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Abstract. In this paper we present a survey on the minimum and non
minimum time solutions to the Firing Squad Synchronization Problem.
Particular emphasis is on the contribution given by Jozef Gruska, in
honor of which this article is dedicated.

The problem consists in synchronizing a Cellular Automata (CA)
whose cells work at discrete steps at unison. The first cell is initially in
a particular state, called the General, and all the others are in a Latent
state. The problem is solved when, all the cells enter for the first time
and simultaneously a Firing state. In its original and basic formulation,
the cells are arranged as a line, here we consider also other shapes like
rings, rectangular grids and toruses. Also other variations of the problem
are considered, such as the limited link capacitiesand different numbers
and positions of the General state.

We consider both the minimum time needed to synchronize the CA
and some algorithms synchronizing in particular times. Some open prob-
lems are also proposed.

Keywords: FSSP · Cellular Automata · Synchronous Computations ·
Channel Capacity

1 Introduction

Cellular Automata (CA) are perhaps the most intriguing and fascinating model
of computation, and Quantum Cellular Automata, perhaps, the most important
model of information processing by nature. It is therefore of great interest and
large importance to study in depth many natural variants of the basic models of
cellular automata and relations among them. CA have been investigated from
many points of view and applied in fascinating ways in so many areas of science
and technology. One of the first, and still fascinating, problems concerning cellu-
lar automata is the Firing Squad Synchronization Problem (FSSP). When and
how one can make interaction of isolated and simply interconnected identical
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finite automata, to cooperate so effectively that they achieve almost impossible
tasks, to completely synchronize their actions.1

The FSSP was originally proposed by John Myhill in 1957 and printed later
in [Moo64]. Roughly speaking, its setting consists of a network of identical cells
(finite automata) working synchronously at discrete time steps and connected lin-
early, see Fig. 1a. The cells are all in a quiescent state until the leftmost, stimulated
by the external environment, enters a General state and issues a Fire when ready
command and later all the cells (soldiers) enter simultaneously a Fire state.

In his seminal paper, Myhill said that at most four hours are needed to solve
the FSSP, also by non computer science experts, as reported in [GK12]. However,
though this may sound a little intimidating, we think that, as often happens in
describing math problems, the simplicity of its formulation, and why not, also the
elegance, can lead to this idea. What is certainly true is that the basic solution is
quite simple to understand. The next natural step was to find the fastest solution
and at the best of our knowledge, as reported by Umeo in [Ume96], Goto gave
the first minimum time solution in a course note of Harvard University [Got62],
and since then other minimum time solutions have been given, as we will see in
in section 3.1.

In the original formulation of the problem, the cells are arranged as a line.
We discuss time solutions also when cells are arranged in different shapes, such
as ring-shaped or rectangular arrays, and spend few words on higher dimensional
arrays. Besides the time, also the size of the finite automata is important, in fact
processors with few states can function at higher clock rates and the solutions
are faster in absolute time (see [GK12]). In section 3 we will discuss also on this
aspect, and emphasize some open problems.

The importance of FSSP lies clearly also in the fact that synchronizing algo-
rithms are useful when it is necessary to automatically start at the same moment
various activities (e.g. different algorithms). This essentially motivated our stud-
ies reported in section 4, concerning the problem of synchronizing a network at
given times.

Let us underline that this paper does not pretend to be a complete survey
on the FSSP. Actually, in literature there is abundance of material and several
beautiful survey papers have been written by Hiroshi Umeo.

The rest of the paper is organized as follows. In section 2 we give the basic
definitions of the FSSP and of the different networks we consider. In section 3
we present the minimum time solutions. In the last section 4 we survey some
algorithms that synchronize at particular times.

