
© Springer International Publishing Switzerland 2015
H. Handa et al. (eds.), Proc. of the 18th Asia Pacific Symp. on Intell. & Evol. Systems – Vol. 1,

523

Proceedings in Adaptation, Learning and Optimization 1, DOI: 10.1007/978-3-319-13359-1_40

Evolving the Parameters of Differential Evolution Using
Evolutionary Algorithms

Saber Elsayed and Ruhul Sarker

School of Engineering and Information Technology, University of New South Wales at
Canberra (UNSW Canberra), Australia

{s.elsayed,r.sarker}@adfa.edu.au

Abstract. Differential evolution has shown tremendous success in solving dif-
ferent complex optimization problems. However, the performance is highly de-
pendent on the selection of its parameters. Although many techniques have
been introduced to adaptively (or self-adaptively) determine the parameters, the
task is recognized as a tedious one. In this research, we investigate the use of
evolutionary algorithms, such as covariance adaptation matrix evolution strate-
gy, differential evolution and genetic algorithm, to self-adaptively determine the
possible values of both the amplification factor and crossover rate. The perfor-
mances of the algorithms are compared to each other, as well as to a standard
differential algorithm, by solving a well-known set of benchmark problems.
The experimental results show that such an approach can improve the perfor-
mance of differential evolution, however further investigation is required to find
the appropriate evolutionary algorithm for evolving parameters.

Keywords: differential evolution, covariance adaptation matrix evolution strat-
egy, genetic algorithm, self-adaptation.

1 Introduction

The evolutionary algorithms (EAs), such as genetic algorithms (GA) [1], differential
evolution (DE) [2] and evolution strategies (ES) [3], are popular choice to many re-
searchers and practitioners for solving their complex optimization problems. Among
EAs, DE has shown its superiority to many other algorithms in solving problems with
different mathematical properties. However, it is well-known that DE parameters such
as amplification factor (), crossover rate () and population size () play a vital
role on its success, which led researchers to investigate this research topic, and pro-
pose different adaptive and self-adaptive mechanisms to avoid a trial-and-error ap-
proach in the selection of parameters. This directs us to the no-free launch theorem
[4], which shows that one set of parameters may be well suited for a set of problems
that may not work well for another problem, or another class, or range of problems.

While solving an optimization problem, one of the interesting mechanisms to self-
adaptively determine the DE parameter values is using an evolution process that may
involve DE or any other EAs. This mechanisms dates back to 2002 when Abbass [5]
proposed a self-adaptive operator (crossover and mutation) for multi-objective

524 S. Elsayed and R. Sarker

optimization problems, where F was generated using a Gaussian distribution N(0, 1)
and then updated using a DE algorithm. This technique has been modified in [6-9], in
which DE variants with more than one difference vectors (DV) were used to evolve
parameters, as well as and were initialized using N(0.5, 15). However, to the
best of our knowledge, the use of other EAs to self-adaptively determine DE parame-
ters is rare.

Other mechanisms, which do not depend on EAs, have also been proposed. Qin et
al. [10] proposed a DE algorithm (SaDE). In it, F was approximated by a normal
distribution N (0.5, 0.3), and truncated to the interval (0, 2]. The crossover probabili-
ties were randomly generated according to an independent normal distribution with
mean Cr and a standard deviation value of 0.1. The Cr values remained fixed for
five generations before the next re-generation. Cr was initialized to 0.5, and it was
updated every 25 generations based on the recorded successful Cr values since the
last Cr update. Using fuzzy logic controllers, Liu and Lampinen [11] presented a
fuzzy adaptive DE, whose inputs incorporated the relative function values and indi-
viduals of successive generations to adapt the parameters for mutation and crossover.
Brest et al. [12] proposed a self-adaptation scheme for the DE control parameters,
known as jDE. The control parameters were adjusted by means of evolution of F and
Cr. In jDE, a set of F and Cr values was assigned to each individual in the popula-
tion, augmenting the dimensions of each vector. Zhang et al. [13] introduced an
adaptive DE algorithm with optional external memory (JADE). In it, at each genera-
tion, the crossover probability of each individual x was independently generat-
ed according to a normal distribution of mean μCr and standard deviation of 0.1. μCr
was initialized at a value of 0.5 and updated. Similarly, of each individual was
independently generated according to a Cauchy distribution with a location parameter
μF and a scale parameter 0. The location parameter μF was initialized to 0.5 and sub-
sequently updated at the end of each generation. Das et al.[14] introduced two ver-
sions for adapting F in DE. In the first scheme, was randomly chosen between 0.5
and 1.0, while in the second scheme, was initialized with a value of 1.0, and then
linearly reduced to 0.1 during the evolution process. Generally speaking, such tech-
niques may need adapting other parameters which may affect the performance of DE.

