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Abstract. Recent work of the fleet size and mix vehicle routing problem with 
time windows mostly assumes that the input variables are deterministic. Prac-
tice in the real world, however, faces considerable uncertainty in the data. But 
recent research studies lack emphasis on this uncertainty. This paper focuses to 
contribute to a new challenging study by considering the customer demand as 
uncertain. This characteristic increases the difficulty for solving. The meta-
heuristic algorithms are developed consisting a modification of a genetic  
algorithm and an adaptation of a greedy search hybridized with inter-route 
neighborhood search methods. Because this paper relates to uncertain customer 
demands, decision making is performed using the robust approach based on 
worst case scenarios. The final results are evaluated by using the extra cost and  
the unmet demand against the deterministic approach to balance the decision 
making. 
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1 Introduction 

The fleet size and mix vehicle routing problem (FSMVRP) is one of the specific prob-
lems of the classical vehicle routing problems (VRPs) in which heterogeneous fleets 
are composed. The heterogeneous fleets deal with real-world problems with more 
than the single kind of the vehicles. Moreover, the capacity of the vehicles is not the 
only factor used to consider the route assignment; the other variants such as time win-
dows, split deliveries, etc. are constraints in practice. These extensions make the prob-
lems more complex and are much harder to solve than the classical VRP. This paper 
focuses on the time windows constraint, the FSMVRP is extended to be the fleet size 
and mix vehicle routing problem with time windows (FSMVRPTW). 
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Real situations include very often uncertainty. The considerable input parameters, 
for example, customer demands, traveled times, etc., can vary during the period of 
time. The solutions for future are difficult to describe precisely if the uncertain cha-
racteristics of the concerned parameters are involved. The customer demands, for 
example, can be revised by some reasons such as an emergency shutdown of one of a 
customer’s production lines which might reduce the actual demands. A vehicle that is 
planned to serve such a customer might have some remaining spaces. Therefore, the 
previous route assignments should be recalculated to yield the optimal solution. In 
this study, the customer demands are under the assumption of the uncertainty. 

Many researchers put effort into developing heuristic/meta-heuristic algorithms in-
stead of using exact methods to handle complex problems such as VRPs. The recent 
algorithms published have been constructed based on the iterated local search, greedy 
search, tabu search, ant colony optimization, genetic algorithm, scatter search, for 
instance. In this research work, the algorithm is proposed a re-constructed meta-
heuristic algorithm for robust vehicle routing problem with time windows under un-
certain demands. 

Due to the demand characters are non-deterministic, the authors propose the ro-
bustness approach in robust decision making. The output can be represented as the 
average, the best, or the worst solutions. It depends upon the judgment of decision 
makers to investigate an appropriate way for individual situation. But this work em-
phasizes the fact that any unexpected situations which might occur in the real world 
future, that the decisions must be realized even in the worst case. Therefore, the worst 
case scenario approach is applied. 

The further details of the problems, the literature review, the proposed methodolo-
gies, the computation results, and the conclusions are discussed in next sections. 

2 Literature Review 

This paper is the continuation of our previous work [1] that surveys the heterogeneous 
vehicle routing problems and has been constructed as an overview structure which 
puts a special emphasis on robustness approach. The heterogeneous fleet is classified 
into two major classes: the heterogeneous fleet vehicle routing problem (HFVRP) and 
the fleet size and mix vehicle routing problem (FSMVRP). The limitation on the ve-
hicle numbers, i.e. limited and unlimited, is the borderline to divide the problems into 
both types [2,3]. The FSMVRP with the unlimited transportation devices and its addi-
tional variants are focused in this study.  

In 1996, Osman and Salhi have presented the vehicle fleet size and mix problem 
under the assumption of all concerned input data such as customer demands, number 
of customers, traveled times, geographical locations, service times, etc. are known 
with certainty [4]. It is because the characteristics of the considerable input parame-
ters are fixed values, the obtained solutions are unique. Years later, the FSMVRP and 
its extensions attract the academicians to attempt the difficult talks of developing the 
methodologies for achieving the optimal solutions, i.e. the total cost (fixed and varia-
ble costs) minimization.  
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The results of the literature review show that the FSMVRPs and the extensions 
lack attention in the research of non-deterministic variables. The summarization ma-
trix is shown in Table 1. The second column describes the additional variants of the 
FSMVRPs, the abbreviations of TW, SD, MD, and dash stand for time windows, split 
deliveries, multiple depots, and classical problems, respectively. The next part of the 
matrix indicates the sets of the model parameters consist of customer demands (CD), 
number of customers (NC), traveled times (TT), geographical locations (GL), service 
times (ST), vehicle productivities (VP), and vehicle availability (VA). The characte-
ristics of these input variables can be classified as certainty (C) and uncertainty (U). 
In this study, the decision approach as shown in the last column is categorized into 3 
groups: deterministic (D), stochastic (S), and robustness (R). The publication works 
of the same group of the considerable input parameters studies are summarized in the 
shading rows. The names are sorted by the year of publication. 

