On Power Series over a Graded Monoid

Zoltán Ésik¹ and Werner Kuich² (\boxtimes)

 ¹ University of Szeged, Szeged, Hungary
² Technische Universität Wien, Vienna, Austria werner.kuich@tuwien.ac.at

Abstract. We consider power series over a graded monoid M of finite type. We show first that, under certain conditions, the equivalence problem of power series over M with coefficients in the semiring \mathbb{N} of nonnegative integers can be reduced to the equivalence problem of power series over $\{x\}^*$ with coefficients in \mathbb{N} . This result is then applied to rational and recognizable power series over M with coefficients in \mathbb{N} , and to rational power series over Σ^* with coefficients in the semiring \mathbb{Q}_+ of nonnegative rational numbers, where Σ is an alphabet.

1 Power Series over a Graded Monoid and a Decidability Result

In [4], Sakarovitch considers power series over a graded monoid. Let $\langle M, \cdot, 1 \rangle$ be a monoid and let $| : M \to \mathbb{N}$ be a mapping, called *length*, such that

- (i) |m| > 0 for all $m \in M, m \neq 1$;
- (ii) $|m \cdot n| = |m| + |n|$ for all $m, n \in M$.

Then $\langle M, \cdot, 1 \rangle$ is called *graded monoid*. The definition implies that |1| = 0. If a graded monoid M is finitely generated, we call M a graded monoid of *finite type*. In Section 2 of [4], Sakarovitch proves the following results:

Proposition 1 (Sakarovitch [4]). In a graded monoid of finite type, the number of elements whose length is less than an arbitrary given integer n > 0 is finite.

A monoid is called *finitely decomposable* if, for all $m \in M$, the set of pairs (m_1, m_2) such that $m_1m_2 = m$ is finite.

Corollary 1 (Sakarovitch [4]). In a graded monoid of finite type, every element is finitely decomposable.

Let S be a semiring and M be a graded monoid of finite type. Then any mapping from M into S is a *(formal) power series (over M with coefficients in S)*. The set of all these power series is denoted by $S\langle\langle M \rangle\rangle$. If r is a power series

Partially supported by grant no. K 108448 from the National Foundation of Hungary for Scientific Research.

Partially supported by Austrian Science Fund (FWF): grant no. I1661-N25.

[©] Springer International Publishing Switzerland 2014

C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 49–55, 2014. DOI: 10.1007/978-3-319-13350-8_4

then the image of an element $m \in M$ under r is denoted by (r, m) which is called *coefficient* of m and the power series is written as

$$r = \sum_{m \in M} (r, m)m \,.$$

Power series where almost all coefficients are 0 are called *polynomials*. The set of all polynomials is denoted by $S\langle M \rangle$.

For all $r_1, r_2 \in S\langle\!\langle M \rangle\!\rangle$, we consider the following operations:

(i) the (pointwise) addition of r_1 and r_2 , denoted by $r_1 + r_2$ and defined by

$$(r_1 + r_2, m) = (r_1, m) + (r_2, m)$$
 for all $m \in M$;

(ii) the (Cauchy) product of r_1 and r_2 , denoted by $r_1 \cdot r_2$ and defined by

$$(r_1 \cdot r_2, m) = \sum_{m_1 m_2 = m} (r_1, m_1)(r_2, m_2)$$
 for all $m \in M$;

(iii) the (pointwise) Hadamard product of r_1 and r_2 , denoted by $r_1 \odot r_2$ and defined by

 $(r_1 \odot r_2, m) = (r_1, m)(r_2, m)$ for all $m \in M$;

Moreover, we consider the scalar multiplications of $s \in S$ and $r \in S\langle\!\langle M \rangle\!\rangle$ denoted by $s \cdot r$ and $r \cdot s$ and defined by

$$(s \cdot r, m) = s \cdot (r, m)$$
 and $(r \cdot s, m) = (r, m) \cdot s$ for all $m \in M$, respectively.

