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Abstract. Some aspects of logical reversibility for computing devices
with a finite number of discrete internal states are addressed. These
devices have a read-only input tape, may be equipped with further
resources, and evolve in discrete time. The reversibility of a computation
means in essence that every configuration has a unique successor configu-
ration and a unique predecessor configuration. The notion of reversibility
is discussed. In which way is the predecessor configuration computed?
May we use a universal device? Do we have to use a device of the same
type? Or else a device with the same computational power? Do we have
to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations? We
present some selected aspects as gradual reversibility and time-symmetry
as well as results on the computational capacity and decidability mainly
of finite automata and pushdown automata, and draw attention to the
overall picture and some of the main ideas involved.

1 Introduction

Computers are information processing devices which are physical realizations of
abstract computational models. So, it is interesting to know whether an abstract
model is able to obey physical laws. Since reversibility is a fundamental principle
in physics, it is interesting to study the models from this point of view. Moreover,
the observation that loss of information results in heat dissipation [26] strongly
suggests to study reversible computations without loss of information.

First studies of this kind have been done for the massively parallel model
of cellular automata since the sixties of the last century. Nowadays it is known
from [29] that every, possibly irreversible, one-dimensional cellular automaton
can always be simulated by a reversible one-dimensional cellular automaton in
a constructive way. Later, in [4] reversible sequential machines, more precisely,
Turing machines have been introduced. Again, a fundamental result is that every
Turing machine can be made reversible. These two types of devices received a
lot of attention in connection with reversibility. They are beyond the scope of
this discussion. Valuable surveys with further references to literature are, for
example, [15] for cellular automata and [30], where one may find a summary of
results on reversible Turing machines, reversible cellular automata, and other
reversible models such as logic gates, logic circuits, or logic elements with mem-
ory (see also [3,17,18,21] for further investigations). Logical reversibility has
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been studied also for other computational devices such as space-bounded Turing
machines [27], two-way multi-head finite automata [2,31], one-way multi-head
finite automata [20], and queue automata [22].

Here we focus on some aspects of reversibility in sequential devices, where
we mainly restrict the discussion exemplarily to finite automata and pushdown
automata. In Section 2 the notion of reversibility and its possible definitions are
discussed. In Section 3 the simplest device in question is considered. Gradual
reversibility, computational capacity, and decidability of finite automata are the
topics presented. The next level in the basic hierarchy of automata are determin-
istic pushdown automata. Their reversible variants are dealt with in Section 4.
Finally, a further aspect of reversibility, the so-called time-symmetry, is discussed
in Section 5. Basically, this means that one can go back in time by applying the
same transition function as for forward steps after a specific transformation of
the phase-space. So, time-symmetric machines themselves cannot distinguish
whether they run forward or backward in time.

The reader is assumed to be familiar with the basic notions of automata
theory as contained, for example, in [11,14]. In the present paper we will use the
following notational conventions. An alphabet Σ is a non-empty finite set, its
elements are called letters or symbols. We write Σ∗ for the set of all words over
the finite alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \{λ}. The
reversal of a word w is denoted by wR and for the length of w we write |w|. We
use ⊆ for inclusions and ⊂ for strict inclusions. The family of languages accepted
by devices of type X is denoted by (X). In the following, two devices are said
to be equivalent if they accept the same language.

2 Reversibility of Automata – What Is It?

In general, here we consider computing machines with a finite number of discrete
internal states. The machines have a read-only input tape, may be equipped with
further resources, and evolve in discrete time, where each computation step is
driven by a deterministic transition function. Given a configuration represent-
ing the complete “global state” of a device, the transition function is used to
compute the successor configuration. The transition function depends on the cur-
rent internal state and on the status of further resources the machine is equipped
with. It gives the successor state and maybe changes the status of the resources.

Since we are particularly interested in reversible computations of such
devices, we discuss the notion of reversibility first. Basically, reversibility is meant
with respect to the possibility of stepping the computation back and forth. To
this end, the devices have to be also backward deterministic. That is, any con-
figuration must have at most one predecessor. This simple observation raises
several questions.