In this paper, we have evolved two DE parameters (such as and) by using
three different algorithms. They are: (1) DE (this variant is recognized as Var1); (2)
covariance adaptation matrix evolution strategy (CMA-ES)[15] (Var2); and (3) GA
(Var3). That means, we are applying DE to solve the optimization problems, and
within DE, we are using one of the above three algorithms to self-adaptively select
DE parameters. The performances of these variants are compared to each other as
well as to a DE with a single set of parameter values. From the results obtained, it is
clear that the self-adaptive mechanism is better than a DE with a fixed set of parame-
ters. Among the three variants, Var2 is the best considering the best fitness values
found, while based on the average fitness values, Var3 is the best. However, these two
variants are computational expensive in comparison with Var1.

The rest of this paper is organized as follows: section 2 presents and overview of
DE. Section 3 discusses the self-adaptive mechanisms used in this paper, while
section 4 presents the computational results. Finally, conclusions are elaborated in
section 5.

 Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms 525

2 Differential Evolution

DE uses the concept of a larger population from a GA and self-adapting mutation
from ES [2], and differs from traditional EAs mainly in its generation of new vectors
which adds the weighted difference vector (DV) between two individuals to a third
individual [16]. It performs well when the feasible patches are parallel to the axes [17]
but converges prematurely when dealing with a multi-modal fitness function because
it loses its diversity [18, 19].

2.1 Mutation

The simplest form of this operation is that a mutant vector is generated by multiplying
an amplification factor, F, by the difference between two random vectors, with the
result added to a third random vector (DE/rand/1) [20] as:

 , = , + , − , (1)

where , , are random numbers (1,2, ..., PS), ≠ ≠ ≠ , x a decision
vector, a positive control parameter for scaling the DV and t the current generation.

This operation enables DE to explore the search space and maintain diversity and
there are many strategies for it, such as DE/best/1 [20], DE/current-to-best/1[21]. For
more details, readers are referred to [22].

2.2 Crossovers

The DE family of algorithms usually depends on two crossover schemes, exponential
and binomial, which are briefly discussed below.

In an exponential crossover, firstly, an integer, l, is randomly chosen within the
range [1, D] and acts as the point in the target vector from where the crossover or
exchange of components with the donor vector starts. Another integer, L, chosen from
interval [1, D] denotes the number of components the donor vector actually contrib-
utes to the target. After the generation of l and L, the trial vector is obtained as:

 , , = , , = ‹ › , ‹ + 1› , … , ‹ + − 1›, , ℎ ∈ [1,] (2)

where = 1,2, … , , and the angular brackets, ‹ › , denote a modulo function with
a modulus of and starting index of .

The binomial crossover is performed on each of the variables whenever a ran-
domly chosen number (between 0 and 1) is less than or equal to the crossover rate,

. In this case, the number of parameters inherited from the donor has a (nearly)
binomial distribution as:

 , = , , (≤ =), , ℎ (3)

where ∈ [0,1] and ∈ [1,2, … ,] is a randomly chosen index which
ensures that u , receives at least one component from , .

526 S. Elsayed and R. Sarker

2.3 Selection

An offspring will be selected if it is better than its parent.

3 Self-adaptive DE Variants Based on EAs

To start with, in this paper, Table 1 shows the general framework of DE used in this
paper.

Table 1. General framework of DE used in this paper

STEP 1: At generation t = 1, generate an initial random population of size . The variables of each
individual (z) must be within a range such as: , = , + × (, − ,)

where , , , are the lower and upper bounds of the decision variable x , and rand is a
random number, ∈ [0,1].

STEP 2: Generate initial values for and
STEP 3: Evolve and using an EA, as shown in 3.1, 3.2 and 3.3
STEP 4: Generate new offspring as follows:

4.1 Generate the offspring vector , using DE/current-to-best/bin and the corresponding
and obtained in Step 3 such as

, = , + . , − , + , − , , (≤ =), , ℎ

where and are random integer numbers ∈ [1,] and both are not similar to

4.2 Update and , if required, see 3.1
STEP 8: Stop if the termination criterion is met; else, set = + 1 and go to STEP 3.

