
Understanding the Behavior of Solid State Disk

Qingchao Cai1, Rajesh Vellore Arumugam2, Quanqing Xu2, and Bingsheng He1

1 School of Computer Engineering, Nanyang Technological University, Singapore
{qccai,bshe}@ntu.edu.sg

2 Data Storage Institute, A*STAR, Singapore
{Rajesh VA,Xu Quanqing}@dsi.a-star.edu.sg

Abstract. In this paper, we develop a family of methods to characterize
the behavior of new-generation Solid State Disks (SSDs). We first study
how writes are handled inside the SSD by varying request size of writes
and detecting the placement of requested pages. We further examine how
this SSD performs garbage collection and flushes write buffer. The result
shows that the clustered pages must be written and erased simultane-
ously, otherwise significant storage waste will arise if such clustered pages
are partially written.

We then conduct two case studies to analyze the storage efficiency
when an SSD is used for server storage and the cache layer of a hybrid
storage system. In the first case, we find that a moderate storage waste
exists, whereas in the second case, the number of written pages caused
by a write request can be as much as 4.2 times that of pages requested,
implying an extremely low storage efficiency. We further demonstrate
that most of such unnecessary writes can be avoided by simply delaying
the issuance of internal write requests, which are generated when a read
request cannot be serviced by the cache layer. We believe that this study
is helpful to understand the SSD performance behavior for data-intensive
applications in the big-data era.

Keywords: Storage, Solid State Disk, Hybrid storage system,
Algorithm.

1 Introduction

NAND-flash based Solid state disks (SSDs)1 have been incorporated into the
computer storage architecture over the past several years, and now have be-
come an important supplementary to traditional rotational hard disk drives
(HDDs). Compared with their rotational counterparts, SSDs have a much higher
read/write throughput, and due to the absence of moving mechanical compo-
nents, SSDs are able to sustain an order of magnitude less random access latency.

The layout of data in SSDs is much more complicated than in HDDs. The
storage space of an SSD can be partitioned into multiple domains, each contain-
ing a number of flash memory pages that share some specific resources [6]. Due

1 We restrict our discussion to flash based SSDs, as most SSDs in the market are of
this kind.

c© Springer International Publishing Switzerland 2015 341
H. Handa et al. (eds.),Proc. of the 18th Asia Pacific Symp. on Intell. & Evol. Systems – Vol. 1,
Proceedings in Adaptation, Learning and Optimization 1, DOI: 10.1007/978-3-319-13359-1_27

342 Q. Cai et al.

to resource contention, an access requesting two pages within a same domain
might have a longer latency than that requesting two pages placed in different
domains. The difference in the internal structure and access latency between SSD
and HDD can also lead to the different way in which access requests are serviced.
We explore the service of access requests inside SSDs, as it can be used to reveal
how SSD realizes its specific internal structure and assist the incorporation of
SSD into storage systems.

In this paper, we develop a family of methods to characterize the behavior of a
representative SSD. First, we carry out an investigation on how write requests are
serviced inside this SSD. To this end, we issue multiple writes with varying request
size to the SSD, and then detect the placement of requested pages via comparing
the latencies among a set of carefully designed read requests. The result implies
there exist clustered pages which must be written simultaneously, and pages for
servicing write requests are chosen such that there are least number of partially
written clustered pages. Second, we study how garbage collection is performed by
overwriting the certain page of clustered pages that have been completely written
and then measuring the resulted page placement, and find that the constituting
pages of a clustered page must also be erased at same time. In addition, we extract
the length of flush periods, defined as the interval between two flushes of SSDwrite
buffer, using a method similar to that of investigating the service of write requests.
The difference is that the varying parameter is no longer the request size of writes,
but the interval between two consecutive write requests instead.

The characteristics of clustered pages that the four pages must be written
and erased simultaneously implies there will be a waste of storage if a clustered
page is partially written. In order to quantify storage efficiency, we conduct two
case studies in which the SSD is used for different purposes. In the first case, we
analyze the block access traces of ten server applications, and find that if the
same sequence of write requests are issued to the SSD, hundreds of thousands
of wasted pages, i.e., the unwritten pages of partially written clustered pages,
will be produced. In the second case, we use Flashcache [24] to deploy a hybrid
storage system with SSD serving as cache layer, and collect the traces of accesses
to the SSD cache for multiple IO access patterns. The result shows that due to
the long inter-arrival interval of internal write requests which are generated when
a read request cannot be serviced by cache layer, the wasted pages can be up
to 1.2 times more than those requested when reads account for the majority of
IOs, which in turn leads to a write amplification up to 4.2. We show that most
of such wasted pages can be eliminated by simply first delaying the issuance
of internal write requests and then flushing them simultaneously. We believe
that our findings can guide the design and implementation of data-intensive
applications on SSDs in the big data era.

