
© Springer International Publishing Switzerland 2015
H. Handa et al. (eds.), Proc. of the 18th Asia Pacific Symp. on Intell. & Evol. Systems – Vol. 1,

495

Proceedings in Adaptation, Learning and Optimization 1, DOI: 10.1007/978-3-319-13359-1_38

ε Constrained Differential Evolution Algorithm
with a Novel Local Search Operator for Constrained

Optimization Problems

Wenchao Yi, Xinyu Li*, Liang Gao, and Yinzhi Zhou

State Key Laboratory of Digital Manufacturing Equipment &Technology,
Huazhong University of Science and Technology, Wuhan 430074, PR China

lixinyu@mail.hust.edu.cn

Abstract. Many practical problems can be classified into constrained optimiza-
tion problems (COPs). ε constrained differential evolution (εDE) algorithm is
an effective method in dealing with the COPs. In this paper, ε constrained dif-
ferential evolution algorithm with a novel local search operator(εDE-LS) is
proposed by utilizing the information of the feasible individuals. In this way,
we can guide the infeasible individuals to move into the feasible region more
effectively. The performance of the proposed εDE-LS is evaluated by the 22
benchmark test functions. The experimental results empirically show that εDE-
LS is highly competitive comparing with some other state-of-the-art approaches
in constrained optimization problems.

Keywords: Constrained optimization problems, constraint handling technique,
ε constrained differential evolution, mutation operator.

1 Introduction

Differential evolution (DE) algorithm is an efficient evolutionary algorithm, which
was firstly proposed by Storn and Price [1]. During the past decade, DE algorithm
shows competitive performance in solving constrained optimization problems
(COPs). In real world applications, a lot of optimization problems are subjected to
constraints, which can be categorized into COPs. A general COPs can be stated as
follows:

min (x)

. . (x) 0, 1,...,

(x) 0, 1,...,
j

j

f

s t g j q

h j q m

≤ =

= = +
 (1)

Where 1(x ,..., x)nx = is generated within the range i i iL x U< < . iL and iU de-

note the lower and upper bound in each dimension. (x)jg denotes the jth inequality

constraint and (x)jh denotes the (j-q)th equality constraint.

* Corresponding author.

496 W. Yi et al.

The research on utilizing DE algorithm to solve COPs has attracted promising at-
tention in recent years. A variety of constraint handling techniques have emerged to
deal with the COPs. The most common used one is the penalty function method.
Huang et al. [2]proposed a co-evolutionary DE algorithm, in which a special adaptive
penalty function was proposed to deal with the constraints. Although the penalty func-
tion method is simple and efficient, it is still a difficult task to set a proper penalty
parameter for the method.

The multiobjective technique is an efficient method in solving COPs. Wang et al.
[3] introduced multiobjective technique based DE algorithm to solve COPs. An infea-
sible solution replacement mechanism based multiobjective approach is proposed,
which mainly focus on guiding the population moving towards the promising and
feasible region more efficiently. Gong et. al [4]proposed a multiobjective tenique
based DE for COPs, in which multiobejctive technique based constraint handling
technique was proposed. However, using the multiobjective technique to tackle the
COPs is still difficult to design an effective framework in solving COPs.

The methods by adding extra rules or operator in handling COPs also attract con-
siderable interest from the researchers. Storn [5] proposed a constraint adaptive meth-
od, which firstly make all the individuals as feasible ones by relaxing the constraints
then decresing the relaxation till reach the original constraints. Lampinen et. al [6]
presented three effective rules to handle the constraints, which include the feasible
ones always better than the infeasible ones, the one with better fitness function value
wins among the feasible ones and the one with less constraint violation wins among
the infeasible ones. Among these researches, εDE method is a very effective one. εDE
was proposed by Takahama et. al [7] in 2006, in which using ε constraint handling
technique to deal with the constraints. The experimental results showed the εDE not
only can find the feasible ones rapidly, but can achieve excellent success performance
and rate as well. In Takahama et. al [7], a local search based on the information of
first-order derivative was proposed. However, it is usually difficult to calculate the
first-order derivative. Also, the calculation of first-order derivative is time-cost. In
this paper, a local search operator is proposed. It can avoid calculating first-order
derivative of constraint functions, but is more effective.

