
Advances on Random Sequence Generation
by Uniform Cellular Automata

Enrico Formenti1, Katsunobu Imai2, Bruno Martin1(B),
and Jean-Baptiste Yunès3

1 I3S-CNRS, Univ. Nice Sophia Antipolis, Nice, France
{Enrico.Formenti,Bruno.Martin}@unice.fr

2 Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
imai@iec.hiroshima-u.ac.jp

3 LIAFA, Univ. Paris Diderot, Paris, France
Jean-Baptiste.Yunes@univ-paris-diderot.fr

Abstract. The study of cellular automata rules suitable for cryp-
tographic applications is under consideration. On one hand, cellular
automata can be used to generate pseudo-random sequences as well as
for the design of S-boxes in symmetric cryptography. On the other hand,
Boolean functions with good properties like resiliency and non-linearity
are usually obtained either by exhaustive search or by the use of genetic
algorithms. We propose here to use some recent research in the classi-
fication of Boolean functions and to link it with the study of cellular
automata rules. As a consequence of our technique, this also provides a
mean to get Boolean functions with good cryptographic properties.

Keywords: Cellular automata · Random number generation · Boolean
functions

1 Introduction

Cellular automata (CA) are models of finite state machines used in many appli-
cations. They form a discrete model of parallelism evolving within discrete time
steps according to a local updating rule. CAs are employed for the generation
of cryptographic binary pseudo-random sequences [18] and for solving the fir-
ing squad problem [10]. Pseudo-random sequences (PRS) have a long history
of applications to computational (Monte Carlo sampling, numerical simulation)
and communications problems (coding theory, stream ciphers). In the present
work, we particularly focus on the search for good local CA rules by using math-
ematical tools from Boolean functions. For this, we consider a CA rule as a
Boolean function in several variables (from three up to five) and we search for
Boolean functions that fulfill good cryptographic properties such as non-linearity
and resiliency. Next, we use those good Boolean functions as CA rules that can
be iterated to provide ’extended’ Boolean functions (in nine variables). This
work (starting with Boolean functions in four variables) requires an exhaustive
search among all possible Boolean functions. The methodology that we use can
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 56–70, 2014.
DOI: 10.1007/978-3-319-13350-8 5



Advances on Random Sequence Generation by Uniform Cellular Automata 57

provide Boolean functions satisfying non-linearity and resiliency properties with
a large number of variables (up to nine here). Such Boolean functions are (yet)
unreachable by a classical brute force search because of the combinatorial explo-
sion.

Such Boolean functions (or CA rules) can be used in many applications.
Either directly for pseudo-random sequences generation or as updating functions
for providing lightweight random sources of good quality in sensor networks.
Other target applications can be joined compression and data encryption (also
called co*cryption [15]), or used in hardware devices like FPGA or GPU for
quickly providing randomness.

The material is organized as follows. Section 2 introduces the definitions and
notations from both cellular automata and Boolean functions theories. Section 3
recalls related results. More precisely, it provides evidence that there is no rule
with three variables which provides cryptographic pseudo-random sequences. It
also recalls a classification from [11] which lists all equivalence classes containing
rules with four variables suitable for generating cryptographic pseudo-random
sequences. Section 4 presents the main contribution of the paper and gives some
of the five variable rules that can be used for generating cryptographic pseudo-
random sequences. In Section 5, we present some statistical testing against the
sequences generated by using five variable rules selected from Section 4. Finally,
Section 6 concludes the paper and proposes future research directions.

2 Definition and Notation

This section recalls some basic notation and facts on pseudo-randomness, CAs
and Boolean functions.

2.1 Pseudo-Randomness

In [20], three mechanisms responsible for random behavior in systems are
described: (1) Randomness from physics like brownian motion; (2) Randomness
from the initial conditions which is studied by chaos theory; and (3) Random-
ness by design, also called pseudo-randomness. Many algorithms generate PRS.
The behavior of the system is fully determined by knowing the seed and the
algorithm used. They are quicker methods than extracting “true” randomness
from the environment, inaccessible to computers.

The applications of randomness have led to many different methods for gen-
erating random data. These methods may vary as to how unpredictable or statis-
tically random they are, and how quickly they can generate random sequences.
Before the age of computational PRS, generating large amount of random num-
bers required a lot of work and were distributed as random number tables.

In the sequel, we will consider pseudo-random generators (PRG). This cor-
responds to a deterministic algorithm which “stretches” a short truly random
sequence (the seed) into a polynomially longer sequence that appears to be



58 E. Formenti et al.

“random” (although it isn’t). In other words, although the output of a PRG is
not really random, it is (polynomially for probabilistic distinguishers) unfeasible
to tell the difference. It turns out that pseudorandomness and computational
complexity are linked in a fundamental way (see [8] for further details). More
practically, this corresponds to the behavior of random number generators imple-
mented in operating systems. In this case, the short truly random sequence cor-
responds to the pseudo-device /dev/random and the output of the PRG to the
pseudo-device /dev/urandom for producing more random bits of weaker quality.