In this paper, three variants are used to self-adaptively generate and , as de-

scribed below.

3.1 Var1: Adapting F and Cr Using DE

Here, and are self-adaptively calculated using a simple DE algorithm, as fol-
lows:

• At = 1 , each individual in is assigned with and , where =(0.5,0.1) and = (0.5,0.1). If the value is less than 0.01 or larger than
1.0, it is reflected back to be between to 0.01 and 1, respectively.

• Then, both parameters are calculated as follows:

 = + × − , (<) ℎ (4)

 = + × − , (<) ℎ (5)

where ∈ [0,1] ∀ Γ = 1,2 … ,5 and = 0.75. If the value is less than
0.01 or larger than 1, it is truncated to 0.1 and 1, respectively.

 Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms 527

• If the new offspring is better than its parent, then = and = .

3.2 Var2: Adapting F and Cr Using CMA-ES

Here, and are self-adaptively calculated using CMA-ES, such that

• At = 1, is initialized as (0.5,0.1,), where is 2, , refers to
, while , refers to .

• A new population, which represents both and , is generated using CMA-
ES:

 : = + : (6)

where : are independent realizations of a D-dimensional standard normal
distribution with zero-mean and a covariance matrix equal to the identity
matrix I. These base points are rotated and scaled by the eigenvectors and
the square root of the eigenvalues of the covariance matrix . The , and
the global step-size are continuously updated after each generation t [15].

• Then, both parameters are calculated as follows:

 = , , (<) ℎ (7)

 = , , (<) ℎ (8)

• Then , and all other CMA-ES’s parameters are updated as suggested in
https://www.lri.fr/~hansen/cmaes.m. It is worthy to mention here that, to meas-
ure the quality of each , the objective function of the corresponding is
used instead.

3.3 Var3: Adapting F and Cr Using GA

Here, a multi-parent crossover GA (MPC-GA) [23] is used to evolve DE parameters.

• At = 1, an initial population () of and is initialized, where , : = (0.5,0.1).
• Then an archive pool () is filled with the best m individuals (based objec-

tive function of the corresponding .
• Then a tournament selection procedure, with size , takes place, from which the

best individual is chosen and saved in the selection pool.
• for each three consecutive individuals in the selection pool, three offspring are

generated as

 = + × (−) (9)

528 S. Elsayed and R. Sarker

 = + × (−) (10)

 = + × (−) (11)

where = (0.7,0.1) [23].
• On each generated , a diversity operator is applied. In it, for each individual

a uniform random number ∈ [0, 1] is generated, if it is less than a predefined
probability, = 0.1, then = .

• Subsequently, set =
• Then, both parameters are calculated as follows:

 = , , (<) ℎ (12)

 = , , (<) ℎ (13)

4 Experimental Results

In this section, a comparison among all variants is elaborated by solving a set of prob-
lems presented in the CEC2014 competition on real-parameter optimization [24],
which contains 30 test problems with 30 dimensions, with the following mathematical
properties: F01-F03 are unimodal functions, F04-F16 are simple multimodal func-
tions, F17-F22 are hybrid functions, while F23-F30 are composition functions.

To add to this, all variants were compared with a DE, as shown in equation 4, with
fixed values of its parameters, such that =0.5, =0.5, while was set to 100
individuals for all variants and =0.75. All variants were run 51 times for each test
problem, where the stopping criterion was to run for up to 10,000D FEs. The algo-
rithm was coded using Matlab R2012b, and was run on a PC with a 3.4 GHz Core I7
processor with 16 GB RAM, and windows 7.

To begin with, the best results obtained by all variants are shown in Table 2. From
these results, it is clear that all variants were better than DE for F01, with the consid-
eration that Var1 performs in F01, while all variants were able to obtain the same
values for F02 and F03. For the multi-modal test problems, Var2 was the best for
most of the test problems. However, Var1 was superior to all other variants for F05
and F13 and F15, while DE was the best in F14. In regards to the hybrid function,
Var2 was the best for four test problems, while Var1 was the best for only F22 and
Var3 performed best in F21. For the composition functions, Var2 performed best for 6
test functions. DE and Var1 obtained the same best result in F26, while Var3 was the
best in F29.