2 The Firing Squad Synchronization Problem

Cellular Automata. A cellular automaton (CA) consists of a regular network of
cells, each in one of a finite number of states (Q denotes the set of such states).
1 This paragraph is the incipit of the introduction written by Jozef in [GLP07], that

we chose to quote in full here for the passion about the CA that it contains and still
distils.
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A neighborhood relation is defined, indicating the neighbors of each cell. All the
cells have the same number N of neighbors, except a fixed number of boundary
cells which have less neighbors. A boundary cell has less than N neighbors. A
cell is intended to be linked to each of its neighbors through communication
channels, and can send and receive, in each time step, binary sequences whose
length is bounded by the capacity of the channels.

Time in the model is discrete. On each time step, every cell updates its
state in accordance to a transition rule that takes as input the state of the cell
itself and the sequences obtained from the cells in its neighborhood. The cells
are then finite automata which operate synchronously, at discrete time unit. At
each time t, a configuration specifies the state of each cell. A computation step
modify the configuration, in accordance to the transition function and depending
on both the current configuration and the sequences sent by the cells. An initial
configuration is a configuration at time 1. Observe that in the classical definition
of CA, the transition function takes as input the state of the cell itself and those
of its neighbors at the previous step. Such classical definition is captured here
when the capacity of the channels is log|Q| and then each cell can send its whole
state in a step.

(a) Line (b) Ring

Fig. 1. One dimensional networks

The FSSP Problem. We assume that among the states of the considered cellular
automaton three are distinguished states: G, the General state, L, the Latent
state, and F , the Firing state. The state L has the property that a cell in this
state can send only 0 to its neighbors, and remains in the same state unless it
receives a different from 0 sequence from one of its neighbors.

The initial configuration for the FSSP problem is such that a cell in a prede-
termined position in the network is in the state G, and is called General, and
all the others cells, called Latent, are in the state L (in some generalization of
the problem, more then one General may occur in the initial configuration).
The problem is to determine a description of a CA (state set and transition func-
tion), which does not depend on the number of cells, such that, starting from
the initial configuration, at some future time, all the cells will simultaneously
and, for the first time, enter the firing state F (synchronization).

We are interested in the time when the cells enter F , and we express it as a
function of a parameter n of the size of the network. (e.g. for a Line or a Ring
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n is its length, for a Square it is the number of rows). A cellular automaton
which provides a synchronization in time t(n) is also called a solution in time
t(n) of the FSSP, or simply a solution.

Communication Networks. The original FSSP problem was defined over a lin-
ear sequence of cells. Later, a number of variations and generalizations of the
problem have been introduced. We deal with FSSP defined over different Com-
munication Networks: the network may have different shape, number of dimen-
sions2, and neighborhood relation, and the channels may vary for capacity and
for direction of the information flow (either two-way or one-way).

(a) Square (b) Torus

Fig. 2. Two-dimensional networks

– One-dimensional networks:
• Line: a linear sequence of cells, with the first and the last cell being the

boundary cells. Boundary cells have just one neighbor, the other cells
have two neighbors. Channels are two-way, and connect every pair of
adjacent cells. The capacity of the channels is log|Q|, that is, they have
the ability to transmit a state of the CA, (see Figure 1a).

• Ring: a one-dimensional network with two-way communication channels
with capacity log|Q|. The peculiarity is that there are no boundary cells,
and all the adjacent cells are linked to each other, (see Figure 1b). Cells
are numbered 1, · · · , n, as for a Line, with the first cell arbitrarily chosen.

• oneWay-Ring: a Ring in which the communication channels are one-
way, that is, they are directed links from cell i to the cell i + 1, modulo
n. Thus, at each step the i-th cell receives the information from the the
cell i − 1, and sends the information to the cell i + 1.

• 1-Line and a 1-Ring: similar to the Line and to the Ring, respectively,
with communication channels having capacity 1. In this way, they have
the ability to transmit just one bit in a time.

