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Abstract. Differential evolution has shown tremendous success in solving dif-
ferent complex optimization problems. However, the performance is highly de-
pendent on the selection of its parameters. Although many techniques have 
been introduced to adaptively (or self-adaptively) determine the parameters, the 
task is recognized as a tedious one. In this research, we investigate the use of 
evolutionary algorithms, such as covariance adaptation matrix evolution strate-
gy, differential evolution and genetic algorithm, to self-adaptively determine the 
possible values of both the amplification factor and crossover rate. The perfor-
mances of the algorithms are compared to each other, as well as to a standard 
differential algorithm, by solving a well-known set of benchmark problems. 
The experimental results show that such an approach can improve the perfor-
mance of differential evolution, however further investigation is required to find 
the appropriate evolutionary algorithm for evolving parameters. 

Keywords: differential evolution, covariance adaptation matrix evolution strat-
egy, genetic algorithm, self-adaptation. 

1 Introduction 

The evolutionary algorithms (EAs), such as genetic algorithms (GA) [1], differential 
evolution (DE) [2] and evolution strategies (ES) [3], are popular choice to many re-
searchers and practitioners for solving their complex optimization problems. Among 
EAs, DE has shown its superiority to many other algorithms in solving problems with 
different mathematical properties. However, it is well-known that DE parameters such 
as amplification factor ( ), crossover rate ( ) and population size ( ) play a vital 
role on its success, which led researchers to investigate this research topic, and pro-
pose different adaptive and self-adaptive mechanisms to avoid a trial-and-error ap-
proach in the selection of parameters. This directs us to the no-free launch theorem  
[4], which shows that one set of parameters may be well suited for a set of problems 
that may not work well for another problem, or another class, or range of problems.  

While solving an optimization problem, one of the interesting mechanisms to self-
adaptively determine the DE parameter values is using an evolution process that may 
involve DE or any other EAs. This mechanisms dates back to 2002 when Abbass [5] 
proposed a self-adaptive operator (crossover and mutation) for multi-objective  
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optimization problems, where  F was generated using a Gaussian distribution N(0, 1) 
and then updated using a DE algorithm. This technique has been modified in [6-9], in 
which DE variants with more than one difference vectors (DV) were used to evolve 
parameters, as well as  and  were initialized using N(0.5, 15). However, to the 
best of our knowledge, the use of other EAs to self-adaptively determine DE parame-
ters is rare.  

Other mechanisms, which do not depend on EAs, have also been proposed. Qin et 
al. [10] proposed a DE algorithm (SaDE). In it, F was approximated by a normal 
distribution N (0.5, 0.3), and truncated to the interval (0, 2]. The crossover probabili-
ties were randomly generated according to an independent normal distribution with 
mean Cr  and a standard deviation value of 0.1. The Cr  values remained fixed for 
five generations before the next re-generation. Cr  was initialized to 0.5, and  it was 
updated every 25 generations based on the recorded successful Cr values since the 
last Cr  update. Using fuzzy logic controllers, Liu and Lampinen [11] presented a 
fuzzy adaptive DE, whose inputs incorporated the relative function values and indi-
viduals of successive generations to adapt the parameters for mutation and crossover. 
Brest et al. [12] proposed a self-adaptation scheme for the DE control parameters, 
known as jDE.  The control parameters were adjusted by means of evolution of F and 
Cr.  In jDE, a set of F and Cr values was assigned to each individual in the popula-
tion, augmenting the dimensions of each vector.  Zhang et al. [13] introduced an 
adaptive DE algorithm with optional external memory (JADE). In it, at each genera-
tion, the crossover probability  of each individual x  was independently generat-
ed according to a normal distribution of mean μCr and standard deviation of 0.1. μCr 
was initialized at a value of 0.5 and updated. Similarly,  of each individual  was 
independently generated according to a Cauchy distribution with a location parameter 
μF and a scale parameter 0. The location parameter μF was initialized to 0.5 and sub-
sequently updated at the end of each generation. Das et al.[14] introduced two ver-
sions for adapting F in DE. In the first scheme,  was randomly chosen between 0.5 
and 1.0, while in the second scheme,  was initialized with a value of 1.0, and then 
linearly reduced to 0.1 during the evolution process.  Generally speaking, such tech-
niques may need adapting other parameters which may affect the performance of DE. 