The remainder of paper is organized as follows. Section 2 describes the back-
ground and related works. The methods of capturing SSD behavior and the
corresponding results are presented in Section 3 in detail. Two case studies are
presented in Section 4 to quantify SSD storage efficiency. We finally conclude
this work in Section 5.

Understanding the Behavior of Solid State Disk 343

2 Background and Related Works

2.1 Solid State Disk

Data is accessed in page granularity in SSDs, and in this sense a flash memory
page can be viewed as a block of hard disks. The difference between them is that
flash pages do not support in-place update, and can be overwritten only after
being erased. The erase operation of SSDs, however, is not page-based, but in a
granularity of erase blocks. An erase block is comprised of a number (usually 64
or 128) of consecutive flash pages, and as a result, each time when a block is to
be erased, the valid pages in it should first be copied to the free pages of other
blocks, which leads to the notorious write amplification problem of SSDs.

To hide these behavioral differences, a flash translation layer (FTL) [7] [10] [14]
[17] is employed in SSDs. To support out-of-place update, FTL provides the map
of logical page number to physical page number, giving an illusion of in-place
update to the host. Another important function of FTL is to perform garbage
collection (GC). GC erases one or more blocks when there are no sufficient
free pages to service write requests or when device is idle, and generally the
blocks with least valid pages are selected for GC so that write amplification
is minimized. In addition, since each SSD block can only withstand a limited
number of erase cycles, FTL also implements wear-leveling to evenly spread the
writes to each block and hence extend SSD lifetime.

FTL is usually implemented as a firmware run by an SSD controller. SSD
controller translates incoming read/write requests into flash memory operations
and issues commands to flash memory through a flash controller. Besides the
SSD controller, there are three other major components inside an SSD. The host
interface logic connects device to the host via an interface connector such as
SATA. A RAM buffer is also commonly deployed in SSDs to improve access
performance by temporarily storing data accessed and buffering write requests.
Data is persistently stored in an array of flash memory packages which are con-
nected to the flash controller via multiple channels. Each flash memory package
is composed of multiple dies, and each die further contains multiple planes, each
with a number of flash blocks inside. The design issues of SSD architecture are
discussed in detail in [4] [8].

The four-level hierarchy of flash memory corresponds to four levels of paral-
lelism: channel-level, package-level, die-level and plane-level. Flash pages across
different channels, packages or dies can be operated independently, and can thus
support parallel operations over them natively. However, the plane-level paral-
lelism is not activated in general, unless there are multiple operations of same
type simultaneously accessing flash pages across different planes of the same
die, in which case the plane-level parallelism can be exploited through n-plane
command which enables n (typically 2 or 4) planes of a same die to work simulta-
neously. There have been many studies [11] [19] [23] toward effectively exploiting
the rich parallelism inside SSDs for better IO performance. Since the parallelism
of SSDs can be exploited effectively by sequential writes, some studies [15] [16]
[18] tailor up-level applications to make SSD writes as sequential as possible.

344 Q. Cai et al.

2.2 The Extraction of SSD Parameters

Since SSD parameters can substantially affect the performance of device, it is
thus of practical meaning to extract them as it can guide the design of systems
and applications to exploit SSD performance more effectively.

While part of these parameters such as page size and block size are well
documented, there also exist some implicit parameters, e.g., parallel degree and
size of clustered page, hiding inside SSD internals. Chen et al. [6] probe the size
of chunks, which consist of pages that are continuously allocated within a single
domain, parallel degree and page mapping policy of several SSDs, and give a
detailed discussion on the influence of parallelism on SSD performance.

Another work of SSD parameter extraction is [12], which develops a set of
micro benchmarks to extract the size of clustered page/block and read/write
buffer, and modifies Linux block layer such that the incoming reads/writes are
aligned with the boundary of clustered pages and then split into pieces with the
same size of read/write buffer. Although the term “clustered page” is also used in
this work to represent an internal storage unit of SSD, it has a different meaning
from the counterpart used in our work. By its definition in [12], a clustered page
is actually composed of pages across different SSD domains, and hence closely
related to the degree of parallelism inside SSD. On the contrary, the clustered
page defined in our work consists of flash pages that are placed in the same
domain and must be written and erased simultaneously.

3 The Measurement of SSD Parameters

3.1 Experimental Enviorment

The experiment is conducted on an HP xw6600 workstation, which is equipped
with an Intel Quad Core Xeon(R) E5420 2.5GHz processor and 4GB main mem-
ory. For the OS, we use Ubuntu 12.04 with Kernel 3.2.0 and install it in in a
250GB Seagate 7200RPM hard disk. The device for measurement is a 128GB
SSD produced by a mainstream SSD manufacturer. It is built upon multi-level
cells (MLC) flash memories, and the 4KB random read and write latencies of
this device are 33 µs and 12.5 µs, respectively. To avoid the interference from
the OS (e.g., page cache and file system), we perform the measurement directly
on the raw block device. Following the previous study [6], we choose noop as the
IO scheduler for this SSD, leaving the optimization for access requests handled
by the device itself. For the sake of expression, this SSD will be referred to as
“SSD-A” in the following text.