– Two-dimensional networks

2 We use the term dimension here with the intended meaning to indicate the number
of coordinates needed to locate a cell.
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• Square: a regular grid of n × n cells, numbered (i, j), for 1 ≤ i, j ≤ n.
Channels, with capacity log|Q|, are two-way, and connect every pair
of adjacent cells, i.e. each cell (i, j), except for the boundary cells, is
connected to cells (i−1, j), (i, j−1), (i+1, j) and (i, j+1) (a boundary
cell may have two or three neighbors, depending on the values of i and
j) (see Figure 2a).

• Rectangle: similar to the Square, but with a grid of m × n cells.
• Torus: Simplifying, it is obtained as a rotation of rings and can be seen

as a two-dimensional regular grid of n× n cells, without boundary cells:
as shown in Figure 2b, every cell has four neighbors.

• oneWay-Torus: similar grid to the Torus, with one-way channels from
each cell (i, j) to the cells (i, j + 1) and (i + 1, j), modulo n.

• 1-Square and 1-Torus: Square and Torus with one-bit communica-
tion channels.

In a natural way, these definitions can be extended to communication networks
with higher dimensions.

As already said, in the initial configuration for FSSP, a General is a cell
in the state G. In the above described networks, the General is the first cell in
the grid, that is the cell 1 in the one-dimensional networks and the cell (1, 1) in
the two-dimensional cases. Several generalizations of the problem have been con-
sidered in literature, by modifying the number or the position of the Generals
in the initial configuration. Let us mention some of them.

– Two-End FSSP, also called Two-End Synchronization: the network is a Line
of n cells, and the synchronization starts from an initial configuration with
a General at each end (i.e., at cells 1 and n).

– Four-End FSSP: the network is a Square of n×n cells, and the synchroniza-
tion starts from an initial configuration with Generals at the four corners
(i.e., at cells (1, 1), (1, n), (n, 1) and (n, n)).

– Generalized FSSP (GFSSP): the General is located on an arbitrary cell.
– Multi-General FSSP (MG-FSSP): in the initial configuration there is an

arbitrary number of Generals, in arbitrary positions.
– Asynchronous Multi-General FSSP (A-MG-FSSP): a generalization of the

MG-FSSP, in which the Generals start their work in an asynchronous way.

3 Minimum Time Solutions to the FSSP

In this section we present minimum time synchronization for several models of
communication networks.

3.1 One-Dimensional Networks

Let us first consider one-dimensional models. We will discuss the optimum time
for each variant of the problem and show that in almost all the considered cases,
optimum time solutions exist.

Line. It is well known that any solution to FSSP over a Line of n cells requires
at least time 2n − 1. Actually, the time required for the General to wake up
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all the Latent cells is n, and other n−1 steps need to get back the information
that all the cells have been awakened.

First minimal solution to FSSP over a Line, using a rather huge number
of states (several thousands), was given in 1962 by Goto. Then, Waksman in
[Wak66] showed a 16-state CA which is a well known algorithm, often considered
to be the first minimum time solution to FSSP. In the same years, Balzer gave
an 8-state solution, [Bal67]. Twenty years later Mazoyer constructed a 6-state
minimum time solution which is the best known solution with respect to the
number of states, [Maz87]. Optimum time solutions to the FSSP over a Line
have been analyzed and compared in [UHS05].

In the generalized version of FSSP problem (GFSSP) the General is located
on any cell, that is an arbitrary cell may be in state G in the initial configuration.
Moore and Langdon, in [ML68], showed a 17-state solution to GFSSP in time
n − 1 + max(p;n − p + 1), which is the minimum time required to synchronize
the cells of a Line where p is the number of cells between the General and the
closest end of the Line.

Other variations of the problem have been considered in literature, by
modifying the number of the Generals in the initial configuration of the
given CA. In the Multi-General FSSP problem (MG-FSSP), there are a num-
ber k of General cells, each being pi cells far from the leftmost one, for
i ∈ [1, · · · , k]. In [SW04] a minimum time solution has been given in time
n+max(mini(pi);n−1−maxi(pi)). In the same paper, a more general case has
also been considered in which the Generals start their work in an asynchronous
way, each at a time ti (A-MG-FSSP problem). In this case a lower bound has
been provided but it has been proved that for each CA solving A-MG-FSSP,
there are infinitely many instances for which the CA does not synchronize in
the optimum time.