Table 1. Fleet size and mix vehicle routing problems (FSMVRPs) and the variants literature 
review summarization matrix 

# Authors 
Additional 
Variants 

Considerable input parameters Decision 
approach CD NC TT GL ST VP VA 

1 [4,5] - C C C C C - - D 
2 [6,7,8,9,10,11,12,13] - C C - C - - - D 
3 [14] - C C C C - - - D 
4 [15,16,17,18,19,20] TW C C C C C - - D 
5 [21,22] TWSD C C C C C - - D 
6 [23] MD C C C C - - - D 
7 [24] MD C C - C - - - D 

Table 2. Robust and stochastic vehicle routing problems (RVRPs and SVRPs) and the related 
research studies literature review summary matrix 

# Authors Problems 
Considerable input parameters Decision 

approach CD NC TT GL ST VP VA 
1 [25] Robust Fleet Sizing - 

Transport Freight 
U C C - - - - R 

2 [26] RVRP U C C - - - - R 
3 [27] VRPTWST C C U - C - - S 
4 [28] Road Network C C U U C - - R 
5 [29,30] RVRP U C C C - - - R 
6 [31] RVRPTWSD U C U C - - - R 
7 [32] SVRP U C - C - - - S 
8 [33] RVRPTW C C U - C - - R 
9 [34] RVRP U C - C - - - R 

10 [35] SVRP U C - C - - - S 

 
The stochastic or uncertainties of the input variables are employed in the other spe-

cific problems of VRPs but not for the FSMVRPs and its extensions. Table 2 demon-
strates the survey summary in the same way as mentioned above in Table 1. But, the 
second column shows the names of the specific VPRs instead of the FSMVRP va-
riants. The matrix of the robust and stochastic vehicle routing problems and the re-
lated research studies indicate that when the problems investigate insight in the real 
world by modeling one of the parameters as non-deterministic, the robust or stochas-
tic decision making approaches are referred to handle the unknown futures.  
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It is well known that the VRPs have a complexity of NP-hard problems, so the 
FSMVRPs  have as well. Therefore, most researchers put emphasis on developing  
heuristic/metaheuristic algorithms to produce (near)-optimal solutions. As this 
research is  an extension of  previous  research that has concentrated on the literature 
review, the chronological order of the proposed methodologies can be concluded as 
shown in Table 3. 

Table 3. Methodology approaches for the fleet size and mix vehicle routing problems 
(FSMVRPs) and the variants 

Year Authors Problem Algorithm 

1996 [4] FSMVRP Route perturbation procedure and tabu search 

1997 [23] FSMVRPMD A multi-level (p-level) composite heuristic 

1999 [6] FSMVRP Generalized insertion and unstringing/ stringing, tabu search using sweep 

procedure, adaptive memory procedure  

2002 [5] FSMVRP Sweep-based algorithm approach and suborders of petals selection  

2002 [7] FSMVRP Tabu search  (TS) mixed with reactive TS concepts, variable neighbor-

hoods, data-memory structures, and hashing functions 

2002 [15] FSMVRPTW Adapted combine savings, adapted optimistic opportunity savings, adapted 

realistic opportunity savings 

2007 [16] FSMVRPTW Insertion-based parallel approach and a meta-heuristic procedure that 

adopts the ruin and recreate paradigm for current solution improvement 

2007 [17] FSMVRPTW Scatter search approach 

2008 [18] FSMVRPTW Multi-restart deterministic annealing with 3 phases algorithm 

2009 [8] FSMVRP Tabu search and the generalized insertion and neighborhood reductions 

2009 [9] FSMVRP Genetic algorithm (GA) applied local search mutation  

2009 [10] FSMVRP GA hybridized with a local search and distance measure in solution space 