2.2 Cellular Automata

One-dimensional binary CAs consist of a line of cells taking their states among
binary values. For practical implementations, the number of cells is finite. There
are two cases: a CA has periodic boundary conditions if the cells are arranged
in a ring and it has null boundary conditions when both extreme cells are con-
tinuously fixed to zero. All the cells are finite state machines with an updating
function which gives the new state of the cell according to its current state and
the current state of its nearest neighbors. For a presentation of CAs, see [9].

In [18], it was proposed to use CAs to produce PRS. Binary CAs with l cells
(l = 2N +1 for N ∈ N) were considered. For a CA, the values of the cells at time
t ≥ 0 are updated synchronously by a Boolean function f with n = r1 + r2 + 1
variables by the rule xi(t + 1) = f(xi−r1(t), . . . , xi(t), . . . , xi+r2(t)). Elementary
CAs are such that r1 = r2 = 1. For a fixed t, the sequence of the values xi(t)
for 1 ≤ i ≤ 2N + 1, is the configuration at time t. It is a mapping c : [[1, l]] → F2

which assigns a Boolean state to each cell. The initial configuration (t = 0)
x1(0), . . . , xl(0) is the seed, the sequence (xN (t))t is the output sequence and,
when r1 = r2 = r, the number r is the radius of the rule. The Wolfram numbering
associates a rule number to any one of the 256 elementary CA; it takes the binary
expansion of a rule number as the truth table of a 3-variable Boolean function.

2.3 Boolean Functions

A Boolean function is a mapping from F
n
2 into F2. In the sequel, additions in Z

(resp. F2) will be denoted by + and Σ (resp. ⊕ and
⊕

), products by × and
∏

(resp. · and
∏

). When there is no ambiguity, + will denote the addition of binary
vectors. If x and y are binary vectors, their inner product is x · y =

∑n
i=1 xiyi.

A very handy representation of Boolean function is the algebraic normal form:

Definition 1 (ANF). A Boolean function f with n variables is represented by
a unique binary polynomial in n variables, called algebraic normal form: f(x) =⊕

u∈F
n
2

au(
∏n

i=1 xui
i ) au ∈ F2, ui is the i-th projection of u.

Example 1. The ANF of rule (30) is x1 ⊕ x2 ⊕ x3 ⊕ x2x3 or 1+2+3+23.

The degree of the ANF or algebraic degree of f corresponds to the number of
variables in the longest term xu1

1 . . . xun
n in the ANF of f . The Hamming weight



Advances on Random Sequence Generation by Uniform Cellular Automata 59

wH(f) of f is the number of x ∈ F
n
2 such that f(x)= 1. The Hamming weight

wH(x) of x ∈ F
n
2 counts the number of 1-valued coordinates in x. f is balanced

if wH(f) = wH(1 ⊕ f) = 2n−1.

Definition 2. f and g Boolean functions in n variables are equivalent iff

f(x) = g ((x · A) ⊕ a) ⊕ (
x · BT

) ⊕ b, ∀x ∈ F
n
2 (1)

where A is a non-singular binary n×n matrix, b a binary constant, a and B ∈ F
n
2 .

An important tool in the study of Boolean functions is the Fourier-Hadamard
transform, a linear mapping which maps a Boolean function f to the real-valued
function f̂(u) =

∑
x∈F

n
2

f(x)(−1)u·x, which describes the spectrum of the latter.
When applied to the sign function fχ(x) = (−1)f(x), the Fourier-Hadamard
transform is the Walsh transform: f̂χ(u) =

∑
x∈F

n
2
(−1)f(x)⊕u·x . Since fχ(u) =

1 − 2f(u), the Fourier-Hadamard transform is:

f̂(u) =
1
2

∑

x∈F
n
2

(−1)u·x − 1
2
f̂χ(u) , (2)

Using Eq. (2), we obtain that f̂χ(u) = 2nδ0 − 2f̂(u), where δ0 denotes the Dirac
symbol defined by δ0(u) = 1 if u is the null vector and δ0(u) = 0 otherwise [4].

If f and g are two equivalent Boolean functions in n variables, it holds that:

f̂χ(u) = (−1)a·A−1(ut+BT )+b ĝχ((u ⊕ B)(A−1)T ) . (3)

This property is used by [3] for counting the number of functions satisfying some
cryptographic properties.

The Walsh transform allows to study the correlation-immunity of a function.

Definition 3. A Boolean function f in n variables is k-correlation-immune
(0 < k < n) if, given any n independent and identically distributed binary ran-
dom variables x1, · · · , xn according to a uniform Bernoulli distribution, then
the random variable Z = f(x1, . . . , xn) is independent from any random vector
(xi1 , xi2 , . . . , xik), 1 ≤ i1 < · · · < ik < n. When f is k-correlation immune and
balanced, it is k-resilient.