The proposed mutation operator mainly utilizing the information of the feasible
and the infeasible individuals, which focus on guiding the infeasible individual move
along the direction of the feasible individuals. In order to evaluate the performance of
the proposed algorithm, twenty-two benchmark test function collected from the spe-
cial session on the constrained real-parameter optimization of the 2006 IEEE congress
on evolutionary computation are adopted in this paper.

This paper is organized as follows. We firstly will give a general introduction of
DE algorithm and εDE as a foundation in Section 2. In Section 3, we will give a de-
tailed introduction of the proposed εDE-LS algorithm, in which the framework is
included. The experimental results and the comparison will be presented in Section 4.
Finally, conclusions will be given in Section 5.

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 497

2 DE and εDE Algorithm

2.1 DE Algorithm

DE algorithm is an efficient but simple EAs, which can be divided into four phase,
that is, initialization, mutation, crossover and selection.

During the initialization phase, the NP n-dimensional individuals

(),1 ,,..., , 1,...,g g g
i i i nx x x i NP= = are generated. g denotes the generation number.

Then the mutation phase will be adopted to generate the mutation vectors. Several
mutation operators have been proposed. The DE/rand/1/exp proposed by will be
utilized in this paper, where exp denotes the exponent crossover operator. The muta-
tion vector can be calculated as follows:

 1 2 3*()g g g g
i r r rv x F x x= + − (2)

Where F denotes the predefined scale parameter, r1, r2, and r3 are three mutually
different generated indexes which should be different from index i within the range
[1,NP]. Then a check will be made to make sure the generated g

iv are within the

boundaries, which can be described as follows:

, ,

,

, ,

min{U , 2*L }, if

max{L , 2*U }, if

g g
j j i j i j jg

i j g g
j j i j i j j

v v L
v

v v U

⎧ − <⎪= ⎨
− >⎪⎩ (3)

Where jL and jU denote the lower and upper bound in j-th dimension.

The exponent crossover operator makes the trail vector contains a consecutive se-
quence of the component taken from the mutation vector. The exponent crossover
operator can be given as follows:

,

,

, j

, 1, ..., n
, {k, 1 ,..., 1 }

,

g
i j ng n

i j g
i

j
v if j k k L

u
x otherwise

=
⎧ ∈ + + −⎪= ⎨
⎪⎩ (4)

Where , [1,n]L k ∈ are both random indexes. <j> is j if j<n and j=j-n if j>n.

During the selection phase, a better individual between the trail vector g
iu and

target vector g
ix will be chosen according to their fitness function value:

1 , () ()

,

g g g
i i ig

i g
i

u if f u f x
x

x else
+ ⎧ <⎪= ⎨

⎪⎩ (5)

498 W. Yi et al.

2.2 εDE Algorithm

In the εDE algorithm, the constraint violation (x)g
iΦ is defined as the sum of all

constraints:

 1 1

(x) max{0,g (x)} (x)
q m

g g g
i j i j i

j j q

h
= = +

Φ = +∑ ∑
 (6)

After generating the new target vector through the DE algorithm. The ε level com-
parison is used in εDE algorithm to help decide which individual is better. The com-
parison can be given as follows:

)()(
1 2 1 2

1 1 2 2 1 2 1 2

1 2

, ,

, , ,

,

f f if

f f f f if

otherwise
ε

ε< Φ Φ ≤⎧
⎪Φ < Φ ⇔ < Φ = Φ⎨
⎪Φ < Φ⎩ (7)

Where f is the objective fitness function value, and the ε level is set as formula giv-
en below:

)(, 0

(g) (0)*(1) , 0

0,

cp
c

c

c

x g

g g TT

g T

θ

ε ε

⎧Φ =
⎪
⎪= − < <⎨
⎪

≥⎪⎩ (8)

Where xθ is the top -thθ individual and we set =0.2*Nθ in the paper. Tc is a

predefined generation number. cp is the control parameter in ε level comparison and
we set cp as 5 in the paper.