2009 [19] FSMVRPTW Three-phase hybridized meta-heuristic 

2009 [21] FSMVRPTWSD Scatter search approach 

2009 [24] FSMVRP and 

FSMVRPMD 

Exact algorithm based on the set partitioning formulation using 3 types of 

bounding procedures 

2010 [20] FSMVRPTW Adaptive memory programming solution approach, semi-parallel con-

struction heuristic, and tabu search 

2011 [12] FSMVRP Iterated local and a set partitioning formulation 

2011 [14] FSMVRP Hybridized heuristic based on iterated local search useing a variable 

neighborhood descent procedure, with a random neighborhood ordering 

2012 [13] Fleet composition 9-step meta-heuristic based on evolutionary algorithms and local search  

2012 [36] Fleet composition A ring radial topology continuous model to define vehicle zones and types 

2013 [22] FSMVRPTWSD Scatter search approach 

3 Problem Description 

The problem description is divided into two major parts: the fleet size and mix vehicle 
routing problem with time windows (FSMVRPTW), and the robust fleet size and mix 
vehicle routing problem with time windows (RFSMVRPTW). 
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3.1 Fleet Size and Mix Vehicle Routing Problem with Time Windows 

The fleet size and mix vehicle routing problem with time windows is an extension of 
the fleet size and mix vehicle routing problem (FSMVRP) that is a specific problem 
of the classic vehicle routing problems (VRPs). The FSMVRPTW can be formed on 
the directed graph G = (N, A). N represents the node set consisting of the customers 
and a depot. N = {0, 1, …, n+1}. The depot is denoted by two nodes of {0} and 
{n+1}, the remaining set of nodes C = {1, 2, …, n} is a given customer set. A is the 
arc set that design the routes. 

In this paper, the FSMVRPTW is classified into two points of view: customers and 
fleet size and mix vehicles. The problem formulations are based on the models as 
proposed by several researchers [16],[17],[18],[20]. The customers are represented by 
the node set, where C = {1, 2, …, n}, a location of each individual customer scatters 
around a depot represented by the graph G = {N, A}. Each customer must be visited 
by exactly one vehicle. In this FSMVRPTW, the time windows are determined by the 
customer i denoted as the earliest and latest arrival time, [ei, li] and ei is less than or 
equal to li. The time windows are supposed to be of the hard type in this paper. It 
means that the customers do not allow any services to violate the time windows 
constraint. The truck that arrives at the destination too early has to wait until the 
earliest time permission is opened [15]. In this research, the demand of the customers,  
di is stochastic or uncertain and is modeled as shown in the next topic. 

The fleet size and mix vehicle routing problem is approached at the strategic level, 
the problem is initiated from the assumption that there are unlimited number of 
available vehicles [3]. The fleet is heterogeneous with K different types of vehicles, 
such type K = {1, 2, …, k}, are composed in order to serve all customers’ uncertain 
demand  di, that is particular for this paper. Each vehicle type k is an element of K, 
and has a capacity qk and q1 < q2 < … < qK. Alike other general capacitated VRPs, 
each truck can carry a maximum of its capacity. Repoussis and Tarantilis [20] present 
two addition formulations that eliminate all possible infeasible sub-tour. The 
accumulated carried weight of each vehicle k, ai

k is computed and to make sure that 
the truck k will not service the customer j if its total weight moment at the customer j, 
in the route from i to j, is exceeded the maximum capacity of the truck. 

Recall the graph G = (N, A), there is only one depot, it is the centralized node of 
the graph. The depot is represented by two nodes of N = {0} and {n+1}. Every arc, 
called route of the vehicle fleet, must be started at the depot, linked to the other 
assigned customer(s), and ended a loop by returning to the depot. Once the first 
customer in a path is visited, a vehicle has to leave from that place, continues to the 
next one until the tasks are completed. The depot is also determined the time interval 
restriction, denoted by [e0, l0] = [en+1, ln+1]. As described in the above part of customer 
definition, when  a truck k arrives at customer i, it is allowed to begin the unloading 
services, denoted by service beginning time yi

k, within the time windows of such 
customer. Two possible events of the truck arrival time are considered, 1) too early 
arrival and 2) in due time arrival, it is noted that time windows are hard, too late 
arrival is not permitted. In the case of  a truck arriving  early, the useless activity is  
considered as  waiting time. Anyhow, both cases can be modeled the moment at 
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which service begins at customer j, by setting yj
k = max{0, ej - (yi

k+sti+tij)}. The 
feasible schedule for each vehicle route can be guaranteed by forces  yi

k to zero 
whenever customer i is not visited by vehicle k [20] and be imposed a minimum time 
for beginning the customer service j in a determined route with no subtours guarantee 
[17]. The further trick linearizes the formulation by using the big M-method, that may 
be replaced by max{li+sti+tij–ej, 0} for all (i, j) are the elements in A and for all k are 
the members of K [18]. 