Considering the average results obtained by all variants, see Table 3, it is noticed
that Var3 was the best for the unimodal test functions, followed by Var1. However,
Var2 was the worst variant for those test problems. For the multi-modal test functions,

 Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms 529

Table 2. Best Results obtained by all variants

Prob. DE1 Var1 Var2 Var3
F01 2.604E+05 1.276E+03 2.422E+03 6.483E+03
F02 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F03 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F04 1.441E+01 1.012E-04 0.000E+00 0.000E+00
F05 2.074E+01 2.000E+01 2.022E+01 2.042E+01
F06 2.259E-04 4.765E-01 0.000E+00 9.643E-02
F07 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F08 1.333E+01 0.000E+00 0.000E+00 1.417E+01
F09 1.199E+02 3.283E+01 2.098E+01 3.310E+01
F10 1.955E+02 9.155E+00 1.767E+00 4.642E+02
F11 5.248E+03 1.942E+03 1.348E+03 2.148E+03
F12 1.506E+00 2.782E-01 2.427E-01 4.764E-01
F13 1.416E-01 1.407E-01 1.744E-01 1.578E-01
F14 1.065E-01 1.286E-01 1.503E-01 1.842E-01
F15 1.070E+01 3.422E+00 3.698E+00 5.246E+00
F16 1.084E+01 1.065E+01 8.485E+00 1.025E+01
F17 1.790E+04 8.806E+02 2.211E+02 6.994E+02
F18 1.893E+02 4.807E+01 3.225E+01 4.820E+01
F19 4.091E+00 5.492E+00 2.604E+00 4.365E+00
F20 4.888E+01 4.376E+01 1.423E+01 1.540E+01
F21 2.105E+03 3.068E+02 2.219E+02 1.471E+02
F22 5.073E+01 2.544E+01 2.592E+01 3.123E+01
F23 3.152E+02 3.152E+02 3.152E+02 3.152E+02
F24 2.232E+02 2.235E+02 2.217E+02 2.233E+02
F25 2.027E+02 2.033E+02 2.026E+02 2.027E+02
F26 1.001E+02 1.001E+02 1.002E+02 1.001E+02
F27 3.038E+02 3.745E+02 3.000E+02 3.004E+02
F28 7.202E+02 7.169E+02 6.494E+02 7.500E+02
F29 8.856E+02 5.318E+02 7.195E+02 4.822E+02
F30 6.329E+02 9.568E+02 5.052E+02 7.080E+02

Var1, Var2, Var3 and DE were able to obtain the best results for 6, 3, 3, 1 test func-
tion (s), respectively. For the hybrid functions, Var2 was superior to all other
variants for 5 test functions, while Var2 performed best for F22. Considering the
composition functions, DE, Var1 and Var3 were able to obtain the same result in F23.
Var1 and Var3 obtained the same result in F26, while DE was the best for 3 test func-
tions, while Var3 was the best for F28, F29 and F30.

To continue our analysis, the average computational time for each variant were cal-
culated. The computational time was calculated as the average time consumed to
reach the best known solutions with an error 1.0E-08, i.e. the stopping criteria is [f(x) − f(x∗) ≤ 1.0E − 08], where f(x∗) is the best known solution. The summary
results are shown in Table 4. From this table, Var1 was the best.

Similarly, the average numbers of fitness evaluations to reach the above mentioned
stopping criterion were recorded, see Table 5. From that table, it is found that Var3
performed best.

