
A Technique to Obtain Hardness Results for
Randomized Online Algorithms – A Survey
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Abstract. We survey how the advice complexity of online algorithms
can be used to obtain lower bounds on the performance of randomized
online algorithms. Online algorithms with advice may query an oracle
that knows the whole input from the start to solve some instance of an
online problem. This is done by reading a finite prefix of some infinite
binary advice tape, which is created by the oracle before the first piece
of input is processed. Similarly, a randomized online algorithm may use
a binary tape where every bit is chosen uniformly at random.

In this survey, we review a technique, similar to Yao’s principle, which
allows statements on the advice complexity of some given online problem
to translate to results on the power of randomization for this problem
in terms of lower bounds. We give some examples where this technique
works and how it is applied, and show its limitations and that it is tight
in a very general sense.

1 Introduction

In online computation, an adversary produces some hard input of an optimiza-
tion problem that is fed to an online algorithm, denoted by A, piece by piece
over a number of discrete time steps. In every such time step, A needs to pro-
duce a corresponding piece of output which cannot be changed afterwards. In
this paper, we focus on a class of problems where the objective is to minimize
some cost function which is associated with the given online problem.

Many real-world problems such as the paging problem or many routing and
scheduling problems are modeled this way; for instance, suppose you want to
assign jobs to a fixed number of resources, e. g., processors. Such a service is
offered to a large number of customers and processor time can be booked at
any given point in time. But this means that assignments should be made long
before all requests are known. Still, the objective is to minimize the waiting time
for, say, the customer that waits the longest. Such a situation is a typical online
scenario.

At first, we formally define the term online minimization problem, where the
input consists of requests that arrive in consecutive time steps and the output
is created piecewise as a sequence of answers to these requests.
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Definition 1 (Online Minimization Problem). An online minimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I is a
sequence I = (x1, . . . , xn) of requests. Furthermore, a set of feasible outputs (or
solutions) is associated with every I; every output is a sequence O = (y1, . . . , yn)
of answers. The cost function assigns a positive real value cost(I,O) to every
input I and any feasible output O. For every input I, we call any feasible output
O for I that has smallest possible cost (i. e., that minimizes the cost function)
an optimal solution for I.

Classically, one searches for online algorithms that perform well in the sense
that they produce output which has a cost that is as small as possible compared
to the cost of an optimal solution. The study of such online algorithms is coined
“competitive analysis” [11]. Note that the optimal solution can usually not be com-
puted with full accuracy in an online manner. We therefore speak of an optimal
“offline” solution. In a recent model considered in this paper one asks an advanced
question that is beyond pure competitive analysis. In particular, we are interested
in the (amount of) information that is both needed and sufficient to outperform
purely deterministic or even randomized online algorithms. In a sense, we want
to know which information about the yet unknown parts of the input is crucial to
obtain a low competitive ratio or even an optimal solution. Let us first give a formal
framework to study online algorithms with advice. To this end, we use the standard
definition as first given in [9,26]. The intuitive idea is that, after the adversary cre-
ated an input for a given online problem, an oracle inspects this input and writes
binary information about it on a tape (the advice tape). Then, an online algorithm
starts processing the input as usual, but it may, with every request, read some part
of the tape (sequentially) to get additional information about the input. The mini-
mum length of the prefix that the algorithm needs to read while guaranteeing some
quality on every input, is then the advice complexity of this algorithm.

Definition 2 (Online Algorithm with Advice). Consider an input I of an
online minimization problem. An online algorithm A with advice computes the
output sequence Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi,
where φ is the content of the advice tape, i. e., an infinite binary sequence. A is
c-competitive with advice complexity b(n) if there exists a non-negative constant
α such that, for every n and for any input sequence I of length at most n, there
exists some advice string φ such that

cost(Aφ(I)) ≤ c · cost(Opt(I)) + α

and at most the first b(n) bits of φ have been accessed during the computation
of the solution Aφ(I). If the above inequality holds with α = 0, we call A strictly
c-competitive with advice complexity b(n). A is called optimal if it is strictly
1-competitive.