In [21], a spectral characterization of resilient functions was given:

Theorem 1. A Boolean function f in n variables is k-resilient iff it is balanced
and f̂(u)=0 for all u ∈ F

n
2 s.t. 0<wH(u)≤ k. Equivalently, f is k-resilient iff

f̂χ(u)=0 for all u ∈ F
n
2 s.t. wH(u)≤k.

Theorem 1 concerns both transforms (refer to [4] for further details).

Theorem 2 (Siegenthaler Bound). For a k-resilient (0 ≤ k < n−1) Boolean
function in n variables, there is an upper bound for its algebraic degree d: d ≤
n − k − 1 if k < n − 1 and d = 1 if k = n − 1.



60 E. Formenti et al.

2.4 Some Properties of the Fourier-Hadamard Transform

Computing the Fourier-Hadamard transform We use the Fourier-Hadamard
transform from [6] called the Walsh or Sequency Ordered Transform (WHT)w.
This transform is used to study the CA rules in order to find the best rules for
generating PR sequences, like in [7,14]. To check the rules, we use the fast trans-
form algorithm whose time complexity is O(n log n). The algorithm receives as an
input an array F of size 2n which contains the images by the t iterates of the local
rule f of all the configurations of n cells naturally ordered: f t(0), . . . , f t(2n − 1)
and outputs the transform F̂ in the reverse order: f̂ t(2n − 1), . . . , f̂ t(0).

Application to CA rules We proceed step by step with increasing values of t,
which counts the number of times the local rule in 5 variables, supposed to be
1-resilient, is iterated on an initial configuration. In this way, we consider the
natural extension of f : F

5
2 → F2 to f : F

n+4
2 → F

n
2 where:

f(x0, . . . , xn+4) = (y1, . . . , yn) s.t. yj = f(xj−2, xj−1, xj , xj+1, xj+2), j ∈ [[1, n]]

Using the extended f , one can define the t-th iterate of f which is a function
f t : F

4t+1
2 → F2. We compute next the maximum absolute value of the Fourier-

Hadamard transform of the tth-iterate of f at all the points u of Hamming weight
1 and we select the rules with a minimum spectral value.

The computation is repeated with increasing values of t until we identify
rules with flat spectral or relatively small values which are slowly growing.

Some properties on the iterates In order to find other CA rules which preserve
resiliency upon iterates, one can remark that the Fourier-Hadamard transform
is preserved under some transformations like the reflection (which just takes
the mirror-image of the initial configuration). Unfortunately, the other classical
transformations on CAs (conjugation and conjugation-reflection) do not preserve
the resiliency upon iterates in general.

Let Φ denote the reverse operator Φ : F
m
2 → F

m
2 , Φ((v1, . . . , vm)) =

(vm, . . . , v1).

Definition 4. Let f : F
2m+1
2 → F2 be the local function of a CA. Then,

fR(x−m, . . . , x0, . . . , xm) = Φ ◦ f(xm, . . . , x0, . . . , x−m) is the reflection of f .

Another basic transformation is given by Ψ(x) = 1 ⊕ x for x ∈ F2. It
corresponds to the negation of the variable and is used for designing the
conjugation and the conjugation-reflection introduced in [19, p. 492]. With
some abuse of notation, Ψ is extended to sequences of Boolean variables: for
u = (u1, u2, . . . , un) with ui ∈ F2, Ψ(u) = (Ψ(u1),Ψ(u2), . . . ,Ψ(un)). Moreover,
Ψ−1 = Ψ.

Definition 5. Let f : F
2m+1
2 → F2 be the local function of a CA. Then

fN (x−m, . . . , x0, . . . , xm) = Ψ ◦ f(Ψ(xm, . . . , x0, x−m)) is the negation of f .

One can see that for any t ∈ N, f t ◦ H = H ◦ f t
R for H = Ψ or H = Φ.



Advances on Random Sequence Generation by Uniform Cellular Automata 61

Lemma 1. Let Ξ : F
2m+1
2 → F

2m+1
2 be 1:1 and f : F

2m+1
2 → F2 a CA. Then,

wH(f) = wH(f ◦ Ξ).

Proposition 1 shows that resiliency is preserved by the reflection when the
local rule is iterated.

Proposition 1. Let f : F
2m+1
2 → F2 be the local function of a CA. For any

t ∈ N, let 0 < k ≤ 2mt + 1. Then, f t
R is k-resilient iff f t is k-resilient.

Proof. The transformation Φ is bijective. Hence, by Lemma 1, we have wH(fR) =
wH(f ◦ Φ) = wH(f). Since f is balanced, wH(fR) = wH(Ψ ◦ f). Now, applying
Lemma 1 to Ψ◦f and using last equation, it holds wH(Ψ◦f) = wH(Ψ◦f ◦Φ) =
wH(Ψ ◦ fR). Let a = B = (0, 0, . . . , 0), b = 0 and A the reverse identity matrix.
Remark that A is non-singular, then, by using Eq. 3, one obtains (̂ft

R)χ(u) =
f̂t
χ(u · (A−1)T ) = f̂t

χ(u · A) = f̂t
χ(A · u) which entails

f̂ t
R(u) = f̂ t(A · u) . (4)

Now, assume that f t is k-resilient. Remark that wH(A · u) = wH(u) for any u,
therefore, by Theorem 1, if f̂ t(u) = 0 for 0 < wH(u) ≤ k, then, by Eq. 4, f̂ t

R(u) =
0 too. For the converse, just remark that A2 is the identity transformation and
then, by Eq. 4, one finds f̂ t

R(Φ(u)) = f̂ t(u). Therefore if f̂ t
R(Φ(u)) = 0, we have

f̂ t(u) = 0. Since Φ is a bijection we have the thesis.