In this paper, we have evolved two DE parameters (such as  and ) by using 
three different algorithms. They are: (1) DE (this variant is recognized as Var1); (2) 
covariance adaptation matrix evolution strategy  (CMA-ES)[15] (Var2); and (3) GA 
(Var3). That means, we are applying DE to solve the optimization problems, and 
within DE, we are using one of the above three algorithms to self-adaptively select 
DE parameters. The performances of these variants are compared to each other as 
well as to a DE with a single set of parameter values. From the results obtained, it is 
clear that the self-adaptive mechanism is better than a DE with a fixed set of parame-
ters. Among the three variants, Var2 is the best considering the best fitness values 
found, while based on the average fitness values, Var3 is the best. However, these two 
variants are computational expensive in comparison with Var1. 

The rest of this paper is organized as follows: section 2 presents and overview of 
DE. Section 3 discusses the self-adaptive mechanisms used in this paper, while  
section 4 presents the computational results. Finally, conclusions are elaborated in 
section 5. 
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2 Differential Evolution 

DE uses the concept of a larger population from a GA and self-adapting mutation 
from ES [2], and differs from traditional EAs mainly in its generation of new vectors 
which adds the weighted difference vector (DV) between two individuals to a third 
individual [16]. It performs well when the feasible patches are parallel to the axes [17] 
but converges prematurely when dealing with a multi-modal fitness function because 
it loses its diversity [18, 19].  

2.1 Mutation 

The simplest form of this operation is that a mutant vector is generated by multiplying 
an amplification factor, F, by the difference between two random vectors, with the 
result added to a third random vector (DE/rand/1) [20] as: 

 , = , + , − ,  (1) 

where  , ,   are random numbers (1,2, ..., PS ),  ≠ ≠ ≠ , x  a decision 
vector,  a positive control parameter for scaling the DV and t the current generation.  

This operation enables DE to explore the search space and maintain diversity and 
there are many strategies for it, such as DE/best/1 [20], DE/current-to-best/1[21]. For 
more details, readers are referred to [22]. 

2.2 Crossovers 

The DE family of algorithms usually depends on two crossover schemes, exponential 
and binomial, which are briefly discussed below. 

In an exponential crossover, firstly, an integer, l, is randomly chosen within the 
range [1, D] and acts as the point in the target vector from where the crossover or 
exchange of components with the donor vector starts. Another integer, L, chosen from 
interval [1, D] denotes the number of components the donor vector actually contrib-
utes to the target. After the generation of l and L, the trial vector is obtained as: 

 , ,  = , ,     = ‹ › , ‹ + 1› , … , ‹ + − 1›, ,                            ℎ  ∈ [1, ]  (2) 

where   =  1,2, … , , and the angular brackets, ‹ › , denote a modulo function with 
a modulus of  and starting index of .  

The binomial crossover is performed on each of the   variables whenever a ran-
domly chosen number (between 0 and 1) is less than or equal to the crossover rate, 

. In this case, the number of parameters inherited from the donor has a (nearly) 
binomial distribution as: 

 , = , ,  ( ≤    =  ), ,                                        ℎ  (3) 

where  ∈ [0,1]  and ∈ [1,2, … , ]  is a randomly chosen index which 
ensures that u ,  receives at least one component from , . 
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2.3 Selection 

An offspring will be selected if it is better than its parent. 

3 Self-adaptive DE Variants Based on EAs 

To start with, in this paper, Table 1 shows the general framework of DE used in this 
paper. 

Table 1. General framework of DE used in this paper 

STEP 1: At generation t = 1, generate an initial random population of size . The variables of each 
individual (z) must be within a range such as:  , =  , +  × ( , − , ) 

where , , ,  are the lower and upper bounds of the decision variable x , and rand is a 
random number,  ∈ [0,1].   

STEP 2: Generate initial values for  and  
STEP 3: Evolve  and  using an EA, as shown in  3.1,  3.2 and  3.3 
STEP 4:  Generate new offspring as follows: 

4.1 Generate the offspring vector , using DE/current-to-best/bin and the corresponding  
and  obtained in Step 3 such as 

, = , + . , − , + , − , ,  ( ≤    =  ), ,                                                                                                                  ℎ  

where  and  are random integer numbers ∈ [1, ] and both are not similar to  

4.2 Update  and , if required, see  3.1 
STEP 8: Stop if the termination criterion is met; else, set = + 1 and go to STEP 3.

 
In this paper, three variants are used to self-adaptively generate  and , as de-

scribed below. 

3.1 Var1: Adapting F and Cr Using DE 

Here,  and  are self-adaptively calculated using a simple DE algorithm, as fol-
lows: 

• At  = 1 , each individual in  is assigned with  and  , where =(0.5,0.1) and = (0.5,0.1). If the value is less than 0.01 or larger than 
1.0, it is reflected back to be between to 0.01 and 1, respectively. 

