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Abstract. We consider power series over a graded monoid M of finite
type. We show first that, under certain conditions, the equivalence prob-
lem of power series over M with coefficients in the semiring N of non-
negative integers can be reduced to the equivalence problem of power
series over {x}∗ with coefficients in N. This result is then applied to
rational and recognizable power series over M with coefficients in N, and
to rational power series over Σ∗ with coefficients in the semiring Q+ of
nonnegative rational numbers, where Σ is an alphabet.

1 Power Series over a Graded Monoid and a Decidability
Result

In [4], Sakarovitch considers power series over a graded monoid. Let 〈M, ·, 1〉 be
a monoid and let | | : M → N be a mapping, called length, such that

(i) |m| > 0 for all m ∈ M , m �= 1;
(ii) |m · n| = |m| + |n| for all m,n ∈ M .

Then 〈M, ·, 1〉 is called graded monoid. The definition implies that |1| = 0. If
a graded monoid M is finitely generated, we call M a graded monoid of finite
type. In Section 2 of [4], Sakarovitch proves the following results:

Proposition 1 (Sakarovitch [4]). In a graded monoid of finite type, the number
of elements whose length is less than an arbitrary given integer n > 0 is finite.

A monoid is called finitely decomposable if, for all m ∈ M , the set of pairs
(m1,m2) such that m1m2 = m is finite.

Corollary 1 (Sakarovitch [4]). In a graded monoid of finite type, every element
is finitely decomposable.

Let S be a semiring and M be a graded monoid of finite type. Then any
mapping from M into S is a (formal) power series (over M with coefficients in
S). The set of all these power series is denoted by S〈〈M〉〉. If r is a power series
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then the image of an element m ∈ M under r is denoted by (r,m) which is called
coefficient of m and the power series is written as

r =
∑

m∈M

(r,m)m.

Power series where almost all coefficients are 0 are called polynomials. The set
of all polynomials is denoted by S〈M〉.

For all r1, r2 ∈ S〈〈M〉〉, we consider the following operations:

(i) the (pointwise) addition of r1 and r2, denoted by r1 + r2 and defined by

(r1 + r2,m) = (r1,m) + (r2,m) for all m ∈ M ;

(ii) the (Cauchy) product of r1 and r2, denoted by r1 · r2 and defined by

(r1 · r2,m) =
∑

m1m2=m

(r1,m1)(r2,m2) for all m ∈ M ;

(iii) the (pointwise) Hadamard product of r1 and r2, denoted by r1 � r2 and
defined by

(r1 � r2,m) = (r1,m)(r2,m) for all m ∈ M ;

Moreover, we consider the scalar multiplications of s ∈ S and r ∈ S〈〈M〉〉 denoted
by s · r and r · s and defined by

(s · r,m) = s · (r,m) and (r · s,m) = (r,m) · s for all m ∈ M , respectively.

The power series 0 and 1 are defined by

(0,m) = 0 for all m ∈ M and
(1, 1) = 1, (1,m′) = 0 for all m′ ∈ M , m′ �= m, respectively.

Proposition 2 (Sakarovitch [4]). Let M be a graded monoid of finite type and
S a semiring. Then 〈S〈〈M〉〉,+, ·, 0, 1〉 and 〈S〈M〉,+, ·, 0, 1〉 are semirings.

In the sequel, 〈M, ·, 1〉 will always denote a graded monoid of finite type and
S will denote a semiring.

A power series r ∈ S〈〈M〉〉 is called cycle-free if there exists an n ≥ 1 such
that (r, 1)n = 0; it is called proper if (r, 1) = 0. Let r ∈ S〈〈M〉〉. Then the proper
part of r is the power series

∑
m∈M, m �=1(r,m)m and the constant term of r

is the power series (r, 1)1, also written (r, 1). If r ∈ S〈〈M〉〉 is cycle-free then
{n | (rn,m) �= 0} is locally finite, i. e., is a finite set for all m ∈ M . Hence, the
infinite sum

r∗ =
∑

n≥0

rn

is defined; it is called the star of r.
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Proposition 3 (Sakarovitch [4]). Let r ∈ S〈〈M〉〉 be a cycle-free power series
with constant term r0 and proper part r1. Then

r∗ = (r∗
0r1)∗r∗

0 = r∗
0(r1r

∗
0)∗ .

Defining ϕ : N〈〈M〉〉 → N〈〈{x}∗〉〉, x a symbol, by

ϕ(r) =
∑

m∈M

(r,m)x|m| ,

it is easily shown that ϕ is a semiring morphism. The mapping ϕ is also com-
patible with the star operation applied to a cycle-free power series r, i. e.,

ϕ(r∗) = ϕ(r)∗ if r ∈ N〈〈M〉〉 is cycle-free.

