higher levels of double-stranded DNA damage, but not

an increase in micronuclei (Sugg et al. 1996). The study was unable to determine

whether adaptation or acclimation was the cause of the lower apparent micronu-

cleus formation, but it confirmed that radiation contamination could have effects on

fish populations at the genetic level (Sugg et al. 1996). A second study focused on

the decades-old radionuclide contamination of ponds at the U.S. Department of

Energy’s Savannah River Site. Theodorakis and Shugart (1998) investigated

populations of mosquitofishes, Gambusia affinis and G. holbrooki, to determine

whether long-term exposure in contaminated ponds had affected the genetic integ-

rity of resident populations. These species have short generation times, and their

populations were restricted to the study ponds. Researchers found that after multi-

ple generations of exposure, populations of exposed mosquitofishes exhibit higher

levels of DNA strand breakage as well as reduced fertility (Theodorakis and

Shugart 1998). On the other hand, some individuals in the contaminated sites

exhibited lower DNA strand breakage and their genotypes, as determined by

random amplified polymorphic DNA (RAPD) assay, were different from the rest

of the sampled fish, which suggested a genetic basis for the phenotypic differences

(Theodorakis et al. 1999). These studies imply that there may be a possibility of

different genotypes providing different protection from radionuclide contamination

in mosquitofishes and that human-induced evolution has occurred (Theodorakis

et al. 1999).
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There are a multitude of existing selective pressures on the planet and anthro-

pogenic events are intentionally or unintentionally contributing to their magnitude.

The example studies included in this chapter suggest that the increases of some

stressors have led to emerging selective pressures or to the amplification of existing

pressures through human activity. Aquatic organisms faced with such challenges

may or may not have the capacity to adapt, depending on the natural history of the

organism, the availability of genetic resources, and/or the complexity of altered

selective pressure. Anthropogenic activities have led to significant alterations in the

selection landscape including the increased release of estrogenic compounds,

changes in temperature, UV permeability, radionuclide contamination, salinity,

dissolved oxygen, and pH. Unfortunately, it is currently not possible to accurately

predict the evolutionary impacts of anthropogenic alterations to the existing

stressors. However, we are rapidly gaining insight into the mechanisms through

which selection may act. This process is even more difficult when considering the

potential evolutionary impacts of emerging contaminants.

4 Novel Stressors

This section considers stressors that prior to anthropogenic influences may have

been present in the environment, but not at levels likely to have had significant

toxicological effects on fish. These are often chemicals that are persistent in the

environment and are highly toxic to fish, allowing those pollutants to act as

selective pressures for extended periods of time. We will discuss most of these

compounds in terms of putative evolutionary adaptations in fish. While there is

certainly interest in the short-term impacts of many of these classes of contami-

nants, we will only focus on observed and potential adaptation in fish populations in

response to chronic exposures.

4.1 Metals

The concentrations and bioavailability of many toxic metals have increased dra-

matically in aquatic environments as a result of human activities. Various metals

have toxic properties due to interference with biological pathways in fish (Strydom

et al. 2006). There are multiple sources of metals, both natural and more impor-

tantly anthropogenic, and each of them produces unique compositions of metals

pollution that aquatic organisms experience. Mining for coal and minerals is an

environmental concern in many parts of the world. For example, acid mine drainage

often leaves environments heavily contaminated with metals (Griffith et al. 2012;

Pumure et al. 2010). Concern for the integrity of the impacted environments is

substantial, which often leads to wetlands being constructed to attempt to contain

the considerable contaminant loads being released, and reduce impacts on
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downstream habitats (Turker et al. 2014; Guittonny-Philippe et al. 2014). The

biological implications of high metals concentrations have been investigated for

many years, and some studies have suggested that adaptational processes may have

led to lower retention rates of metals in fish populations chronically exposed to high

metals concentrations for over 50 years (Jeffree et al. 2014). These studies are not

conclusive regarding the causality or mechanisms of this adaptation, but the

increasing contamination and frequency of acid mine drainage and mountaintop

removal beget the study of the biological impacts of observed adaptation.

A large portion of evolutionary toxicology studies focus on finding adaptive

responses in the field by comparing populations of contaminant-exposed fish to

reference populations, assuming that reference sites represent ancestral populations

prior to the impact of contamination (Klerks et al. 2011). Such assays carry high

environmental relevance, but sometimes lack the ability to establish causality.

Another set of investigations focus on establishing and quantifying the causal

links between contamination and adaptation through artificial selection experiments

in the laboratory (Klerks et al. 2011). One significant advantage of these studies is

that a true control can be included (i.e., a subset of individuals is not exposed while

another subset is exposed to the contaminant for multiple generations). This allows

for the derivation of true quantitative knowledge about the causality and heritability

of adaptive traits (Klerks et al. 2011). On the other hand, long generation turnover

times and a simplified exposure scenario are challenges inherent within such

experiments, particularly when using vertebrates (Klerks et al. 2011). An artificial

selection experiment exposed a population of least killifish, Heterandria formosa,
to LC50 values of cadmium for six consecutive generations, continuing exposures of

each generation until at least 50 % of the generation died from Cd exposures (Xie

and Klerks 2003). The surviving individuals (generally 15–25 %) were used to

produce consecutive generations. The final generation (sixth) produced in this long-

term selection study exhibited a threefold increase in Cd resistance, relative to

control fish (Xie and Klerks 2003). The realized heritability of the resistance was

relatively high (h2¼ 0.5), allowing it to be carried to further generations quite

rapidly (Xie and Klerks 2003).

