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Abstract. Many practical problems can be classified into constrained optimiza-
tion problems (COPs). ε constrained  differential evolution (εDE) algorithm is 
an effective method in dealing with the COPs. In this paper, ε constrained dif-
ferential evolution algorithm with a novel local search operator(εDE-LS) is  
proposed by utilizing the information of the feasible individuals. In this way, 
we can guide the infeasible individuals to move into the feasible region more 
effectively. The performance of the proposed εDE-LS is evaluated by the 22 
benchmark test functions. The experimental results empirically show that εDE-
LS is highly competitive comparing with some other state-of-the-art approaches 
in constrained optimization problems. 
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ε constrained differential evolution, mutation operator. 

1 Introduction 

Differential evolution (DE) algorithm is an efficient evolutionary algorithm, which 
was firstly proposed by Storn and Price [1]. During the past decade, DE algorithm 
shows competitive performance in solving constrained optimization problems 
(COPs). In real world applications, a lot of optimization problems are subjected to 
constraints, which can be categorized into COPs. A general COPs can be stated as 
follows: 
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Where 1(x ,..., x )nx =  is generated within the range i i iL x U< <  . iL and iU  de-

note the lower and upper bound in each dimension. (x)jg  denotes the jth inequality 

constraint and (x)jh denotes the (j-q)th equality constraint. 
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The research on utilizing DE algorithm to solve COPs has attracted promising at-
tention in recent years. A variety of constraint handling techniques have emerged to 
deal with the COPs. The most common used one is the penalty function method. 
Huang et al. [ 2]proposed a co-evolutionary DE algorithm, in which a special adaptive 
penalty function was proposed to deal with the constraints. Although the penalty func-
tion method is simple and efficient, it is still a difficult task to set a proper penalty 
parameter for the method. 

The multiobjective technique is an efficient method in solving COPs. Wang et al. 
[3] introduced multiobjective technique based DE algorithm to solve COPs. An infea-
sible solution replacement mechanism based multiobjective approach is proposed, 
which mainly focus on guiding the population moving towards the promising and 
feasible region more efficiently. Gong et. al [4]proposed a multiobjective tenique 
based DE for COPs, in which multiobejctive technique based constraint handling 
technique was proposed. However, using the multiobjective technique to tackle the 
COPs is still difficult to design an effective framework in solving COPs. 

The methods by adding extra rules or operator in handling COPs also attract con-
siderable interest from the researchers. Storn [5] proposed a constraint adaptive meth-
od, which firstly make all the individuals as feasible ones by relaxing the constraints 
then decresing the relaxation till reach the original constraints. Lampinen et. al [6] 
presented three effective rules to handle the constraints, which include the feasible 
ones always better than the infeasible ones, the one with better fitness function value 
wins among the feasible ones and the one with less constraint violation wins among 
the infeasible ones. Among these researches, εDE method is a very effective one. εDE 
was proposed by Takahama et. al [7] in 2006, in which using ε constraint handling 
technique to deal with the constraints. The experimental results showed the εDE not 
only can find the feasible ones rapidly, but can achieve excellent success performance 
and rate as well.  In Takahama et. al [7], a local search based on the information of 
first-order derivative was proposed. However, it is usually difficult to calculate the 
first-order derivative. Also, the calculation of first-order derivative is time-cost. In 
this paper, a local search operator is proposed. It can avoid calculating first-order 
derivative of constraint functions, but is more effective. 

The proposed mutation operator mainly utilizing the information of the feasible 
and the infeasible individuals, which focus on guiding the infeasible individual move 
along the direction of the feasible individuals. In order to evaluate the performance of 
the proposed algorithm, twenty-two benchmark test function collected from the spe-
cial session on the constrained real-parameter optimization of the 2006 IEEE congress 
on evolutionary computation are adopted in this paper.  

This paper is organized as follows. We firstly will give a general introduction of 
DE algorithm and εDE as a foundation in Section 2. In Section 3, we will give a de-
tailed introduction of the proposed εDE-LS algorithm, in which the framework is 
included. The experimental results and the comparison will be presented in Section 4.  
Finally, conclusions will be given in Section 5. 
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2 DE and εDE Algorithm 

2.1 DE Algorithm 

DE algorithm is an efficient but simple EAs, which can be divided into four phase, 
that is, initialization, mutation, crossover and selection. 

During the initialization phase, the NP n-dimensional individuals 

( ),1 ,,..., , 1,...,g g g
i i i nx x x i NP= = are generated. g denotes the generation number.  