In each route, two types of cost are considered for the total transportation cost, a 
fixed acquisition cost and a variable cost. The fixed acquisition cost, f k is for a vehicle 
of type k where f 1 < f 2 < … < f K. The variable cost, cij is the cost of traveling from 
customer i to j, (i, j) is a set of arc A. The travel distance dtij and the travel time tij are 
given and can be obtained by joining a pair of node. The symmetry and deterministic 
properties are imposed for both parameters. Further, a unit of distance is assumed to 
be equaled to one and has the same unit of the travel time, tij [15]. Because the time 
windows are stated of being constrained in this case, assume the variable cost equals 
to the total time spending along the determined route. The total time spending is 
computed by considering  three types of usage time consisting of 1) traveling time 
between a pair of nodes (tij), 2) service times (sti) that the truck spends  for performing 
a loading or unloading activity at each customer site and 3) waiting time (wi) that can  
occur only if the truck arrives the customer i before the permitted earliest time. In the 
general problem, not yet the robustness case, the objective function of the 
FSMVRPTW may consider three components, 1) fixed acquisition cost, 2) variable 
traveling cost and 3) waiting time and/or service time consideration as the  ‚en route‘ 
cost. In this paper, the FSMVRPTW is the total summation of the fixed cost obtained 
from vehicle fleet composition acquisition and the sum of total times spending 
including waiting times, both components are demonstrated in the first and second 
term of the FSMVRPTW objective function (equation 1), respectively. 

 ZFSMVRPTW = min∑k∈Kfk∑j∈Nx0j
k + ∑k∈K(yn+1,k - y0,k) (1) 

3.2 Robust Fleet Size and Mix Vehicle Routing Problem with Time Windows 
(RFSMVRPTW) 

In this paper, the term “robustness”  refers to the solution robustness in which the 
obtained solution remains close to optimal for all scenarios. The specific definition of 
the robustness is applied the definitions as definited by Kouvelis and Yu [37], Manisri 
et al. [33], and Moghaddam et al. [30] as following: 

Definition 1:  A scenario s is a set of customer demands realizations,Ud. A whole 
system S is a combination of individual scenario in which s1 ∪ s2 ∪…∪ sn ∈ S, ∀s∈S. 

Definition 2: A scenario si is a representation of a system in which the customers’ 
demands are uncertain by the impact of individual customer’s behavior based on risk 
aversion (β sα s). The permutation percentage, β s, of each customer is randomly gen-
erated, assuming as uncertainty represented by the uniform distribution of [βl

s,βu
s], 

and the normal distribution of N(μ, σ). The βl
s and βu

s are the lower and upper bounds 
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of an avoidance of the risk. The symbols μ and σ are the mean and the variance of the 
risk. The customer demands of each scenario are either lower or higher than the ex-
pected values. The independent random value, α s, of -1 and 1 are assumed as gener-
ated randomly to indicate the direction of the uncertain demand that makes the value 
of the demand becomes lower or upper the expected value. 

Definition 3: By the definitions 1 and 2, a scenario is a set of uncertain customers’ 
demands Ud, modeled as Udi = (1+β sα s)d0 where i = 1, 2, …, n; d0 is an expected 
demand of customer i, and s ∈ S. 

A mathematical formulation for the RFSMVRPTW belongs to the FSMVRPTW 
but the customer demand (di) is replaced by the set of uncertain demand (Ud) model 
as modified [30]. The original model assigns one single fixed value of the percentage 
deviation of the risk averse for all customers and for each scenario, but in this paper 
the risk averse depends upon each customer’s behavior which is represented by a 
random value with the uniform and normal distribution. The uncertain demand is 
possible to be lower or higher than the expected demand (d0) that depends on the 
independent random variable and has a value between [-1,1]. 