530 S. Elsayed and R. Sarker

Table 3. Average Results obtained by all variants

Prob. DE Var1 Var2 Var3
F01 1.160E+06 6.398E+04 3.979E+06 3.865E+04
F02 2.004E+03 0.000E+00 1.746E+07 0.000E+00
F03 0.000E+00 0.000E+00 3.886E+02 0.000E+00
F04 1.147E+02 1.719E+01 8.887E+01 1.578E+00
F05 2.092E+01 2.000E+01 2.046E+01 2.056E+01
F06 1.132E+00 1.593E+01 4.088E+00 2.292E+00
F07 1.335E-02 1.090E-02 5.373E-01 5.987E-03
F08 6.529E+01 1.615E-04 1.023E+01 2.000E+01
F09 1.444E+02 5.552E+01 5.425E+01 6.272E+01
F10 2.705E+03 1.272E+02 4.348E+02 7.950E+02
F11 6.140E+03 2.782E+03 2.974E+03 3.499E+03
F12 2.043E+00 4.404E-01 7.345E-01 7.981E-01
F13 2.582E-01 2.625E-01 2.561E-01 2.535E-01
F14 2.511E-01 2.310E-01 2.465E-01 2.546E-01
F15 1.301E+01 7.306E+00 6.854E+00 6.903E+00
F16 1.183E+01 1.130E+01 1.036E+01 1.103E+01
F17 8.314E+04 1.810E+03 9.054E+03 1.403E+03
F18 3.653E+02 1.323E+02 1.488E+02 1.265E+02
F19 6.492E+00 1.149E+01 7.627E+00 6.340E+00
F20 8.107E+01 1.743E+02 6.582E+01 2.909E+01
F21 3.953E+03 8.281E+02 3.149E+03 3.964E+02
F22 2.504E+02 1.941E+02 1.416E+02 1.499E+02
F23 3.152E+02 3.152E+02 3.157E+02 3.152E+02
F24 2.285E+02 2.339E+02 2.289E+02 2.290E+02
F25 2.038E+02 2.088E+02 2.062E+02 2.048E+02
F26 1.081E+02 1.042E+02 1.081E+02 1.042E+02
F27 3.935E+02 4.464E+02 4.192E+02 4.021E+02
F28 8.876E+02 9.502E+02 9.049E+02 8.631E+02
F29 2.155E+05 3.839E+05 1.666E+05 8.067E+02
F30 1.978E+03 2.388E+03 3.896E+03 1.786E+03

Table 4. Computational time, in seconds, of each variant

DE1 Var1 Var2 Var3
18.35 14.58 24.81 20.59

Table 5. Average number of fitness evaluations

DE2 Var1 Var2 Var3
289259 281778.3 287584 280234

To study the statistical difference between any two stochastic algorithms, a non-

parametric test, Wilcoxon Signed Rank Test [25], is chosen. As a null hypothesis, it is
assumed that there is no significant difference between the best and/or mean values of
two samples. Whereas the alternative hypothesis is that there is a significant differ-
ence in the best and/or mean fitness values of the two samples, with a significance
level of 5%. Based on the test results, one of three signs (+, −, and ≈) is assigned for
the comparison of any two algorithms (shown in the last column), where the “+” sign
means the first algorithm is significantly better than the second, the “−” sign means
that the first algorithm is significantly worse, and the “≈ ” sign means that there is no

 Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms 531

significant difference between the two algorithms. The results are shown in Table 6.
From this table, considering the best results, it is found that all variants are statistical-
ly better than DE. To add to this, Var2 is statistically better than all variants. In
regards to the average results, it is interesting to find that Var3 was statically better
than all variants, while there were no significant differences among other variants.

Table 6. The Wilcoxon non-parametric test among all variants, based on the best and averge
fitness values obtained, where × means that no statisitcal test was applicable

Variants Best fitness value Average fitness value
DE Var1 Var2 Var3 DE Var1 Var2 Var3

DE × − − − × ≈ ≈ −
Var1 (DE & DE) + × − ≈ ≈ × ≈ −
Var2 (DE & CMA-ES) + + × + ≈ ≈ × −
Var3 (DE & GA) + ≈ − × + + + ×

Fig. 1. F values after 2, 100 and 500 generations. The 1st, 2nd and 3rd are of Var1, Var2 and
Var3, respectively.

532 S. Elsayed and R. Sarker

Fig. 2. Cr values after 2, 100 and 500 generations. The 1st, 2nd and 3rd are of Var1, Var2 and
Var3, respectively.

It is also important to investigate why DE average results are not consistent with
the best results when using CMA-ES in adapting DE parameters (in Var2)? To do
this, we plotted the F and Cr values after 2, 100 and 500 generations. We found that
CMA ES used to convergence to a single value for each parameter, see Fig. 1 and
Fig. 2, and this combination of parameters might not be the best during the entire
evolutionary process. In contrast, both Var1 and Var3 maintained good diversity.

5 Conclusions and Future Work

There is no doubt that the success of DE depends on its parameters. However, the
selection of its parameters is not a simple task. This motivated many researchers to
investigate this direction. Although many techniques were proposed to self-adaptively
adapt its parameters, using EAs to do this process have not been fully explored. Con-
sequently, in this paper, we compared the performance of DE when adapting its
parameters using three different EAs (DE, CMA-ES and GA). From the results,

 Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms 533

we found that adapting DE’s parameters using CMA-ES had the ability to obtain the
best results, in terms of the best solutions obtained, in many occasion. However, its
average results were inferior to the variant that considered GA.