An interesting case is when two Generals occur in both the boundary cells,
and the problem arising is known as Two-End synchronization of a Line, [Cul89].
A Two-End synchronization of a Line of n cells can be obtained in time n by
considering the line as being split into two halves. Each of these half-lines can
be seen as a Line with one General, and is synchronized by a minimum time
solution which starts from the boundary cells. In the case n is odd, the central
cell belongs to both half-lines, and each half-line has (n + 1)/2 cells. Thus, all
the cells fire simultaneously in time 2(n+1)/2− 1 = n. When n is even, the line
is divided in two sub-lines of n/2 cells. Anyway, each of the two central cells can
act as the last cell of its half-line only when it receives an input from the other
half-line, thus the synchronization of each half-line needs a further unit of time,
and then it works in time n also in this case.

Concerning cellular automata with the ability to transmit just one bit of
information, Mazoyer, in [Maz96], showed that a minimum time solution exists
even for a 1-Line. Observe that in general 1-CA, i.e. CA using 1-bit channels,
can simulate standard CA but this simulation causes a slow down of a factor
log|Q|, where |Q| is the number of states of the CA.
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The Two-End synchronization outlined above does not work if one uses the
solution to the case of 1-bit communication channel. The main reason is that
the synchronization of 1-CA makes an important use of the information on the
parity of the bits received by each cell. In [GLNP06,GLP07], the authors show
that a unit time of delay is then necessary when the number of cells is even. This
leads to a Two-End synchronization in time 2�n/2� + 1.

Ring and oneWay-Ring. A solution to the FSSP over a Ring of n cells can
simulate a Two-End synchronization of a Line of n + 1 cells. Actually, the cell
number 1 of the Ring can act as both the boundary cells of the Line. This idea
is due to Culik, but he considered that an n cell Ring could simulate a Two-End
synchronization of an n cell Line, thus obtaining an imprecise solution in time
n, [Cul89].

We have already said that a Two-End synchronization of a Line of n + 1
cells can be obtained in time n+ 1, which is indeed the minimum time for an n
cell Ring. This is actually the time required for the General to wake all the
cells up and receive the information back (see [GLP07] for a proof).

When the channels can communicate just one bit of information, the simu-
lation of a Two-End synchronization of a Line of n + 1 cells leads to a solution
to 1-Ring in time 2�n/2�+1, [GLNP06,GLP07]. Hence, there is a gap between
the lower and the upper bounds for the synchronization of a 1-Ring with an
odd number of cells.

The lower bound for the synchronization time, has been refined in [LNP96],
in the case of oneWay-Rings: it has been proved by contradiction that any
solutions over a oneWay-Ring requires at least time 2n. Suppose that a solution
in time less than 2n exists for FSSP over a oneWay-Ring A with n cell, the
same solution does not work correctly for a oneWay-Ring B of 2n cell. One can
see that the state entered by the n-th cell of A in any time t < 2n may be the
same as the state entered by the n-th cell of B at the same time. Hence, if the
cells of A enter the Firing state in a time t < 2n, then, when the algorithm
runs on B, the n-th cell enters the Firing state (the same state entered in A),
while the last cell of B is still Latent (it has not been awakened yet). Observe
that in [Cul89], an imprecise solution in time 2n − 1 was given.