Then the mutation phase will be adopted to generate the mutation vectors. Several 
mutation operators have been proposed. The DE/rand/1/exp proposed by       will be 
utilized in this paper, where exp denotes the exponent crossover operator. The muta-
tion vector can be calculated as follows: 

 1 2 3*( )g g g g
i r r rv x F x x= + −  (2) 

Where F denotes the predefined scale parameter, r1, r2, and r3 are three mutually 
different generated indexes which should be different from index i within the range 
[1,NP]. Then a check will be made to make sure the generated g

iv are within the 

boundaries, which can be described as follows: 
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Where jL  and jU  denote the lower and upper bound in j-th dimension. 

The exponent crossover operator makes the trail vector contains a consecutive se-
quence of the component taken from the mutation vector.  The exponent crossover 
operator can be given as follows:   
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Where , [1,n]L k ∈  are both random indexes. <j> is j if j<n and j=j-n if j>n. 

During the selection phase, a better individual between the trail vector  g
iu  and 

target vector g
ix  will be chosen according to their fitness function value: 
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2.2 εDE Algorithm 

In the εDE algorithm, the constraint violation (x )g
iΦ  is defined as the sum of all 

constraints: 

 1 1

(x ) max{0,g (x )} (x )
q m

g g g
i j i j i

j j q

h
= = +

Φ = +∑ ∑
 (6) 

After generating the new target vector through the DE algorithm. The ε level com-
parison is used in εDE algorithm to help decide which individual is better. The com-
parison can be given as follows: 
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Where f is the objective fitness function value, and the ε level is set as formula giv-
en below: 
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Where xθ  is the top -thθ  individual and we set =0.2*Nθ  in the paper. Tc is a 

predefined generation number. cp is the control parameter in ε level comparison and 
we set cp as 5 in the paper.  

3 The Proposed εDE-LS Algorithm 

Usually, in the COPs, the feasible region is continuous. The surrounding region of 
feasible individuals has more possibility to be feasible. So the feasible individuals can 
guide the infeasible ones move towards to the feasible region. Motivated by the inter-
action between the feasible and infeasible individuals, we design a novel local search 
operator “DE/current-to- feasible/2” to improve the performance of εDE algorithm. 
The “DE/current-to- feasible/2” is a transformation version of “DE/current-to-best/2” 
mutation strategy. It can be presented as follows: 

 
)( )(1 2_ _* *g g g g g g

i i feas r i feas r iv x a x x b x x= + − + −
 (9) 
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Where 1_feas r  and 2_feas r  are two random indexes chosen from the feasible 

individual set Q. So the number of feasible individuals must be more than 2. a and b 
are two random generated numbers within the range [0,1]. If any dimension in g

iv  

exceeds the boundary, then randomly chosen a feasible individual and makes the spe-
cific dimension in g

iv  equal to the related dimension in chosen feasible individual.  

So in εDE-LS, DE algorithm is used to generate offspring, and  ε constrained al-
gorithm is used to choose better individual survive into next generation. For those 
infeasible solutions, if the number of feasible individuals is less than 2, the local 
search phase is skipped. If the number of feasible individuals is more than 2, then for 
each infeasible individual, local search operator is used. Then the ε level comparison 
is adopted to choose a better one between the individual and offspring generated by 
local search operator.. The framework of the proposed εDE-LS algorithm can be giv-
en as follows: 

 
 

 

Fig. 1. The pesudocode of εDE-LS algorithm 
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4 Experimental Results 

4.1 Parameter Settings 

The twenty-two benchmark test functions are collected from Liang et. al [8] are 
adopted in evaluating the performance of the proposed algorithm. The detailed infor-
mation about the benchmark can be referred to Liang et. al [8].  The parameter set-
tings of the proposed algorithm are as follows: 

Table 1. Parameter setings of εDE-LS algorithm 

popsize 40,40,100* 
MaxFES 35 10× ,

45 10× ,
55 10×  

θ   0.2 

cT   0.2* MaxFES /popsize 

cp 5 
F [0.5,1.0] 
CR [0.9,1.0] 

*The popsize is 40, 40 and 100 with 
35 10× , 

45 10× , 
55 10×  finess evaluations (FES),respectively. 