When observing evolutionary events, one also needs to consider the costs that

may be associated with the newly acquired phenotype. In the case of least killifish,

the cadmium-resistant populations had lower heat tolerance, smaller size, as well as

lower lifetime fecundity, brood size, and female life span (Xie and Klerks 2003,

2004). These results demonstrate that the effects of adaptation can be complex and

often unpredictable. Populations of adapted fish may be compromised unexpect-

edly, without visible mortality from the selective stressor, leading to a multitude of

possible susceptibilities. In this case, an artificial selection experiment was able to

quantify and characterize the ability of organisms to adapt to a single contaminant,

while other environmental studies have to deal with complex mixtures and their

possible adaptational effects.

A separate study identified populations of Atlantic killifish (F. heteroclitus),
which were present at a site with high concentrations of dioxin and metals, to have

developed resistance to methylmercury toxicity (Weis et al. 1981a, b). In addition
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to the protection from the early teratogenic effects of methylmercury, F1-larvae

from contaminated site fish also retained higher prey capture efficiency when dosed

with meHg, compared to larvae from reference sites (Zhou et al. 1996). These

results suggest that adaptive responses to metals can be observed in field-exposed

populations, supporting the idea that metals contamination can have evolutionary

impacts on aquatic organisms.

4.2 Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are a class of widely distributed con-

taminants, formed by human activities as a by-product of incomplete combustion.

They can also be found naturally in oil, natural gas, and coal, and can be produced

by forest fires and volcanoes (Walker et al. 2005). These compounds are always

found as complex mixtures, and several PAHs are known to be carcinogenic to a

wide variety of organisms, including fish and mammals (Schneider et al. 2002;

Hermann 1981; Karahalil et al. 1998). Mixtures of PAHs have also been found to

have immunotoxic effects (Reynaud and Deschaux 2006; Carlson et al. 2004) and

to cause DNA adducts (Jung et al. 2009) and cardiac deformities in aquatic

organisms (Clark et al. 2010). Wastewater runoff, in addition to other anthropo-

genic activities, has been shown to move complex mixtures of PAHs, allowing

them to deposit in coastal regions and estuaries (Walker et al. 2005; Menzie

et al. 2002; Daskalakis and Oconnor 1995) and causing them to concentrate in

surface sediment (Viguri et al. 2002). Thus, the highly teratogenic properties of

PAH mixtures to fish embryos can introduce new selective pressures for estuarine

fish (Wassenberg and Di Giulio 2004b).

The Atlantic Wood Industries Superfund site (AWI) on the Elizabeth River in

Virginia has been on the National Priorities List since 1990 (Fig. 1) (Landers 2006).

The contamination at the AWI mainly consists of PAHs (Mitra et al. 1999). PAHs

are generally readily biotransformed by fish, but this process involves the activation

of the aryl hydrocarbon receptor (AHR) pathway and has been linked to cardiovas-

cular deformities in developing fish embryos, a shared mode of toxicity with some

dioxins and co-planar PCBs (Heinrich et al. 1986; Ashurst et al. 1983; Wassenberg

and Di Giulio 2004b). The source of the PAH contamination at the AWI was a

wood treatment facility releasing creosote, primarily made up of heavy pyrogenic

PAHs, into the river and contaminating aquatic life from 1926 to 1992 (Mitra

et al. 1999). The incomplete remediation efforts to reduce PAH concentrations at

the AWI included a capping of the old wood treatment facility location in 2002 and

a dredging campaign in 2007 (Landers 2006). Additional dredging efforts have

been planned for the contaminated sediment including the construction of a steel

wall to contain the sediment, but these efforts have not yet been completed.

The first indication that fish were being impacted by contamination in the

Elizabeth River was the discovery that mummichog (F. heteroclitus) from the

AWI had a higher occurrence of hepatic neoplasms (Van Veld et al. 1991;
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Vogelbein et al. 1990). The cause of those lesions was not found, but was attributed

to the PAH mixtures found throughout the Elizabeth River, particularly the high

concentrations found at the AWI. Following this discovery, the same investigators

tested the activity of the main enzyme involved in the biotransformation of large