It is easy to see that any synchronization of a Line A of n processors in time
t(n) can be simulated on a oneWay-Ring B in time 2t(n)−1. Actually, suppose
that a cell i of A enters a state p in one step, in accordance to the transition
function, and depending on the states qL, q and qR, of the cells i−1, i and i+1,
respectively. By using two steps, the cell i + 1 of B can get both qL and q from
the cells i − 1 and i, and then can enter the state p. Thus, if A and B start
from the same initial configuration at time 1 and A execute t(n) − 1 steps to
reach a firing configuration, then, with the above simulation, all the cells of B
fire after 2(t(n)− 1) steps, in time 2t(n)− 1. The above idea can be exploited to
get a solution to the FSSP for oneWay-Ring in time 2n. Consider a Two-End
synchronization S of a Line which takes time n. In the first step, a solution over
the oneWay-Ring lets also the second cell enters the state G. Now, the oneWay-
Ring can be seen as beginning from the second cell and ending to the first cell,
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thus having the same initial configuration as the Line when S starts. With an
algorithm implementing the above described simulation, the oneWay-Ring is
synchronized in time 2n, see [LNP96].

The main results of the section are now summarized.

Theorem 1. The following results hold:

– Every solution to FSSP over a Line of n cells requires at least time 2n − 1
and optimum time solutions to FSSP over a Line and a 1-Line exist;

– Every solution to FSSP over a Ring of n cells requires at least time n + 1
and an optimum time solution exists;

– Every solution to FSSP over an oneWay-Ring requires at least time 2n, and
an optimum time solution exists;

– Every solution to FSSP over 1-Ring requires at least time n + 1 and there
is a synchronization of a 1-Ring in time 2�n/2� + 1.

The table in Fig. 3 schematically summarizes the results of this subsection.

Model Variation Synchronization time Reference Minimum time?

Line – 2n − 1 [Wak66] YES
Line Generalized n − 1 + max(p;n − p + 1) [ML68] YES
Line k Generals n − 1 + max(mini(pi);n − maxi(pi) + 1) [SW04] YES
Line 1-bit 2n − 1 [Maz96] YES
Line Two-End n [Cul89] YES
Line Two-End, 1-bit 2�n/2� + 1 [GLNP06,GLP07] for odd n

Ring – n + 1 [Cul89] YES
Ring 1-bit 2�n/2� + 1 [GLNP06,GLP07] for even n

Ring ≥ 2-bit n + 1 [GLNP06,GLP07] YES
Ring oneWay 2n [LNP96] YES

Fig. 3. Solutions for one-dimensional Communication Networks

3.2 Two and Higher Dimensions

Square. Also in this case, a plethora of scenarios and algorithms have been given.
The spark for the two-dimensional case with the general in a corner cell, was
given by the results contained in the Ph.D. thesis of Wendel Terry Beyer, [Bey69]
and of Ilka Shinahr, this latter then published in [Shi74]. For an n× n Square,
lower and upper bounds were given in time 2n− 1. The solution in [Shi74] used
17 states, and still today there is an active research for this case. In [UK10] were
used only 7 states adopting the so-called zebra mapping, and recently another
algorithm has been presented in [UUN11], based on a new technique called one-
sided recursive halving markings and using 37 states and 3271 rules, which is
quite different from the well known classical algorithms of [Bey69,Shi74]. We
omit here even the basic idea of classical algorithms, since it has been exposed
several times in literature, see for example Wikipedia.

Rectangle. In the case of a Rectangle of m × n cells, m �= n, in [Shi74] the
author gave the lower bound for a solution in time n+m+max (m,n)− 2 along
with a matching time algorithm. For this case too there is an active research: in
[UKT13] a new algorithm has been given which has some nice properties, like the



122 M. Napoli and M. Parente

easiness in the verification of its correctness and the fact that it can be extended
to a solution for generalized FSSP, where the general is at an arbitrary position
in the array (for this feature see also [UK12]). Another peculiarity is that it is
isotropic with respect to the shape of a given rectangle array, that is there is no
need to control the FSSP algorithm for longer-than-wide and wider-than-long
input rectangles.

1-Square. In the case the communication channel is restricted to just 1-bit a
trivial lower bound on the minimum firing time of a square n × n is clearly
2n − 1. For this model, in [GLP04,GLP07], a tight upper bound of time 2n − 1
has been shown, for the first time in this case.