Lemma 2. Let f : F
2m+1
2 → F2 be the local function of a CA. For any t ∈ N,

f t
N is balanced iff f t is balanced.

Proof. Assume f t balanced for some t ∈ N. By definition of f t
N , wH(f t

N ) =
wH(Ψ◦f t ◦Ψ). Remark that Ψ◦f t is a CA; then by Lemma 1, wH(Ψ◦f t ◦Ψ) =
wH(Ψ ◦ f t). Since f t is balanced, wH(Ψ ◦ f t) = wH(f t). Finally, observing that
Ψ2 is the identity and by Lemma 1 again, it holds wH(f t) = wH(Ψ2 ◦ f t) =
wH(Ψ2 ◦ f t ◦ Ψ) = wH(Ψ ◦ f t

N ). For the converse, assume that f t
N is balanced

for some t ∈ N. Then, wH(f t
N ) = wH(Ψ ◦ f t

N ) = wH(Ψ2 ◦ f t ◦ Ψ) = wH(f t ◦ Ψ).
By Lemma 1, wH(f t ◦Ψ) = wH(f t) and therefore wH(f t) = wH(f t

N ). Again, by
Lemma 1, wH(Ψ◦f t) = wH(Ψ◦f t ◦Ψ) = wH(f t

N ). Hence wH(f t) = wH(Ψ◦f t).

Proposition 2. Let f : F
2m+1
2 → F2 be the local function of a CA. For any

t ∈ N, let 0 < k ≤ 2mt + 1. Then, f t is k-resilient iff f t
N is k-resilient.

Proof. Fix k ∈ N as in the hypothesis. By Lemma 2, it suffices to prove that
f̂N (u) = h(u) · f̂(u) for any u ∈ F

2m+1
2 such that 0 < wH(u) ≤ k and h :

F
2m+1
2 → R

+. Let A = Id, a = (1, 1, . . . , 1), b = 1 and B = (0, 0, . . . , 0). Then,
by using Eq. 3, one obtains (̂ft

N )χ(u) = (−1)1+a·u f̂t
χ(u) for any u ∈ F

2mt+1
2 with

0 < wH(u) ≤ 2mt + 1. This entails f̂ t
N (u) = (−1)1+a·uf̂ t(u).



62 E. Formenti et al.

Consider the equivalence relation R on CA rules such that fRg iff g = fR or
g = fN or g = fRN . According to [5], there are 22

m

(6 + 22
m

) distinct R-classes.
Propositions 1 and 2 say that all elements in a class have the same resiliency
and hence only one element per class should be tested for studying this prop-
erty. However the gain obtained by this quotient of the set of local rules is
minor. Section 5 proposes (among other things) to consider affine transforma-
tions instead. Indeed, even if f and its Boolean equivalent, say fA have the same
resiliency, this does not hold, in general, for their iterates. This is essentially
due to the fact that the above proofs are based on the existence of a bijection
φ and a transformation τ on the local rules such that for any local rule f , it
holds that ∀t ∈ N, [τ(f)]t ◦ φ = φ ◦ f t. This property is not true, in general for
transformations different from negation or reflection.

3 Related Results

3.1 3-variable Boolean Update Function

An exhaustive search of 3-variable Boolean update function was done in [16]:

Theorem 3. There is no non-linear correlation-immune elementary CA.

The same result can be obtained by applying the Siegenthaler bound with n = 3
variables and testing for k = 1-resiliency. It tells that the algebraic degree is
d ≤ n − k − 1 = 1. Thus, only linear functions can be resilient.

Despite this, CA may be used for generating PRS by increasing the number
of variables in the Boolean function which is used as a local CA rule. In the
sequel, we recall which functions in four variables are suitable and we present a
way to gather five variable functions for cryptographic purposes.

3.2 4-variable Boolean Update Function

In [11] the 216 = 65536 elementary CA rules with 4 variables were classified
according to their resiliency and non-linearity. An exhaustive search by the Walsh
transform of all Boolean functions with 4 variables was realized, to find a list of
1-resilient functions, with high non-linearity. There are exactly 200 non linear
balanced functions which are 1-resilient.

A Boolean function in 4 variables is defined by an integer between 0 and
65536, extending Wolfram’s notation for CA rules with 3 variables. For clas-
sifying the functions, we use their ANF. For instance the ANF of rule (280)
(=100011000 in binary) corresponds to the polynomial f(x1, x2, x3, x4) = x1x2⊕
x3 ⊕ x4 = 12 + 3 + 4 .