4.2 Performance of εDE-LS Algorithm 

25 independent runs are conducted for the test benchmark functions with 35 10× , 
45 10× , 55 10× FES, respectively.The torlerance value δ  for the equality constraints 

is set as 0.0001. The best, median, worst, mean and standard deviation of the error 

value ( ( ) ( )*f x f x−  ), where *( )f x is the best objective fitness function value for 

each benchmark test function that ever known. c is the number of the violated con-
straints at the median solution : the three numbers refers to the constraints bigger than 
1, between 0.01 and 1.0 and between 0.0001and 0.01, respectively. v is mean value of 
the violations of all the constraints at the median solution. The number in parentheses 
after best, median and worst solutions is the number of violated constraints.  

Table 2. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G01-G05 

 G01 G02 G03 G04 G05 

5×103 Best 1.2042E+00 3.5286E-01 -2.4983E-01 8.2965E-01 5.1278E+03 

Median 2.6309E+00 3.9958E-01 9.6055E-01 3.3045E+00 5.2755E+03 

Worst 5.5134E+00 4.7644E-01 1.0005E+00 9.5916E+00 5.7907E+03 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,3,0 

v 0 0 0 0 2.1310E-02 

Mean 2.7307E+00 4.0586E-01 6.4434E-01 4.0203E+00 5.3362E+03 

Std 7.9984E-01 2.9802E-02 4.9011E-01 2.0836E+00 1.8425E+02 
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Table 2. (Continued) 
5×104 Best 1.4440E-07 4.1605E-04 2.1900E-06 -3.6380E-12 -1.8190E-12 

Median 6.8327E-07 1.1172E-02 8.9556E-02 -3.6380E-12 -9.0949E-13 

Worst 3.1932E-06 6.2807E-02 2.7449E-01 -3.6380E-12 4.5045E-06 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 9.9408E-07 1.8072E-02 1.0027E-01 -3.6380E-12 2.0085E-07 

Std 8.2529E-07 1.7363E-02 8.1116E-02 0.0000E+00 9.0155E-07 

5×105 Best 0.0000E+00 8.6703E-10 -2.8866E-15 -3.6380E-12 -1.8190E-12 

Median 0.0000E+00 9.3817E-09 -2.6645E-15 -3.6380E-12 -18190E-12 

Worst 0.0000E+00 3.7095E-08 -2.4425E-15 -3.6380E-12 -1.8190E-12 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 0.0000E+00 1.1279E-08 -2.6024E-15 -3.6380E-12 -1.8190E-12 

Std 0.0000E+00 9.4316E-09 1.6367E-16 0.0000E+00 0.0000E+00 

Table 3. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G06-G10 

 G06 G07 G08 G09 G10 

5×103 Best 6.9833E-04 1.5394E+01 4.1633E-17 3.1226E+00 1.2622E+03 

Median 4.1042E-03 2.1236E+01 5.5511E-17 5.5926E+00 2.1678E+03 

Worst 4.6504E-02 3.6400E+01 6.9389E-17 1.1330E+01 4.8200E+03 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 8.5336E-03 2.2857E+01 5.4401E-17 5.8105E+00 2.2786E+03 

Std 1.0454E-02 6.3786E+00 5.5511E-18 1.8589E+00 7.5188E+02 

5×104 Best -1.6371E-11 1.1864E-04 2.7756E-17 -1.1369E-13 1.1531E-02 

Median -1.6371E-11 2.8898E-04 4.1633E-17 1.1369E-13 5.5891E-02 

Worst -1.6371E-11 1.2395E-03 4.1633E-17 2.2737E-13 7.8631E+01 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean -1.6371E-11 3.7846E-04 3.7192E-17 6.8212E-14 8.1563E+00 

Std 0.0000E+00 2.7710E-04 6.6071E-18 8.0389E-14 1.7592E+01 

5×105 Best -1.6371E-11 -1.4566E-13 2.7756E-17 -2.2737E-13 -7.2760E-12 

Median -1.6371E-11 2.8422E-14 2.7756E-17 -1.1369E-13 -4.5475E-12 

Worst -1.6371E-11 2.9488E-13 2.7756E-17 -1.1369E-13 1.4508E-08 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean -1.6371E-11 -1.5632E-14 2.7756E-17 -1.5916E-13 2.0654E-09 

Std 0.0000E+00 1.0766E-13 0.0000E+00 5.6843E-14 4.3554E-09 
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Table 4. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G11-G15 