3.2 Characterizing SSD Behaviors

We adopt the generalized model presented in [6] to profile SSD internals. As
described in this model, an SSD consists of multiple domains, each of which is a
set of flash memories that share some specific resources; the pages continuously
allocated within one domain comprise a chunk.

Understanding the Behavior of Solid State Disk 345

Table 1. Description of the parameters and functions

name description

cycle length of variation cycles of stride read latency
dev size SSD device size
max offset max. offset in page unit
max rq size max. write size in page unit
pg size page size of SSD
range size of address space initialized
read buf size SSD read buffer size
rand pos(pos,

size)

randomly choose an address within [0, pos) aligned to size

SSD read(pos,

size)

read size bytes against pos

SSD write(spos,

epos, size)

sequentially fill range [spos, epos) with size-byte write requests,
during which OS page cache and SSD write buffer are both dis-
abled

single write(pos) write one page at pos with SSD write buffer enabled
stride read(pos,

offset)

read two pages with two concurrent threads, each for one page;
the 1st thread reads against pos, and the 2nd one skips offset
over the 1st one

Servicing Write Requests. We intend to investigate how flash pages get
written under different write patterns, thereby revealing how write requests are
serviced. To this end, we first initialize several disjoint address ranges of SSD-
A with writes of varying request sizes. We disable the page cache of operating
system and the write buffer of SSD-A so that each write requests will be directly
handled by flash memories. Since due to resource contention, the pages inside a
domain will experience a longer read latency compared with those across multiple
domains, we issue a set of read requests that are able to realize this difference in

 160
 170
 180
 190
 200
 210
 220
 230

 0 16 32 48 64

la
te

nc
y

(μ
s)

offset (page)

(a) 1-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 32 64 96 128

la
te

nc
y

(μ
s)

offset (page)

(b) 2-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 48 96 144 192

la
te

nc
y

(μ
s)

offset (page)

(c) 3-page writes

 160
 170
 180
 190
 200
 210
 220
 230

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(d) 4-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 40 80 120 160

la
te

nc
y

(μ
s)

offset (page)

(e) 5-page writes

 140
 150
 160
 170
 180
 190
 200
 210

 0 48 96 144 192

la
te

nc
y

(μ
s)

offset (page)

(f) 6-page writes

 140
 150
 160
 170
 180
 190
 200
 210

 0 56 112 168 224

la
te

nc
y

(μ
s)

offset (page)

(g) 7-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(h) 8-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(i) 16-page writes

 130
 140
 150
 160
 170
 180
 190
 200
 210

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(j) 32-page writes

 140
 150
 160
 170
 180
 190
 200
 210
 220

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(k) 64-page writes

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 64 128 192 256

la
te

nc
y

(μ
s)

offset (page)

(l) 128-page writes

Fig. 1. The variation of page placement with the request size of writes

346 Q. Cai et al.

Procedure 1. Measuring SSD page placement (I)

for i ← 1 to max rq size do
spos ← (i− 1)× range; epos ← i× range

rq size ← i× pg size

SSD write(spos, epos, rq size)

for j ← 1 to max offset do
latency ← 0; offset ← j × pg size

for k ← 0 to 1000 do
latency ← stride read(spos, offset) + latency

//polute SSD read buffer
SSD read(spos+max offset× pg size, read buf size);

end
print rq size, offset, latency/1000

end

end

read latency, and compare their service time to derive how pages are placed. The
whole process is shown in Procedure 1 in detail. The parameters and functions
used in this paper are summarized in Table 1.

In Procedure 1, we create two concurrent threads for each read. Each thread
reads only one page. The first thread reads against the start address of current
address range, and the second thread skips offset pages over the first one.
Figure 1 shows how latency of 2-thread read varies with offset in several address
ranges initialized with writes of different request size. Since the latency varies
periodically with offset, we only plot the first two cycles in Fig. 1.

From Fig. 1, we can make the following derivation regarding the service of
write requests inside SSD-A. For a write with a request size of n (n ≤ 32) pages,
numbered from 1 to n, �n/4� domains will be used to handle this request such that
domain i (0 < i < �n/4�) holds pages {2i−1, 2i, 2(i+�n/4�)−1, 2(i+�n/4�)}, and
domain �n/4� holds remainder pages. For instance, 2 domains will be involved
in the service of a write with request size of 7 pages; the first domain holds page
1, 2, 5 and 6, and the other domain stores page 3, 4 and 7. A write with larger
request size can be viewed as a composition of several sub-writes, each of which
requests 32 pages (the last sub-write can have a less request size), and will be
handled in the same way as these sub-writes.