3 The Proposed εDE-LS Algorithm

Usually, in the COPs, the feasible region is continuous. The surrounding region of
feasible individuals has more possibility to be feasible. So the feasible individuals can
guide the infeasible ones move towards to the feasible region. Motivated by the inter-
action between the feasible and infeasible individuals, we design a novel local search
operator “DE/current-to- feasible/2” to improve the performance of εDE algorithm.
The “DE/current-to- feasible/2” is a transformation version of “DE/current-to-best/2”
mutation strategy. It can be presented as follows:

)()(1 2_ _* *g g g g g g

i i feas r i feas r iv x a x x b x x= + − + −
 (9)

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 499

Where 1_feas r and 2_feas r are two random indexes chosen from the feasible

individual set Q. So the number of feasible individuals must be more than 2. a and b
are two random generated numbers within the range [0,1]. If any dimension in g

iv

exceeds the boundary, then randomly chosen a feasible individual and makes the spe-
cific dimension in g

iv equal to the related dimension in chosen feasible individual.

So in εDE-LS, DE algorithm is used to generate offspring, and ε constrained al-
gorithm is used to choose better individual survive into next generation. For those
infeasible solutions, if the number of feasible individuals is less than 2, the local
search phase is skipped. If the number of feasible individuals is more than 2, then for
each infeasible individual, local search operator is used. Then the ε level comparison
is adopted to choose a better one between the individual and offspring generated by
local search operator.. The framework of the proposed εDE-LS algorithm can be giv-
en as follows:

Fig. 1. The pesudocode of εDE-LS algorithm

500 W. Yi et al.

4 Experimental Results

4.1 Parameter Settings

The twenty-two benchmark test functions are collected from Liang et. al [8] are
adopted in evaluating the performance of the proposed algorithm. The detailed infor-
mation about the benchmark can be referred to Liang et. al [8]. The parameter set-
tings of the proposed algorithm are as follows:

Table 1. Parameter setings of εDE-LS algorithm

popsize 40,40,100*
MaxFES 35 10× ,

45 10× ,
55 10×

θ 0.2

cT 0.2* MaxFES /popsize

cp 5
F [0.5,1.0]
CR [0.9,1.0]

*The popsize is 40, 40 and 100 with
35 10× ,

45 10× ,
55 10× finess evaluations (FES),respectively.

4.2 Performance of εDE-LS Algorithm

25 independent runs are conducted for the test benchmark functions with 35 10× ,
45 10× , 55 10× FES, respectively.The torlerance value δ for the equality constraints

is set as 0.0001. The best, median, worst, mean and standard deviation of the error

value (() ()*f x f x−), where *()f x is the best objective fitness function value for

each benchmark test function that ever known. c is the number of the violated con-
straints at the median solution : the three numbers refers to the constraints bigger than
1, between 0.01 and 1.0 and between 0.0001and 0.01, respectively. v is mean value of
the violations of all the constraints at the median solution. The number in parentheses
after best, median and worst solutions is the number of violated constraints.