As regards Four-End FSSP, where there are Generals positioned in the four
corners of an n× n Square, some synchronization algorithms have been given.
When the channels have the capacity to transmit a state, it is in time n, while
for the 1 bit case, it is in time 2�n/2� + 1, in a similar way as for Two-End
synchronization of a Line.

It should be noted that many of the optimum time solutions proposed for
the two-dimensional case, are derived from well-known solutions for the one-
dimensional case, for example those in [UK12,GLP07], embed the synchroniza-
tion algorithms given by Mazoyer, the former resembles the one of [Maz87] using
only 6-states, and the latter, given for 1-bit communication channels, combines
that in [Maz96] and the classical of [Shi74].

Torus. As in the one-dimensional case for the Rings, the minimum time to
synchronize is at least the time necessary by the General to send and hence
receive back a message to/from all the other cells. In [GLP07] it has been shown
that in the case of a Torus (sometime called also Square of Rings) this time is n+
1. It is not trivial at all to establish that, in the case of one-way communication,
this time rises to 3n−1, as shown in [LNP96], along with matching upper bound
algorithms. This lower bound is shown by contradiction, in a similar way as for
the lower bound of the synchronization time of a Ring.

In the case of a 1-bit channel, by extensively using the result for Four-End
FSSP, in [GLNP06,GLP07], an almost optimum upper bound is given in time
2�n/2�+1. Let us underline that the restriction on the channel capacity is to be
meant strictly and not as a shorthand for a big-O notation of some constant. In
fact, it is worth noting that in the case of a channel with capacity strictly greater
than 1-bit, in this same paper Gruska et al. showed an algorithm synchronizing
in time n + 1, thus optimum in time. The idea exploited there was to use the
second bit to recognize the type of messages, a thing that in the case of 1-bit
channel was done exploiting the arrival time delay of the messages, thus not
allowing to get the tightness of the bound.

Still for 1-bit communication channel, in [UMK03] some nice non optimum-
time algorithms for synchronize any n × n Square and m × n Rectangle in
2n and m + n + max(m,n) + 1 steps, have been given, respectively. The time
complexities for these two algorithms are one step larger than the optimum ones.
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Array of Dimension Greater than 2. In [UNK12] lower and upper bounds on
optimum synchronization time for arrays of dimension k > 2 have been given. In
particular it has been shown that, in case of one General in a corner of an array
of size n1×n2× . . .×nk, the minimum time is

∑k
i=1 ni+max(n1, n2, . . . , nk)−k

steps. In the same paper, this result has been generalized also for a General
in any position.

We can now summarize the main results of this subsection.

Theorem 2. The following results hold:

– Every synchronization of a Square of n×n cells requires at least time 2n−1,
and an optimum time solution exists over a Square and a 1-Square;

– Every synchronization of a Torus of n×n cells requires at least time n+1,
and an optimum time solution exists;

– Every synchronization of a oneWay-Torus of n × n cells requires at least
time 3n − 1, and an optimum time solution exists;

– Every synchronization of a 1-Torus of n×n cells requires time at least time
n + 1 and a solution exists in time 2�n/2� + 1.

The table in Fig. 4 schematically summarizes the results cited in this sub-
section.

Model Variation Synchronization time Reference Minimum time?
Rectangle – n + m + max (m,n) − 2 [Shi74] YES
Square – 2n-1 [Bey69,Shi74] YES
Square 1-bit 2n − 1 [GLP04,GLP07] YES
Square Four-End, 1-bit 2�n/2� + 1 [GLNP06,GLP07] for odd n
Torus – n + 1 [GLNP06,GLP07] YES
Torus 1-bit 2�n/2� + 1 [GLNP06,GLP07] for even n
Torus 2-bit n + 1 [GLNP06,GLP07] YES
Torus one-way 3n − 1 [LNP96] YES

