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Abstract. The concept of approximation has intensively been studied,
developed and applied not only in computer science, but also in math-
ematics and engineering disciplines. The never ending requirement for
low power consumption led to making approximate circuits and computer
systems even in the areas in which only accurately working solutions have
traditionally been accepted. Approximate circuits are the circuits relax-
ing the requirement on the functional equivalence between the specifica-
tion and implementation in order to reduce the area on a chip, delay or
energy consumption. Approximate computing machines further exploit
and apply this idea at all system levels. This paper introduces the field
of approximate computing and shows how evolutionary design methods
can automate the design process of approximate computing systems, in
particular, approximate logic circuits.

1 Introduction

The notion of approximation is well established in computer science, mathematics
and engineering [1]. However, the reasons for approximations can be different.

In computer science, approximation algorithms are algorithms used to find
approximate solutions to NP-hard optimization problems. As it is intractable to
find an optimal solution, the goal is to find polynomial-time exact algorithms and
guarantee provable solution quality in provable run-time bounds. An interesting
discovery is that, in spite of the isomorphism between NP-complete problems,
good approximation algorithms can be surprisingly different for particular prob-
lem classes. A detailed overview of the theory of approximation algorithms can
be found in [2].

One of the classic utilizations of the concept of approximation is approximate
string matching. Finding strings that match a pattern approximately rather than
exactly is crucial for spell checking, bioinformatics, spam filtering and other
applications.

In bio-inspired artificial intelligence, models of computation, such as artificial
neural networks, have been developed which inherently exploit the concept of
approximation. For example, a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate continuous functions [3].

In mathematics, it is investigated how certain (usually complex) functions
can be approximated by means of basic functions that are inexpensive or suitable
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according to a given purpose. In order to do so, traditional approaches (such as
Taylor series or Newton’s method) utilize only elementary operations: addition,
subtraction and multiplication. But multiplication can still be very expensive. As
a hardware multiplier is a relatively complex and slow component, multiplierless
methods have been discovered in computer engineering to inexpensively and
quickly approximate mathematical functions. The most prominent example is
the CORDIC algorithm (COordinate Rotation DIgital Computer), developed
by Jack E. Volder, which is capable of calculating hyperbolic and trigonometric
functions using addition, subtraction, bit shift and table lookup [4]. We will see
later that even the adders are approximated in modern computing devices.

All approaches to approximations suppose that an error measure is defined in
order to quantify how far a given approximation is from an optimal (or known)
solution. The aforementioned example dealing with hardware resources shows
that the error measure is not the only measure in engineering applications. For
example, speed of processing and area on a chip are fundamental measures used
for hardware components. Moreover, if a sequence of successive approximations
can be constructed, the rate of convergence and stability are other important
measures of the approximation method.

It can be seen that the concept of approximation is thus relevant for both
algorithms as well as solutions produced by algorithms. One has to carefully
distinguish algorithms (i.e. problem solving mechanisms, such as the quicksort)
from solutions to particular problems (e.g. a sorted sequence of integers), because
an algorithm can often be a solution produced by another algorithm (e.g. in
genetic programming).

In the recent five years, we could observe a lot of work around approxima-
tions in a different context, mainly in a connection with energy consumption.
A new research direction – approximate computing – has been established to
investigate how computer systems can be made better – more energy efficient,
faster, and less complex – by relaxing the requirement that they are exactly
correct. Approximate computing exploits the fact that the requirement of per-
fect functional behavior (i.e. accuracy) can be relaxed because some applications
are inherently error resilient [5]. The errors are not recognizable because human
perception capabilities are limited (e.g. in multimedia applications), no golden
solution is available for validation of results (e.g. in data mining applications),
or users are willing to accept some inaccuracies (e.g. when battery of a mobile
phone is almost depleted, but at least a basic functionality is still requested).
Therefore, the accuracy can be used as a design metric, traded for area on a
chip, delay, throughput, or power consumption.