Table 2. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G01-G05

 G01 G02 G03 G04 G05

5×103 Best 1.2042E+00 3.5286E-01 -2.4983E-01 8.2965E-01 5.1278E+03

Median 2.6309E+00 3.9958E-01 9.6055E-01 3.3045E+00 5.2755E+03

Worst 5.5134E+00 4.7644E-01 1.0005E+00 9.5916E+00 5.7907E+03

c 0,0,0 0,0,0 0,0,0 0,0,0 0,3,0

v 0 0 0 0 2.1310E-02

Mean 2.7307E+00 4.0586E-01 6.4434E-01 4.0203E+00 5.3362E+03

Std 7.9984E-01 2.9802E-02 4.9011E-01 2.0836E+00 1.8425E+02

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 501

Table 2. (Continued)
5×104 Best 1.4440E-07 4.1605E-04 2.1900E-06 -3.6380E-12 -1.8190E-12

Median 6.8327E-07 1.1172E-02 8.9556E-02 -3.6380E-12 -9.0949E-13

Worst 3.1932E-06 6.2807E-02 2.7449E-01 -3.6380E-12 4.5045E-06

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 9.9408E-07 1.8072E-02 1.0027E-01 -3.6380E-12 2.0085E-07

Std 8.2529E-07 1.7363E-02 8.1116E-02 0.0000E+00 9.0155E-07

5×105 Best 0.0000E+00 8.6703E-10 -2.8866E-15 -3.6380E-12 -1.8190E-12

Median 0.0000E+00 9.3817E-09 -2.6645E-15 -3.6380E-12 -18190E-12

Worst 0.0000E+00 3.7095E-08 -2.4425E-15 -3.6380E-12 -1.8190E-12

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 0.0000E+00 1.1279E-08 -2.6024E-15 -3.6380E-12 -1.8190E-12

Std 0.0000E+00 9.4316E-09 1.6367E-16 0.0000E+00 0.0000E+00

Table 3. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G06-G10

 G06 G07 G08 G09 G10

5×103 Best 6.9833E-04 1.5394E+01 4.1633E-17 3.1226E+00 1.2622E+03

Median 4.1042E-03 2.1236E+01 5.5511E-17 5.5926E+00 2.1678E+03

Worst 4.6504E-02 3.6400E+01 6.9389E-17 1.1330E+01 4.8200E+03

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 8.5336E-03 2.2857E+01 5.4401E-17 5.8105E+00 2.2786E+03

Std 1.0454E-02 6.3786E+00 5.5511E-18 1.8589E+00 7.5188E+02

5×104 Best -1.6371E-11 1.1864E-04 2.7756E-17 -1.1369E-13 1.1531E-02

Median -1.6371E-11 2.8898E-04 4.1633E-17 1.1369E-13 5.5891E-02

Worst -1.6371E-11 1.2395E-03 4.1633E-17 2.2737E-13 7.8631E+01

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean -1.6371E-11 3.7846E-04 3.7192E-17 6.8212E-14 8.1563E+00

Std 0.0000E+00 2.7710E-04 6.6071E-18 8.0389E-14 1.7592E+01

5×105 Best -1.6371E-11 -1.4566E-13 2.7756E-17 -2.2737E-13 -7.2760E-12

Median -1.6371E-11 2.8422E-14 2.7756E-17 -1.1369E-13 -4.5475E-12

Worst -1.6371E-11 2.9488E-13 2.7756E-17 -1.1369E-13 1.4508E-08

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean -1.6371E-11 -1.5632E-14 2.7756E-17 -1.5916E-13 2.0654E-09

Std 0.0000E+00 1.0766E-13 0.0000E+00 5.6843E-14 4.3554E-09

502 W. Yi et al.

Table 4. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G11-G15

 G11 G12 G13 G14 G15

5×103 Best 1.6943E-10 8.6228E-05 5.3633E-01 -4.7264E+01 2.2286E-03

Median 8.1219E-05 7.5430E-03 9.7924E-01 -4.2850E+01 9.6215E+02

Worst 6.9003E-02 4.2052E-01 1.9416E+00 -3.9904E+01 9.6535E+02

c 0,0,0 0,0,0 0,3,0 0,3,0 0,0,1

v 0 0 2.0749E-01 1.1952E-01 3.6741E-04

Mean 7.7345E-03 5.0767E-06 9.9447E-01 -4.3113E+01 7.7047E+02

Std 1.5332E-02 1.0478E-05 2.5999E-01 2.0303E+00 3.9265E+02

5×104 Best 0.0000E+00 0.0000E+00 1.6771E-02 5.6943E-07 -1.1369E-13

Median 0.0000E+00 0.0000E+00 5.2714E-01 4.1865E-06 -1.1369E-13

Worst 0.0000E+00 0.0000E+00 9.2521E-01 2.1939E-04 -1.1369E-13

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 0.0000E+00 0.0000E+00 5.3646E-01 2.2823E-05 -1.1369E-13