A first model of online computation with advice was introduced by
Dobrev et al. [18]. As this model was not precise enough to measure the num-
ber of advice bits needed, Hromkovič et al. proposed the general model used here,
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and discussed its relation to the general notion of the information content of a
problem [26]. The fruitfulness of this model was for the first time explored by
Böckenhauer et al. [9], where it was applied to paging, disjoint path allocation,
and job shop scheduling. At the same time, Emek et al. [20] proposed a similar
model and studied the k-server problem and metrical task systems. Since then,
new results on job shop scheduling [28], the k-server problem [8,23,32], and dis-
joint path allocation [2] were obtained. Additionally, many other online problems
were studied including buffer management [14], online set cover [29], string guess-
ing [7], graph exploration [17], online independent set [15], online knapsack [10],
online makespan scheduling [19,33], online bin packing [12,33], online Steiner tree
[1], list update [13] and online graph coloring [3,4,22,34]. Online algorithms using
both advice and randomization were investigated by Böckenhauer et al. [6]. Fur-
ther connections between computing online with advice and randomized online
computation where, e. g., observed by Komm and Královič [28]. Our main obser-
vation on the topic of this paper was first made by Böckenhauer et al. [8], it estab-
lishes a non-trivial relationship between randomized online algorithms and online
algorithms with advice for a given online minimization problem.

Note the resemblance between Definition 2 and the definition of the expected
competitive ratio of a randomized online algorithm, which we give in what follows
to fix our notation.

Definition 3. Randomized Online Algorithm] Consider an input I of an online
minimization problem. A randomized online algorithm R computes the output
sequence Rφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where
φ is the content of a random tape, i. e., an infinite binary sequence, where
every bit is chosen uniformly at random and independently of all the others.
By cost(Rφ(I)), we denote the random variable expressing the cost of the solu-
tion computed by R on I. R is c-competitive in expectation if there exists a
non-negative constant α such that, for every I,

E
[
cost(Rφ(I))

] ≤ c · cost(Opt(I)) + α,

where, as above, Opt is an optimal offline algorithm for the problem.

Throughout this paper, since φ is always clear from context, we omit it and
simply write, e. g., R instead of Rφ. We observe that the basic change is from
speaking of “one best solution” (i. e., there always is one binary sequence φ
that guarantees some success) to speaking of “all solutions on average” (i. e., in
expectation, we can guarantee some success).

Let us take another point of view which will come in handy later. We consider
a function b : N → N that measures the number of advice bits some randomized
online algorithm uses on inputs of size n, for any n ∈ N. For the ease of presen-
tation, we will assume that R uses exactly b(n) random bits on every input of
size n. For any fixed bit string on R’s random tape, the algorithm’s decisions are
fully determined by the input. As a result, we can think of R as a probability
distribution over a set of 2b(n) deterministic strategies. We denote this set by
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Alg(R) = {A1, . . . , A2b(n)}. We further assume from now on that R picks a deter-
ministic strategy uniformly at random from Alg(R). We are now ready to present
the key theorem for proving lower bounds on the expected competitive ratio of
randomized online algorithms.

2 The Main Theorem

As already mentioned, we want to focus on the relationship between advice and
randomization. Before revisiting the main theorem [8], we make the following
two observations, which are immediate.

1. If there is a randomized online algorithm R for some online problem Π such
that R uses b random bits and achieves an expected competitive ratio of c,
then there also is an online algorithm with advice for Π that is c-competitive
and uses b advice bits.

2. Conversely, if there is provably no online algorithm with advice for Π that
is c-competitive while using b advice bits, then there also is no randomized
online algorithm using b random bits while being c-competitive in expecta-
tion.

If we follow our intuition, advice bits seem to be a lot more powerful than
random bits. After all, we compare a situation where we always pick a best
strategy for any instance, to a situation where we pick strategies with a fixed
distribution; in essence, we compare the best to the average. We therefore ask
whether there exists a scenario in which it is possible to save some bits if they
are supplied by an oracle and not a random source. In what follows, we give
a positive answer to this question. More specifically, we show that, if there is
some randomized online algorithm R for some online minimization problem Π,
then there also is some online algorithm with advice that is almost as good while
using a number of advice bits (and that is the interesting part) which does not
depend on the number of random bits R uses. However, the bound does depend
on the number of possible instances of Π of given length. The proof uses some
ideas that are similar to the proof of Yao’s theorem [35].

Theorem 1 (Böckenhauer et al. [8]). Let Π be an online minimization prob-
lem for which we have m(n) different inputs of length n. Moreover, suppose there
is a randomized online algorithm R for Π, which achieves an expected competitive
ratio of c. Then there is an online algorithm A with advice for Π, which achieves
a competitive ratio of (1 + ε)c, for any ε > 0, while using at most

�log n� + 2�log�log n�� + log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

advice bits.
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A1 A2 A3 . . .
I1 c1,1 c1,2 c1,3 . . .
I2 c2,1 c2,2 c2,3

I3 c3,1 c3,2 c3,3

...
...

. . .