For the classification of these functions, let σ denote a 4 × 4 permutation
matrix. Recall that two Boolean functions f and g are affine equivalent if there
exists a permutation σ such that f(x) = g(σ(x)) or g(σ(x)) + 1.

The following table gives the set of all 1-resilient function, with a represen-
tative of each class f , its corresponding ANF and the cardinal of each class:



Advances on Random Sequence Generation by Uniform Cellular Automata 63

f ANF ANF card.

34680 280 12+3+4 12
6120 360 4+12+13+23 8
7140 300 2+4+12+13 48
11730 282 1+3+4+12 24
34740 1308 2+3+4+12+24 48
39318 4374 1+2+3+4+34 12
7128 5432 3+4+12+13+24+34 24
11220 380 2+3+12+13+24 24

The non-linearity of these functions is computed for an evaluation of the
resistance against the attack of [1]. The 200 1-resilient Boolean functions with 4
variables have a non-linearity equal to 4.

4 Exploring Radius 2, 1-Resilient Elementary CA Rules

Unlike 3 and 4 variable Boolean update function, we will not explore the whole
class of radius 2 elementary uniform CA rules. Instead, we use the classification
of Boolean functions in 6 variables or less with respect to some cryptographic
properties from [3] where an efficient algebraic approach to the classification of
the affine equivalence classes of the cosets of the first order Reed-Muller error
correcting code is proposed. Indeed, the study of the properties of Boolean func-
tions is related to the study of Reed-Muller codes. The code-words of the r-th
order Reed-Muller code of length 2n, denoted by RM(r, n) correspond to the
truth tables of Boolean functions with degree less or equal to r. [2] classified all
the 226 cosets of RM(1, 5) into 48 equivalence classes under the action of the
group AGL(2, 5). The method is used to classify with respect to the 48 classes
into which the general affine group AGL(2, 5) partitions the cosets of RM(1, 5).
The cryptographic properties considered by [3] are correlation immunity (CI),
resiliency (R) and propagation characteristics as well as their combination.

Table 1. Number of functions satisfying CI(1) and R(1)

Representative NCI(1) NR(1)

12 4840 4120

123 16640 11520
123+14 216 000 133 984

123+14+25 69120 24960
123+145+23 1 029 120 537600

123+145+23+24+35 233 472 96 960

Table 1 is a selection of the representatives of Boolean functions taken out
from [3] which lists the representative and counts the number of equivalent
Boolean functions in the equivalence class which satisfy 1-resiliency (denoted
by R(1) in the table) and correlation immunity of first order (denoted by CI(1)



64 E. Formenti et al.

in the table). In Table 1, for a property P , NP counts the number of Boolean
functions which fulfills P .

From the original table, we only select representatives of Boolean functions of
algebraic degrees 2 and 3 since, because of the Siegenthaler bound, there cannot
be 1-resilient Boolean function of degree one. The classification done by [3] also
removes Boolean functions of degree 4 if 1-resiliency is considered. Thus, there
are only 6 equivalence classes containing 1-resilient Boolean functions which are
listed in Table 1; 12 is the single equivalence class of degree two Boolean functions
and the remaining 5 are all of degree three.

4.1 Finding the Rules

From the classification by [3], representatives of Boolean functions fulfilling the
property of 1-resiliency were found. We restricted the search of Boolean functions
in the same algebraic coset instead of the equivalence class in order to limit
the combinatorial explosion. Our goal was to find 1-resilient elements in the
cosets. For this, we first explored the elements of the cosets listed in Table 1
by considering all the linear combinations of all possible linear/affine functions
and by computing the Fourier-Hadamard transform on all those elements in the
coset. More precisely, the first step is to generate all coset elements. If we denote
by R(x1, x2, x3, x4, x5) the coset leader (which is the representative), we consider
all elements of the form:

R(x1, x2, x3, x4, x5) ⊕ (ax1) ⊕ (bx2) ⊕ (cx3) ⊕ (dx4) ⊕ (ex5) ⊕ h

for a, b, c, d, e, h Boolean, spanning all the 26 elements of the coset. Then,
for each element, we compute the Fourier-Hadamard transform, we next only
select the balanced Boolean functions and finally the Boolean functions which
are 1-correlation immune among the balanced Boolean functions. That is, among
the balanced Boolean functions, all functions with zero spectral values at points
whose binary decomposition has a Hamming weight of 1. This first step was
done with Mathematica 9.0 and gave us Table 2.

Reading Table 2, we notice that two cosets seem not to contain 1-resilient
functions, although listed in the table by [3]. The reason for this is that we did
not make the complete exploration of the equivalence class. Recall that the table
by [3] classifies the 48 equivalence classes of RM(1, 5) under the action of the
general affine group AGL(2, 5). At first, to check if our approach is valid, we
only generated the coset elements and not the Boolean functions which could be
obtained by the action of AGL(2, 5) and which can be generated using Eq. (1).
The size of the set of functions to explore is thus smaller. We run the fast
transform algorithm on a set containing 6.26 elements which has to be compared
with the whole set with 232 elements. If we had taken into account the action of
AGL(2, 5), we should have explored 6 classes among the 48 equivalence classes
(a ratio of 1/8) on the whole set.