A power series r ∈ S〈〈M〉〉 is termed rational (over S and M) if r can be
obtained from polynomials of S〈M〉 by finitely many applications of the rational
operations +, ·, ∗, where ∗ is applied only to proper power series. The family of
rational power series (over S and M) is denoted by Srat〈〈M〉〉. By Proposition 3,
we get an equivalent definition of rational power series if we replace proper by
cycle-free. The formula telling how a given rational power series r is obtained
from these polynomials by rational operations is referred to as a rational expres-
sion for r.

Theorem 1. Let M be a graded monoid of finite type and assume that | | : M →
N is recursive. Then ϕ, as a mapping N

rat〈〈M〉〉 → N
rat〈〈{x}∗〉〉, is recursive.

Proof. We prove the theorem by induction on the structure of a rational power
series r ∈ N

rat〈〈M〉〉. We show that from a rational expression for r ∈ N
rat〈〈M〉〉

we can compute a rational expression for ϕ(r) since ϕ is a semiring morphism
preserving ∗.

(i) For r = n, n ∈ N, ϕ(r) = nε. For r = a, a ∈ M , ϕ(a) = x|a|. Since ϕ is a
semiring morphism, ϕ(p) ∈ N〈{x}∗〉 for p ∈ N〈M〉.

(ii) Since ϕ is a semiring morphism, we obtain ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)
and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2).

(iii) Since ϕ is a semiring morphism, we obtain, for a proper power series in
N〈〈M〉〉,

ϕ(r∗) =
∑

n≥0

ϕ(rn) =
∑

n≥0

ϕ(r)n = ϕ(r)∗ .

�

We call a power series r ∈ S〈〈M〉〉 unambiguous if, for all m ∈ M , (r,m) ∈
{0, 1}.

In the proof of our next theorem we use the following equality:

(ϕ(r), xk) =
∑

|m|=k

(r,m), r ∈ N〈〈M〉〉, k ≥ 0 .

This next theorem is a generalization of Theorems 16.21 and 16.22 of Kuich,
Salomaa [3].
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Theorem 2. Let M be a graded monoid of finite type and assume that | | :
M → N is recursive. Then

(i) for r1, r2 ∈ N
rat〈〈M〉〉 with (r1,m) ≥ (r2,m) for all m ∈ M the problem

whether or not r1 = r2 is decidable;
(ii) if R ⊆ N

rat〈〈M〉〉 such that, for s1 ∈ N
rat〈〈M〉〉 and s2 ∈ R, s1 � s2 is in

N
rat〈〈M〉〉, then for two unambiguous power series r1 ∈ N

rat〈〈M〉〉 and r2 ∈ R
the problem whether or not r1 = r2 is decidable.

Proof. By Theorem 1 the mapping ϕ : Nrat〈〈M〉〉 → N
rat〈〈{x}∗〉〉 is recursive. By

Corollary 8.18 of Kuich, Salomaa [3] the equivalence problem for power series in
N

rat〈〈{x}∗〉〉 is decidable. Hence, for two given rational power series r1 and r2 in
N

rat〈〈{x}∗〉〉 we can decide, whether or not ϕ(r1) = ϕ(r2).
(i) If ϕ(r1) = ϕ(r2) then, for all k ≥ 0,

∑
|m|=k(r1,m) =

∑
|m|=k(r2,m).

Hence, (r1,m) ≥ (r2,m) for all m ∈ M implies (r1,m) = (r2,m). If ϕ(r1) �=
ϕ(r2) then, for some k ≥ 0,

∑
|m|=k(r1,m) �= ∑

|m|=k(r2,m). Hence, for some
m′ ∈ M of length k we obtain (r1,m

′) �= (r2,m
′).

(ii) Since (r1,m) and (r2,m) are in {0, 1} for all m ∈ M , we obtain (r1 �
r2,m) ≤ (r1,m) and (r1 � r2,m) ≤ (r2,m) for all m ∈ M . By (i) it is decidable
whether or not r1 � r2 = r1 and r1 � r2 = r2. Clearly, r1 = r2 iff r1 � r2 = r1

and r1 � r2 = r2. Hence, r1 = r2 is decidable. �

2 Decidability Problems for Unambiguous Power Series

In the sequel, Σ, 1 /∈ Σ, denotes a finite generating set of M and S denotes a
semiring. We write Σ∗ for the set of all finite products of elements of Σ. Hence,
we obtain Σ∗ = M . By S〈Σ ∪ {1}〉 and S〈{1}〉 we denote the set of polynomials
of the form p = (p, 1)1 +

∑
x∈Σ(p, x)x and p = (p, 1)1, respectively.