For example, in which way is the predecessor configuration computed? May
we use a universal device? Do we have to use a device of the same type? Or else
a device with the same computational power? While the idea to step the com-
putation back and forth anticipates not to use a universal machine in general,
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Fig. 1. A DFA accepting the language a∗b+ (left), and its reverse DFA with lookahead
two (right). The labels on the edges indicate the complete content of the input window
(but only 1 symbol is “consumed”).

the answer to the latter questions is not that clear. Consider the deterministic
finite automaton of Figure 1 that accepts the language a∗b+. If the predecessor
configuration has to be computed by a device of the same type, the DFA is irre-
versible since there are two different transitions entering the same state s1 with
the same input symbol b (see Figure 2). On the other hand, if the predecessor
configuration may be computed by a device with the same computational power,
the DFA is reversible. In this case we may provide a lookahead of size two, that
is, the input window of the backward DFA has size two while nevertheless only
one symbol is processed per time step. The lookahead helps to overcome the
crucial situation of the computation at the borderline between the a’s and b’s
(Figure 3). However, a lookahead does not increase the computational capacity
of DFA. Such devices still characterize the regular languages only.

Another question that comes up in connection with the computability of
predecessor configurations concerns the set of configurations that count. Do we
have to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations, that is, con-
figurations that actually occur in computations? Consider for example the DFA

a a · · · a a b b · · · b b

s0 forward

a a · · · a a b b · · · b b

s0 forward

a a · · · a a b b · · · b b

s1 forward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1 s0

Fig. 2. An irreversible computation of the DFA accepting the language a∗b+
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a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s0

Fig. 3. Backward computation of the DFA with lookahead 2

s1

s0 s3

s2 b

a

a

a
b

start

a a a b b b . . .

s3backward

Fig. 4. A DFA (left) and an unreachable configuration (right)

in Figure 4. The configuration on the right-hand side is unreachable from any
initial configuration. Is the DFA reversible? It is for all reachable configurations,
but it is irreversible if all possible configurations count. Reversibility on reach-
able configurations is a wider notion than reversibility on all configurations. A
gentle argument towards the former notion is given by the big bang theory. If
one believes in it everything we are living in evolved from an initial situation.

So, in the sequel we carefully have to distinguish which notion of reversibil-
ity is meant. Unless stated otherwise, we require that the backward steps of a
computation are performed by another device of the same type.

3 Finite-State Machines

Here we turn to the simplest type of device in question. Reversible deterministic
finite automata (REV-DFA) have been introduced and studied in the context of
algorithmic learning theory in [1] (see also [16]). Given a DFA M , the inverse M←

of M is defined by interchanging initial and final states and reversing each tran-
sition arrow. In [1], the finite automaton M is defined to be reversible if and
only if both M and M← are deterministic. Incomplete transition functions are
allowed. In particular, this definition implies that for reversible DFA only one
final state is allowed. Since there are regular languages that are not accepted
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by any DFA with a sole accepting state, by definition, there are non-reversible
regular languages in this setting.

The reversible DFA of [1] are called bideterministic in [33]. The definition of
reversibility has been extended in the latter reference. Now multiple accepting
as well as multiple initial states are allowed. So, reversible DFA in the sense
of [33] may have limited nondeterminism plugged in from the outside world at
the outset of the computation. On the other hand, there are no non-reversible
languages per definition any more.

Here we stick with standard definitions. That is, a REV-DFA has a unique
initial state and may have multiple accepting states. Essentially, in [33] it has
been shown that the regular language a∗b+ of Figure 1 cannot be accepted by
any REV-DFA.

Theorem 1 ([1,33]). There are regular languages which are not reversible, so
there are deterministic finite automata that cannot be simulated by any reversible
finite automaton.

An observation in [1] is that the inherent irreversibility of some regular
language may depend on the size of the input window of the devices. If this
size is increased for backward computations, more languages become reversible.
For example, the inherent irreversible language a∗b+ of Figure 1 is reversibly
accepted with lookahead size 2. This result led to the definition of so-called
k-reversible languages. In [7] this notion has been generalized to DFA in the
definition of [33], and in [24] to pushdown automata (and DFA in standard
definition).

We denote DFA with lookahead size k ≥ 1 by (k)-DFA. So, a classical deter-
ministic finite automaton is a (1)-DFA. A forward DFA is said to be reversible
of degree k (REV(k)-DFA) if the predecessor configuration is unique for all com-
putations that lead to the current configuration along the last k symbols read
in a forward computation. Note, the lookahead for the forward DFA is still 1
(see [24] for formal definitions). So, the lookahead of the backward DFA is used
to determine the unique predecessor configuration from all computations that
lead to the current configuration along the symbols seen in the input window.