• Then, both parameters are calculated as follows: 

 = + × − ,       ( < )                                                    ℎ  (4) 

 = + × − ,  ( < )                                                    ℎ  (5) 

where ∈ [0,1] ∀ Γ = 1,2 … ,5 and = 0.75. If the value is less than 
0.01 or larger than 1, it is truncated to 0.1 and 1, respectively. 
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• If the new offspring is better than its parent, then  =  and = . 

3.2 Var2: Adapting F and Cr Using CMA-ES 

Here,  and  are self-adaptively calculated using CMA-ES, such that 

• At = 1,  is initialized as (0.5,0.1, ), where  is 2, ,  refers to 
, while ,  refers to . 

• A new population, which represents both  and , is generated using CMA-
ES: 

 : = + :  (6) 

where :  are independent realizations of a D-dimensional standard normal 
distribution with zero-mean and a covariance matrix equal to the identity  
matrix I. These base points are rotated and scaled by the eigenvectors  and 
the square root of the eigenvalues  of the covariance matrix . The , and 
the global step-size  are continuously updated after each generation t [15].  

• Then, both parameters are calculated as follows: 

 = , ,         ( < )                 ℎ  (7) 

 = , ,      ( < )             ℎ  (8) 

• Then , and all other CMA-ES’s parameters are updated as suggested in 
https://www.lri.fr/~hansen/cmaes.m. It is worthy to mention here that, to meas-
ure the quality of each , the objective function of the corresponding  is 
used instead. 

3.3 Var3: Adapting F and Cr Using GA 

Here, a multi-parent crossover GA (MPC-GA) [23] is used to evolve DE parameters. 

• At = 1, an initial population ( ) of  and  is initialized, where , : = (0.5,0.1). 
• Then an archive pool ( ) is filled with the best m individuals (based objec-

tive function of the corresponding .  
• Then a tournament selection procedure, with size , takes place, from which the 

best individual is chosen and saved in the selection pool. 
• for each three consecutive individuals in the selection pool, three offspring are 

generated as 

 = +  × ( − )        (9) 
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 = +  × ( − ) (10) 

 = +  × ( − ) (11) 

where = (0.7,0.1) [23]. 
• On each generated , a diversity operator is applied.  In it, for each individual 

a uniform random number ∈ [0, 1] is generated, if it is less than a predefined 
probability, = 0.1, then = .  

• Subsequently, set =  
• Then, both parameters are calculated as follows: 

 = , ,         ( < )                 ℎ  (12) 

 = , ,      ( < )             ℎ  (13) 

4 Experimental Results 

In this section, a comparison among all variants is elaborated by solving a set of prob-
lems presented in the CEC2014 competition on real-parameter optimization [24], 
which contains 30 test problems with 30 dimensions, with the following mathematical 
properties: F01-F03 are unimodal functions, F04-F16 are simple multimodal func-
tions, F17-F22 are hybrid functions, while F23-F30 are composition functions. 

To add to this, all variants were compared with a DE, as shown in equation 4, with 
fixed values of its parameters, such that =0.5, =0.5, while  was set to 100 
individuals for all variants and =0.75. All variants were run 51 times for each test 
problem, where the stopping criterion was to run for up to 10,000D FEs. The algo-
rithm was coded using Matlab R2012b, and was run on a PC with a 3.4 GHz Core I7 
processor with 16 GB RAM, and windows 7.  

To begin with, the best results obtained by all variants are shown in Table 2. From 
these results, it is clear that all variants were better than DE for F01, with the consid-
eration that Var1 performs in F01, while all variants were able to obtain the same 
values for F02 and F03. For the multi-modal test problems, Var2 was the best for 
most of the test problems. However, Var1 was superior to all other variants for F05 
and F13 and F15, while DE was the best in F14. In regards to the hybrid function, 
Var2 was the best for four test problems, while Var1 was the best for only F22 and 
Var3 performed best in F21. For the composition functions, Var2 performed best for 6 
test functions. DE and Var1 obtained the same best result in F26, while Var3 was the 
best in F29. 