In approximate computing systems, approximations can be introduced at all
design levels, starting from the circuit via the architecture and operating system
to programming language. Taking approximate computing closer to mainstream
adoption requires a deeper understanding of inherent application resilience across a
broader range of applications, which has partially been investigated, e.g. in [6]. As a
manualre-designoffullyfunctional(exact)systemsisnotanefficientdesignmethod,
several automated approaches have been proposed to particular problem classes.
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The goal of this paper is to introduce the nascent field of approximate com-
puting and show how evolutionary design methods can automate the design
process of approximate computing systems, in particular, approximate digital
circuits. Note that no support for the design of approximate circuits is available
in common circuit design and optimization tools [7,8]. Because of the nature of
approximate circuits (in fact, partially working circuits are sought) and principles
of evolutionary circuit design (evolutionary-based improving of partially working
circuits), evolutionary computing seems to be a promising design method.

The rest of the paper is organized as follows. Section 2 briefly surveys the field
of approximate computing and approximate circuit design. In Section 3, evolu-
tionary computing is introduced as a method for approximate circuit design.
Section 4 specifically deals with a multi-objective approach to approximate cir-
cuit design. Concluding remarks are given in Section 5.

2 Approximate Computing

In the introduction, we have shown that approximate computing is a much wider
concept than approximation algorithms and numerical approximation. It deals
with new approaches to circuits, components, microarchitectures, operating sys-
tems, programming languages, compilers and their interactions.

Approximate computing should not also be confused with stochastic comput-
ing and probabilistic computing [5,9]. In stochastic computing, values are repre-
sented by streams of random bits. On the other hand, probabilistic computing
utilizes random behavior of circuit elements under presence of thermal noise.

The number of papers dealing with approximate computing is rapidly increas-
ing and the field is now very active. Approximate solutions have been applied at
various levels of computer systems, including:

– elementary circuits (e.g. adders [10], multipliers [11]);
– high-level processing blocks (e.g. image compression [11], discrete cosine

transform, finite and infinite impulse response filters [12]);
– computer architecture (approximate pipelines in microprocessors [13]);
– general purpose approximate computing machines [14];
– programming languages [15].

Considering the energy efficiency as the main driving factor for introducing
inaccurate solutions, approximate computing is thus primarily relevant to phys-
ical design of circuits and development of software. In the case of software, a key
challenge is how to isolate parts of the program that must be precise from those
that can be approximated so that a program execution is correct even if quality
of the output degrades [15].

Approximate computing is definitely a promising way in computer engineer-
ing as small imperfections in functionality can be tolerated in many domains and
obtained benefits (especially in terms of power consumption) are impressive. At
the same time, future fabrication technologies operating with atomic-scale ele-
ments will inherently lead to imperfectly working circuits and thus majority of
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circuits will have to be considered as approximate circuits. However, there is not
still a well-established methodology for automated construction of approximate
systems and circuits which could provide a good trade-off among key parame-
ters. A recent comprehensive survey [16] clearly states in its “Implications for
Circuits and Architectures” section that

Much research needs to be done to functionally or parametrically under-
design large general class of circuits automatically. Mechanisms to pass
application intent to physical implementation flow (especially to logic
synthesis in case of functional underdesign) need to be developed.

2.1 Approximate Circuits

Before a digital circuit is implemented using gates and transistors, it is initially
represented at the logic level. There is a huge number of possibilities to map
the logic behavior onto available gates. In past decades, various optimization
techniques were proposed to find the most suitable mapping according to a
preselected metric, typically reflecting the area on a chip, power consumption
and delay [7,8]. The circuits which are intentionally designed in such a way
that the specification is not met in terms of functionality and some savings are
expected in terms of energy, performance or area are called approximate circuits.

Power consumption reduction methods have been developed for decades [17].
However, new technology-level optimizations such as downsizing of gates (i.e.
creating smaller than normally sized gates to reduce power consumption, in
exchange for increased delay) on critical paths and voltage over-scaling (i.e.
using deliberately lower power supply voltage for which the circuit is known to
occasionally produce erroneous outputs) enabled additional power savings.

Another technique which is, to some extent, technology-independent is func-
tional approximation. An accurate computing circuit is modified so that it does
not fully implement the logic behavior given by the specification. A natural
way is eliminating the least significant bits in the case of arithmetic circuits.
However, this technique leads to insignificant area (and so power consumption)
savings for some key circuits such as multipliers. Hence more drastic changes
have to be introduced into the circuit structure.

The problem of circuit approximation can be formulated as a multiobjective
optimization problem: Let C be a combinational circuit (a feed-forward network
composed of elementary logic gates) implementing a multiple-output logic func-
tion {0, 1}m → {0, 1}n which satisfies the specification S (given by, e.g., truth
table, algebraic expressions, netlist etc.), where m and n is the number of inputs
and outputs. The goal is to generate a circuit C

′
, implementing S with errors

never exceeding predefined threshold error values εi according to a set of chosen
error (constraint) functions Ei and minimizing a set of objective functions Fj .