Std 0.0000E+00 0.0000E+00 3.0524E-01 5.2442E-05 0.0000E+00

5×105 Best 0.0000E+00 0.0000E+00 -2.2204E-16 1.4211E-14 -1.1369E-13

Median 0.0000E+00 0.0000E+00 -2.2204E-16 1.4211E-14 -1.1369E-13

Worst 0.0000E+00 0.0000E+00 -1.9429E-16 2.1316E-14 -1.1369E-13

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 0.0000E+00 0.0000E+00 -2.1649E-16 1.7053E-14 -1.1369E-13

Std 0.0000E+00 0.0000E+00 1.1331E-17 3.5527E-15 0.0000E+00

Table 5. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G16-G19 and G21

 G16 G17 G18 G19 G21

5×103 Best 3.9394E-03 8.8160E+03 -2.6751E-01 5.3038E+01 4.0133E+02

Median 9.6029E-03 8.9614E+03 5.1285E-01 1.0054E+02 6.7771E+02

Worst 2.4616E-02 9.2010E+03 8.0098E-01 1.3151E+02 9.6477E+02

c 0,0,0 0,4,0 0,0,0 0,0,0 0,3,1

v 0 9.5126E-02 0 0 1.8268E-03

Mean 1.1051E-02 8.9672E+03 4.9005E-01 9.6983E+01 6.7307E+02

Std 5.3806E-03 1.0383E+02 1.8203E-01 2.4519E+01 1.5715E+02

5×104 Best 3.7748E-15 7.7749E+00 3.3295E-06 1.2885E-02 2.7546E-05

Median 3.2196E-14 8.3318E+01 1.8149E-05 3.2261E-02 4.5160E+00

Worst 6.3349E-13 3.4429E+02 1.2721E-04 1.151E-01 1.3099E+02

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0 0 0 0 0

Mean 1.0176E-13 7.5867E+01 2.8616E-05 3.6846E-02 5.0162E+01

Std 1.5267E-13 6.6433E+01 2.9068E-05 2.1706E-02 5.7877E+01

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 503

Table 5. (Continued)

5×105 Best 3.7748E-15 -5.8000E-03 1.7130E-11 1.5960E-08 0.0000E+00

Median 3.7748E-15 -5.8000E-03 1.8764E-10 5.4233E-08 2.2989E-299(6)

Worst 3.7748E-15 2.9749E+02 7.7298E-10 1.6040E-07 2.7393E-259(6)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,6,0

v 0 0 0 0 2.4686E-01

Mean 3.7748E-15 3.9079E+01 1.9762E-10 6.4420E-08 1.1283E-260

Std 0.0000E+00 6.5092E+01 1.8283E-10 3.2980E-08 0.0000E-00

Table 6. Function error values achieved when FES= 35 10× , FES= 45 10× and FES= 55 10×
for function G23-G24

 G23 G24

5×103 Best -4.9639E+02 3.5212E-09

Median -1.3372E+02 6.5883E-08

Worst 2.3647E+02 4.0692E-07

c 0,4,0 0,0,0

v 1.1303E-01 0

Mean -9.5647E+01 1.1387E-07

Std 1.6961E+02 1.1752E-07

5×104 Best 2.3201E-01 3.2863E-14

Median 3.7585E+01 3.2863E-14

Worst 3.1068E+02 3.2863E-14

c 0,0,0 0,0,0

v 0 0

Mean 4.9361E+01 3.2863E-14

Std 6.1611E+01 0.0000E+00

5×105 Best 7.9471E-08 3.2863E-14

Median 7.9992E-06 3.2863E-14

Worst 4.6202E-02 3.2863E-14

c 0,0,0 0,0,0

v 0 0

Mean 1.8593E-03 3.2863E-14

Std 9.2381E-03 0.000E+00

As shown in Table 2-6, in spite of the test functions G05, G13, G14, G15, G17,

G21, G23, for other 15 test benchmark functions, the proposed algorithm can obtain
feasible solutions within 35 10× FES. All the test benchmark functions can obtain