Fig. 4. Solutions for two-dimensional Communication Networks

A particular mention deserves the, somewhat orthogonal, work on the FSSP
of Kojiro Kobayashi started, at the best of our knowledge, in 1977 with the
paper [Kob77] till the beautiful recent one [GK12]. The trait of Kobayashi’s
studies is easily recognized as his research has been almost always focused on
non regular shapes of the network cells and the FSSP has been related to a
combinatorial problem for which only exponential algorithms are known. For
example in [Kob01] the cells of the network are placed along a path of two-
dimensional array space, and along with Goldstein, in [GK05,GK12], it has been
shown that if a minimum-time solution exists, (for example for the path problem
mentioned above), then there must exist polynomial time algorithms for solving
the diameter problem in the standard RAM model of computation, this implying
that P = NP.

The FSSP has been also studied in a setting where the processors do not share
a global clock, though working in synchrony, and can be faulty [CDDS89]. In this
paper upper and lower bounds are shown on the number of faulty processors that
can be tolerate and still reach a solution. Recently this fault tolerant scenario
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has been resumed in [DHM12] and enriched by the first self-stabilizing firing
squad algorithm, allowing thus recovery from arbitrary transient errors. This
algorithm is optimum with regards to two aspects: if the algorithm is in a safe
state, it reaches the consensus as fast as any other algorithm does once a cell
receives a start signal, and the second is that starting from an arbitrary state,
it converges to a safe state as fast as any other algorithm does.

Finally let us also mention a series of interesting papers related to the FSSP
which have been very recently published by Arnold L. Rosenberg, see for example
[Ros14,Ros13], that model robots with teams of cellular automata whose aim is
to identify and search within squares of n × n mesh of tiles.

3.3 Open Problems

One of the best known open problem in this area regards the minimum number
of states necessary to synchronize a Line. Clearly, any CA solving FSSP has at
least three states (G, L and F ). Sanders, in [San94], showed that no 4-state CA
can solve FSSP. Since the known solution with the least number of states is the
one due to Mazoyer, with 6 states, it is unknown whether the minimum number
of states is indeed 6 or there is a CA beating Mazoyer’s solution.

All the solutions in Theorem 1 and in Theorem 2 are optimum in time, and
thus the lower bounds are tight, except for a gap between the lower and the
upper bounds for synchronization of both a 1-Ring and a 1-Torus with an
odd number of cells. In these cases, the best known synchronization algorithms
require time n+2, whilst the known lower bound is n+1. In [GLNP06,GLP07],
solutions in time n+ 1 have been shown for a Ring and for a Torus with 2-bit
communication channels, thus showing the tightness of the given lower bound in
the case of O(1)-bit channels. It is still an open problem to state whether such
an optimum time solution exists for 1-Ring, or the given lower bound can be
made tighter.

Finally, another interesting matter regards the synchronization of CA over a
Ring and over a Torus with both the restrictions: one-way and 1-bit communi-
cation channels. Clearly, no solution can consume less than 2n time, for a 1-bit
oneWay-Ring and less than 3n − 1 time, for a 1-bit oneWay-Torus. Anyway
we do not know whether such solutions. The idea of the algorithms given for
oneWay-Ring and oneWay-Torus does not work in the same time when 1-bit
communication channels are used, since the number of steps necessary for a cell
to send its state is greater than one in this case.

4 Synchronization Algorithms in Particular Time

In this section we will survey some of the main results known in literature to get
non minimum time synchronization problems. More precisely, particular times
in which, and also particular ways to, synchronize cellular automata ([LNP98,
LNP00,GLNP06]).
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The general pattern to get a synchronization in a particular given (not mini-
mum) time, is the following simple idea: given a communication network A of
parameter n, a signal3 is generated from the General cell and comes back to it in
time (t(n) − min(n)) where min(n) is the minimum time for a CA to solve the
FSSP over A, and t(n) ≥ n. Then a minimum time solution starts, synchronizing
thus A in time t(n). For example, in the case A is an n-cell Line or an n × n
Square, then min(n) = 2n − 1. However, despite its simplicity, sometimes the
implementation of this idea is far from trivial, since it implies different compo-
sitions of different signals and synchronization algorithms. All the results have
been obtained for the most general case, the 1-bit communication channel thus
they hold sic et simpliciter for all types of channel capacities.