A finite (weighted) automaton (over Σ and S)

A = (Q,R,A, P )

is given by

(i) a finite nonempty set Q of states,
(ii) a transition matrix A ∈ (S〈Σ ∪ {1}〉)Q×Q,
(iii) an initial state vector R ∈ (S〈{1}〉)1×Q,
(iv) an final state vector P ∈ (S〈{1}〉)Q×1.

The finite automaton A is cycle-free (resp. proper) if the isomorphic copy of A
in SQ×Q〈Σ ∪ {1}〉 is cycle-free (resp. proper).

The behavior ||A|| of a cycle-free finite automaton A is defined by

||A|| =
∑

q1,q2∈Q

Rq1(A
∗)q1,q2Pq2 = RA∗P .

(See Sakarovitch [4], Section 3 and Gruska [1], Chapter 3.)



On Power Series over a Graded Monoid 53

By Proposition 3.14 of Sakarovitch [4], for each cycle-free finite automaton
there exists a proper finite automaton with the same behavior.

By Theorem 3.10 of Sakarovitch [4], we obtain

Srat〈〈M〉〉 = {||A|| | A is a proper finite automaton over Σ and S} .

Let μ : M → SQ×Q, Q a finite index set, be a morphism, and let λ ∈ S1×Q,
ν ∈ SQ×1. Then (λ, μ, ν) is called S-representation of M of dimension Q. A
power series r ∈ S〈〈M〉〉 is called S-recognizable if there exists a finite set Q and
an S-representation of M of dimension Q (λ, μ, ν) such that

r =
∑

m∈M

(λμ(m)ν)m.

We say then that the S-representation (λ, μ, ν) recognizes r. The set of all S-
recognizable formal power series is denoted by Srec〈〈M〉〉.
Theorem 3 (Sakarovitch [4], Theorem 4.38). Suppose that S is a commuta-
tive semiring. Let r ∈ Srec〈〈M〉〉 and u ∈ Srat〈〈M〉〉. Then r � u ∈ Srat〈〈M〉〉.
Moreover, if r is recognized by an S-representation and u is given by a rational
expression then a rational expression for r � u can be effectively constructed.

Proof. The first sentence of our theorem is implied by Theorem 4.38 of
Sakarovitch [4]. For the proof of the second sentence, we first show that the con-
structions of Theorems 4.13 and 4.35, and of Proposition 4.33 of Sakarovitch [4]
are effective. We use the notation of Sakarovitch [4] as far as possible.
Theorem 4.13: If r and u in Srec〈〈M〉〉 are recognized by the S-representations
(λ, μ, ν) and (η, κ, ξ), respectively, then r � u is recognized by the S-
representation (λ ⊗ η, μ ⊗ κ, ν ⊗ ξ), where ⊗ denotes the Kronecker product.
Clearly, the construction is effective.
Theorem 4.35: Let M and N be graded monoids and θ : M → N be a continuous
monoid morphism, i. e., mθ is unequal to the unit of N for all m ∈ M .

(i) From a rational expression for r ∈ Srat〈〈M〉〉 a rational expression for rθ ∈
Srat〈〈N〉〉 can effectively be constructed.

(ii) If θ is surjective, then from a rational expression for u ∈ Srat〈〈N〉〉 a ratio-
nal expression for some r ∈ Srat〈〈M〉〉 such that rθ = u can effectively be
constructed.

Proposition 4.33: Let θ : M → N be a monoid morphism and u ∈ Srec〈〈M〉〉
be recognized by the S-representation (λ, μ, ν). Then uθ−1 ∈ Srec〈〈M〉〉 is recog-
nized by the S-representation (λ, θμ, ν). Clearly, the construction of the latter
S-representation is effective.

We now prove the second sentence of our theorem. Since M is finitely gen-
erated there exists a finite alphabet Σ′ and a surjective continuous morphism
θ : Σ′∗ → M . Here Σ′ has the same cardinality as the generating set Σ of
M . Assuming Σ = {m1, . . . ,mk} and Σ′ = {x1, . . . , xk} we construct effec-
tively θ(xj) = mj , 1 ≤ j ≤ k. By Theorem 4.35(ii) there exists a power series
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u′ ∈ Srat〈〈(Σ′)∗〉〉 such that u′θ = u and a rational expression for u′θ can effec-
tively be constructed by the given rational expression for u.