The above result demonstrates that SSD-A tries to write as close as possible
to four pages for each domain when servicing write requests. It also implies for
each incoming write request, SSD-A places the requested pages in the domains
next to the last domain involved in the service of last write request, regardless of
how many pages were written in this domain. This implication is also validated
by the length of variation cycle of read latency. As shown in Fig. 1, the variation

cycle has a length of 128×n/4
�n/4� for the address range initialized with n-page writes.

A reasonable speculation following the way write requests are handled inside
SSD-A is that the certain four pages within same domain must be written simul-
taneously, and if only part of these four pages have been written, the other pages
can be programmed (written) only after the written ones have been erased.

Understanding the Behavior of Solid State Disk 347

Procedure 2. Measuring SSD page placement (II)

len ← cycle× pg size //cycle is measured in Procedure 1
for i ← 0 to 4 do

SSD write(0, device size, 256× pg size)

rq size ← (i+ 1)× pg size

SSD write(0, range, rq size)

for j ← 1 to max offset do
latency ← 0; offset ← j × pg size

for k ← 0 to 50000 do
pos ← rand pos(range, len) + rand pos(len/4, rq size)

latency ← stride read(pos, offset) + latency

end
print rq size, offset, latency/50000

end

end

To verify the above speculation, we carry out another experiment in a similar
way to Procedure 1. We first sequentially fill the whole address space of SSD-A
with writes of a large request size so that the placement of pages is the same
as that shown in Fig. 1j-1l. Then, starting from address 0, we sequentially write
SSD-A with a request size of one page, during which the OS page cache and
on-device write buffer are disabled.

We use the same method as Procedure 1 to detect the placement of pages
within the address range filled in the second write phase. This time we allow
the first thread to read addresses other than the start position of address range,
i.e., address 0. Specifically, each time the first thread reads against an address
randomly selected from the address set {i× cycle× pg size+ j × rq size|0 ≤
i <

range
cycle×pg size , 0 ≤ j < 8}, where cycle is the cycle length measured in

Procedure 1 (32 in this case, as shown in Fig. 1a), and the meanings of other
variables can be found in Table 1. We do this because, as can be inferred from
Fig. 1, the latency of 2-thread reads keeps almost unchanged when the first
thread reads against different addresses of this set. The detailed implementation
is shown in Procedure 2.

We repeat this experiment for four times. Each time we choose a different
write size in the second write phase, and adjust the candidate address set for
the first read thread accordingly. The experiment result is shown in Fig. 2.

Comparing Fig. 2 with Fig. 1a - 1d, it is intuitive to observe that when write
request size of the second write phase is less than four pages, there will be a
substantial difference in page placement between the two scenarios with/without
the first write phase, and such difference disappears when the request size of
second-phase writes increases to four pages. Therefore, we can infer that pages
written in the second phases of the first three runs (corresponding to Fig. 2a,
2b and 2c, respectively) have been relocated and compacted to provide more
available flash pages, otherwise the corresponding page placement should keep
unchanged as writes of seconde phase are gradually serviced. This result also
confirms our speculation made above: the certain four pages within same domain

348 Q. Cai et al.

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(a) 1-page writes

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(b) 2-page writes

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(c) 3-page writes

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(d) 4-page writes

Fig. 2. The variation of page placement with the size of write request and the avail-
ability of free space

must be programmed simultaneously; if only part of these four pages have been
written, the other pages are left unable to service write requests until the written
ones have been erased, leading to a waste in storage. For the sake of expression,
we call each such four pages a clustered page.

From the definition of clustered pages, it is not difficult to see that storage
waste will raise from the service of writes with a request size that is not a multiple
of four pages, since at least one involved clustered page will be partially written.
Such feature of clustered pages helps to understand our result regarding the
service of write requests. As we have mentioned, a write requesting n pages will
be handled such that page 2i−1, 2i, 2(i+�n/4�)−1 and 2(i+�n/4�) requested in
this write will be placed in the same domain and occupy a full clustered page. In
this way, for each write request, there is at most one clustered page, i.e., the last
one involved, that might will be partially written, and the storage waste is thus
minimized. In the mean time, the parallelism among domains can be effectively
exploited.

Garbage Collection. The SSD erase granularity has been studied in [12] based
on the assumption that after the whole SSD has been sequentially written, the
speed of following random writes with a request size equal to the size of erase
unit must be same as that of sequential writes, as there is no page relocation
in both cases. In this work, we are more interested in whether the blocks with
pages in same clustered pages must be erased simultaneously or not, for which
a more intuitive result can be obtained by carefully overwriting the clustered
pages that have been completely filled.