PAHs, cytochrome P4501A (CYP1A). The expected response following PAH

exposure is a significant induction of CYP1A, which is why CYP1A is used as a

biomarker of PAH exposure (Nacci et al. 1998; Matson et al. 2009). An example

dataset with Fundulus grandis shows the induction of CYP1A activity, measured

through a standard ethoxyresorufin-O-deethylase (EROD) assay, with a chosen

PCB agonist (Fig. 2). This activity is commonly seen to diminish with the onset

of cardiac deformities in embryos, while the causes of this relationship are not fully

understood (Fig. 2). Despite the expectation that CYP1A should be elevated in

AWI, F. heteroclitus from this highly contaminated site had depressed levels of

CYP1A (Van Veld and Westbrook 1995). These results were confirmed in

F1-progeny (Wills et al. 2010). In addition, protection from cardiac, tail, and

bladder abnormalities in embryos was discovered and linked to the reduced activity

of CYP1A, and more specifically a recalcitrant AHR pathway (Meyer et al. 2002;

Ownby et al. 2002; Clark et al. 2010). Further studies went on to confirm that

altered AHR2 activity was the specific AHR gene alteration likely responsible for

the observed resistance, and not simply reduced CYP1A activity (Clark et al. 2010;

Matson et al. 2008). These findings were consistent with mechanistic studies

Fig. 1 Map of the locations where adaptations in response to anthropogenic events have been

documented in natural populations of fish. Darker shading represents zones occupied mainly by

F. heteroclitus, while lighter shading represents zones primarily occupied by F. grandis
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previously done in zebrafish (Danio rerio; Carney et al. 2004). The control and the

mechanisms by which reduced responsiveness of the AHR pathway leads to

protection from PAH toxicity in development remain unknown. Since the genera-

tion turnover time for F. heteroclitus is close to a year, there have likely been more

than 50 generations, and perhaps as many as 85, since the onset of pollution at the

AWI. The identification of an adaptation in a vertebrate species to novel toxicants is

a rare and interesting event.

Results documenting PAH resistance in F1-mummichog embryos from the AWI

were quite interesting, but failed to clarify whether they represent evolutionary

adaptation or a trans-generational epigenetic response to heavy contamination. In

order to distinguish between the two options, later generations reared under com-

mon garden conditions (i.e., no PAH exposure) needed to be tested. However,

studies conducted to date differ somewhat in their findings regarding the heritability

of protection to F2-progeny (Ownby et al. 2002; Meyer and Di Giulio 2002; Clark

et al. 2013a). Ownby et al. (2002) found that the resistance was maintained

completely in F2-progeny, whereas Meyer and Di Giulio (2002) concluded that,

while there was still resistance, F2-progeny were less resistant than the

F1-generation. Nonetheless, high levels of mortality in AWI fish in the study

seem to suggest that the more resistant fish might have been eliminated from

contributing to the tested F2-progeny because of fitness costs associated with the
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Fig. 2 Relationship between CYP1A activity levels and developmental cardiac deformities in

response to a common AHR agonist, PCB 126. When F1 embryos from a reference F. grandis
population are dosed with PCB 126, the CYP1A activity (black line) is induced as part of the AHR
pathway response to the toxicant. At higher concentrations, CYP1A has lower activity levels, and

embryos develop cardiac deformities (gray bars). The inverse relationship between the two is a

well-documented occurrence, while the mechanistic connection is yet to be elucidated. A subset of

these data was presented in Oziolor et al. (2014)
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resistance, and thus, the protective phenotype may have only appeared to not be

heritable (Meyer and Di Giulio 2002). In addition, it is possible that epigenetic

effects could be interacting with the adaptive change. The most thorough investi-

gation of the heritability of PAH resistance in AWI mummichog was performed by

Clark et al. (2013a). They found an interesting disconnect between the recalcitrance

of the molecular pathway believed to be responsible for observed resistance, the

AHR pathway, and the actual embryo resistance to cardiovascular defects. The

F2-progeny in their study regained partial AHR pathway responsiveness, yet fully

retained their protection from embryotoxicity. They concluded that multiple path-

ways may be involved in PAH resistance, but that none of them seem to be fully

genetically heritable (Clark et al. 2013a).

In addition to the physiological differences, which were shown to be at least

partially heritable, F. heteroclitus from the AWI were genetically distant from

geographically proximate populations (Mulvey et al. 2002). Combined, these results

support the hypothesis that there has been a selective sweep caused by the high

contamination at the location, causing these non-migratory fish to become resistant to

PAH toxicity. As with most adaptations, fitness costs are to be expected, and a few

have been found within the AWI population. Fluoranthene, a CYP1A-inhibiting

PAH, which is also phototoxic, was found to affect AWI populations more severely

in combination with UV light than observed for a reference population (Meyer and Di

Giulio 2003). In addition, AWI larvae have been documented to have a reduced

resistance to short-term hypoxia exposures (see chapter “Low-Oxygen Lifestyles”),

as well as exhibiting decreased survival under common-garden laboratory conditions

(see above), suggesting a general reduction in fitness (Meyer and Di Giulio 2003).

While some fitness costs have been identified, several other attempts to identify

further fitness costs have been unsuccessful. Glutathione expression is on average

lower in polluted site fish, but sex and present exposure confound the significance of

those results (Bacanskas et al. 2004). Some specific fitness costs were hypothesized

as a result of the mechanistic basis for the PAH resistance; because of the lower

CYP1A activity, F. heteroclitus from polluted sites were hypothesized to be more

susceptible to pesticides deactivated by that enzyme (Clark and Di Giulio 2012).