This definition includes also non-reachable configurations. Consider once
more the language a∗b+ from above that is accepted by some REV(2)-DFA.
The configuration (baab, s1, bb) is unreachable in any computation starting from
an initial configuration, where baab is the input read so far, s1 is the current
state, and bb is the unread input. The configuration (aaab, s1, bb) is reachable.
Both have two predecessor configurations, namely (baa, s0, bbb), (baa, s1, bbb) and
(aaa, s0, bbb), (aaa, s1, bbb). However, in both cases the predecessor configura-
tion is unique, when the computation comes along the last two input sym-
bols. For the first case we have (ba, s0, abbb) � (baa, s0, bbb) � (baab, s1, bb) and
(ba, s1, abbb) ��∗ (baab, s1, bb).

The next example yields an infinite and strict hierarchy of regular languages
dependent on the degree of reversibility.
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Example 1. Let k ≥ 1 be an integer. Then the language { ambn | m ≥ 0, n ≥ k }
is accepted by some REV(k + 1)-DFA as indicated in Figure 5. However, the
language cannot be accepted by any REV(k)-DFA. ��

s0 s1 . . . sk−1 sk

a b

b b b bstart

. . . a a b . . . b b . . .

skbackward

k
︷ ︸︸ ︷

Fig. 5. A REV(k + 1)-DFA accepting the language a∗bkb∗. This DFA is not a
REV(k)-DFA, and there is no other REV(k)-DFA accepting this language.

Theorem 2 ([1,24]). For any integer k ≥ 1, there are regular languages
accepted by REV(k + 1)-DFA that cannot be accepted by any REV(k)-DFA.

So far, it turned out that lookaheads on the input gradually increase the
capability to perform reverse computations. Now we are interested in the ques-
tion whether all regular languages are captured by REV-DFA. Or else, whether
there are regular languages that cannot be accepted by any REV-DFA of any
degree. For the important subclass of finite languages, the answer to the latter
question is no.

Proposition 1 ([24]). Any finite language is accepted by some REV(1)-DFA.

For a second important subclass, the unary languages, reversibility is always
obtained as well, but the degree for REV-DFA cannot be bounded by any num-
ber.

Proposition 2 ([24]). For any unary regular language L, there is an integer
k ≥ 1 so that L is accepted by some REV(k)-DFA.

Finally, we consider the general cases where there are languages for which
even an arbitrarily large degree cannot help.

Theorem 3 ([24]). There are regular languages which cannot be accepted by
any REV(k)-DFA for any degree k ≥ 1.

The idea of the proof is to use a language L over an alphabet Σ that is
accepted with lookahead size 2 but cannot be accepted with lookahead size 1, and
a regular substitution s(a) = a#∗, for a ∈ Σ and a new symbol #. Language s(L)
consists of all words from L with an arbitrary number of # between each two
symbols from Σ. Clearly, s(L) is still accepted by some DFA. On the other
hand, for any k ≥ 1, language s(L) contains all words from s(L) ∩ (Σ#k)∗. So,
when accepting such words there is always at most one symbol of Σ in the
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lookahead. Therefore, if s(L) would be reversible for input lookahead size k, a
direct construction would show that it is reversible for input lookahead size 1 as
well, a contradiction.

Summarizing the results so far, there is an infinite proper hierarchy of k-
reversible languages. The union (REV(∗)-DFA) =

⋃

k≥1 (REV(k)-DFA) of
all levels of the hierarchy is properly included in the family of regular lan-
guages. In order to justify the power of REV(k)-DFA we compare the union
with other well-known subregular language families (see, for example, [5,12] for
further results and references on subregular language families). It turned out
that (REV(∗)-DFA) includes finite as well as unary regular languages prop-
erly. Moreover, in [1] it is shown that (REV(∗)-DFA) includes the definite
languages [32] and the reverse definite languages [10] properly. On the other
hand, (REV(∗)-DFA) is incomparable with the subregular language families
of generalized definite [10] and locally testable languages [28].

Coming to another aspect, we recall that it is well know that the minimal DFA
accepting a given regular language is unique. So there is the natural question
asking for the relations between minimality and reversibility. It turned out that
in this connection the different notions of reversibility do matter. In [33], the
following proposition is cited.