 G11 G12 G13 G14 G15 

5×103 Best 1.6943E-10 8.6228E-05 5.3633E-01 -4.7264E+01 2.2286E-03 

Median 8.1219E-05 7.5430E-03 9.7924E-01 -4.2850E+01 9.6215E+02 

Worst 6.9003E-02 4.2052E-01 1.9416E+00 -3.9904E+01 9.6535E+02 

c 0,0,0 0,0,0 0,3,0 0,3,0 0,0,1 

v 0 0 2.0749E-01 1.1952E-01 3.6741E-04 

Mean 7.7345E-03 5.0767E-06 9.9447E-01 -4.3113E+01 7.7047E+02 

Std 1.5332E-02 1.0478E-05 2.5999E-01 2.0303E+00 3.9265E+02 

5×104 Best 0.0000E+00 0.0000E+00 1.6771E-02 5.6943E-07 -1.1369E-13 

Median 0.0000E+00 0.0000E+00 5.2714E-01 4.1865E-06 -1.1369E-13 

Worst 0.0000E+00 0.0000E+00 9.2521E-01 2.1939E-04 -1.1369E-13 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 0.0000E+00 0.0000E+00 5.3646E-01 2.2823E-05 -1.1369E-13 

Std 0.0000E+00 0.0000E+00 3.0524E-01 5.2442E-05 0.0000E+00 

5×105 Best 0.0000E+00 0.0000E+00 -2.2204E-16 1.4211E-14 -1.1369E-13 

Median 0.0000E+00 0.0000E+00 -2.2204E-16 1.4211E-14 -1.1369E-13 

Worst 0.0000E+00 0.0000E+00 -1.9429E-16 2.1316E-14 -1.1369E-13 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 0.0000E+00 0.0000E+00 -2.1649E-16 1.7053E-14 -1.1369E-13 

Std 0.0000E+00 0.0000E+00 1.1331E-17 3.5527E-15 0.0000E+00 

Table 5. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G16-G19 and G21 

 G16 G17 G18 G19 G21 

5×103 Best 3.9394E-03 8.8160E+03 -2.6751E-01 5.3038E+01 4.0133E+02 

Median 9.6029E-03 8.9614E+03 5.1285E-01 1.0054E+02 6.7771E+02 

Worst 2.4616E-02 9.2010E+03 8.0098E-01 1.3151E+02 9.6477E+02 

c 0,0,0 0,4,0 0,0,0 0,0,0 0,3,1 

v 0 9.5126E-02 0 0 1.8268E-03 

Mean 1.1051E-02 8.9672E+03 4.9005E-01 9.6983E+01 6.7307E+02 

Std 5.3806E-03 1.0383E+02 1.8203E-01 2.4519E+01 1.5715E+02 

5×104 Best 3.7748E-15 7.7749E+00 3.3295E-06 1.2885E-02 2.7546E-05 

Median 3.2196E-14 8.3318E+01 1.8149E-05 3.2261E-02 4.5160E+00 

Worst 6.3349E-13 3.4429E+02 1.2721E-04 1.151E-01 1.3099E+02 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

v 0 0 0 0 0 

Mean 1.0176E-13 7.5867E+01 2.8616E-05 3.6846E-02 5.0162E+01 

Std 1.5267E-13 6.6433E+01 2.9068E-05 2.1706E-02 5.7877E+01 
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Table 5. (Continued) 

5×105 Best 3.7748E-15 -5.8000E-03 1.7130E-11 1.5960E-08 0.0000E+00 

Median 3.7748E-15 -5.8000E-03 1.8764E-10 5.4233E-08 2.2989E-299(6) 

Worst 3.7748E-15 2.9749E+02 7.7298E-10 1.6040E-07 2.7393E-259(6) 

c 0,0,0 0,0,0 0,0,0 0,0,0 0,6,0 

v 0 0 0 0 2.4686E-01 

Mean 3.7748E-15 3.9079E+01 1.9762E-10 6.4420E-08 1.1283E-260 

Std 0.0000E+00 6.5092E+01 1.8283E-10 3.2980E-08 0.0000E-00 

 