Considering the average results obtained by all variants, see Table 3, it is noticed 
that Var3 was the best for the unimodal test functions, followed by Var1. However, 
Var2 was the worst variant for those test problems. For the multi-modal test functions, 
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Table 2. Best Results obtained by all variants 

Prob.  DE1 Var1 Var2 Var3 
F01 2.604E+05 1.276E+03 2.422E+03 6.483E+03 
F02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
F03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
F04 1.441E+01 1.012E-04 0.000E+00 0.000E+00 
F05 2.074E+01 2.000E+01 2.022E+01 2.042E+01 
F06 2.259E-04 4.765E-01 0.000E+00 9.643E-02 
F07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
F08 1.333E+01 0.000E+00 0.000E+00 1.417E+01 
F09 1.199E+02 3.283E+01 2.098E+01 3.310E+01 
F10 1.955E+02 9.155E+00 1.767E+00 4.642E+02 
F11 5.248E+03 1.942E+03 1.348E+03 2.148E+03 
F12 1.506E+00 2.782E-01 2.427E-01 4.764E-01 
F13 1.416E-01 1.407E-01 1.744E-01 1.578E-01 
F14 1.065E-01 1.286E-01 1.503E-01 1.842E-01 
F15 1.070E+01 3.422E+00 3.698E+00 5.246E+00 
F16 1.084E+01 1.065E+01 8.485E+00 1.025E+01 
F17 1.790E+04 8.806E+02 2.211E+02 6.994E+02 
F18 1.893E+02 4.807E+01 3.225E+01 4.820E+01 
F19 4.091E+00 5.492E+00 2.604E+00 4.365E+00 
F20 4.888E+01 4.376E+01 1.423E+01 1.540E+01 
F21 2.105E+03 3.068E+02 2.219E+02 1.471E+02 
F22 5.073E+01 2.544E+01 2.592E+01 3.123E+01 
F23 3.152E+02 3.152E+02 3.152E+02 3.152E+02 
F24 2.232E+02 2.235E+02 2.217E+02 2.233E+02 
F25 2.027E+02 2.033E+02 2.026E+02 2.027E+02 
F26 1.001E+02 1.001E+02 1.002E+02 1.001E+02 
F27 3.038E+02 3.745E+02 3.000E+02 3.004E+02 
F28 7.202E+02 7.169E+02 6.494E+02 7.500E+02 
F29 8.856E+02 5.318E+02 7.195E+02 4.822E+02 
F30 6.329E+02 9.568E+02 5.052E+02 7.080E+02 

 
Var1, Var2, Var3 and DE were able to obtain the best results for 6, 3, 3, 1 test func-
tion (s), respectively.  For the hybrid functions, Var2 was superior to all other  
variants for 5 test functions, while Var2 performed best for F22. Considering the 
composition functions, DE, Var1 and Var3 were able to obtain the same result in F23. 
Var1 and Var3 obtained the same result in F26, while DE was the best for 3 test func-
tions, while Var3 was the best for F28, F29 and F30. 

To continue our analysis, the average computational time for each variant were cal-
culated. The computational time was calculated as the average time consumed to 
reach the best known solutions with an error 1.0E-08, i.e. the stopping criteria is [f(x) − f(x∗) ≤ 1.0E − 08], where  f(x∗) is the best known solution. The summary 
results are shown in Table 4. From this table, Var1 was the best. 

Similarly, the average numbers of fitness evaluations to reach the above mentioned 
stopping criterion were recorded, see Table 5. From that table, it is found that Var3 
performed best. 
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Table 3. Average Results obtained by all variants 

Prob.  DE Var1 Var2 Var3 
F01 1.160E+06 6.398E+04 3.979E+06 3.865E+04 
F02 2.004E+03 0.000E+00 1.746E+07 0.000E+00 
F03 0.000E+00 0.000E+00 3.886E+02 0.000E+00 
F04 1.147E+02 1.719E+01 8.887E+01 1.578E+00 
F05 2.092E+01 2.000E+01 2.046E+01 2.056E+01 
F06 1.132E+00 1.593E+01 4.088E+00 2.292E+00 
F07 1.335E-02 1.090E-02 5.373E-01 5.987E-03 
F08 6.529E+01 1.615E-04 1.023E+01 2.000E+01 
F09 1.444E+02 5.552E+01 5.425E+01 6.272E+01 
F10 2.705E+03 1.272E+02 4.348E+02 7.950E+02 
F11 6.140E+03 2.782E+03 2.974E+03 3.499E+03 
F12 2.043E+00 4.404E-01 7.345E-01 7.981E-01 
F13 2.582E-01 2.625E-01 2.561E-01 2.535E-01 
F14 2.511E-01 2.310E-01 2.465E-01 2.546E-01 
F15 1.301E+01 7.306E+00 6.854E+00 6.903E+00 
F16 1.183E+01 1.130E+01 1.036E+01 1.103E+01 
F17 8.314E+04 1.810E+03 9.054E+03 1.403E+03 
F18 3.653E+02 1.323E+02 1.488E+02 1.265E+02 
F19 6.492E+00 1.149E+01 7.627E+00 6.340E+00 
F20 8.107E+01 1.743E+02 6.582E+01 2.909E+01 
F21 3.953E+03 8.281E+02 3.149E+03 3.964E+02 
F22 2.504E+02 1.941E+02 1.416E+02 1.499E+02 
F23 3.152E+02 3.152E+02 3.157E+02 3.152E+02 
F24 2.285E+02 2.339E+02 2.289E+02 2.290E+02 
F25 2.038E+02 2.088E+02 2.062E+02 2.048E+02 
F26 1.081E+02 1.042E+02 1.081E+02 1.042E+02 
F27 3.935E+02 4.464E+02 4.192E+02 4.021E+02 
F28 8.876E+02 9.502E+02 9.049E+02 8.631E+02 
F29 2.155E+05 3.839E+05 1.666E+05 8.067E+02 
F30 1.978E+03 2.388E+03 3.896E+03 1.786E+03 