As presented in the robust handbook of Kouvelis and Yu [37], this concept is 
applied in some research such  as [31] and [33]. In this research, the robust decision 
making framework is adapted the concept of Kouvelis and Yu [37] but the final result 
is evaluated against the the deterministic approach [26]. Thus it can balance between 
the expensive cost when a robust approach is applied and the unmet need when the 
deterministic approach has to suffer  if the worst case happens. 

Even this research assumption considers the uncertain input variables, the robust 
discrete optimization is suggested by using the minimax criterion to reduce the 
complexity of the problems. The minimax criterion is one of the worst case 
approaches.  The criterion aims to evaluate the highest level of cost taken across all 
possible future input data scenarios to be as low as possible, as a result that the 
outcome can protect the worst that might happen [37]. 

Referring to Kouvelis and Yu [37], let X be the set of the decision variables and Ds 
denotes the instance of the input data that corresponds to scenario s. The notation Fs 
stands for the set of all feasible decisions when the scenario s is realized. The function 
f(X, Ds) is used for evaluating the robustness quality of the decision X ∈ Fs. Then, the 
optimal single scenario decision Xs* for the input data instance Ds is the solution to a 
deterministic optimization problem and it satisfies Equation 2. 

 zs = f(Xs*,Ds) = minX ∈ Fs f(X,Ds) (2) 

The proactive robustness approach is focused to benefit in long run planning by 
hedging against all scenarios. The absolute robustness is one of the proactive robust-
ness approaches that is applied for RFSMVRPTW. The absolute robust decision XA is 
defined as the one that minimizes the maximum total cost, among all feasible deci-
sions over all realizable input data scenarios. The absolute robust decisions are of a 
conservative nature, as they are based on the anticipation that the worst might happen. 
One way to motivate such a criterion is for competitive situations where the parame-
ters of the decision model are affected by competitors’ actions. The main uncertainty 
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to this RFSMVRPTW concentrates on the customer demands. The demands vary over 
a pre-specified planning horizon. Thus, the fleet and routing designs are decided over 
a long period of time for reducing the impact on the system effectiveness. It means 
that the solutions obtained from the decision making are good enough for a variety of 
future operating scenarios and this is referred to the term robustness [27]. 

Recall s ∈ S be the input data scenario index and S be the set of all possible scena-
rios. The objective function of RFSMVRPTW is to minimize the maximum total cost 
of FSMVRPTW (Equation 1) is in placed by the absolute robustness as shown in 
Equation 3. The robust objective function is subject to the constraints as common 
used in the fleet size and mix vehicle routing problems. The comprehensive meaning 
of the robust optimization solution i.e. solution of the total transportation cost is good 
for all possible data uncertainty and hedge against the worst case. 

 ZA(RFSMVRPTW) = minX,Ymaxs∈S(∑k∈Kfk∑j∈Nx0j
k + ∑k∈K(yn+1,k - y0,k)) (3) 

4 Solution Approach 

Resulting from the reviews, the heuristic and metaheuristic algorithms can be either 
renewed or innovated to solve the RFSMVRPTW under uncertainty of an input 
parameter such as travel time, demand, etc. In this paper, the uncertain characteristics 
of the customer demands are focused, so the modification of randomized search 
heuristics based on genetic algorithms is suggested. The heuristics and me-tageuristic  
is reconstructed by performing three major phases. The first phase is to build an initial 
solution, and pass to the next phase for improvement. The robustness is generated in 
the last phase based on worst case scenarios. 

Even the customer demands in this paper are considered as uncertainty, this 
complexity is reduced by converting the uncertainty to deterministic scenario-based 
approach. A single scenario is a representation of a set of input data uncertainty to the 
decision model, and all total assumed cases represent a whole system. The number of 
realizable scenarios over a pre-specified planning horizon normally depends upon a 
person who takes charge of the strategic planning task or a person who gets involved 
in managing the customers’ demands information. The scope of this research does not 
involve finding the potential number of scenarios, so several numbers of scenarios 
will be assumed to be the representations of  realistic  situations. The first and second 
phases are processes until all scenarios are completely solved. All results are passed 
through the last phase for finding the robustness solution. 