The role of fabrication technology has to be emphasized in this task. The
relation between the area and power consumption can be highly non-linear. A
simple assumption that a small circuit will have low power consumption does not
always apply. As circuit power consumption in static and dynamic mode depends
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on a particular technology, detailed simulations of power consumption have to
always be performed for the chosen technology in order to get trustworthy results
from the circuit approximation process.

2.2 Systematic Design Methods

The design of approximate circuits is typically based on manual modifications
of fully functional circuits [11]. Only a few research groups have worked on an
automated approach for approximate circuit synthesis.

The Systematic methodology for Automatic Logic Synthesis of Approximate
circuits (SALSA) starts with a description of the exact version of the circuit and
an error constraint that specifies the type and amount of error that the imple-
mentation can exhibit [12]. The methodology introduces the so-called Q-function
which takes the outputs from both the original circuit and approximate circuit
and decides if the quality constraints are satisfied. The Q-function outputs a sin-
gle Boolean value. The SALSA algorithm attempts to modify the approximate
circuit with the goal of keeping the output of the Q-function unchanged. The
execution times of SALSA (on a server with an AMD Opteron 6176, 2.29 GHz
processor) ranged from 4 minutes to 2.5 hours for circuits such as multipliers,
filters and discrete cosine transform blocks [12].

Another systematic approach, Substitute-And-SIMplIfy (SASIMI), tries to
identify signal pairs in the circuit that exhibit the same value with a high proba-
bility, and substitutes one for the other [18]. These substitutions introduce func-
tional approximations. Unused logic can be eliminated from the circuit which
results in area and power savings.

In both cases, the design process is controlled by a predefined acceptable
error, and hence we call the approaches error-oriented.

3 Evolutionary Approach to Approximate Circuits

The evolutionary circuit design, which has been developed in the framework
of modern bio-inspired artificial intelligence, is the use of bio-inspired search
algorithms for automated synthesis and optimization of circuit designs. The
method has been utilized for digital as well as analogue circuits [19].

3.1 Evolutionary Circuit Design

Electronic circuits encoded as strings of symbols are constructed and optimized
by the evolutionary algorithm (EA) in order to obtain a circuit implementation
satisfying the specification. In order to evaluate a candidate circuit, a reconfig-
urable circuit (or its simulator if evolution is performed using a circuit simulator)
is reconfigured using a new configuration created on the basis of the chromosome
content. The configured device is then evaluated and its behavior is compared
with the desired behavior. The fitness score is calculated which reflects to what
extent the candidate circuit satisfies the specification.
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Among various branches of EAs,multiobjectiveEAs (MOEA) have been recog-
nized as a very valuable method in systems design as they naturally provide a set
of candidate solutions showing various trade-offs among conflicting design objec-
tives. The circuit design problem is thus transformed into the search problem.

The main reason why evolutionary circuit design has been studied and devel-
oped is its ability to (i) provide novel designs hardly reachable by means of
conventional methods; (ii) deliver good solutions for problems where the specifi-
cation is inherently incomplete and any golden solution does not exist; and (iii)
achieve adaptation/fault tolerance directly at the hardware level. John Koza,
the influential proponent of genetic programming, surveyed dozens of human-
competitive designs produced by EA [20].

The main challenge is to overcome the scalability issues emerging in
real-world applications of evolutionary circuit design, which primarily means
developing EA-based methods capable of evolving complex circuits. Another
disadvantage is that EA-based methods do not guarantee obtaining a solution
with a predefined quality.

3.2 Cartesian Genetic Programming

Cartesian genetic programming (CGP) is one of the most suitable and popular
methods for evolutionary circuit design [21].

A candidate circuit is modeled by means of a directed acyclic graph whose
nodes (gates) are organized in c columns and r rows. The circuit utilizes m
primary inputs and n primary outputs. Primary inputs and processing node
outputs are labeled 0, 1, . . . ,m − 1 and m,m + 1, . . . ,m + c · r − 1, respectively.
Each node input can be connected either to the output of a node placed in
previous l columns or to one of the primary circuit inputs, where l is one of
CGP parameters. Figure 1 shows the CGP grid of nodes.