The power series 0 and 1 are defined by

(0,m) = 0 for all $m \in M$ and (1,1) = 1, (1,m') = 0 for all $m' \in M$, $m' \neq m$, respectively.

Proposition 2 (Sakarovitch [4]). Let M be a graded monoid of finite type and S a semiring. Then $\langle S\langle\!\langle M \rangle\!\rangle, +, \cdot, 0, 1 \rangle$ and $\langle S\langle\!\langle M \rangle\!\rangle, +, \cdot, 0, 1 \rangle$ are semirings.

In the sequel, $\langle M, \cdot, 1 \rangle$ will always denote a graded monoid of finite type and S will denote a semiring.

A power series $r \in S\langle\!\langle M \rangle\!\rangle$ is called *cycle-free* if there exists an $n \ge 1$ such that $(r, 1)^n = 0$; it is called *proper* if (r, 1) = 0. Let $r \in S\langle\!\langle M \rangle\!\rangle$. Then the *proper* part of r is the power series $\sum_{m \in M, m \ne 1} (r, m)m$ and the *constant term* of r is the power series (r, 1)1, also written (r, 1). If $r \in S\langle\!\langle M \rangle\!\rangle$ is cycle-free then $\{n \mid (r^n, m) \ne 0\}$ is locally finite, i.e., is a finite set for all $m \in M$. Hence, the infinite sum

$$r^* = \sum_{n \ge 0} r^n$$

is defined; it is called the star of r.

Proposition 3 (Sakarovitch [4]). Let $r \in S\langle\!\langle M \rangle\!\rangle$ be a cycle-free power series with constant term r_0 and proper part r_1 . Then

$$r^* = (r_0^* r_1)^* r_0^* = r_0^* (r_1 r_0^*)^*.$$

Defining $\varphi : \mathbb{N}\langle\!\langle M \rangle\!\rangle \to \mathbb{N}\langle\!\langle \{x\}^* \rangle\!\rangle$, x a symbol, by

$$\varphi(r) = \sum_{m \in M} (r,m) x^{|m|}$$

it is easily shown that φ is a semiring morphism. The mapping φ is also compatible with the star operation applied to a cycle-free power series r, i.e.,

$$\varphi(r^*) = \varphi(r)^*$$
 if $r \in \mathbb{N}\langle\!\langle M \rangle\!\rangle$ is cycle-free.

A power series $r \in S\langle\!\langle M \rangle\!\rangle$ is termed rational (over S and M) if r can be obtained from polynomials of $S\langle M \rangle$ by finitely many applications of the rational operations $+, \cdot, *$, where * is applied only to proper power series. The family of rational power series (over S and M) is denoted by $S^{\text{rat}}\langle\!\langle M \rangle\!\rangle$. By Proposition 3, we get an equivalent definition of rational power series if we replace proper by cycle-free. The formula telling how a given rational power series r is obtained from these polynomials by rational operations is referred to as a rational expression for r.

Theorem 1. Let M be a graded monoid of finite type and assume that $||: M \to \mathbb{N}$ is recursive. Then φ , as a mapping $\mathbb{N}^{\mathrm{rat}}\langle\langle M \rangle\rangle \to \mathbb{N}^{\mathrm{rat}}\langle\langle \{x\}^* \rangle\rangle$, is recursive.

Proof. We prove the theorem by induction on the structure of a rational power series $r \in \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$. We show that from a rational expression for $r \in \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ we can compute a rational expression for $\varphi(r)$ since φ is a semiring morphism preserving *.

(i) For $r = n, n \in \mathbb{N}$, $\varphi(r) = n\varepsilon$. For $r = a, a \in M$, $\varphi(a) = x^{|a|}$. Since φ is a semiring morphism, $\varphi(p) \in \mathbb{N}\langle \{x\}^* \rangle$ for $p \in \mathbb{N}\langle M \rangle$.

(ii) Since φ is a semiring morphism, we obtain $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$ and $\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$.