Theorem 3. Synchronization algorithms in time n2, 2n, n�log n�, and n�√n�
exist, for a 1-Line, 1-Square, 1-Ring, and a 1-Torus.

Moreover other results have been given in the case of one-way communication.

Theorem 4. Synchronization algorithms in time n2, 2n, and n�log n� exist, for
a 1-oneWay-Ringand 1-oneWay-Torus.

To obtain other particular synchronization times, some signal and synchro-
nization compositional operations have been introduced: parallel, sequential and
iterated. Also sufficient conditions when these operations may be applied have
been provided.

It is easy to implement the standard cross product of automata between two
CA’s A1, A2, using a greater channel capacity: the communication channels are
kept distinct and therefore A1 ×A2 can run in parallel the synchronization algo-
rithms. On top of this a CA that selects between two distinct synchronization
algorithms, according to a given condition P (n), has also been given. Examples
of P (n) are the parity of n or the fastest/slowest synchronization times. In par-
ticular this last feature can be realized as follows: given two CA’s synchronizing
in time t1(n) and t2(n), respectively, another CA is obtained as the cross prod-
uct of the two and of a third one that selects according to the result of the test
t1(n) ≤ t2(n).

Theorem 5. Let A and B be solutions to FSSP with channel capacity a and b,
respectively. It is possible to design a CA with channel capacity a + b + c, for
some integer c, synchronizing in the minimum (maximum) times of A and B.

Other particular times have been obtained, such as the sum and the product,
holding for all the 1-bit models considered so far. In particular, the technique to
obtain the product is interesting. It extends the cross product to let a solution
in time t1(n) to be iterated t2(n) times, without using extra capacity of the
channels.
3 The concept of signal is often used in literature as a way to facilitate the description

of a CA. Informally speaking, a signal can be seen in the space-time unrolling of the
CA as a set of cells that, at a given time, receive/send words, different from all-zero
words, from/to adjacent cells.
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Theorem 6. Given two solutions to the FSSP in time t1(n) and t2(n), and an
integer d ≥ 0, solutions in time t1(n) + t2(n) + d, and t1(n) · t2(n) exist.

The next result provides solutions for a 1-Square and for a 1-Rectangle,
starting from that for a 1-Line. Actually, in an (n×m)-cell Rectangle, several
Lines of n+m−1 cells can be individuated, starting from cell (1, 1) and ending
to cell (n,m) (for example, the cells in the first row and in the last column form
one of such Lines). Analogously, (2n − 1)-cell Lines can be individuated in an
n × n Square. All such Lines can be synchronized in parallel, using the same
algorithm.

Theorem 7. If there is a synchronization of a 1-Linein time t(n), then a syn-
chronization on a 1-Square in time t(2n − 1) and a synchronization on a 1-
Rectangle in time t(n + m − 1) exist.

From this last result and Theorem 3, the next theorems follow.

Theorem 8. Synchronizations on a n×n 1-Square in time K2, 2K ,K ·�logK�
and K · �√K�, for K = 2n − 1, exist.

Theorem 9. Synchronizations on a n × m 1-Rectangle in time J2, 2J , J ·
�log J� and J · �√J�, for J = n + m − 1, exist.

Finally let us also mention that synchronizing algorithms for all the models
we have dealt with in this paper, exist in any time that can be expressed as a
polynomial of n, formally stated in the following theorem.

Theorem 10. Let h ≥ 2 and a0, . . . , ah be integers with ah ≥ 1. A synchroniza-
tion in time ahn

h+ah−1n
h−1+. . .+a1n+a0 exists on an n-cell 1-Line, 1-Ring,

1-oneWay-Ring, and on an (n×n)-cell 1-Square, 1-Torus, 1-oneWay-Torus.
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