A candidate solution consisting of two-input nodes is represented in the chro-
mosome by r ·c triplets (x1, x2, ψ) determining for each processing node its func-
tion ψ (ψ ∈ Γ), and addresses of nodes x1 and x2 which its inputs are connected
to. The last part of the chromosome contains n integers specifying either the
nodes where the primary outputs are connected to or logic constants (’0’ and
’1’) which can directly be connected to the primary output. While the chromo-
some size is constant for a given product r · c, the phenotype size is variable and
measured as the number of used nodes (gates).

The initial population of CGP is created either randomly or by means of
existing circuits. Calculating the fitness value is a two-phase process. Firstly, the
circuit functionality is determined, e.g. by computing responses for all possible
assignments to the inputs. After reaching a satisfactory accuracy in the course
of evolution or when CGP is seeded by fully functional designs, the second phase
is initiated in which the circuit size (or other objectives) can be optimized. CGP
employs a (1 + λ) evolution strategy whose pseudo-code is given in Algorithm 1.
This search method is based on a point mutation operator which modifies h
randomly selected genes (integers) of the parent circuit. The role of mutation is
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Fig. 1. An array of r · c 2-input nodes used in CGP. The number of inputs and outputs
is m and n.

Algorithm 1. CGP
Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

P ← randomly generate parent p and its λ offspring;1

EvaluatePopulation(P );2

while 〈terminating condition not satisfied〉 do3

α ← highest-scored-individual(P );4

if fitness(α) ≥ fitness(p) then5

p ← α;6

P ← create λ offspring of p using mutation;7

EvaluatePopulation(P );8

return p, fitness(p);9

substantial because even a single modified gene (integer) can significantly change
the phenotype.

3.3 Evolution of Approximate Circuits

The CGP-based design methods were introduced for the design of approximate
circuits because it was expected that they can provide much better solutions (i.e.
approximate circuits) for a larger class of circuits and multiple conflicting objec-
tives than existing design methods. We will briefly introduce our previous work,
in which we proposed two approaches to the evolutionary design of approximate
circuits by means of CGP.

In paper [22], we exploited the facts that power consumption is often highly
correlated with occupied resources and the evolutionary design is capable of
constructing partially working solutions even if sufficient resources (required for
finding a fully functional solution) are not available. Let z be the (minimum)
number of gates required for obtaining an accurate function. CGP is employed
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to minimize the error providing that only z − 1 gates are available. The process
can be repeated for z − 2, z − 3 etc. gates. The user thus obtains a set of
approximate combinational circuits, each of which typically exhibits different
trade-off between the functionality and the number of gates. This approach can
be considered as an area-oriented method because the user can control the used
area (and so power consumption) more comfortably than by means of the error-
oriented methods.

In paper [23], we proposed a complementary design approach. The user is
supposed to define a required error level emax (e.g. the average error magni-
tude). CGP, which is seeded by a conventional fully functional implementation,
is utilized to modify the seed in order to obtain a circuit with predefined emax.
After obtaining that circuit, CGP can minimize the mean error, the number of
gates or other criteria providing that emax is left unchanged.

Because the utilized power estimation algorithm is very time consuming, it
has not been included into the fitness function directly. Power consumption was
calculated at the end of evolution for the best evolved approximate circuits. In
both cases we demonstrated that for the cost of runtime the proposed methods
provide better trade-offs for elementary arithmetic circuits (such as adders and
multipliers) than conventional methods. The error-oriented approach tends to
be less computationally demanding.

4 Multiobjective Approximate Circuit Evolution

Both aforementioned approaches are the single-objective optimization methods.
In this section, we will demonstrate how truly multiobjective evolutionary opti-
mization algorithms can be employed to approximate circuits design.

4.1 Multiobjective Optimization

Multiobjective evolutionary algorithms are utilized if multiple conflicting
objective functions are formulated. Contrasted to the single-objective EAs, they
internally sort individuals according to the dominance relation, build archives
of so-called non-dominating solutions, and ensure population diversity to avoid
converging to a single solution. In order to compare two solutions, the domi-
nance relation is defined as follows: Solution x dominates another solution y if
two conditions are satisfied:

1. The solution x is no worse than y in all objectives.
2. The solution x is strictly better than y in at least one objective.