4.1 Phase I: Initial Solution Construction 

The re-constructed meta-huristic based on modified genetic algorithm (mGA) which 
adapts the algorithm [38] is used to construct an initial solution of a giant tour. Two 
kinds of operations in genetic algorithms are induced: crossover and mutation. Kirk 
[38] developed the GA process using a one-point crossover with an order-based oper-
ator. The one-point crossover operator randomly selects one crossover point and then 
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copies everything before this point from the first parent and then everything after the 
crossover point copy from the second parent. The mutation process uses a frame-shift 
based on flip operation. The pair of genes substitution is applied by a swap operation. 
By believing that the best solution can heal the weak cells, the original program has 
been modified by memorizing the best solution. After the solutions have been gener-
ated for several generations, the best solution will take place either a randomized 
solution or the worse solution. According to this assumption, the next generation re-
sult will be improved by then.  

4.2 Phase II:  Solution Improvement 

Step 1: Route Insertion Based TSP Ordered Hybridized Shift Operation 
In this phase, the single route of the TSP is converted into multiple routes of the VRP. 
A single customer node inserts to each route by TSP ordered but the algorithm is de-
signed to check the lower and upper bounds of the time intervals. If the ordered node 
that is inserted into the route violates the time windows constraint, the next city will 
be considered. The algorithm is programmed by applying the shift procedure. Mean-
while, the algorithm considers the result of a single iteration and uses the best result 
obtained from each shift operation to form the next arc of the current route. The tour 
is constructing continuously until time windows constraint is violated. The other 
routes are created until all customers are completely assigned by a single vehicle. 

Step 2: Route Merging 
It is according to one component of the objective function is to achieve the minimiza-
tion of the ‘en route’ time travelled. The waiting time is the critical key that impacts 
the objective. It means that the customer who has the least open time window with 
least waiting time should be prioritized to serve first. Thus, the procedure is designed 
to perform ascending the order of the waiting times once the random tours are 
merged. After having combined the routes and sorted the waiting times, a greedy 
search is activated. The greedy algorithms build up a solution piece by piece, always 
choosing the next piece that offers the most obvious and immediate benefit [39]. 

Step 3: Fleet Sizing and Mixing  
In this step, the number of scenarios is determined. The input variable data sets are 
generated according to the uncertain demand model as described by Definition 3. The 
process is executed in a one by one scenario. The total uncertain customer demand of 
each assigned tour is calculated. Vehicle matching is performed by selecting the best 
fit between the total demands and the vehicle type in which the remaining spaces after 
loaded is as less as possible. The total transportation cost composes the fixed vehicle 
cost and the total en route time travelled is performed the calculation after the fleet 
size selection is done. The process is continued and is terminated after the predeter-
mined number of iterations is reached. 

Step 4: Inter-route Neighborhood Search Methods  
The neighborhood search procedures using the concept of the inter-route moves based 
on relocation, exchange, and cross is applied. The major scheme is to randomize the 



356 K. Soonpracha, An. Mungwattana, and T. Manisri 

sets of a total number of routes, the route orders, and the customer nodes for perform-
ing the inter-route moves. The procedure is designed either for a pair-route and a set-
route of the randomized sets as mentioned previously. If an infeasible solution is ob-
tained, then steps 1-3 are recalled for regenerating a feasible result. The best solution 
is memorized and will be replaced by the current solution if its outcome is better. The 
program is terminated when the determined iteration number is reached. 

4.3 Phase III – Robustness Decision Making 

The proactive robustness is concentrated in this paper by assuming the planning is 
decided over a long period of time for reducing the impact by the demand uncertainty 
on the system. The decision making in this research is supposed to perform before the 
fact and using the expected demands of the original fleet size and mix vehicle routing 
problem represent the actual realized data. From phase I and II, the scenarios of the 
input uncertain demands of the customers are created. The previous process seeks for 
a solution of each run for each scenario in which the total transportation cost is mini-
mized. The robust solution is evaluated using three criteria: absolute difference  
robustness criteria, relative difference robustness criteria, and variable or deviation 
robustness criteria. That is to select the maximum solution among all decisions of 
each scenario and to perform the calculation among Equation 3. The worst-case im-
plementation is proposed to find the solution which is hedges against the worst of all 
possible scenarios. 