(iii) Since φ is a semiring morphism, we obtain, for a proper power series in $\mathbb{N}\langle\langle M \rangle\rangle$,

$$\varphi(r^*) = \sum_{n \ge 0} \varphi(r^n) = \sum_{n \ge 0} \varphi(r)^n = \varphi(r)^* \,.$$

We call a power series $r \in S\langle\!\langle M \rangle\!\rangle$ unambiguous if, for all $m \in M$, $(r, m) \in \{0, 1\}$.

In the proof of our next theorem we use the following equality:

$$(\varphi(r),x^k) = \sum_{|m|=k} (r,m), \quad r \in \mathbb{N} \langle\!\langle M \rangle\!\rangle, \ k \ge 0 \, .$$

This next theorem is a generalization of Theorems 16.21 and 16.22 of Kuich, Salomaa [3].

Theorem 2. Let M be a graded monoid of finite type and assume that ||: $M \to \mathbb{N}$ is recursive. Then

- (i) for $r_1, r_2 \in \mathbb{N}^{\mathrm{rat}}\langle\langle M \rangle\rangle$ with $(r_1, m) \geq (r_2, m)$ for all $m \in M$ the problem whether or not $r_1 = r_2$ is decidable;
- (ii) if $\mathfrak{R} \subseteq \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ such that, for $s_1 \in \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ and $s_2 \in \mathfrak{R}$, $s_1 \odot s_2$ is in $\mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$, then for two unambiguous power series $r_1 \in \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ and $r_2 \in \mathfrak{R}$ the problem whether or not $r_1 = r_2$ is decidable.

Proof. By Theorem 1 the mapping $\varphi : \mathbb{N}^{\mathrm{rat}}\langle\langle M \rangle\rangle \to \mathbb{N}^{\mathrm{rat}}\langle\langle \{x\}^*\rangle\rangle$ is recursive. By Corollary 8.18 of Kuich, Salomaa [3] the equivalence problem for power series in $\mathbb{N}^{\mathrm{rat}}\langle\langle \{x\}^*\rangle\rangle$ is decidable. Hence, for two given rational power series r_1 and r_2 in $\mathbb{N}^{\mathrm{rat}}\langle\langle \{x\}^*\rangle\rangle$ we can decide, whether or not $\varphi(r_1) = \varphi(r_2)$.

(i) If $\varphi(r_1) = \varphi(r_2)$ then, for all $k \ge 0$, $\sum_{|m|=k}(r_1,m) = \sum_{|m|=k}(r_2,m)$. Hence, $(r_1,m) \ge (r_2,m)$ for all $m \in M$ implies $(r_1,m) = (r_2,m)$. If $\varphi(r_1) \ne \varphi(r_2)$ then, for some $k \ge 0$, $\sum_{|m|=k}(r_1,m) \ne \sum_{|m|=k}(r_2,m)$. Hence, for some $m' \in M$ of length k we obtain $(r_1,m') \ne (r_2,m')$.

(ii) Since (r_1, m) and (r_2, m) are in $\{0, 1\}$ for all $m \in M$, we obtain $(r_1 \odot r_2, m) \leq (r_1, m)$ and $(r_1 \odot r_2, m) \leq (r_2, m)$ for all $m \in M$. By (i) it is decidable whether or not $r_1 \odot r_2 = r_1$ and $r_1 \odot r_2 = r_2$. Clearly, $r_1 = r_2$ iff $r_1 \odot r_2 = r_1$ and $r_1 \odot r_2 = r_2$. Hence, $r_1 = r_2$ is decidable.

2 Decidability Problems for Unambiguous Power Series

In the sequel, Σ , $1 \notin \Sigma$, denotes a finite generating set of M and S denotes a semiring. We write Σ^* for the set of all finite products of elements of Σ . Hence, we obtain $\Sigma^* = M$. By $S \langle \Sigma \cup \{1\} \rangle$ and $S \langle \{1\} \rangle$ we denote the set of polynomials of the form $p = (p, 1)1 + \sum_{x \in \Sigma} (p, x)x$ and p = (p, 1)1, respectively.