Table 6. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G23-G24 

 G23 G24 

5×103 Best -4.9639E+02 3.5212E-09 

Median -1.3372E+02 6.5883E-08 

Worst 2.3647E+02 4.0692E-07 

c 0,4,0 0,0,0 

v 1.1303E-01 0 

Mean -9.5647E+01 1.1387E-07 

Std 1.6961E+02 1.1752E-07 

5×104 Best 2.3201E-01 3.2863E-14 

Median 3.7585E+01 3.2863E-14 

Worst 3.1068E+02 3.2863E-14 

c 0,0,0 0,0,0 

v 0 0 

Mean 4.9361E+01 3.2863E-14 

Std 6.1611E+01 0.0000E+00 

5×105 Best 7.9471E-08 3.2863E-14 

Median 7.9992E-06 3.2863E-14 

Worst 4.6202E-02 3.2863E-14 

c 0,0,0 0,0,0 

v 0 0 

Mean 1.8593E-03 3.2863E-14 

Std 9.2381E-03 0.000E+00 

 
As shown in Table 2-6, in spite of the test functions G05, G13, G14, G15, G17, 

G21, G23,  for other 15 test benchmark functions, the proposed algorithm can obtain 
feasible solutions within 35 10×  FES. All the test benchmark functions can obtain 

feasible solutions within 45 10×  FES. Especially, to function G11 and G12, the best 

known solutions are obtained within 45 10×  FES. In 55 10×  FES,  9 out of 22 test 
benchmark functions (i.e. G03, G04, G05, G06, G07, G09, G10, G13, G15) can 
obtain a more precisely solutions than the best known solutions. In conclusion, the 
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solutions obtained by the proposed εDE-LS algorithm (except G21) are close to the 

best known solutions within 55 10× FES. 
In Table 7, we present the number of FES needed in each run for each test 

benchmark function when satisfying the success condition: 

( ) ( )* 1.0 04f x f x E− ≤ − and x is feasible solution. The best, median, worst, mean 

and std denote the least, median, most, mean and standard deviation FES when meets 
the success condition during the 25 independent runs. The feasible rate is the ratio 
between the feasible solutions and 25 achieved solutions within 55 10× FES. The 
success rate is the ratio between the number of success runs and 25 runs within 

55 10× FES. The success performance is the mean number of FES for successful runs 
multiplied by the total runs and divided by the number of successful runs. 

In Table 8, a comparison with  respect to other state-of-the-art algorithms in terms 
of the success performance. The related success performance of  other state-of-the-art 
algorithms is can be referred to Wang et al.[3]. 

Table 7. The success performance, feasible rate and success rate of the εDE-LS algorithm 

Pro.b Best Median Worst Mean Std Feasible 

Rate 

Success 

Rate 

Success 

performance 

G01 33360 37480 40680 37290 2012.9 100% 100% 37290 

G02 204100 273100 294000 256662 54591.1 100% 100% 256662 

G03 97800 102200 106300 101960 2288.4 100% 100% 101960 

G04 12440 14600 16040 14565 977.2 100% 100% 14565 

G05 16240 29360 43960 28365 8458.6 100% 100% 28365 

G06 23160 25200 27800 25426 1077.2 100% 100% 25426 

G07 202900 212700 222900 212300 5168.8 100% 100% 212300 

G08 320 7240 10080 7162 1745.0 100% 100% 7162 

G09 18840 19920 21520 20061 777.61 100% 100% 20061 

G10 243600 286900 384300 306412 53413.7 100% 100% 306412 

G11 5600 7200 7800 7102 504.4 100% 100% 7102 

G12 1120 2960 5040 3038 957.4 100% 100% 3038 

G13 82100 85400 87000 84812 1419.3 100% 100% 84812 

G14 32360 39720 47720 39766 4893.0 100% 100% 39766 

G15 9480 10400 11840 10435 653.7 100% 100% 10435 

G16 13920 20800 25080 19832 3037.2 100% 100% 19832 

G17 173800 326800 366500 257400 56434 100% 56% 459642 

G18 35520 44560 49680 43797 3947.7 100% 100% 43797 

G19 287900 314700 335300 314744 10950.7 100% 100% 314744 

G21 NA NA NA NA NA NA NA NA 

G23 384200 431300 499800 433073 33406.8 100% 92% 451117 

G24 2440 2960 3360 2963 221.5 100% 100% 2963 
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Table 8. εDE-LS with respect to MDE[9], MPDE[10], GDE[11], jDE-2[12], CMODE[3]  in 
terms of success performance 

Prob. 