In this research, the evaluation of the robust solution results uses the extra cost 
comparison and the unmet demand indicators [26]. The extra cost performance mea-
surement indicator (ratio x) quantifies the relative extra cost of the robust with respect 
to the cost of the deterministic. It means that once the robust approach is selected, 
there are the additional costs caused by the worst case based consideration. If the 
deterministic approach is purposed, this extra cost is not suffered. The extra cost ratio 
is calculated using the Equation 4.  

 Extra cost ratio, x = (ZRFSMVRPTW - ZFSMVRPTW) / ZRFSMVRPTW (4) 

 Unmet demand ratio, u = maxUd / ∑i∈Cdi
0 (5) 

The unmet demand performance measurement indicator is used to show the effect 
if the deterministic optimization is applied to the uncertain data problems. The unmet 
demand denoted by the ratio u is a performance indicator used to measure the demand 
when facing with the worst case. The deterministic approach is chosen to solve the 
problem under the expected demand, but the demands are vary in the real situations. 
The unmet demand indicator quantifies the relative maximum unsatisfied demand 
(max Ud) of the uncertainty based scenarios with respect to the total expected de-
mands of the deterministic problem. The unmet demand ratio is calculated using the 
Equation 5. It is because the robust approach based worst case scenarios is designed 
to protect against the worst of all possible scenarios, thus the unmet demand of the 
robust decision making is equaled to zero. 
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Two proposed robust performance indicators: extra cost and unmet demand, are 
used for balancing between the expensive cost when a robust approach is applied and 
the unsatisfied demands when the deterministic approach has to suffer once the worst 
case happens. The additional solution performance measurement is compared with 
some benchmark problem sets. Due to the non-existence of recent published papers 
on the RFSMVRPTW, the solutions resulted from some FSMVRPTW research 
works, for example, [18] and [20] are used to examine the competitive performance 
obtained from the proposed methodology. 

5 Computational Results 

The proposed methologogy of the modification of a genetic algorithm and the adapta-
tion of a greedy search hybridized with inter-route neighborhood search methods has 
been programmed in MATLAB and has ran on an Intel(R) Core(TM) i5-3337U 
CPU@1.80GHz 8.00GB-RAM.  

In this paper, the first trial of the re-constuctued meta-heuristic algorithm for 
RSFMVRPTW is tested on the data set of the first problem, i.e. R101 with 100-
customer, of the well-known benchmark problem sets generated by Solomon. The 
geographical data are randomly generated in R101, a short scheduling horizon and 
only a few customers per route allowing are the characteristics of this problem as 
stated by Solomon [40]. The cost structure of Liu and Shen [42], as referred in 
[18],[20] is the benchmark problem using for the experiment. The performance of the 
algorithm is compared with three previous outputs of the other authors, i.e. (A) the 
best known solution that have collected from the survey [20], (B) the result obtained 
by the adaptive memory programming [20], and (C) the multirestart deterministic 
annealing meta-heuristic [18].  

On the real business, the scenarios are determined by the decision makers who are 
authorized in the decision making of the indiviual problem. In this paper, the 
algorithm has been operated to handle three scenarios. The first scenario (Scen-1) 
uses the expected demands using the original given demands of the benchmark 
problem set. The second scenario (Scen-2) assumes that the demands are patterned as 
the uniform distribution of the risk averse (β sα s) within [-1,1] interval are used for 
generating β s, further about the α s, only the upper interval of 100 is determined. The 
last scenario (Scen-3) has the same characteristic of β s, but α s is represented as the 
normal distribution using the the concept of the weekly demand as proposed in [41] 
where the expected demand is converted based on weekly i.e. the monthly expected 
and the variance of the demand is divided by 4.33 (52 weeks per year/12 months) and 
the square root of 4.33, respectively. The results are determined as the mean and 
variance, respectively. It is because 1) the algorithm has been programmed based on 
random permutation selection in Phase I and Phase II, and 2)  Scenario 2 and Scenario 
3 assume that the customer demands are not certain, the output is different for each 
run. Thus, each scenario  is repeated the execution for ten runs. 