Advances on Random Sequence Generation by Uniform Cellular Automata 65

Table 2. 1-resilient Boolean functions in the cosets. Hexadecimal numbers refer to the
truth table.

Representative 1-resilient functions

12 3c3c3cc3 3c3cc33c 3cc33c3c 3cc3c3c3 5a5a5aa5 5a5aa55a 5aa55a5a
5aa5a5a5 66666699 66669966 66996666 66999999 69696996 69699669
69966969 69969696 96696969 96699696 96966996 96969669 99666666
99669999 99996699 99999966 a55a5a5a a55aa5a5 a5a55aa5 a5a5a55a
c33c3c3c c33cc3c3 c3c33cc3 c3c3c33c

123 66696996 66699669 66966969 66969696 69666699 69669966 69996666
69999999 96666666 96669999 96996699 96999966 99696969 99699696
99966996 99969669

123+14 66695aa5 6669a55a 66965a5a 6696a5a5 696655aa 6966aa55 969955aa
9699aa55 99695a5a 9969a5a5 99965aa5 9996a55a

123+14+25 ∅

123+145+23 1eb4663c 1eb499c3 e14b663c e14b99c3

123+145+23+24+35 ∅

4.2 Testing the Iterates

We use the results from section 4.1 to select rules susceptible of preserv-
ing 1-resiliency, with the same procedure we used in section 2.4. More pre-
cisely, from the set of elementary, radius 2 rules (with a generic element
denoted by f) , we consider the natural extension of f : F

5
2 → F2 to f :

F
n+4
2 → F

n
2 (with n > 0) where: f(x1, . . . , xn+4) = (y1, . . . , yn) such that yj =

f(xj , xj+1, xj+2, xj+3, xj+4), j ∈ [[1, n]]. Using the extended f , one can define the
t-th iterate of f which is a function f t : F

4t+1
2 → F2. We next test the second iter-

ate for selecting rules preserving the 1-resiliency. In other words, we compute the
maximum absolute value of the Fourier-Hadamard transform of the tth-iterate
of f at all the points u of Hamming weight 1 and we select the balanced rules
with a flat spectral value at those points (by Theorem 1).

For every f of Tab. 2, we built f2 and tested its 1-resiliency property. This
property is easily observable on the Fourier-Hadamard spectrum f̂2 : f2 is m-
resilient if ∀u ∈ F

9
2 /wH(u) ≤ m, then f̂2(u) = 0. The spectrum has been com-

puted by the algorithm defined in subsection 2.4 and implemented in C. The results
are in Tab. 3 and shows that few functions (exactly 4 of them) of coset 12 are not 1-
resilient, that every function of coset 123 and coset 123+14 preserves 1-resiliency,
and no function of coset 123+145+23 are 1-resilient after 2 iterations.

5 PRNG Testing

The quality of pseudo-randomness generated by the above mentioned Boolean
functions has been evaluated by using the Diehard test suite, a widely used
tool. It has been developed by Marsaglia from the Florida State University and
consists of 17 different tests which have become something which could be con-
sidered as a “benchmarking tool” for PR number generators (see [12]). It is
meant to evaluate if a stream of numbers is a good PRS. We will not explain
how Diehard really works and we refer the reader to [13] for further details. Basi-
cally, Diehard uses Kolmogorov-Smirnov normality test to quantify the distance
between the distribution of a given data set and the uniform distribution; and
as the documentation says:



66 E. Formenti et al.

Table 3. 1-resilient Boolean functions after 2 iterations

Coset 12

0x3C3C3CC3 yes 0x3C3CC33C no 0x3CC33C3C no
0x3CC3C3C3 yes 0x5A5A5AA5 yes 0x5A5AA55A yes
0x5AA55A5A yes 0x5AA5A5A5 yes 0x66666699 yes
0x66669966 yes 0x66996666 yes 0x66999999 yes
0x69696996 yes 0x69699669 yes 0x69966969 yes
0x69969696 yes 0x96696969 yes 0x96699696 yes
0x96966996 yes 0x96969669 yes 0x99666666 yes
0x99669999 yes 0x99996699 yes 0x99999966 yes
0xA55A5A5A yes 0xA55AA5A5 yes 0xA5A55AA5 yes
0xA5A5A55A yes 0xC33C3C3C yes 0xC33CC3C3 no
0xC3C33CC3 no 0xC3C3C33C yes

Coset 123

0x66696996 yes 0x66699669 yes 0x66966969 yes
0x66969696 yes 0x69666699 yes 0x69669966 yes
0x69996666 yes 0x69999999 yes 0x96666666 yes
0x96669999 yes 0x96996699 yes 0x96999966 yes
0x99696969 yes 0x99699696 yes 0x99966996 yes
0x99969669 yes