As shown in Procedure 3, we first sequentially fill the whole space of SSD-A
with writes of a request size of four pages so that each involved clustered page
is fully written and page placement inside SSD-A is same as in Fig. 2d. After
that, from address 0, we gradually overwrite the first page of clustered pages.
As write process progresses, garbage collection will be revoked to reclaim the
overwritten pages, and we are then able to answer the question concerned by
examining whether the non-overwritten pages have been relocated.

Figure 3b - 3d present the placement of non-overwritten pages after garbage
collection, and their counterpart before garbage collection is shown in Fig. 3a for
comparison purpose. It can be easily derived from Fig. 3 that the three pages of
clustered pages that did not get overwritten during the write process have been
relocated after garbage collection. We are thus able to conclude that the four

Understanding the Behavior of Solid State Disk 349

Procedure 3. Measuring page placement after garbage collection

chunk size ← 4× pg size

SSD write(0, device size, chunk size)

for i ← 0 to range/chunk size do
single write(i× chunk size)

end
len ← cycle× pg size

for i ← 1 to 4 do
for j ← 0 to max offset do

latency ← 0; offset ← j × pg size

for k ← 0 to 50000 do
/* each time the first thread reads the (i+ 1)-th page of a clustered
page */
pos ← rand pos(range, len) + rand pos(len/4, chunk size) +
i× pg size

latency ← stride read(pos, offset) + latency

end
print i, j, latency/50000

end

end

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(a) first page (before
gc)

 150

 160

 170

 180

 190

 200

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(b) second page (after
gc)

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(c) third page (after
gc)

 150
 160
 170
 180
 190
 200
 210

 0 16 32 48 64 80 96 112 128

la
te

nc
y

(μ
s)

offset (page)

(d) fourth page (after
gc)

Fig. 3. Page placement inside clustered pges before/after garbage collection

pages of each clustered page must be erased simultaneously, and a write with a
request size of n pages thus actually leads to 4×�n/4� pages being written in the
sense that there is no difference between a written page and an unwritten one
within the same clustered page, both of which cannot be programmed until being
erased. As a result, the write amplification resulted from a write requesting n
pages is 4×�n/4� /n, and this number may be further increased by 1 in the case
where there are many partially written clustered pages that can be relocated
and compacted to generate a large number of free pages.

Flushing Write Buffer. The problem of partially written clustered pages can
be alleviated by the existence of write buffer in most SSDs. When a write request
arrives, the SSD first buffers it and later flushes all the buffered write requests
to the flash memory for persistent storage. As such, the number of pages written
each time is increased, reducing the ratio of partially written clustered pages.

The flush of write buffer will be triggered when the buffer is full, or af-
ter a certain time period, which we call flush period. The corresponding two

350 Q. Cai et al.

parameters associated with SSD write buffer are thus the size of write buffer
and the length of flush period. As the measurement of the former parameter has
been conducted in [12], we are more interested in the latter parameter.

We have revealed how request size of writes affects page placement for the
case with write buffer disabled. Conversely, we can also infer from observed page
placement the request size of writes and the number of buffered pages for flush,
both of which are in principle the same. In this regard, we follow the same way
as we did in Procedure 1 with the exception that the parameter varying across
address ranges is no longer the request size of writes, which is kept constant
at 1 page, but the interval between two consecutive writes instead. In addition,
the write buffer is no longer disabled during the initialization phase. Due to
page limit and its similarity to Procedure 1, the detailed implementation is not
presented in this paper.

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 52 104 156 208

la
te

nc
y

(μ
s)

offset (page)

(a) interval = 3ms

 140
 150
 160
 170
 180
 190
 200
 210
 220

 0 40 80 120 160

la
te

nc
y

(μ
s)

offset (page)

(b) interval = 4ms

 140
 150
 160
 170
 180
 190
 200
 210

 0 32 64 96 128

la
te

nc
y

(μ
s)

offset (page)

(c) interval = 5ms

 140
 150
 160
 170
 180
 190
 200
 210

 0 26 52 78 104

la
te

nc
y

(μ
s)

offset (page)

(d) interval = 6ms

 140
 150
 160
 170
 180
 190
 200
 210

 0 22 44 66 88

la
te

nc
y

(μ
s)

offset (page)

(e) interval = 7ms

 140
 150
 160
 170
 180
 190
 200
 210

 0 20 40 60 80

la
te

nc
y

(μ
s)

offset (page)

(f) interval = 8ms

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 17 34 51 68

la
te

nc
y

(μ
s)

offset (page)

(g) interval = 9ms

 150
 160
 170
 180
 190
 200
 210
 220
 230

 0 16 32 48 64

la
te

nc
y

(μ
s)

offset (page)