The computation results demonstrate in a cost form (*1,000) of {DC;FC;TC} 
where the abbrevations in the bracket denote the distance cost (DC), fleet cost (FC), 
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and total cost (TC) of all three scenarios, respectively. The average outcomes of each 
scenratios are as following: Scen-1: {4.01;2.74;6.75}, Scen-2: {4.01;2.77;6.78}, and 
Scen-3: {4.09;2.71;6.80}. The total cost deviation of three scenarios are eqaul to 0.08, 
0.27, and 0.10 for Scen-1, Scen-2, and Scen-3, respectively. The Scen-1, Scen-2, and 
Scen-3 have the average CPU run time (RT) as eqaul to 78.125, 78.996, and 90.507, 
respectively. Recall Formulation 3, the summarization of the maximum total cost of 
FSMVRPTW among all three scenatios for all 15 runs can be listed as following: 
{6.71;6.93;6.79;6.87;6.85;6.86;7.28;7.10;6.85;6.77}, it results to obtain the minimize 
the maximum total cost, i.e. ZRFSMVRPTW, equals to 6,706.35. This result is called the 
robustness solution. Such solution of the total transportation cost is good for all 
possible data uncertainty and hedge against the worst case. 

The second report shows the evaluation of the robust solutions used the extra cost 
comparison and the unmet demand indicators [26]. The robust solution is obtained 
from the whole scenarios, i.e. ZRFSMVRPTW = 6,706.35 and the deterministic solution is 
based on Scen-1, i.e. ZFSMVRPTW = 6,621.83. The extra cost ratio (x) equals to 0.0126, 
it means that when the robustness solution is selected, this extra cost percentage is on 
top of the normal case. The maximum uncertain demand (maxUd) as equals to 1,628 
is selected from the whole runs that the program has generated based on the uncertain 
demand model. The total value of the expected demands (totalDo), i.e. 1,458, is the 
base case based on the data set as determined in the benchmark problem. The result of 
unmet demand ratio (u) is equal to 1.1166. It indicates that if the deterministic 
solution is chosen, it has to plan for sufferring the unknown demands with such  extra 
ratio of the expected demand that might be occurred in some periods of time. 

The last performance indicators show the evaluation of the percent improvement 
among the previous outputs of the other authors. The letters, A,B, and C represent the 
best known solutions that have been collected from the survey [20], the result 
obtained from the adaptive memory programming [20], the multirestart deterministic 
annealing mera-heuristic [18], respectively. The comparison between the determinis-
tic and deterministic solution of ten experiments for each scenario shows the 
improvement of 4.41%, 4.54%, and 1.95% in average when compare with A, B, and 
C, respectively. Further, the result comparisons of the robust solution against the 
deterministic solution indicate that the outcomes of 4.96%, 5.10%, and 2.52% are 
improved in average when compare with A, B, and C, respectively. 

6 Conclusions and Discussions  

In this paper, the re-constructed meta-heuristic aglorithm based on the modification of 
the genetic algorithm and the adaptation of the greedy search hybridized with inter-
route neighborhood search methods are proposed to solve the robust fleet size and 
mix vehicle routing problem with time windows under uncertain demands. The results 
indicate that by applying this technique, the average total cost of each scenario is not 
quite different. The deviation of the solutions of Scenario 1 (base case) and Scenario 3 
(demands with normal distribution) are less than Scenario 2 (demands with uniform 
distribution). The robust decision making is performed based on the worst case 
scenario, the minimum of the maximum over the whole scenario is evaluation as the 
robustness solution in this experiment. The solution is preferred to select for hedging 



 A Re-constructed Meta-Heuristic Algorithm 359 

against the worst of all possible scenarios that might occur in the unknown  future if 
the uncertain situtation(s) is involved in the problem. In this paper the robustness 
performance is evaluated by using the extra cost and the unmet demand, both 
criterions are for the decision maker to consider when the robust approach is 
implemented. The final results are compared to three benchmark solutions. In the base 
case (scenario-1), the total cost is reduced compared among all three previous known. 
When the robustness approch is implemented, the solutions are still significant in the 
competitive performance. 

As mentioned in the previous section, this is the first experiment of this proposed 
algorithm. Thus, in order to illustrate that the proposed technique is more efficient and 
competitive, the main recommendation is that the addition future researches should be 
conducted as following: 1) the other problem sets of the well-known benchmark 
problem have to be tested, 2) the experiment of this developed methodologies should 
be performed and implemented in the real business cases 3) the number of trial runs 
have to be re-considered, and 4) the other meta-heuristic algorithms such as fuzzy 
logic, differential evolution, ant corony optimization, particle swarm optimization, 
articificial neural network, hybrid evolution swarm with local search methods, etc. 
should be cosidered for the comparative studies. 
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