feasible solutions within 45 10× FES. Especially, to function G11 and G12, the best

known solutions are obtained within 45 10× FES. In 55 10× FES, 9 out of 22 test
benchmark functions (i.e. G03, G04, G05, G06, G07, G09, G10, G13, G15) can
obtain a more precisely solutions than the best known solutions. In conclusion, the

504 W. Yi et al.

solutions obtained by the proposed εDE-LS algorithm (except G21) are close to the

best known solutions within 55 10× FES.
In Table 7, we present the number of FES needed in each run for each test

benchmark function when satisfying the success condition:

() ()* 1.0 04f x f x E− ≤ − and x is feasible solution. The best, median, worst, mean

and std denote the least, median, most, mean and standard deviation FES when meets
the success condition during the 25 independent runs. The feasible rate is the ratio
between the feasible solutions and 25 achieved solutions within 55 10× FES. The
success rate is the ratio between the number of success runs and 25 runs within

55 10× FES. The success performance is the mean number of FES for successful runs
multiplied by the total runs and divided by the number of successful runs.

In Table 8, a comparison with respect to other state-of-the-art algorithms in terms
of the success performance. The related success performance of other state-of-the-art
algorithms is can be referred to Wang et al.[3].

Table 7. The success performance, feasible rate and success rate of the εDE-LS algorithm

Pro.b Best Median Worst Mean Std Feasible

Rate

Success

Rate

Success

performance

G01 33360 37480 40680 37290 2012.9 100% 100% 37290

G02 204100 273100 294000 256662 54591.1 100% 100% 256662

G03 97800 102200 106300 101960 2288.4 100% 100% 101960

G04 12440 14600 16040 14565 977.2 100% 100% 14565

G05 16240 29360 43960 28365 8458.6 100% 100% 28365

G06 23160 25200 27800 25426 1077.2 100% 100% 25426

G07 202900 212700 222900 212300 5168.8 100% 100% 212300

G08 320 7240 10080 7162 1745.0 100% 100% 7162

G09 18840 19920 21520 20061 777.61 100% 100% 20061

G10 243600 286900 384300 306412 53413.7 100% 100% 306412

G11 5600 7200 7800 7102 504.4 100% 100% 7102

G12 1120 2960 5040 3038 957.4 100% 100% 3038

G13 82100 85400 87000 84812 1419.3 100% 100% 84812

G14 32360 39720 47720 39766 4893.0 100% 100% 39766

G15 9480 10400 11840 10435 653.7 100% 100% 10435

G16 13920 20800 25080 19832 3037.2 100% 100% 19832

G17 173800 326800 366500 257400 56434 100% 56% 459642

G18 35520 44560 49680 43797 3947.7 100% 100% 43797

G19 287900 314700 335300 314744 10950.7 100% 100% 314744

G21 NA NA NA NA NA NA NA NA

G23 384200 431300 499800 433073 33406.8 100% 92% 451117

G24 2440 2960 3360 2963 221.5 100% 100% 2963

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 505

Table 8. εDE-LS with respect to MDE[9], MPDE[10], GDE[11], jDE-2[12], CMODE[3] in
terms of success performance

Prob.