Proposition 3. A language L is accepted by a bideterministic finite automaton
if and only if the minimal finite automaton of L is reversible and has a unique
final state.

This answers the question about the notion of reversibility in [1]. However,
for the other notions of reversibility considered, the minimal reversible finite
automaton for some language can be exponentially larger than the minimal
automaton.

Example 2. Let L be the finite language {aa, ab, ba}. The minimal DFA accept-
ing the 2n-fold concatenation of L is depicted in Figure 6. It has 6n + 1 states.
Since L2n is finite, it is reversible. ��

s1 s4

s0 s3 s6 . . . . . .

s2 s5

a a, b

b a

a a, b

b a

a

b

a, b

a

start

Fig. 6. A minimal DFA accepting the language L2n, for n ≥ 1

Theorem 4 ([13]). Let n ≥ 1. The minimal REV-DFA accepting L2n has
Ω(rn) states, for some r > 1.
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Another aspect concerns the problem to decide whether a given language or
automaton is reversible. In case of finite automata, deciding this problem for
devices is almost trivial. An inspection of the transition function and the set of
accepting states suffices. This observation transfers to languages in the notion
of [1] by Proposition 3. In general, the problem is more involved.

Theorem 5 ([33]). There is a polynomial time algorithm for testing whether
the language accepted by a minimal finite automaton can be accepted by a
reversible finite automaton.

4 Pushdown Automata

The next level in the basic hierarchy of automata are deterministic pushdown
automata (DPDA). Their reversible variants have been introduced and studied
in [19], where only reachable configurations are relevant for reversibility and the
predecessor configurations have to be computed by a device of the same type.
Recall that the transition function δ of DPDA maps the current state, the current
input symbol or λ, and the symbol at the top of the stack to the successor state
and a new (possibly empty) string at the top of the stack. We denote the relation
from one configuration to the next by �.

A DPDA M with transition function δ is said to be reversible (REV-DPDA),
if there exists a reverse transition function δ← inducing a relation �← from one
configuration to the next, so that ci+1 �←

ci, 0 ≤ i ≤ n − 1, for any sequence
c0 � c1 � · · · � cn of configurations passed through by M beginning with an
initial configuration c0 (cf. Figure 7). See [19,23] for detailed definitions.

Example 3 ([19]). The linear context-free languages {wcwR | w ∈ {a, b}∗ } as
well as { ancbn | n ≥ 0 } are accepted by REV-DPDA. A sketch of the basic idea
is shown in Figure 8. ��

A simple observation reveals that the transitions of a REV-DPDA either pop
a symbol, change the symbol at the top of the pushdown store, or push a single

· · · a b c · · ·

s1 Z

Y

...

· · · a b c · · ·

s2 Z ′

Z

Y

...

Fig. 7. Successive configurations of a reversible deterministic pushdown automaton,
where δ(s1, b, Z) = (s2, Z

′Z) (left to right) and δ←(s2, b, Z
′) = (s1, λ) (right to left)
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· · · a c b · · ·

s0 a

a

...

a

⊥

· · · a c b · · ·

s1 a

a

...

a

⊥

· · · b b b

s1 ⊥

· · · b b b

sf ⊥

Fig. 8. Scheme of a forward computation of a REV-DPDA accepting { ancbn | n ≥ 0 }.
The crucial point for backward computations is to determine the time step at which
state s0 has to be reentered. This is given by the c in the input.

symbol. The reason is that the reverse transition has only access to the topmost
symbol. The next result clarifies the role played by λ-steps.

Theorem 6 ([19]). For every REV-DPDA an equivalent realtime REV-DPDA
can effectively be constructed, that is, a REV-DPDA without λ-steps.

It is well known that general deterministic pushdown automata which are
not allowed to perform λ-steps are weaker than DPDA that may move on λ
input [11]. So, Theorem 6 provides a class of irreversible deterministic context-
free languages. Every deterministic context-free language that is not realtime is
not accepted by any REV-DPDA. For example, the language

{ amebncam | m,n ≥ 0 } ∪ { amebndan | m,n ≥ 0 }

does not belong to the family (REV-DPDA) (see, for example, [8,11]). This
result immediately raises the question of whether all realtime deterministic
context-free languages are reversible. The next theorem answers this question
negatively. In particular, it shows that the c in the center of the input of Exam-
ple 3 is essential.

Theorem 7 ([19]). The realtime deterministic linear context-free language
{ anbn | n ≥ 0 } is not accepted by any REV-DPDA.