Contrary to this expectation, polluted site mummichogs were shown to be highly

cross-resistant to the acute toxicity of two CYP1A-detoxified pesticides, a carbamate

and a pyrethroid (Clark and Di Giulio 2012). In addition, even though the main

contaminant load at the AWI stems from PAHs, F. heteroclitus from that site are also

protected from the effects of PCBs (Clark et al. 2013b). Other research suggests that

field-collected fish may have an impaired reproductive system and increased chro-

mosomal damage compared to reference populations (Frederick et al. 2007; Jung

et al. 2011). The issue with these studies is that they often have a difficulty differen-

tiating between the effects of PAHs on fish in the field, versus the fitness costs driven

by the adaptation of the fish. Thus, the potential adverse effects of PAHs in AWI

mummichog may involve multiple physiological changes, some of which are caused

by genetic alterations in the fish, while others could be caused simply by the exposure

to a toxic mixture with very diverse toxicity pathways.
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4.3 Polychlorinated Biphenyls

There are 209 known congeners of PCBs that can be produced to create mixtures of

various properties, dependent on their chlorine content (Safe 1984). They were

produced in the USA until the early 1970s with known uses in plastics, insulation,

various dyes, carbonless paper, and transformers (ATSDR 2000). Because of their

stability and resilience to chemical, thermal, and photo-degradation, PCBs are

persistent in the environment (Buckman et al. 2004; ATSDR 2000). Nevertheless,

they are still found in the production of certain dyes and paint (Hu and Hornbuckle

2010). Resembling 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), some co-planar

PCB congeners can upregulate the aryl hydrocarbon receptor (AHR) pathway

constitutively and cause cancer, apoptosis, and cardiac deformity in aquatic organ-

isms and mammals (Zhang et al. 2012; Thackaberry et al. 2005; Gao et al. 2011;

Jonsson et al. 2007; Antkiewicz et al. 2006; Carney et al. 2004). These properties of

co-planar PCBs make them likely selective agents in heavily PCB-contaminated

environments (U.S. Environmental Protection Agency 2004).

4.3.1 Atlantic Tomcod (Microgadus tomcod)

Heavy PCB contamination often occurs in urban estuarine regions. A well-known

site with historic PCB contamination is the Hudson River (Fig. 1; Feng et al. 1998).

Following 70 years of contamination, including the release of an estimated 1.3

million pounds of PCBs, a 200-mile stretch of the Hudson River was put on the

National Priorities List as a Superfund site in 1984 (U.S. General Accounting Office

2000). Since then, the fate and distribution of these compounds have been modeled

and studied extensively (Connolly et al. 2000). Accumulation and toxicity have

been seen both in fish and migratory piscivorous birds in the area (Custer

et al. 2012; Deshpande et al. 2013; Koenig et al. 2013; Fernandez et al. 2004).

The historic contamination with highly toxic PCBs in the Hudson River resulted in

multi-generational exposures and the subsequent evolutionary adaptation of Atlan-

tic tomcod, providing resistance to many of the toxic effects associated with PCBs

(Roy and Wirgin 1997). Despite the infamy of this site as a PCB-contaminated site,

there have also been levels of TCDD found in juvenile fish collected from the

Hudson River that may be among some of the highest levels of this contaminant

found in natural populations (Fernandez et al. 2004). Thus, the contamination at this

site is complicated by multiple highly toxic contaminants at very high concentra-

tions, many of which have similar ecotoxicological properties.

Resistance to PCBs by Atlantic tomcod is one of the clearest and mechanistically

best-elucidated investigations of human-induced evolution through contaminants

(Wirgin et al. 2011). The extraordinary concentrations of PCBs in the Hudson River

were predicted to be highly detrimental to aquatic life, including the resident

Atlantic tomcod (Fernandez et al. 2004). Not unexpectedly, initial investigations

identified increased levels of hepatic tumors and decreased life spans of populations
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living in the Hudson River (Dey et al. 1993). Since a primary molecular mechanism

linked to PCB toxicity is the activation of the AHR pathway, research quickly

focused on potential alterations to this important pathway. Cytochrome P450 1A

(CYP1A) was already discussed as a downstream regulated enzyme responsible for

PAH degradation, but its activity is also highly induced in aquatic organisms

exposed to co-planar PCBs and dioxins (Nacci et al. 1998; Courtenay

et al. 1999). Populations of tomcod collected from the Hudson River did not

increase the expression of CYP1A after exposure to PCBs, in contrast to fish

from a proximate reference site (Roy and Wirgin 1997). Both populations had

similarly increased levels of AHR expression, a normal response to PAHs, but their

CYP1A expression was recalcitrant (Roy and Wirgin 1997). The downregulation of

the pathway could not be attributed to the AHR repressor (AHRR), which was also

found to be downregulated in all tissues, similar to CYP1A (Roy et al. 2006).