Success performance

εDE MDE MPDE GDE jDE-2 CMODE εDE-LS

G01 5.9E+04 7.5E+04 4.3E+04 4.1E+04 5.0E+04 1.2E+05 3.7E+04

G02 1.5E+05 6.0E+04 3.0E+05 1.5E+05 1.5E+05 1.9E+05 2.6E+05

G03 8.9E+04 4.5E+04 2.5E+04 3.5E+06 NA 7.5E+04 1.0E+05

G04 2.6E+04 4.2E+04 2.1E+04 1.5E+04 4.1E+04 7.3E+04 1.5E+04

G05 9.7E+04 2.1E+04 2.2E+05 1.9E+05 4.5E+05 2.9E+04 2.8E+04

G06 7.4E+03 5.2E+03 1.1E+04 6.5E+03 2.9E+04 3.5E+04 2.5E+04

G07 7.4E+04 1.9E+05 5.7E+04 1.2E+05 1.3E+05 1.6E+05 2.1E+04

G08 1.1E+03 9.2E+02 1.5E+03 1.5E+03 3.2E+03 5.9E+03 7.2E+03

G09 2.3E+04 1.6E+04 2.1E+04 3.0E+04 5.5E+04 7.1E+04 2.0E+04

G10 1.1E+05 1.6E+05 4.8E+04 8.3E+04 1.5E+05 1.8E+05 3.1E+05

G11 1.6E+04 3.0E+03 2.3E+04 8.5E+03 5.4E+04 6.0E+03 7.1E+03

G12 4.1E+03 1.3E+03 4.2E+03 3.1E+03 6.4E+03 5.0E+03 3.0E+03

G13 3.5E+04 2.2E+04 7.4E+05 8.7E+05 NA 3.1E+04 8.5E+04

G14 1.1E+05 2.9E+05 4.3E+04 2.3E+05 9.8E+04 1.1E+05 4.0E+04

G15 8.4E+04 1.0E+04 2.0E+05 7.5E+04 2.4E+05 1.3E+04 1.0E+04

G16 1.3E+04 8.7E+03 1.3E+04 1.3E+04 3.2E+04 2.9E+04 2.0E+04

G17 9.9E+04 2.6E+04 7.3E+05 2.1E+06 1.1E+07 1.4E+05 4.6E+05

G18 5.9E+04 1.0E+05 4.4E+04 4.8E+05 1.0E+05 1.1E+05 4.4E+04

G19 3.5E+04 NA 1.2E+05 2.0E+05 2.0E+05 2.5E+05 3.2E+05

G21 1.4E+05 1.1E+05 2.1E+05 5.8E+05 1.3E+05 1.3E+05 NA

G23 2.0E+05 3.6E+05 2.1E+05 1.1E+06 3.6E+05 2.4E+05 4.5E+05

G24 3.0E+03 1.8E+03 4.3E+03 3.1E+03 1.0E+04 2.2E+04 3.0E+03

From Table 7-8, we can conclude that the performance of εDE-LS algorithm is

highly competitive. 19 out of 22 test benchmark functions can achieve 100% success
rate within 55 10× FES. εDE-LS algorithm achieves 100% feasible In terms of suc-
cess performance, εDE-LS algorithm obtained the least FES in test benchmark func-
tion G01, G04, G07, G14, G15, G18, and G24 comparing with other six state-of-the-
art algorithms. As success performance indicate that the proposed εDE-LS requires
less than 41 10× FES for 4 test benchmark functions, less than 45 10× FES for 14 test

benchmark functions, less than 55.0 10× FES for 21 test benchmark functions to
obtain the require accuracy.