So, we conclude that the family (REV-DPDA) is strictly included in the
family of languages accepted by realtime deterministic pushdown automata. Not
only in connection with reversibility it is interesting to consider realtime deter-
ministic context-free languages whose reversals are also realtime deterministic
context-free languages. It turned out that this family is incomparable with the
family (REV-DPDA). Furthermore, it is known that the families of linear
context-free languages and (REV-DPDA) are incomparable [19].

In [33], it has been shown that there are regular languages which are not
accepted by any reversible finite automaton. However, the regular languages are
strictly included in (REV-DPDA) [19]. Summarizing the results so far, we
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have obtained the following strict hierarchy, where REG denotes the regular and
rt(DPDA) the realtime deterministic context-free languages:

REG ⊂ (REV-DPDA) ⊂ rt(DPDA) ⊂ (DPDA).

Let us now turn to decidability aspects of REV-DPDA. Problems which are
decidable for DPDA are decidable for REV-DPDA as well. Therefore, emptiness,
universality, equivalence, and regularity are decidable for REV-DPDA. On the
other hand, inclusion is known to be undecidable for DPDA. By reduction of the
Post’s correspondence problem it has been shown that inclusion is undecidable
for REV-DPDA, too [19].

The following theorem contrasts the situation for finite automata, where the
problem is decidable in polynomial time (Theorem 5).

Theorem 8 ([19]). It is undecidable whether the language accepted by a non-
deterministic pushdown automaton can be accepted by a REV-DPDA.

The same problem for deterministic pushdown automata is open. However,
if we consider devices instead of accepted languages, we have the decidabil-
ity of reversibility. The size of a pushdown automaton is the length of its
representation.

Theorem 9 ([19]). Let M be a deterministic pushdown automaton of size n.
Then it is decidable in time O(n4) whether M is a REV-DPDA. Moreover, the
decision problem is P-complete.

Given a nondeterministic pushdown automaton, by inspecting the transition
function one can decide whether or not it is a DPDA. If the answer is yes, then
it can be decided whether it is a REV-DPDA by the previous theorem. If it is
not a DPDA, then it cannot be a REV-DPDA. Therefore, the previous result
transfers to nondeterministic devices.

Corollary 1. Let M be a nondeterministic pushdown automaton of size n. Then
it is decidable in time O(n4) whether M is a REV-DPDA. Moreover, the decision
problem is P-complete.

Next, the degree of reversibility is considered for pushdown automata. Com-
pared with DFA the additional resource pushdown storage allows a more involved
definition of lookaheads and, thus, degrees of reversibility. On the one hand, there
is the possible lookahead on the input as for (k)-DFA. On the other hand, we
consider a lookahead on the stack, that is, the machine can see the topmost l
stack symbols.

Without going into the details of the definition, we say that a determinis-
tic pushdown automaton with lookaheads k and l ((k, l)-DPDA) is a pushdown
automaton having an input lookahead of size k and a lookahead of size l on the
stack. A classical deterministic pushdown automaton is a DPDA with lookaheads
k = 1 and l = 1.
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In this connection we consider all configurations, not only reachable ones. As
for DFA, a DPDA is said to be reversible of degree (k, l) (REV(k, l)-DPDA) if and
only if there exists a reverse (k, l)-DPDA with transition function δ← inducing
a relation �← from one configuration to the next, so that any configuration has
a unique predecessor for all computations that lead to the configuration along
the symbols seen in the input window and are consistent with the symbols at
the top of the stack. Details of the definition can be found in [24].

Example 4. For any integer k ≥ 1, the deterministic linear context-free language
{ anbamban | n ≥ 1,m ≥ k } is accepted by some REV(k + 1, 1)-DPDA. ��

The languages of Example 4 are used as witnesses for an infinite and tight
hierarchy of languages acceptable by reversible pushdown automata of a degree
that depends on the size of the input window only. Large stack windows do not
help.

Theorem 10 ([24]). For any integer k ≥ 1, there are deterministic linear
context-free languages accepted by REV(k + 1, 1)-DPDA that cannot be accepted
by any REV(k, l)-DPDA, for an arbitrary l ≥ 1.