In the set of solutions P , the non-dominated subset of solutions P ′ contains
those solutions that are not dominated by any member of P . The non-dominated
subset of all possible solutions is called the Pareto-optimal set. The ultimate goal
of a multiobjective optimization is to find all Pareto-optimal solutions in a single
run of MOEA.
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Instead of evolving for every possible number of gates or error (as we have
seen in Section 3.3), various trade-offs can be obtained in a single run of a
suitable MOEA. Hence we combined CGP encoding with a typical multiobjective
evolutionary algorithm NSGA-II [24]. The proposed MOEA will be seeded by a
fully functional circuit. The goal is to simultaneously minimize the error and the
number of gates, providing that solutions showing the error higher than Emax

are infeasible.

4.2 Case Study

The proposed MOEA is evaluated in the task of a 4-bit multiplier approximation.
The conventional 4-bit multiplier considered in this study consists of 59 gates and
calculates an 8-bit product from two unsigned 4-bit operands. The error criterion
is a mean absolute error between the produced outputs and correct outputs for
all possible assignments to the inputs (28 vectors). The CGP parameters are
initialized as follows: r = 1, c = 59, l = c, λ = 4, h = 5%, Emax = 5000. The set
of available gates is Γ = {NOT, AND, OR, XOR, NAND, NOR, XNOR}. The
evolutionary algorithm operates with a 50 member population and stops when
gmax = 32 · 106 generations are spent. This corresponds with a four hour run on
an Intel Xeon processor running at 3 GHz. The setting of these values is based
on our previous experiments.

Fig. 2 shows all the trade-offs obtained from 100 independent runs of the
proposed MOEA. It can be seen that several solutions have been discovered for

Fig. 2. Trade-offs between the number of gates and error for the 4-bit approximate
multiplier (59 gates corresponds to the perfect functionality).
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every possible number of gates. A single run led to 16.97 different solutions on
average. A detailed analysis of the best evolved approximate circuits revealed
that a circuit containing k gates can exhibit a higher error than a circuit contain-
ing k − 1 gates (see, e.g., the error for 24 and 25 gates). It is, however, assumed
that a smaller error is obtained if more gates are allowed in the circuit. Hence
the current version and setting of the method seems to be inefficient. On the
other hand, the method is capable of producing many useful trade-offs much
faster than multiple runs of single-objective EAs from [22,23].

5 Conclusions

The field of approximate computing in general and approximate circuits in par-
ticular is in an early stage of development. Only a few systematic design method-
ologies have been proposed for the approximate circuit design so far. Despite the
interesting preliminary results obtained by EAs, it is a well-known problem that
EAs utilize very time consuming algorithms, the scalability of resulting solutions
is limited and the whole process is too non-deterministic for the community of
“conventional” designers. On the other hand, even conventional approaches have
to employ heuristics and time-consuming procedures in order to approximate cir-
cuit designs.

In the context of approximate circuit design methodologies, the future
research should mainly deal with the following issues:

– More efficient and accurate multiobjective EAs, employing more scalable
circuit representations and efficient genetic operators should be introduced
specifically for the task of approximation.

– Discovering time-efficient algorithms for checking to what extent a complex
approximate circuit corresponds with the exact specification is a challenging
task. Current approaches based on testing circuit’s responses for all possible
combinations of inputs are not scalable. The desired algorithm must be fast,
because it will be called to evaluate millions of candidate circuits produced
by MOEA.

– NP-hard problems vary greatly in their approximability. Key circuit classes
(such as adders, multipliers and other arithmetic circuits) should be analyzed
with respect to their approximability under various error measures and con-
straints. Complexity measures of approximate Boolean functions, similar to
those used for conventional Boolean functions [25], should be developed and
exploited.

– Instead of heuristic methods (such as EAs), a more rigorous concept, similar
to approximation algorithms in computer science, should be developed to
guarantee a provable solution quality in provable run-time bounds.

– Resulting approximate circuit design methods should be integrated to stan-
dard circuit design and optimization tools.

– Automated methodologies allowing designers to identify those system’s com-
ponents that can be replaced by their approximate counterparts should be
developed.
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All these issues have to be seen in the context of hardware, because very good
circuit approximations obtained for a given fabrication technology can become
useless when another fabrication technology is considered.

Approximate computing is a promising emerging paradigm which is quite
important for future low power and resources-efficient computers. However, a
lot of work has to be done in order to be widely accepted.
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