Coset 123+14

0x66695AA5 yes 0x6669A55A yes 0x66965A5A yes
0x6696A5A5 yes 0x696655AA yes 0x6966AA55 yes
0x969955AA yes 0x9699AA55 yes 0x99695A5A yes
0x9969A5A5 yes 0x99965AA5 yes 0x9996A55A yes

Coset 123+145+23

0x1EB4663C no 0x1EB499C3 no 0x2D7855F0 no
0x2D78AA0F no 0x44EE3C66 no 0x44EEC399 no
0x4B1ECC69 no 0x77220FAA no 0x7722F055 no
0x88DD0FAA no 0x88DDF055 no 0xB4E13396 no
0xBB113C66 no 0xBB11C399 no 0xD28755F0 no
0xD287AA0F no 0xE14B663C no 0xE14B99C3 no

Each Diehard test is able to provide probability values (p-value) which
should be uniformly distributed on [0, 1) if the sequence is made of truly
independent bits. Those p-values are obtained by p = F (X) where F is
the assumed distribution of the sample random variable X–often normal.
But that assumed F is just an asymptotic approximation, for which the
fit will be worse in the tail of the distribution. Thus, we should not be
surprised with occasional p-values close to 0 or 1. When a stream really
fails, one gets p-values of 0 or 1 to six or more places. Otherwise, for
each test, its p-value should lie in the interval (0.025, 0.975).

So in order to test our data, we designed a C program in which we included the
Diehard functions that were slightly modified to fit well with our needs. That is
to directly use the results of the CA as a PRG. The 17 different and independent
statistical tests require about 16 Mbyte of PR values in binary format.

Our goal was to generate different number sequences from the CA and test
them against Diehard. Two different tests were made.



Advances on Random Sequence Generation by Uniform Cellular Automata 67

5.1 Randomness Preservation

In this section we describe the experimentation we made to test if a CA “pre-
serves” the randomness through its dynamics. For this experiment, we consider
a CA, whose transition function is f : F

5
2 → F2. Given such a CA, we set up an

initial sequence of bits (bi)i≥0 that we extract from the /dev/random pseudo-
device of a MacOSX system1. Then we compute the sequence of bits (b′

i)i≥0

such that ∀i ≤ 0, b′
i = f(b5i, b5i+1, b5i+2, b5i+3, b5i+4). To ensure some statistical

soundness, for a single CA we build 302 of such sequences from the same entropic
source (each sequence being 16 Mbyte long as required by Diehard).

The measure, illustrated in Fig. 1, shows all the distributions of the indicators
produced by each single sequence passing all the Diehard tests. And it can be
observed that the p-values are well distributed for every data pack. Indeed, there
are no accumulation points near zero or one.

This means that the input to the tests is made of independent bits. Thus,
we can deduce that these functions are good at preserving the randomness. Or,
in other terms, if we feed a CA with a truly random sequence (obtained by the
entropy collector of the BSD kernel) as an input configuration and let the CA
run, the output configuration is still PR, according to the Diehard test suite.

5.2 Random Number Generation

Much more classically, these tests were built to evaluate the possible generation
of a good PR sequence by CAs. While it is well known that radius 1 elementary
CAs are not suitable for generating PR sequences, it is not impossible to build
good PR sequence from simple CAs. As we already tested if the radius-2 func-
tions are good to preserve the randomness, it would be interesting to consider
them as PRNG. So, we tried something very similar to [17].

We set up two rings of cells. Although Wolfram used a ring of 127 cells
and Preneel (1993) suggested a ring of 1024 cells to ensure a better quality
(both used a slightly different mechanisms for random bit extraction), we use
perimeters 64 and 65 as done in [17]. The initial configuration of these rings is
of Hamming weight 1. We let the CA iterate about 2 million times. Then, from
each configuration obtained, we extract two 32-bits words: the “even” (resp.
“odd”), word is built with the state of the first 32 “even” (resp. “odd”) cells. The
sequences of these “even” (resp. “odd”) words constitute two different sequences
of 16 Mbyte.

Then, we use Diehard to produce p-values for each test. We were able to find
some CAs (like the one with rule Ox69999999 given as an example in Fig. 2).
This suggests that it may be possible to obtain a good PRNG from such a CA.

1 The entropy collector of the BSD kernel family is considered as a pretty good source
of random numbers and MacOSX is built on top of a BSD kernel.

2 The repetition of 30 independent experiments comes from statistics. Indeed sample
sizes of at least 30 are for many tests considered as “large” and allows a better
statistical treatment.



68 E. Formenti et al.

0.025 0.975

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
p-value

Fig. 1. 0x3C3C3CC3: distribution of the p-values for each data pack. p-values between
the two lines (at 0.025 and 0.975) mean that the corresponding statistical test was
successful.

0.025 0.975

eve
n 64

od
d 64

eve
n 65

od
d 65

p-value

Fig. 2. Distribution of the p-values for the ring CA with rule 0x69999999. p-values
between the two lines (at 0.025 and 0.975) mean that the corresponding statistical test
was successful.