A finite (weighted) automaton (over Σ and S)

$$\mathfrak{A} = (Q, R, A, P)$$

is given by

- (i) a finite nonempty set Q of *states*,
- (ii) a transition matrix $A \in (S \langle \Sigma \cup \{1\} \rangle)^{Q \times Q}$,
- (iii) an initial state vector $R \in (S \langle \{1\} \rangle)^{1 \times Q}$,
- (iv) an final state vector $P \in (S\langle \{1\} \rangle)^{Q \times 1}$.

The finite automaton \mathfrak{A} is *cycle-free* (resp. *proper*) if the isomorphic copy of A in $S^{Q \times Q} \langle \Sigma \cup \{1\} \rangle$ is cycle-free (resp. proper).

The behavior $||\mathfrak{A}||$ of a cycle-free finite automaton \mathfrak{A} is defined by

$$||\mathfrak{A}|| = \sum_{q_1, q_2 \in Q} R_{q_1}(A^*)_{q_1, q_2} P_{q_2} = RA^*P.$$

(See Sakarovitch [4], Section 3 and Gruska [1], Chapter 3.)

By Proposition 3.14 of Sakarovitch [4], for each *cycle-free* finite automaton there exists a *proper* finite automaton with the same behavior.

By Theorem 3.10 of Sakarovitch [4], we obtain

 $S^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle = \{ ||\mathfrak{A}|| \mid \mathfrak{A} \text{ is a proper finite automaton over } \Sigma \text{ and } S \}.$

Let $\mu: M \to S^{Q \times Q}$, Q a finite index set, be a morphism, and let $\lambda \in S^{1 \times Q}$, $\nu \in S^{Q \times 1}$. Then (λ, μ, ν) is called *S*-representation of *M* of dimension *Q*. A power series $r \in S\langle\langle M \rangle\rangle$ is called *S*-recognizable if there exists a finite set *Q* and an *S*-representation of *M* of dimension $Q(\lambda, \mu, \nu)$ such that

$$r = \sum_{m \in M} (\lambda \mu(m) \nu) m \,.$$

We say then that the S-representation (λ, μ, ν) recognizes r. The set of all S-recognizable formal power series is denoted by $S^{\text{rec}}\langle\langle M \rangle\rangle$.

Theorem 3 (Sakarovitch [4], Theorem 4.38). Suppose that S is a commutative semiring. Let $r \in S^{\text{rec}}(\langle\!\langle M \rangle\!\rangle$ and $u \in S^{\text{rat}}\langle\!\langle M \rangle\!\rangle$. Then $r \odot u \in S^{\text{rat}}\langle\!\langle M \rangle\!\rangle$. Moreover, if r is recognized by an S-representation and u is given by a rational expression then a rational expression for $r \odot u$ can be effectively constructed.

Proof. The first sentence of our theorem is implied by Theorem 4.38 of Sakarovitch [4]. For the proof of the second sentence, we first show that the constructions of Theorems 4.13 and 4.35, and of Proposition 4.33 of Sakarovitch [4] are effective. We use the notation of Sakarovitch [4] as far as possible.

Theorem 4.13: If r and u in $S^{\text{rec}}\langle\langle M \rangle\rangle$ are recognized by the S-representations (λ, μ, ν) and (η, κ, ξ) , respectively, then $r \odot u$ is recognized by the S-representation $(\lambda \otimes \eta, \mu \otimes \kappa, \nu \otimes \xi)$, where \otimes denotes the Kronecker product. Clearly, the construction is effective.

Theorem 4.35: Let M and N be graded monoids and $\theta : M \to N$ be a continuous monoid morphism, i.e., $m\theta$ is unequal to the unit of N for all $m \in M$.

- (i) From a rational expression for $r \in S^{rat}\langle\!\langle M \rangle\!\rangle$ a rational expression for $r\underline{\theta} \in S^{rat}\langle\!\langle N \rangle\!\rangle$ can effectively be constructed.
- (ii) If θ is surjective, then from a rational expression for $u \in S^{\text{rat}}\langle\!\langle N \rangle\!\rangle$ a rational expression for some $r \in S^{\text{rat}}\langle\!\langle M \rangle\!\rangle$ such that $r\underline{\theta} = u$ can effectively be constructed.