(h) interval = 10ms

Fig. 4. The variation of page placement with the interval between two consecutive
writes

Figure 4 gives the measured latency of two-thread reads for different inter-
arrival interval of write requests. For demonstration purpose, we only provide
in this figure the result for cases in which the buffered pages for each flush
occupy only one clustered page. Comparing Fig. 4 with Fig. 1, we can find that
Fig. 4h and 4c are, respectively, the same as Fig. 1a and 1b, which means the
numbers of buffered pages for flush in corresponding two cases are 1 and 2,
respectively, and the length of flush period is thus 10 milliseconds. Moreover, as
can be observed from Fig. 4, the read latency in each case exhibits a periodical
pattern with a cycle length reversely proportional to the inter-arrival interval. It
can be inferred from this observation that the flush of write buffer is performed
once every 10 milliseconds, rather than in 10 milliseconds after the arrival of the
earliest buffered write, in which case there would be two buffered pages for each
flush if the inter-arrival interval of writes is within the range (5ms, 10ms), and
Fig. 4d-4g thus must have the same cycle length as Fig. 4c.

Understanding the Behavior of Solid State Disk 351

4 SSD Storage Efficiency

4.1 Server Storage

We first study the case in which SSD-A is used as storage device for server
applications. To this end, we download the HDD block access traces of two OLTP
applications (Financial 1 and Financial 2) [3] and eight other server applications
[1] [25]. Table 2 gives the general information of these block traces.

Table 2. Description of server traces

name no. WR records name no. WR records
Financial 1 4,099,354 Home 4 2,354,032
Financial 2 653,082 Online 4,211,728
Home 1 8,882,821 Web Mail 6,381,984
Home 2 4,901,076 Web Research 2,413,936
Home 3 908,835 Web Users 5,127,100

For each trace, we intend to investigate the storage efficiency when the same
sequence of writes are issued to SSD-A. To simplify the investigation, we assume
that two consecutive writes with an interval less than a certain threshold will
be flushed simultaneously; the threshold is chosen to be longer (20ms in our
investigation) than the time to access data in most modern HDDs so that two
consecutive writes with an interval longer than the threshold are likely to be
independent, and thus will be issued with the same interval in SSD case. Under
this assumption, the number of buffered pages for flush will be an over-estimation
to the real value as pages for flush are those that have been buffered over a time
period longer than the flush period.

Figure 5 presents the number of wasted pages, i.e., unwritten flash pages in
clustered pages, that will be incurred if the same sequence of writes of each
trace are issued to SSD-A. It can be seen from this figure that each trace will
generate hundreds of thousands of wasted pages, which means a moderate degree
of storage waste, as compared with the number of write records in Table 2.

0.0 x100
1.0 x105
2.0 x105
3.0 x105
4.0 x105
5.0 x105
6.0 x105
7.0 x105
8.0 x105
9.0 x105
1.0 x106

Financial 1

Financial 2

Hom
e 1

Hom
e 2

Hom
e 3

Hom
e 4

Online

W
eb M

ail

W
eb Research

W
eb Users

no
. o

f u
nw

rit
te

n
pa

ge
s

server traces

(a) number of unwritten pages

Fig. 5. Storage waste in different server traces

352 Q. Cai et al.

4.2 Hybrid SSD/HDD Storage System

Due to their superior access performance but relatively high cost, SSDs have
been extensively used as an additional cache layer on the top of HDDs to form
hybrid SSD/HDD storage systems with improved storage performance [9] [13]
[21] [22]. In such systems, if a read request cannot be serviced by cache layer,
it will generate a write request to the cache, and the inter-arrival interval of
such write requests, which we will call internal write requests in the sense that
they are issued inside the storage system, is thus no less than the service time of
read requests of hard disks, which can be as much as tens of milliseconds due to
high position delay [2]. As a result, if SSD-A is employed as the cache layer, the
internal write requests can lead to a significant waste of cache storage because
of their slow arrival rate and the existence of clustered pages inside cache.

We carry out several experiments to investigate the storage efficiency when
SSD-A is used as the cache layer of hybrid storage systems. The experimental
platform is Flashcache [24], a popular open source solution to hybrid SSD/HDD
systems, and the tool for I/O test is fio [5]. For experiment, we issue a set
of random reads and writes, each requesting one page, to storage system, and
explore the resulted storage waste. We run the experiment five times, each lasting
five minutes and with a varied fraction of reads. The page cache of operating
system and SSD write buffer are both enabled during the experiment.