On the other hand, it turned out that the lookahead on the stack is interesting
from a descriptional complexity point of view only. The question whether there
are hierarchies with respect to the size of the stack lookahead has been answered
negatively. In fact, any reversible pushdown automaton of degree (k, l + 1) can
be simulated by a reversible pushdown automaton of degree (k, 1). So, in gen-
eral, a lookahead on the stack does not help to obtain reversibility. We present
the results obtained from two different simulation principles based on where the
information of the topmost stack symbols is maintained. This could be in addi-
tional registers of the states or in the stack symbols. Both methods are construc-
tive. From a practical point of view, states are somehow more active resources
while stack symbols are more passive. So, it depends on the application which
principle is more suitable.

Theorem 11 ([24]). Let k, l ≥ 1 be integers and M be a REV(k, l)-DPDA
with m states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with n

stack symbols and at most m · nl+1

n−1 states can effectively be constructed.

The second construction groups up to l stack symbols into one. However, the
construction has to overcome the problem, that, when the original automaton
pops a symbol, the simulating one has to access the symbol below the topmost.

Theorem 12 ([24]). Let k, l ≥ 1 be integers and M be a REV(k, l)-DPDA
with m states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with m

states and at most nl+1

n−1 · (nl + 1) stack symbols can effectively be constructed.

So, as for DFA it turned out that lookaheads on the input gradually increase
the capability to perform reversible computations. On the other hand, lookaheads
on the stack do not. Now we take a look beyond the degrees. Are all realtime
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deterministic context-free languages captured by REV-DPDA? From above it is
known that any finite language is accepted by some REV(1)-DFA and, thus, by
a REV(1, 1)-DPDA. However, the necessity to provide arbitrary degrees to DFA
to accept unary regular languages is not applicable for pushdown automata.

Proposition 4 ([24]). Any unary (deterministic) context-free language is
accepted by some REV(1, 1)-DPDA.

Finally, by a similar idea of translation as for regular languages the next
result is obtained.

Theorem 13 ([24]). There are realtime deterministic context-free languages
which cannot be accepted by any REV(k, l)-DPDA for any degree (k, l), k, l ≥ 1.

5 Time Symmetry

A further aspect of reversibility in real systems is discussed, for example, in [25].
In particular, physical reality reveals that often one can go back in time by
applying the same transition function after a specific transformation of the phase-
space. In [6] it is motivated that, for example, in Newtonian mechanics, relativity,
or quantum mechanics one can go back in time by applying the same dynamics,
provided that the sense of time direction is changed by a specific transformation
of the phase-space. For Newtonian mechanics, the transformation leaves masses
and positions unchanged but reverses the sign of the momenta. This aspect is
called time symmetry. So, time-symmetric machines themselves cannot distin-
guish whether they run forward or backward in time. In this connection, compu-
tational models with discrete internal states, more precisely cellular automata,
have been studied for the first time in [6].

Aspects of time-symmetry for reversible DFA and reversible DPDA have been
considered in [23]. The “direction of time” is adjusted by a weak transformation
of the phase-space, that is, an involution.

Let A,B,C be arbitrary sets, and f : B → C, g : A → B two mappings. For
their composition we write f ◦ g : A → C. A mapping τ : A → A is said to be an
involution if τ ◦τ = id, where id denotes the identity mapping. In general, we say
that an automaton M is time symmetric if there exists an involution τ on the
phase-space so that τ◦δ◦τ = δ←. So, given a configuration c, an application of the
involution τ transforms it, then δ is used to compute a new configuration, which
is again transformed by a second application of τ . The result is the predecessor
configuration of c. Precise definitions naturally depend on the specific type of
automaton considered.

First we turn to REV-DFA. A reversible DFA with state set S is time symmet-
ric if and only if there is an involution τ : S → S so that δ−1

x = τ ◦δx◦τ holds for
all input symbols x, where δx is the next-state function for input symbol x. Look-
ing at two successive steps, we obtain δ−1

x ◦δ−1
y = τ ◦δx◦τ ◦τ ◦δy◦τ = τ ◦δx◦δy◦τ .