Following these results, researchers sequenced AHR2, the more active form in fish,

for tomcod from four reference populations and two populations in the polluted

Hudson River. The sequence data elucidated the mechanistic basis of the pheno-

typic adaptation of these fish (Wirgin et al. 2011). A six base pair deletion in exon

10 was discovered in Hudson River tomcod, and kinetic tests confirmed that the

mutated AHR2 protein had more than sevenfold reduced binding to a model dioxin

(Wirgin et al. 2011). This mutation was close to fixation in polluted site

populations, whereas it was extremely rare and was always heterozygous in refer-

ence site tomcod (Wirgin et al. 2011). Mitochondrial genome diversity revealed

that the adaptation in polluted sites did not lead to a decrease in haplotype diversity,

confirmed gene flow between resistant populations, and indicated the lack of

significant gene flow to reference sites (Wirgin et al. 2011). However, Wirgin

et al. (2011) concluded that the variant AHR2 allele, which is also present in

some reference populations at low frequencies, likely predates anthropogenic

pollution.

The identification of a molecular mechanism and the attribution of this change to

anthropogenic pollution is the ultimate goal of evolutionary toxicology (Bickham

2011). Research on Atlantic tomcod populations in the Hudson River has quickly

reached that target. In this case, the PCB pollution, likely with help from TCDD, in

the Hudson River was intense enough to cause mortality in the resident Atlantic

tomcod populations. In addition, PCBs are persistent enough to remain in the

environment for enough time such that many generations of tomcod were exposed

to the stress of pollution. Therefore, it seems that when a beneficial mutant allele is

available in the populations originally exposed to the contaminants, as in the

Atlantic tomcod, novel selective pressures can allow for the rapid fixation of this

trait and for the success of populations that would normally collapse under these

extreme anthropogenic selective pressures (Wirgin et al. 2011).

Estuaries polluted with elevated levels of PCBs are present throughout the

world, and they have provided the opportunity to examine the possibility for

additional phenotypic adaptations to anthropogenic contaminants (Nelson and

Bergen 2012; Lakshmanan et al. 2010). Two species of killifish in the USA, both

in the genus Fundulus, have also been found to have repeatedly evolved an
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increased ability to survive in estuaries with high PCB contaminations (Oziolor

et al. 2014; Nacci et al. 1999). Despite being genetically isolated, both species

include multiple, disparate populations that have apparently evolved phenotypes

resistant to PCB toxicity independently. Unfortunately, the exact molecular mech-

anism responsible for tolerance remains unknown in either species, but the rapid

evolution that has occurred in both suggests that it results from selection on

standing genetic variation present in ancestral populations, which—if it turns out

to be similar in both species—could predate the Fundulus heteroclitus–F. grandis
split (Whitehead et al. 2010; Oziolor et al. 2014). Research on F. heteroclitus and
F. grandis reveals a diverse side of human-induced evolution, which has the

potential to contribute greatly to our understanding of adaptational processes in

response to anthropogenic pollution.

4.3.2 New Bedford Harbor Atlantic Killifish (Fundulus heteroclitus)

Another site on the Atlantic Coast of the United States, New Bedford Harbor

(NBH), Massachusetts, was identified as a highly PCB-polluted estuary and placed

on the National Priorities List in 1983 (Fig. 1; Nelson and Bergen 2012). Because of

the high projected costs of remediating this site, it was placed on the EPA’s Long
Term Monitoring program, which allowed for frequent tracking of the contamina-

tion at the site (Nelson and Bergen 2012). The first dredging event removed 14,000

cubic yards of sediment with concentrations of over 4,000 μg/g of PCBs in 1995

(Bergen et al. 2005). Through 2009, approximately 200,000 cubic yards of sedi-

ment had been dredged from NBH, leading to a significant decrease in PCB

concentrations (Nelson and Bergen 2012).

Following 2009, the projected 20-year remediation process led to multiple

investigations of toxicity to aquatic organisms at NBH (Nelson and Bergen

2012). To investigate potential population-level impacts, F. heteroclitus was used
as a model for effects on fish, since it is a resident non-migratory species in NBH

(Munns et al. 1997). Laboratory studies suggested that F. heteroclitus reproduction
might be impaired by exposure to high PCB concentrations, signifying that the

toxicants could act as a selective pressure in the polluted estuary (Black et al. 1998).

Interest in the effects of chronic PCB contamination on F. heteroclitus finally led to
the discovery that NBH populations had adapted to resist the developmental

toxicity of PCBs (Nacci et al. 1999).

Populations of F. heteroclitus collected from NBH had lower embryonic and

larval mortality in comparison with reference site populations (Nacci et al. 1999).