Table 4. Computational time, in seconds, of each variant 

DE1 Var1 Var2 Var3 
18.35 14.58 24.81 20.59 

Table 5. Average number of fitness evaluations 

DE2 Var1 Var2 Var3 
289259 281778.3 287584 280234 

 
To study the statistical difference between any two stochastic algorithms, a non- 

parametric test, Wilcoxon Signed Rank Test [25], is chosen. As a null hypothesis, it is 
assumed that there is no significant difference between the best and/or mean values of 
two samples. Whereas the alternative hypothesis is that there is a significant differ-
ence in the best and/or mean fitness values of the two samples, with a significance 
level of 5%. Based on the test results, one of three signs (+, −, and ≈) is assigned for 
the comparison of any two algorithms (shown in the last column), where the “+” sign 
means the first algorithm is significantly better than the second, the “−”  sign means 
that the first algorithm is significantly worse, and the “≈ ” sign means that there is no 
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significant difference between the two algorithms. The results are shown in Table 6. 
From this table, considering the best results, it is found that all variants are statistical-
ly better than DE.  To add to this, Var2 is statistically better than all variants.  In 
regards to the average results, it is interesting to find that Var3 was statically better 
than all variants, while there were no significant differences among other variants. 

Table 6. The Wilcoxon non-parametric test among all variants, based on the best and averge 
fitness values obtained, where × means that no statisitcal test was applicable 

Variants Best fitness value Average fitness value 
DE Var1 Var2 Var3 DE Var1 Var2 Var3 

DE × − − − × ≈ ≈ − 
Var1 (DE & DE) + × − ≈ ≈ × ≈ − 
Var2 (DE & CMA-ES) + + × + ≈ ≈ × − 
Var3 (DE & GA) + ≈ − × + + + × 

 

Fig. 1. F values after 2, 100 and 500 generations. The 1st, 2nd and 3rd are of Var1, Var2 and 
Var3, respectively. 
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Fig. 2. Cr values after 2, 100 and 500 generations. The 1st, 2nd and 3rd are of Var1, Var2 and 
Var3, respectively. 

It is also important to investigate why DE average results are not consistent with 
the best results when using CMA-ES in adapting DE parameters (in Var2)? To do 
this, we plotted the F and Cr values after 2, 100 and 500 generations. We found that 
CMA ES used to convergence to a single value for each parameter, see Fig. 1 and  
Fig. 2, and this combination of parameters might not be the best during the entire 
evolutionary process. In contrast, both Var1 and Var3 maintained good diversity.  

5 Conclusions and Future Work 

There is no doubt that the success of DE depends on its parameters. However, the 
selection of its parameters is not a simple task. This motivated many researchers to 
investigate this direction. Although many techniques were proposed to self-adaptively 
adapt its parameters, using EAs to do this process have not been fully explored. Con-
sequently, in this paper, we compared the performance of DE when adapting its  
parameters using three different EAs (DE, CMA-ES and GA). From the results,  
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we found that adapting DE’s parameters using CMA-ES had the ability to obtain the 
best results, in terms of the best solutions obtained, in many occasion. However, its 
average results were inferior to the variant that considered GA. 

Although, DE, with a single combination of parameters, was good in several occa-
sions, there is a question how can we determine it? To add to this, it was interesting to 
find that using EAs to adapt DE’s parameters might save computational time; this is 
because it had the ability to quickly find the optimal solutions in many occasions. 

There are many open directions can be done in this direction. For instance, recent 
years have shown much interest in developing multi-operator DE algorithms. Doing 
the same trend and use multi-operator algorithms to evolve DE’s parameters may be a 
possible future work. To add to this, providing a detailed comparison to other adapta-
tion techniques is also important.  
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