Proposition 4.33: Let $\theta : M \to N$ be a monoid morphism and $u \in S^{\text{rec}}\langle\!\langle M \rangle\!\rangle$ be recognized by the S-representation (λ, μ, ν) . Then $u\underline{\theta}^{-1} \in S^{\text{rec}}\langle\!\langle M \rangle\!\rangle$ is recognized by the S-representation $(\lambda, \theta\mu, \nu)$. Clearly, the construction of the latter S-representation is effective.

We now prove the second sentence of our theorem. Since M is finitely generated there exists a finite alphabet Σ' and a surjective continuous morphism $\theta : \Sigma'^* \to M$. Here Σ' has the same cardinality as the generating set Σ of M. Assuming $\Sigma = \{m_1, \ldots, m_k\}$ and $\Sigma' = \{x_1, \ldots, x_k\}$ we construct effectively $\theta(x_j) = m_j, 1 \leq j \leq k$. By Theorem 4.35(ii) there exists a power series $u' \in S^{\mathrm{rat}} \langle \langle (\Sigma')^* \rangle \rangle$ such that $u' \underline{\theta} = u$ and a rational expression for $u' \underline{\theta}$ can effectively be constructed by the given rational expression for u.

By Lemma 4.37 of Sakarovitch [4],

$$r \odot u = (r\theta^{-1} \odot u')\theta.$$

Proposition 4.33 ensures that $r\underline{\theta}^{-1} \in S^{\operatorname{rec}}\langle\!\langle \Sigma'^* \rangle\!\rangle = S^{\operatorname{rat}}\langle\!\langle \Sigma'^* \rangle\!\rangle$. It is wellknown that a rational expression for $r\underline{\theta}^{-1}$ can effectively be constructed from an S-representation that recognizes $r\underline{\theta}^{-1}$. Hence, a rational expression for $r\underline{\theta}^{-1}$ can effectively be constructed. Since $r\underline{\theta}^{-1} \odot u' \in S^{\operatorname{rec}}\langle\!\langle \Sigma'^* \rangle\!\rangle = S^{\operatorname{rat}}\langle\!\langle \Sigma'^* \rangle\!\rangle$ by Theorem 4.13 a rational expression for $r\underline{\theta}^{-1} \odot u'$ can effectively be constructed. Finally, by Theorem 4.35(i) the construction of a rational expression for $(r\underline{\theta}^{-1} \odot u')\underline{\theta} = r \odot u$ is effective. \Box

A monoid M is called *rationally enumerable* if char $(M) \in \mathbb{N}^{\mathrm{rat}}\langle\langle M \rangle\rangle$. Here char denotes the characteristic series.

Theorem 4 (Sakarovitch [4], Corollary 4.39). Suppose that S is a commutative semiring. If M is rationally enumerable then $S^{\text{rec}}\langle\langle M \rangle\rangle \subseteq S^{\text{rat}}\langle\langle M \rangle\rangle$. If an S-representation recognizing $r \in S^{\text{rec}}\langle\langle M \rangle\rangle$ is given then a rational expression for r can effectively be constructed.

Proof. We use the proof of Corollary 4.39 of Sakarovitch [4]. Since $r \in S^{\text{rec}}\langle\!\langle M \rangle\!\rangle$ and, by hypothesis, $\operatorname{char}(M) \in S^{\operatorname{rat}}\langle\!\langle M \rangle\!\rangle$, we obtain $r \odot \operatorname{char}(M) = r \in S^{\operatorname{rat}}\langle\!\langle M \rangle\!\rangle$ and, by Theorem 3, a rational expression for r can be effectively constructed from a given S-representation recognizing r.