 

Success performance 

εDE MDE MPDE GDE jDE-2 CMODE εDE-LS 

G01 5.9E+04 7.5E+04 4.3E+04 4.1E+04 5.0E+04 1.2E+05 3.7E+04 

G02 1.5E+05 6.0E+04 3.0E+05 1.5E+05 1.5E+05 1.9E+05 2.6E+05 

G03 8.9E+04 4.5E+04 2.5E+04 3.5E+06 NA 7.5E+04 1.0E+05 

G04 2.6E+04 4.2E+04 2.1E+04 1.5E+04 4.1E+04 7.3E+04 1.5E+04 

G05 9.7E+04 2.1E+04 2.2E+05 1.9E+05 4.5E+05 2.9E+04 2.8E+04 

G06 7.4E+03 5.2E+03 1.1E+04 6.5E+03 2.9E+04 3.5E+04 2.5E+04 

G07 7.4E+04 1.9E+05 5.7E+04 1.2E+05 1.3E+05 1.6E+05 2.1E+04 

G08 1.1E+03 9.2E+02 1.5E+03 1.5E+03 3.2E+03 5.9E+03 7.2E+03 

G09 2.3E+04 1.6E+04 2.1E+04 3.0E+04 5.5E+04 7.1E+04 2.0E+04 

G10 1.1E+05 1.6E+05 4.8E+04 8.3E+04 1.5E+05 1.8E+05 3.1E+05 

G11 1.6E+04 3.0E+03 2.3E+04 8.5E+03 5.4E+04 6.0E+03 7.1E+03 

G12 4.1E+03 1.3E+03 4.2E+03 3.1E+03 6.4E+03 5.0E+03 3.0E+03 

G13 3.5E+04 2.2E+04 7.4E+05 8.7E+05 NA 3.1E+04 8.5E+04 

G14 1.1E+05 2.9E+05 4.3E+04 2.3E+05 9.8E+04 1.1E+05 4.0E+04 

G15 8.4E+04 1.0E+04 2.0E+05 7.5E+04 2.4E+05 1.3E+04 1.0E+04 

G16 1.3E+04 8.7E+03 1.3E+04 1.3E+04 3.2E+04 2.9E+04 2.0E+04 

G17 9.9E+04 2.6E+04 7.3E+05 2.1E+06 1.1E+07 1.4E+05 4.6E+05 

G18 5.9E+04 1.0E+05 4.4E+04 4.8E+05 1.0E+05 1.1E+05 4.4E+04 

G19 3.5E+04 NA 1.2E+05 2.0E+05 2.0E+05 2.5E+05 3.2E+05 

G21 1.4E+05 1.1E+05 2.1E+05 5.8E+05 1.3E+05 1.3E+05 NA 

G23 2.0E+05 3.6E+05 2.1E+05 1.1E+06 3.6E+05 2.4E+05 4.5E+05 

G24 3.0E+03 1.8E+03 4.3E+03 3.1E+03 1.0E+04 2.2E+04 3.0E+03 
 
From Table 7-8, we can conclude that the performance of εDE-LS algorithm is 

highly competitive. 19 out of 22 test benchmark functions can achieve 100% success 
rate within 55 10× FES. εDE-LS algorithm achieves 100% feasible  In terms of suc-
cess performance, εDE-LS algorithm obtained the least FES in test benchmark func-
tion G01, G04, G07, G14, G15, G18, and G24 comparing with other six state-of-the-
art algorithms. As success performance indicate that the proposed εDE-LS requires 
less than 41 10× FES for 4 test benchmark functions, less than 45 10× FES for 14 test 

benchmark functions, less than 55.0 10× FES for 21 test benchmark functions to 
obtain the require accuracy. 

5 Conclusion 

This paper proposed the εDE-LS algorithm, in which a novel local search operator 
designed for COPs are introduced. The feasible and infeasible individuals can interact 
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with each other by applying the proposed mutation operator. By utilizing the novel 
mutation operator as the local search engine, we can guide the population moving 
towards the feasible region more effective. The effectiveness of the proposed εDE-LS 
algorithm is demonstrated by 22 test benchmark functions collected from IEEE 
CEC2006 special session on constrained real parameter optimization. The experi-
mental results suggest that εDE-LS algorithm is highly competitive in terms of  
accuracy and convergent speed. εDE-LS algorithm can successfully solve 21 test 
benchmark functions and can achieve 21 feasible optimal solutions consistently. The 
success performance of εDE-LS algorithm is highly competitive when compares with 
other state-of-the-art algorithms. As the effectiveness and efficiency of the proposed 
algorithm demonstrated above, we can conclude that the εDE-LS is highly competi-
tive one in dealing with COPs and should gain attention from researchers in the  
future. Besides, the performance of the εDE-LS can be further studied through using 
other indicators. In the future, more real world applications can be tested by the  
proposed εDE-LS algorithm. Moreover, as a part of the future direction, the perfor-
mance of εDE-LS may be further improved by discovering a more efficient mutation 
operator. 
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