5 Conclusion

This paper proposed the εDE-LS algorithm, in which a novel local search operator
designed for COPs are introduced. The feasible and infeasible individuals can interact

506 W. Yi et al.

with each other by applying the proposed mutation operator. By utilizing the novel
mutation operator as the local search engine, we can guide the population moving
towards the feasible region more effective. The effectiveness of the proposed εDE-LS
algorithm is demonstrated by 22 test benchmark functions collected from IEEE
CEC2006 special session on constrained real parameter optimization. The experi-
mental results suggest that εDE-LS algorithm is highly competitive in terms of
accuracy and convergent speed. εDE-LS algorithm can successfully solve 21 test
benchmark functions and can achieve 21 feasible optimal solutions consistently. The
success performance of εDE-LS algorithm is highly competitive when compares with
other state-of-the-art algorithms. As the effectiveness and efficiency of the proposed
algorithm demonstrated above, we can conclude that the εDE-LS is highly competi-
tive one in dealing with COPs and should gain attention from researchers in the
future. Besides, the performance of the εDE-LS can be further studied through using
other indicators. In the future, more real world applications can be tested by the
proposed εDE-LS algorithm. Moreover, as a part of the future direction, the perfor-
mance of εDE-LS may be further improved by discovering a more efficient mutation
operator.

Acknowledgement. This research work is supported by the National Basic Research
Program of China (973 Program) under Grant no. 2011CB706804, and the Natural
Science Foundation of China (NSFC) under Grant no. 51005088 and 51121002.

References

1. Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global op-
timization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

2. Huang, F.Z., Wang, L., He, Q.: An Effective Co-evolutionary Differential Evolution for
Constrained Optimization. Applied Mathematics and Computation 286, 340–356 (2007)

3. Wang, Y., Cai, Z.X.: Combining Multiobjective Optimization with Differential Evolution
to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Compu-
tation 16, 117–134 (2012)

4. Gong, W., Cai, Z.: A Multiobjective Differential Evolution Algorithm for Constrained Op-
timization. In: 2008 Congress on Evolutionary Computation (CEC 2008), pp. 181–188
(2008)

5. Storn, R.: System Design by Constraint Adaptation and Differential Evolution. IEEE
Transactions on Evolutionary Computation, 22–34 (1999)

6. Lampinen, J.: A Constraint Handling Approach for Differential Evolution Algorithm. In:
Proceedings of the Congress on Evolutionary Computation (CEC 2002), pp. 1468–1473
(2002)

7. Takahama, T., Sakai, S.: Constrained Optimization by the ε-Constrained Differential Evo-
lution with Gradient-Based Mutation and Feasible Elites. In: 2006 IEEE congress on Evo-
lutionary Computation (CEC 2006), pp. 308–315 (2006)

8. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., et al.: Problems Definitions and Evalua-
tion Criteria for the CEC’ 2006 Special Session on Constrained Real-parameter Optimiza-
tion (2006), http://www.ntu.edu.sg/home/EPNSugan/
cec2006/technicalreport.pdf

 ε Constrained Differential Evolution Algorithm with a Novel Local Search Operator 507

9. Mezura-Montes, E., Velázquez-Reyes, J., CoelloCoello, C.A.: Modified Differential Evo-
lution for Constrained Optimization. In: Proceedings of the Congress on Evolutionary
Computation (CEC 2006), pp. 332–339 (2006)

10. Tasgetiren, M.F., Suganthan, P.N.: A Multi-populated DifferentialEvolution Algorithm for
Solving Constrained Optimization Problem. In: Proceedings of the Congress on Evolution-
ary Computation (CEC 2006), pp. 33–40 (2006)

11. Kukkonen, S., Lampinen, J.: Constrained Real-parameter Optimizationwith Generalized
Differential Evolution. In: Proceedings of the Congress on Evolutionary Computation
(CEC 2006), pp. 207–214 (2006)

12. Brest, J., Zumer, V., Maucec, M.S.: Self-adaptive DifferentialEvolution Algorithm in Con-
strained Real-parameter Optimization. In: Proceedings of the Congress onEvolutionary
Computation (CEC 2006), pp. 215–222 (2006)

	Constrained Differential Evolution Algorithm with a Novel Local Search Operator for Constrained Optimization Problems
	1 Introduction
	2 DE and
	3 The Proposed
	4 Experimental Results
	4.1 Parameter Settings
	4.2 Performance of

	5 Conclusion
	References