Although, DE, with a single combination of parameters, was good in several occa-
sions, there is a question how can we determine it? To add to this, it was interesting to
find that using EAs to adapt DE’s parameters might save computational time; this is
because it had the ability to quickly find the optimal solutions in many occasions.

There are many open directions can be done in this direction. For instance, recent
years have shown much interest in developing multi-operator DE algorithms. Doing
the same trend and use multi-operator algorithms to evolve DE’s parameters may be a
possible future work. To add to this, providing a detailed comparison to other adapta-
tion techniques is also important.

References

1. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley, MA (1989)

2. Storn, R., Price, K.: Differential Evolution - A simple and efficient adaptive scheme for
global optimization over continuous spaces, in Technical Report, International Computer
Science Institute (1995)

3. Rechenberg, I.: Evolutions strategie: Optimierung Technischer Systeme nach Prinzipien
der biologischen Evolution. Fromman-Holzboog, Stuttgart (1973)

4. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation 1(1), 67–82 (1997)

5. Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: IEEE Con-
gress on Evolutionary Computation (2002)

6. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms
for solving constrained optimization Problems. Computers and Operations Re-
search 38(12), 1877–1896 (2011)

7. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Differential evolution with multiple strategies
for solving CEC2011 real-world numerical optimization problems. In: IEEE Congress on
Evolutionary Computation (2011)

8. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Improved genetic algorithm for constrained op-
timization. In: 2011 International Conference on Computer Engineering & Systems,
ICCES (2011)

9. Elsayed, S.M., Sarker, R.A., Essam, D.L.: On an evolutionary approach for constrained
optimization problem solving. Applied Soft Computing 12(10), 3208–3227 (2012)

10. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm With Strategy
Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Com-
putation 13(2), 398–417 (2009)

11. Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing
- A Fusion of Foundations. Methodologies and Applications 9(6), 448–462 (2005)

12. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Param-
eters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems.
IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

13. Zhang, J., Sanderson, A.C.: JADE: Adaptive Differential Evolution With Optional Exter-
nal Archive. IEEE Transactions on Evolutionary Computation 13(5), 945–958 (2009)

534 S. Elsayed and R. Sarker

14. Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for
faster global search. In: The 2005 Conference on Genetic and Evolutionary Computation,
pp. 991–998. ACM, Washington, DC (2005)

15. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation 9(2), 159–195 (2001)

16. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359
(1997)

17. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC,
competition and special session on single objective constrained real-parameter optimiza-
tion. 2010: Technical Report, Nangyang Technological University, Singapore (2010)

18. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int.
Mendel Conference on Soft Computing, Brno, Czech Republic (2000)

19. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle
swarm optimization, and evolutionary algorithms on numerical benchmark problems. In:
IEEE Congress on Evolutionary Computation (2004)

20. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial
Conference of the North American Fuzzy Information Processing Society, NAFIPS (1996)

21. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: A practical approach to
global optimization. Natural Computing Series. Springer, Berlin (2005)

22. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE
Transactions on Evolutionary Computation 15(1), 4–31 (2011)

23. Elsayed, S.M., Sarker, R.A., Essam, D.L.: GA with a new multi-parent crossover for solv-
ing IEEE-CEC2011 competition problems. In: IEEE Congress on Evolutionary Computa-
tion (2011)

24. Liang, J.J., Qu, B.-Y., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for
the CEC, Special Session and Competition on Single Objective Real-Parameter Numerical
Optimization. Computational Intelligence Laboratory and Nanyang. Technological Uni-
versity, China and Singapore (2014)

25. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-
Step Approach. John Wiley, Hoboken (2009)

	Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms
	1 Introduction
	2 Differential Evolution
	2.1 Mutation
	2.2 Crossovers
	2.3 Selection

	3 Self-adaptive DE Variants Based on EAs
	3.1 Var1: Adapting F and Cr Using DE
	3.2 Var2: Adapting F and Cr Using CMA-ES
	3.3 Var3: Adapting F and Cr Using GA

	4 Experimental Results
	5 Conclusions and Future Work
	References