This resistance extended to at least the F2-generation raised under common-garden

conditions, confirming that the trait is genetic, rather than an example of physio-

logical acclimation (Nacci et al. 2010). In addition, the resistant phenotype was also

correlated with a reduced responsiveness of CYP1A activity, much like in the case

of Atlantic tomcod from the Hudson River (Nacci et al. 1999). CYP1A has also

been shown to be a sensitive biomarker of dioxin exposure and toxicity in

F. heteroclitus (Toomey et al. 2001). In the process of studying the control of
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CYP1A by the AHR pathway, initial tests identified AHR1 to be more strongly and

ubiquitously expressed in tissues of NBH fish, while not being responsive to dioxins

or PCBs (Karchner et al. 1999). Adult fish and hepatocyte cell cultures also

revealed that NBH populations were much less sensitive in inducing CYP1A

mRNA expression or enzyme activity when exposed to dioxins and a model PAH

(Bello et al. 2001). The AHR pathway was capable of being activated to the same

magnitude, but it only occurred at much higher doses of pollutants (Bello

et al. 2001). Results in zebrafish suggest that dioxin-mediated cardiovascular

defects are AHR2 dependent, and that the heart deformities are prevented when

AHR2, and thus its downstream genes, was knocked down (Carney et al. 2004). On

the other hand, knocking down only CYP1A had no effect (Carney et al. 2004).

These results support the hypothesis that the resistance of NBH populations of

F. heteroclitus to PCB-mediated deformities is based on a recalcitrant AHR path-

way and, by extension, its main inducible downstream enzymes (Toomey

et al. 2001; Bello et al. 2001).

One factor that makes this case particularly interesting is that there are very few

identified fitness costs associated with adaptation to PCBs in F. heteroclitus. Stud-
ies have identified the lower capacity of NBH killifish to deal with oxidative stress

(Harbeitner et al. 2013). Resistant populations were also found to have lower

hepatic, but higher intestinal, expression of P-glycoprotein, an enzyme responsible

for the excretion of moderately hydrophobic compounds (Bard et al. 2002). This

difference between populations diminished after they were placed in common-

garden laboratory conditions for more than 8 days (Bard et al. 2002). Other studies

dealing with retinoid depletion by PCB exposures have been unable to identify a

difference between reference and resistant populations of F. heteroclitus (Nacci

et al. 2001). In addition, it was found that the PCB sensitivity of populations of

F. heteroclitus correlated with the concentrations of PCBs at the sites of their

collection (Nacci et al. 2002). Further studies into that trend determined that there

were several exceptions to the correlation between contamination levels and resis-

tance, which may result from the vast variability of contaminants present at

different locations (Nacci et al. 2010).

The lack of mechanistic evidence to explain the differential sensitivity to dioxins

in NBH populations led investigators to explore genetic and epigenetic markers to

better understand the possible shifts in genes or their control. The efforts began with

the sequencing of the CYP1A promoter region, but after CYP1A knockdown was

identified to not be protective of PCB-induced teratogenesis, efforts were shifted to

the AHR (Powell et al. 2004). The methylation patterns of AHR1 and AHR2 were

not observed to have an effect on the PCB sensitivity of F. heteroclitus, but rather to
affect the gene expression patterns in the fish (Aluru et al. 2011). With the

development of new technology, population resequencing studies have become

more affordable, and investigations have begun into the genotypic differences

between the AHR pathway genes of these fish (Reitzel et al. 2014). These studies

identified a significant population genetic differentiation between resistant and

reference populations (Reitzel et al. 2014). The results suggest that selection is

possible for the tested genes (AHR1, AHR2, and AHRR), but with the current
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results, the study was unable to show strong significant differences that could

identify the genetic basis of protection (Reitzel et al. 2014). Another exploration

of the genetic variation between reference and resistant site fish through single-

nucleotide polymorphism (SNP) analysis identified signs of positive selection in

SNPs of AHR2 and CYP1A between these populations (Proestou et al. 2014). Such

variation may suggest that the AHR pathway still represents a potential mechanism

to explain part of the phenotypic differences in the responses of resistant killifish to

contaminant-induced damage. Population genomics is a promising tool for the

exploration of genetic effects on populations, and the F. heteroclitus populations
at New Bedford Harbor are a promising start for this endeavor, but adaptation in

killifish contains more complexity that still stands to be unraveled.

4.3.3 Newark Bay Atlantic Killifish (F. heteroclitus)

Shortly after the identification of the first adapted populations at NBH, another

group was able to find a similar recalcitrant AHR phenotype in F. heteroclitus
collected from Newark Bay (NB) (Fig. 1; Arzuaga and Elskus 2002). The NB

estuary, part of the Passaic River in New Jersey, is a heavily contaminated area,

which has been on the National Priorities List since 1984 as the “Diamond Alkali

Superfund Site” (Crawford et al. 1995). In addition, the Passaic River runs parallel

to the Hudson River discussed previously in terms of Atlantic tomcod adaptation.

The PCB levels at the NB site are not as high as the ones at NBH, but the type of

contamination is much more complex, involving high levels of polychlorinated

dibenzo-dioxins and furans (PCDD/Fs), PCBs, and heavy metals (Crawford

et al. 1995; Wenning et al. 1993; Armstrong et al. 2005). This has led to multiple

fish consumption advisories for this area and to the identification of another

population of contaminant-adapted F. heteroclitus (Pflugh et al. 2011; Arzuaga

and Elskus 2002).