Advances on Random Sequence Generation by Uniform Cellular Automata 69

6 Conclusion

The main interest of this work concerns the hardware implementation. The tar-
get hardware model of CAs is the Field Programmable Gate Arrays (known as
FPGAs). FPGAs are now a popular implementation style for digital logic sys-
tems and subsystems. These devices consist of an array of uncommitted logic
gates whose function and interconnection is determined by downloading informa-
tion to the device. When the programming configuration is held in static RAM,
the logic function implemented by those FPGAs can be dynamically reconfigured
in fractions of a second by rewriting the configuration memory contents. Thus,
the use of FPGAs can speed up the computation done by the cellular automata.
Putting all together allows high-rate pseudo-random generation of good quality
that can be used as a basic component for lightweight cryptography requiring
pseudo-random sources.

These results can be extended in many directions. If the number of vari-
ables of a Boolean function must be increased, our approach for extending good
updating rules can be helpful. Increasing the number of variables in a Boolean
function is a classical problem in symmetric cryptography.

Acknowledgments. The authors are grateful to C. Carlet who pointed out Refer-
ence [4] for explaining the difference between Fourier-Hadamard and Walsh transforms
and to J. Mairesse for its help with statistical testing.

References

1. Apohan, A.M., Koc, C.K.: Inversion of cellular automata iterations. Computer and
Digital Techniques 144, 279–284 (1997)

2. Berlekamp, E., Welch, L.: Weight distribution of the cosets of the (32, 6) Reed-
Muller code. IEEE Trans. Inf. Theory 18, 203–207 (1972)

3. Braeken, A., Borissov, Y., Nikova, S., Preneel, B.: Classification of Boolean func-
tions of 6 variables or less with respect to some cryptographic properties. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 324–334. Springer, Heidelberg (2005)

4. Carlet, C.: Boolean functions for cryptography and error-correcting codes. Tech-
nical report, University of Paris 8 (2011)

5. Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: Transformations of the one-
dimensional cellular automata rule space. Parallel Computing 23(11), 1593–1611
(1997)

6. Elliott, D.E., Rao, K.R.: Fast transforms, algorithms, analysis, applications. Aca-
demic press (1982)

7. Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: On 1-resilient, radius 2 elementary
CA rules. In: Fatès, N., Goles, E., Maass, A., Rapaport, I. (eds.) Automata 2011,
pp. 41–54 (2011)

8. Goldreich, O.: Pseudorandomness. Notices of the AMS 46(10), 1209–1216 (1999)
9. Gruska. J.: Foundations of Computing. International Thomson Publishing (1997)

10. Gruska, J., La Torre, S., Parente, M.: The firing squad synchronization problem
on squares, toruses and rings. Int. J. Found. Comput. Sci. 18(3), 637–654 (2007)



70 E. Formenti et al.

11. Lacharme, P., Martin, B., Solé, P.: Pseudo-random sequences, boolean functions
and cellular automata. In: Proceedings of Boolean Functions and Cryptographic
Applications (2008)

12. Marsaglia, G.: A current view of random number generators. In: Computer Sciences
and Statistics, pp. 3–10 (1985)

13. Marsaglia, G.: Diehard (1995). http://www.stat.fsu.edu/pub/diehard/
14. Martin, B.: A Walsh exploration of Wolfram CA rules. In: International Workshop

on Cellular Automata, pp. 25–30. Hiroshima University, Japan (2006)
15. Martin, B.: Mixing compression and CA encryption. In: Bonnecaze, A., Leneutre,

J., State, R. (eds.) SAR-SSI 2007, pp. 255–266. Université Jean Moulin, Lyon
(2007)

16. Martin, B.: A Walsh exploration of elementary CA rules. Journal of Cellular
Automata 3(2), 145–156 (2008)

17. Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA implementa-
tion of neighborhood-of-four cellular automata random number generators. In:
Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on
Field-Programmable Gate Arrays, FPGA 2002, pp. 106–112. ACM (2002)

18. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)

19. Wolfram, S.: Theory and applications of cellular automata. World Scientific,
Singapore (1986)

20. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)
21. Xiao, G.-Z., Massey, J.L.: A spectral characterization of correlation-immune

combining functions. IEEE Trans. on Information Theory 34(3), 569 (1988)

http://www.stat.fsu.edu/pub/diehard/

	Advances on Random Sequence Generation by Uniform Cellular Automata
	1 Introduction
	2 Definition and Notation
	2.1 Pseudo-Randomness
	2.2 Cellular Automata
	2.3 Boolean Functions
	2.4 Some Properties of the Fourier-Hadamard Transform

	3 Related Results
	3.1 3-variable Boolean Update Function
	3.2 4-variable Boolean Update Function

	4 Exploring Radius 2, 1-Resilient Elementary CA Rules
	4.1 Finding the Rules
	4.2 Testing the Iterates

	5 PRNG Testing
	5.1 Randomness Preservation
	5.2 Random Number Generation

	6 Conclusion
	References