0.0 x100

2.0 x104

4.0 x104

6.0 x104

8.0 x104

1.0 x105

10 20 30 40 50 60 70 80 90 100

no
. o

f u
nw

rit
te

n
pa

ge
s

percentage of reads

(a) number of unwritten pages

 0

 0.5

 1

 1.5

 2

 2.5

10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f u

nw
rit

te
n

pa
ge

s

percentage of reads

(b) ratio of unwritten pages

Fig. 6. Storage waste in hybrid storage system

The result of storage efficiency is demonstrated in Fig. 6. Since the OS page
cache is enabled, writes are first handled in the memory and thus completed
much faster than reads. Consequently, there are roughly the same number of
reads and internal writes across all scenarios. In addition, writes buffered in
memory are issued to storage system in a batch mode, and thus incur little
partially written clustered pages. Therefore, wasted pages are mostly caused by
internal writes, and thus of roughly the same number across all scenarios, which
is verified in Fig. 6a.

Fig. 6b describes the ratio of unwritten pages to pages requested (including
those involved in internal write requests) in different scenarios. This figure also
shows there is a serious storage waste when reads account for a large fraction
of total IOs. For instance, in the scenario with all IOs being reads, each write
request leads to 2.2 wasted pages on average, implying a write amplification up
to 4.2, which will be achieved after page relocation.

Understanding the Behavior of Solid State Disk 353

When OS page cache is enabled, the data read from storage device will be
stored in memory, i.e., page cache, so that future reads requesting the same data
can be satisfied without disk access. Therefore, for hybrid storage systems, the
issuance of internal write requests can be safely delayed without performance
loss, as long as there is a copy of the corresponding data in memory. Conse-
quently, we can suspend the issuance of internal write requests until there are
a certain number of such write requests accumulated, and then simultaneously
issue them to the cache layer to improve storage efficiency.

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 30 40 50 60 70 80 90 100

no
. o

f u
nw

rit
te

n
pa

ge
s

percentage of reads

(a) number of unwritten pages

 0

 0.002

 0.004

 0.006

 0.008

 0.01

10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f u

nw
rit

te
n

pa
ge

s

percentage of reads

(b) ratio of unwritten pages

Fig. 7. Storage waste in hybrid storage system with the isssue of internal write requests
delayed

We implement the above method in Flashcache [24]. In our implementation,
the issuance of delayed internal write requests takes place when a certain time
period has passed by after last issuance, or the number of delayed requests
exceeds a specific threshold. We repeat the above experiments and show the
corresponding results in Fig. 7. We can draw from this figure that there will
be little storage waste when the issuance of internal write requests is delayed:
in all cases, the number of wasted pages is no more than 0.5% that of pages
requested. In addition, it is worth noting that this method of reducing cache
writes is orthogonal to those presented in [21] which reduce the writes to cache
by neglecting the data that have been requested only a limited times.

Besides improving storage efficiency, there are some other advantages that can
arise from delaying the issuance of internal write requests. First, issuing multiple
writes requests at same time can effectively exploit the rich parallelism inside
SSD. In addition, read/write interference inside SSD, which has been reported
to be able to significantly hamper access performance of SSDs [6][20], can also
be alleviated as a result of reduced number of flushes of SSD write buffer.

5 Conclusion

In this paper, we carry out an extensive investigation on the behavior of new-
generation SSDs, and obtain two major findings. First, the investigation exposes
the existence of clustered pages, each of which consists of certain four flash
pages that must be programmed and reclaimed simultaneously. Second, pages
are placed inside the SSD such that the parallelism of the SSD can be effectively
exploited, on the premise that the number of partially written clustered pages,
which are the source of storage waste, is minimized.

354 Q. Cai et al.

In order to quantify the impact of clustered pages on storage efficiency, we then
conduct two case studies, i.e., server storage and cache layer of a hybrid storage
system. For the latter case, we find that when most IOs are reads, the storage
efficiency is extremely low due to the long inter-arrival interval of internal write
requests which are generated when a read cannot be serviced by cache layer.
By delaying the issuance of such internal write requests, we can substantially
reduce the number of wasted pages, thereby enhancing the storage efficiency and
extending the lifetime of SSD.

Acknowledgement. This work is partially supported by the ASTAR Thematic
Strategic Research Programme (TSRP) Grant No. 1121720013 and the Center
for Computational Intelligence at Nanyang Technological University.