The initial studies identified a similar phenotype of resistance associated with

protection from developmental toxicity and reduced CYP1A activity in

F. heteroclitus populations collected from NB (Arzuaga et al. 2004; Arzuaga and

Elskus 2002). In addition, de-methylating agents failed to revert either of those

phenotypes, suggesting that epigenetics may not play a strong role in the observed

resistance (Arzuaga et al. 2004). Similar to other adapted populations, NB fish were

resistant not only to cardiovascular teratogenesis, but also to the induction of ROS

by a PCB-simulating compound (Arzuaga and Elskus 2010; Arzuaga et al. 2006).

These findings point to a similar phenotype of protection and shared fitness costs

with F. heteroclitus populations from NBH. Additional studies on NB fish con-

firmed that complex contaminant exposures impose selection on populations by

reducing the reproductive fitness of chronically exposed individuals (Bugel

et al. 2010, 2011).

The discovery of three, geographically distant, populations of F. heteroclitus
that have adapted to chronic contamination in a physiologically similar manner

distinguishes this system from Atlantic tomcod. The tomcod population fixed a rare
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mutation that allowed it to survive in conditions of high contamination. Conversely,

F. heteroclitus seems to have been able to adapt at multiple locations, and gene flow

among adapted populations is extremely unlikely. In addition, the genetic basis of

this adaptation or the full extent of the adaptation has still not been fully

determined.

One of the most fascinating findings about F. heteroclitus is that they seem to

have adapted to heavy PCB pollution in a very similar manner to the way they have

adapted to PAHs, including recalcitrance in AHR pathway enzymes and protection

from cardiac deformities (Arzuaga and Elskus 2002; Van Veld and Westbrook

1995; Roy and Wirgin 1997). The vast geographic separation has been shown to

prevent gene flow among these distant adapted populations, as would be expected

for this species (Duvernell et al. 2008). In addition, it has been shown that selection

at NBH and AWI has had an influence on the population genetic differentiation

between adapted and non-adapted populations (Duvernell et al. 2008). Other

populations of F. heteroclitus have also been shown to exhibit resistance, with

levels of pollution similar to those previously described at NBH and NB (Nacci

et al. 2010). The vast genetic and geographic distance between these locations and

the similar mode of adaptation between sites with varying pollution led to the

hypothesis that standing genetic variation in ancestral populations is responsible for

the rapid evolution of protection in F. heteroclitus from contaminated habitats

(Whitehead et al. 2012). Populations from various locations were compared in

terms of their resistance and their transcriptomic profiles, revealing that distant

resistant populations had profiles more similar to each other than to their most

geographically proximate reference sites (Whitehead et al. 2012). This could allow

for the rapid fixation of the trait and the possibility for multiple populations to

acquire this resistance, despite low migration rates in F. heteroclitus.

4.3.4 Houston Ship Channel Gulf Killifish (Fundulus grandis)

While the F. heteroclitus case is fascinating at its current intricacy, there is another
level of complexity—F. grandis. Gulf killifish are the sister species of

F. heteroclitus and are found primarily along the US Gulf Coast (Fig. 1; Gonzalez

et al. 2009). These two species have been shown to overlap and hybridize along a

short portion of the northeastern Florida Atlantic coast (Gonzalez et al. 2009).

Fundulus grandis is found ubiquitously along the Gulf of Mexico coast and has

been studied as a relevant environmental model for hypoxia exposures, osmoreg-

ulation in euryhaline fishes, as well as physiological and toxicological responses to

the Deepwater Horizon Oil Spill (Dubansky et al. 2013; Landry et al. 2003; Love

and Rees 2002; Virani and Rees 2000). As an ecologically important coastal fish in

the Gulf of Mexico, it was of particular interest that populations of F. grandis were
identified to be resident, and in fact quite common, in the Houston Ship Channel

(HSC) (Fig. 1; Oziolor et al. 2014).

The HSC is a heavily industrialized commercial waterway, heavily polluted with

a mixture of PCBs, dioxins, and PAHs (Lakshmanan et al. 2010). These compounds
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have been observed to accumulate in catfish (Ictalurus punctatus), reaching total

PCB concentrations of 37 pg/g (Subedi and Usenko 2012). The spatial distributions

of PCBs and PCDD/Fs have been studied intensely and were found to diminish as

the channel continues through Galveston Bay (Howell et al. 2008, 2011). In

addition, these levels of contamination have been observed historically over the

last four decades allowing for chronic contamination of aquatic organisms over

many generations (Yeager et al. 2007).