By Lemma 4.37 of Sakarovitch [4],

r � u = (rθ−1 � u′)θ .

Proposition 4.33 ensures that rθ−1 ∈ Srec〈〈Σ′∗〉〉 = Srat〈〈Σ′∗〉〉. It is wellknown
that a rational expression for rθ−1 can effectively be constructed from an
S-representation that recognizes rθ−1. Hence, a rational expression for rθ−1

can effectively be constructed. Since rθ−1 � u′ ∈ Srec〈〈Σ′∗〉〉 = Srat〈〈Σ′∗〉〉
by Theorem 4.13 a rational expression for rθ−1 � u′ can effectively be con-
structed. Finally, by Theorem 4.35(i) the construction of a rational expression
for (rθ−1 � u′)θ = r � u is effective. �

A monoid M is called rationally enumerable if char(M) ∈ N
rat〈〈M〉〉. Here

char denotes the characterisic series.

Theorem 4 (Sakarovitch [4], Corollary 4.39). Suppose that S is a commutative
semiring. If M is rationally enumerable then Srec〈〈M〉〉 ⊆ Srat〈〈M〉〉. If an S-
representation recognizing r ∈ Srec〈〈M〉〉 is given then a rational expression for
r can effectively be constructed.

Proof. We use the proof of Corollary 4.39 of Sakarovitch [4]. Since r ∈ Srec〈〈M〉〉
and, by hypothesis, char(M) ∈ Srat〈〈M〉〉, we obtain r�char(M) = r ∈ Srat〈〈M〉〉
and, by Theorem 3, a rational expression for r can be effectively constructed from
a given S-representation recognizing r. �

Corollary 2. Let M be a graded monoid of finite type that is rationally enu-
merable and assume that | | : M → N is recursive. Then ϕ, as a function
N

rec〈〈M〉〉 → N
rat〈〈{x}∗〉〉, is recursive.

Theorem 5. Let M be a rationally enumerable graded monoid of finite type
such that | | : M → N is recursive. Then for two unambiguous power series
r ∈ N

rat〈〈M〉〉 and s ∈ N
rec〈〈M〉〉 the problem whether or not r = s is decidable.

Proof. By Theorem 1 and Corollary 2, ϕ : N
rat〈〈M〉〉 → N

rat〈〈{x}∗〉〉 and ϕ :
N

rec〈〈M〉〉 → N
rat〈〈{x}∗〉〉, respectively, are recursive. Now the application of

Corollary 8.18 of Kuich, Salomaa [3] and of Theorems 3 and 2 (ii) proves our
theorem. �

Harju, Karhumäki [2] proved the famous result that the equivalence problem
for deterministic finite multitape automata is decidable. The next corollary states
a weak version of this result.

Corollary 3. Let Σ1, . . . ,Σn be alphabets. Then for a deterministic finite auto-
maton A over Σ = {(a1, ε, . . . , ε) | a1 ∈ Σ1} ∪ · · · ∪ {(ε, ε, . . . , an) | an ∈ Σn}
and N, and an unambiguous power series r ∈ N

rec〈〈Σ∗
1 × · · · × Σ∗

n〉〉 the problem,
whether or not ||A|| = r is decidable.
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An inspection of the proof of Theorem 2 shows that R ⊆ N
rat〈〈M〉〉 can be

replaced by R ⊆ Srat〈〈M〉〉 if the semiring S is ordered and satisfies the following
condition: For all a1, a2, b1, b2 ∈ S,

a1 + a2 = b1 + b2, a1 ≥ b1, a2 ≥ b2 imply a1 = b1, a2 = b2.

A nontrivial complete ordered semiring does not satisfy this condition; the semi-
rings Q+ and R+ do satisfy this condition.

Theorem 6. Let Σ be an alphabet and r ∈ Q
rat
+ 〈〈Σ∗〉〉 such that (r, w) ≤ 1 for

all w ∈ Σ∗. Then it is decidable whether or not r is unambiguous.

Proof. Since (r, w) ≤ 1 for all w ∈ Σ∗ we have r � r ≤ r. Since Q
rat
+ 〈〈Σ∗〉〉 is

closed under Hadamard product, by Corollary 8.18 of Kuich, Salomaa [3] and
by Theorem 2 (i) it is decidable whether or not r � r = r. The theorem is proved
by the observation that r � r = r iff (r, w) ∈ {0, 1} for all w ∈ Σ∗. �
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