Obviously, this generalizes to arbitrary numbers of steps. In some sense τ reverses
the direction in time permanently (that is, until τ is applied again).
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Fig. 9. Example of a unary reversible DFA accepting the language { aj·p | j ≥ 0 }

Example 5. Consider the p-state DFA M depicted in Figure 9. It turns out
that M is time symmetric. As witness involution one can take τ(i) = p − i − 1
(see Figure 10 for p = 8). We have τ(δa(τ(i))) = τ(δa(p − i − 1)) = τ(p − i) =
i − 1 = δ−1

a (i) = δ←(i, a), for all i (all arithmetic being done mod p). ��
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s4

s5

s6
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a

a a
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aa

a

start

τ

τ
τ

Fig. 10. Time symmetry of a reversible DFA accepting the language { aj·8 | j ≥ 0 }

The natural question whether all reversible DFA are already time symmetric has
been answered in the negative.

Theorem 14 ([23]). There are reversible DFA which are not time symmetric.

Figure 11 shows a witness for Theorem 14. Nevertheless, the relation between
reversible and time-symmetric DFA is different from the relation between arbi-
trary and reversible DFA.

0 1 2 · · · p-3 p-2 p-1

b b

a a a a a a

b

b

a

start

Fig. 11. Example of a reversible DFA that is not time symmetric
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Theorem 15 ([23]). Let p ≥ 1 and M be a p-state reversible DFA. Then
there exists an equivalent 2p-state time-symmetric DFA. This upper bound is
tight, that is, for p ≥ 6 there is a p-state reversible DFA so that every equivalent
time-symmetric DFA has at least 2p states.

While there are reversible DFA that are not time symmetric in general, every
unary REV-DFA is time-symmetric.

Theorem 16 ([23]). Each reversible unary DFA is time symmetric.

The second type of devices we are going to discuss from the viewpoint of
time symmetry are reversible pushdown automata. The handling of the addi-
tional resource makes the definition of time symmetry more involved. While
the usual presentation of DPDA uses the transition function δ, in the present
context it is advantageous to consider its induced extended transition func-
tion δ̂ : S × (Σ ∪ {λ} × Γ ∗ → S × Γ ∗, where Γ denotes the set of stack sym-
bols, as follows. For any p, q ∈ S, x ∈ Σ ∪ {λ}, Z ∈ Γ , and β, γ ∈ Γ ∗ set
δ̂(q, x, Zγ) = (p, βγ) if and only if δ(q, x, Z) = (p, β).

While in Section 4 reversibility is considered for reachable configurations,
here – to remain in context – we require reversibility for all configurations.

A reversible DPDA is time symmetric if and only if there is an involution
τ : S × Γ ∗ → S × Γ ∗ so that, δ̂−1

x = τ ◦ δ̂x ◦ τ holds for all input symbols x.
For example, the linear context-free language {wcv | w ∈ {a, b}∗, wR = vu }

is accepted by a time-symmetric DPDA showing that time-symmetric DPDA can
accept non-regular languages. However, the next result contrasts the situation
for DFA.

Theorem 17 ([23]). There are reversible unary DPDA which are not time
symmetric.

The unary language { ai | i ≥ n } is a witness for Theorem 17 (see Figure 12
for an example). Since it is regular, it is accepted by a REV-DPDA M . To this

s0 s1 s2 s3 s4

a
push a

a
nop

a
nop

a
nop

a
nop

start

Fig. 12. A non-time-symmetric but reversible REV-DPDA that accepts a4a∗

end, on any sufficiently long input M runs into a cycle and, thus, has to push
the history to get out of it in backward computations. In order to give evidence
that M is not time symmetric we note that in the cycle symbols have to be
pushed. In particular, this means that backward steps have to pop symbols.
However, there are no states in the cycle that pop a symbol. So, there is no state
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to which a push state could be mapped by an involution witnessing the time
symmetry.

As for DFA any reversible DPDA can be simulated by a time-symmetric
DPDA with at most twice as many states.

Theorem 18 ([23]). Let p ≥ 1 and M be a p-state reversible DPDA. Then
there exists an equivalent 2p-state time-symmetric DPDA.

Though it is well known that every unary context-free language is regular [9],
the families of reversible and time-symmetric unary languages are different.

Theorem 19 ([23]). (1) The family of languages accepted by time-symmetric
(unary) DFA is properly included in the family of languages accepted by time-
symmetric (unary) DPDA.

(2) The family of languages accepted by reversible (unary) DFA is properly
included in the family of languages accepted by reversible (unary) DPDA.

Finally, without going into further details, we just mention that the technique
to put a reversible device and its inverse “side by side” also works for other types
of reversible automata. However, whether the increase in size caused by doubling
the number of states is always necessary is an interesting and almost untouched
question.
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