Recently, populations of F. grandis, collected from heavily contaminated areas

in the HSC, were shown to exhibit a similar phenotypic resistance to PCB- and

PAH-induced cardiovascular teratogenesis (Fig. 3; Oziolor et al. 2014). Cardiovas-

cular teratogenesis occurs in embryos, if they come in contact with a toxicant at

Fig. 3 Sampling sites from two Superfund sites within the industrialized portion of the Houston

Ship Channel, Vince Bayou (VB), and Patrick Bayou (PB). A site with predicted intermediate

contamination levels, Cedar Bayou (CB), was collected from a portion proximate to the HSC,

while a reference population, Gangs Bayou (GB), was collected far from the high contamination

regions
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sensitive developmental stages. Often, these deformities are scored qualitatively

from a normal, two-chambered heart (0) to severely deformed string-heart

(2) (Fig. 4). The protection from PCBs in HSC F. grandis was of much higher

magnitude than that observed for PAHs, which correlated well with the toxicity

equivalency of these classes of compounds in the HSC (Oziolor et al. 2014). The

protection from cardiovascular teratogenesis in F. grandis population also corre-

lated highly with a recalcitrant AHR pathway, as measured via CYP1A activity,

suggesting a similar mode of action as seen in adapted F. heteroclitus populations
(Oziolor et al. 2014). The different levels of resistance to PCBs and PAHs, even

when evaluating a known AHR-mediated toxicity endpoint, suggest that there may

be additional complexity to the observed adaptation, beyond a simple AHR recal-

citrance. Biparental crosses of reference and resistant populations suggest that each

parent contributes equally to the resistant phenotype, suggesting a genetic basis of

this adaptation (Oziolor et al. 2014). More recently, a gradient of this adaptation has

been found, where populations from the HSC with lower predicted contaminant

exposure exhibit lower levels of protection and lower levels of AHR recalcitrance

(Fig. 5).

The identification of a sister species that has undergone a phenotypically similar

genetic adaptation to human-induced pollution suggests that the hypothesis of

adaptation through preexisting genetic variation would now extend to their shared

common ancestor. Thus, the alleles responsible for this adaptation may have been

carried through populations and generations of Fundulus even before the split of the
two species. Such an extended timeframe begets multiple questions, including the

question of why these alleles persisted through time, the nature of the fitness costs

associated with them, and the natural stressors that may have led to their evolution.

Expanding adaptation to human-induced novel selective pressures in Fundulus
to multiple species has the potential to answer questions extending from toxicology

to the basics of evolutionary biology. Through these adaptations, we can study not

Fig. 4 Scoring scale for cardiovascular teratogenesis. Embryos were dosed at 24 h post-

fertilization (hpf) with a toxicant and screened at 144 hpf. The scores were recorded blind to

avoid bias for population or contamination levels from researcher performing the screening
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only the effect of current toxicants in the environment but also about the nature of

evolutionary processes that have led to the continuous selection of alleles that

would provide some protection from xenobiotics. This should lead to a better

understanding of how natural biological systems may respond to current anthropo-

genic pollutants and how they cross-react with historical biological selective

pressures. The study of these two species is at the forefront of evolutionary

toxicology and the discovery of the molecular mechanisms and history of these

adaptations will significantly improve our understanding of the evolutionary effects

of anthropogenic contamination.

5 Conclusions and Outlook

While research has identified some long-term effects of legacy contaminants

following chronic exposures, there are many chemicals that have not been inves-

tigated, and novel stressors being released every year. For most systems, we are far

from having a comprehensive understanding of how organisms will respond to the

changing selective landscape in their natural environments. A crucial
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Fig. 5 Populations of F. grandis from chronically contaminated sites exhibit protection from

cardiovascular deformities in a gradient-dependent manner. F1 embryos from the reference site,

GB, show a normal dose–response curve for cardiovascular deformities in response to PCB 126, a

known AHR agonist. The population from a site with predicted intermediate contamination, CB,

develops deformities at higher concentrations of contaminant, showing significant levels of

protection. On the other hand, sites within the industrialized portion of the HSC show no

significant cardiac defects in response to PCB 126, revealing a >1,000� protection from contam-

inant induced deformities. A subset of these data was presented in Oziolor et al. (2014)
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misconception with finding resistance to high concentrations of contaminants is that

the public may interpret this to mean that contamination is acceptable or less of a

problem, because organisms can adapt to it. Unfortunately, this is a misinterpreta-

tion of such results for two primary reasons. First, the fact that some species are able

to adapt to pollution does not imply that it will happen in every organism, popula-

tion, or pollution scenario. Second, the resistant population often has been changed

in terms of its phenotypic response to more than just the compound it adapted to; in

other words, adaptation to anthropogenic stressors almost certainly has fitness costs.

Whether and how fish will respond to rising salinities in freshwater bodies and

whether they will cope with higher radiation or temperature increases are questions

stemming from already existing sources of human-induced alterations of natural

selective regimes. Along with current levels of toxicity from pesticides or persistent

pollutants that have already been introduced in the environment, a new direction of

research will be to study the evolutionary consequences of constantly increasing

levels of pharmaceuticals in aquatic environments. The toxicity of pharmaceuticals

in the environment is being widely studied; but in terms of population adaptation,

the effects of these compounds are still entirely unknown. There are multiple

classes and types of anthropogenic effects on the environment, but our knowledge

of how they shape fish populations is often limited to short exposure durations. In

addition, as most of these compounds are found in very complex mixtures, it is of

interest to understand how they interact with existing environmental stressors to

change the selective landscape of resident organisms at varying locations. Future

extremophile fish may evolve in response to already existing levels of alteration in

the selective landscape within aquatic environments, and if the populations have

sufficient standing genetic variation to adapt to these changes.
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