References

1. FIU Traces, http://iotta.snia.org/traces/390 (retrieved September 11, 2014)
2. Hard disk drive, http://en.wikipedia.org/wiki/Hard_disk_drive (retrieved

September 11, 2014)
3. UMassTraceRepository,

http://traces.cs.umass.edu/index.php/Storage/Storage

4. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M.S., Panigrahy,
R.: Design tradeoffs for ssd performance. In: ATC, Boston, Massachussetts, USA,
pp. 57–70 (2008)

5. Axboe, J.: fio, https://github.com/axboe/fio (retrieved September 11, 2014)
6. Chen, F., Lee, R., Zhang, X.: Essential roles of exploiting internal parallelism of

flash memory based solid state drives in high-speed data processing. In: HPCA,
San Antonio, Texas, USA, pp. 266–277 (2011)

7. Chen, F., Luo, T., Zhang, X.: Caftl: A content-aware flash translation layer en-
hancing the lifespan of flash memory based solid state drives. In: FAST, San Jose,
California, USA (2011)

8. Dirik, C., Jacob, B.: The performance of pc solid-state disks (ssds) as a function of
bandwidth, concurrency, device architecture, and system organization. In: ISCA,
Austin, TX, USA, pp. 279–289 (2009)

9. Guerra, J., Pucha, H., Glider, J., Belluomini, W., Rangaswami, R.: Cost effective
storage using extent based dynamic tiering. In: FAST, San Jose, CA, USA (2011)

10. Gupta, A., Kim, Y., Urgaonkar, B.: Dftl: A flash translation layer employing
demand-based selective caching of page-level address mappings. In: ASPLOS XIV,
Washington, DC, USA, pp. 229–240 (2009)

11. He, B., Yu, J.X., Zhou, A.C.: Improving update-intensive workloads on flash disks
through exploiting multi-chip parallelism. IEEE Transactions on Parallel and Dis-
tributed Systems (2014)

12. Kim, J., Seo, S., Jung, D., Kim, J.S., Huh, J.: Parameter-aware i/o management
for solid state disks (ssds). IEEE Transactions on Computers 61(5), 636–649 (2012)

13. Koltsidas, I., Viglas, S.D.: Flashing up the storage layer. Proceedings of the VLDB
Endowment 1(1), 514–525 (2008)

14. Lee, S.W., Park, D.J., Chung, T.S., Lee, D.H., Park, S., Song, H.J.: A log buffer-
based flash translation layer using fully-associative sector translation. ACM Trans-
actions on Embedded Computing Systems 6(3), article No. 18 (2007)

http://iotta.snia.org/traces/390
http://en.wikipedia.org/wiki/Hard_disk_drive
http://traces.cs.umass.edu/index.php/Storage/Storage
https://github.com/axboe/fio

Understanding the Behavior of Solid State Disk 355

15. Li, Y., He, B., Luo, Q., Yi, K.: Tree indexing on flash disks. In: ICDE, Shanghai,
China, pp. 1303–1306 (2009)

16. Li, Y., He, B., Yang, R.J., Luo, Q., Yi, K.: Tree indexing on solid state drives.
Proceedings of the VLDB Endowment 3(1-2), 1195–1206 (2010)

17. Ma, D., Feng, J., Li, G.: Lazyftl: A page-level flash translation layer optimized for
nand flash memory. In: SIGMOD, Athens, Greece (2011)

18. Min, C., Kim, K., Cho, H., Lee, S.W., Eom, Y.I.: Sfs: Random write considered
harmful in solid state drives. In: FAST, San Jose, CA, USA (2012)

19. Park, C., Seo, E., Shin, J.Y., Maeng, S., Lee, J.: Exploiting internal parallelism of
flash-based ssds. Computer Architecture Letters 9(1), 9–12 (2010)

20. Park, S., Shen, K.: Fios: a fair, efficient flash i/o scheduler. In: FAST, San Jose,
CA, USA (2012)

21. Pritchett, T., Thottethodi, M.: Sievestore: A highly-selective, ensemble-level disk
cache for cost-performance. In: ISCA, Saint-Malo, France, pp. 163–174 (2010)

22. Saxena, M., Swift, M.M., Zhang, Y.: Flashtier: A lightweight, consistent and
durable storage cache. In: EuroSys, Bern, Switzerland, pp. 267–280 (2012)

23. Seol, J., Shim, H., Kim, J., Maeng, S.: A buffer replacement algorithm exploiting
multi-chip parallelism in solid state disks. In: CASE, Grenoble, France, pp. 137–146
(2009)

24. Srinivasan, M.: Flashcache, https://github.com/facebook/flashcache (re-
trieved September 11, 2014)

25. Verma, A., Koller, R., Useche, L., Rangaswami, R.: Srcmap: energy proportional
storage using dynamic consolidation. In: FAST, San Jose, California, USA (2010)

https://github.com/facebook/flashcache

	Understanding the Behavior of Solid State Disk
	1 Introduction
	2 Background and Related Works
	2.1 Solid State Disk
	2.2 The Extraction of SSD Parameters

	3 The Measurement of SSD Parameters
	3.1 Experimental Enviorment
	3.2 Characterizing SSD Behaviors

	4 SSD Storage Efficiency
	4.1 Server Storage
	4.2 Hybrid SSD/HDD Storage System

	5 Conclusion
	References