Corollary 2. Let M be a graded monoid of finite type that is rationally enumerable and assume that $| | : M \to \mathbb{N}$ is recursive. Then φ , as a function $\mathbb{N}^{\mathrm{rec}}\langle\langle M \rangle\rangle \to \mathbb{N}^{\mathrm{rat}}\langle\langle \{x\}^* \rangle\rangle$, is recursive.

Theorem 5. Let M be a rationally enumerable graded monoid of finite type such that $| | : M \to \mathbb{N}$ is recursive. Then for two unambiguous power series $r \in \mathbb{N}^{\mathrm{rat}}\langle\langle M \rangle\rangle$ and $s \in \mathbb{N}^{\mathrm{rec}}\langle\langle M \rangle\rangle$ the problem whether or not r = s is decidable.

Proof. By Theorem 1 and Corollary 2, $\varphi : \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle \to \mathbb{N}^{\mathrm{rat}}\langle\!\langle \{x\}^* \rangle\!\rangle$ and $\varphi : \mathbb{N}^{\mathrm{rec}}\langle\!\langle M \rangle\!\rangle \to \mathbb{N}^{\mathrm{rat}}\langle\!\langle \{x\}^* \rangle\!\rangle$, respectively, are recursive. Now the application of Corollary 8.18 of Kuich, Salomaa [3] and of Theorems 3 and 2 (ii) proves our theorem. \Box

Harju, Karhumäki [2] proved the famous result that the equivalence problem for deterministic finite multitape automata is decidable. The next corollary states a weak version of this result.

Corollary 3. Let $\Sigma_1, \ldots, \Sigma_n$ be alphabets. Then for a deterministic finite automaton \mathfrak{A} over $\Sigma = \{(a_1, \varepsilon, \ldots, \varepsilon) \mid a_1 \in \Sigma_1\} \cup \cdots \cup \{(\varepsilon, \varepsilon, \ldots, a_n) \mid a_n \in \Sigma_n\}$ and \mathbb{N} , and an unambiguous power series $r \in \mathbb{N}^{\operatorname{rec}} \langle \langle \Sigma_1^* \times \cdots \times \Sigma_n^* \rangle \rangle$ the problem, whether or not $||\mathfrak{A}|| = r$ is decidable. An inspection of the proof of Theorem 2 shows that $\mathfrak{R} \subseteq \mathbb{N}^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ can be replaced by $\mathfrak{R} \subseteq S^{\mathrm{rat}}\langle\!\langle M \rangle\!\rangle$ if the semiring S is ordered and satisfies the following condition: For all $a_1, a_2, b_1, b_2 \in S$,

$$a_1 + a_2 = b_1 + b_2, a_1 \ge b_1, a_2 \ge b_2$$
 imply $a_1 = b_1, a_2 = b_2$.

A nontrivial complete ordered semiring does not satisfy this condition; the semirings \mathbb{Q}_+ and \mathbb{R}_+ do satisfy this condition.

Theorem 6. Let Σ be an alphabet and $r \in \mathbb{Q}^{\mathrm{rat}}_+ \langle \langle \Sigma^* \rangle \rangle$ such that $(r, w) \leq 1$ for all $w \in \Sigma^*$. Then it is decidable whether or not r is unambiguous.

Proof. Since $(r, w) \leq 1$ for all $w \in \Sigma^*$ we have $r \odot r \leq r$. Since $\mathbb{Q}_+^{\operatorname{rat}}\langle\langle \Sigma^* \rangle\rangle$ is closed under Hadamard product, by Corollary 8.18 of Kuich, Salomaa [3] and by Theorem 2 (i) it is decidable whether or not $r \odot r = r$. The theorem is proved by the observation that $r \odot r = r$ iff $(r, w) \in \{0, 1\}$ for all $w \in \Sigma^*$.

References

- 1. Gruska, J.: Foundations of Computing. Thomson Learning (1997)
- Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata. Theoretical Computer Science 78, 347–355 (1991)
- 3. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, Vol. 5. Springer (1986)
- 4. Sakarovitch, J.: Rational and recognisable power series. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 4. Springer (2009)