Fig. 1. An example matrix M as used in the proof

Proof. We suppose that, for any input length n ∈ N, R uses b(n) random bits.
As observed above, this is equivalent to choosing uniformly at random a deter-
ministic strategy from a set Alg(R) = {A1, . . . , A2b(n)}. Since R is c-competitive
in expectation, there is a constant α such that for every instance I, we have

E[cost(R(I))] ≤ c · cost(Opt(I)) + α

or, equivalently,
E[cost(R(I))] − α

cost(Opt(I))
≤ c.

Now, for each deterministic strategy Aj and for each instance Ii of length n,
1 ≤ j ≤ 2b(n) and 1 ≤ i ≤ m(n), we set

ci,j := max
{

1,
cost(Aj(Ii)) − α

cost(Opt(Ii))

}
,

and we call ci,j the performance of Aj on Ii. Next, we construct an (m(n)×2b(n))-
matrix M that we fill with these entries as shown in Fig. 1. As a result, the entry
in the ith row and the jth column gives the performance of R on the input Ii

if R chooses the deterministic strategy Aj . The central idea of the proof is to
show that we are able to cleverly choose a small number of columns of M such
that the performances of the corresponding deterministic strategies are small for
many instances, and the sets of the chosen strategies together cover all input
instances. We collect these algorithms in a set S and A gets as advice the index
of the algorithm from S that should be used for the input at hand (and some
additional information we describe later).

One row i of M corresponds to exactly one input Ii. Thus, by the definition
of ci,j and the expected competitive ratio of R, for every i, 1 ≤ i ≤ m(n), we get

1
2b(n)

2b(n)
∑

j=1

ci,j =
1

2b(n)

2b(n)
∑

j=1

cost(Aj(Ii)) − α

cost(Opt(Ii))

=
1

2b(n)

∑2b(n)

j=1 cost(Aj(Ii)) − α

cost(Opt(Ii))

=
E[cost(R(Ii))] − α

cost(Opt(Ii))
≤ c
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or, equivalently,
2b(n)
∑

j=1

ci,j ≤ c · 2b(n),

and for the sum of all entries in all cells of M, we get

m(n)∑

i=1

2b(n)
∑

j=1

ci,j ≤
m(n)∑

i=1

c · 2b(n) ≤ c · 2b(n) · m(n).

Since there are 2b(n) columns in M, there is one column (deterministic strategy)
j′ such that

m(n)∑

i=1

ci,j′ ≤ c · m(n).

The online algorithm Aj′ is then included in S and it is used for every instance
Ii, for which ci,j′ ≤ (1+ε)c. Let s denote the number of these instances. In what
follows, we want to estimate how large s is, i. e., for how many instances A can use
Aj′ . Clearly, the performance of Aj′ is larger than (1+ ε)c on m(n)− s instances.

Summing up, this gives a total of (m(n) − s)(1 + ε)c for the corresponding
rows and we have

(m(n) − s)(1 + ε)c <

m(n)∑

i=1

ci,j′ .

From this, it follows that (m(n) − s)(1 + ε)c < m(n) · c and therefore s >
ε/(1 + ε) · m(n), which means we can use the deterministic strategy Aj′ for a
fraction of ε/(1 + ε) of the instances as we know that on these its performance
is not larger than (1 + ε)c.

After Aj′ is put into the set S, we delete the column j′ from M together
with all rows that correspond to inputs on which Aj′ achieves a sufficiently small
performance. There remain

(
1 − ε

1 + ε

)
m(n) =

(
1

1 + ε

)
m(n)

rows for which we need to find another algorithm from Alg(R). For every remain-
ing row, the deleted entry in column j′ was larger than c. It follows that, after
removing this column, the average over all entries of remaining rows is still not
larger than c. Therefore, we can repeat the aforementioned method with the
remaining (

1
1 + ε

)
m(n)

rows of M. This way, we find another deterministic online algorithm Aj′′ , which
has a sufficiently small performance on a fraction of ε/(1 + ε) of the remaining
instances.
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Now we compute how often we have to iterate this strategy at most until
we have found an algorithm for every input. This means that we want to find a
natural number r such that

(
1

1 + ε

)r

m(n) < 1.

We get
(

1
1 + ε

)r

<
1

m(n)
⇐⇒ (1 + ε)r > m(n) ⇐⇒ r > log1+ε(m(n)),

which means that we have to make at most
⌊

log(m(n))
log(1 + ε)

⌋
+ 1

iterations, i. e., we need that many deterministic algorithms from Alg(R). This
immediately gives an upper bound on the size of S.

Finally, we calculate the number of advice bits needed for this approach.

1. First, A needs to know the input length n, which can be encoded on the advice
tape using log n bits. However, this must be done in a self-delimiting fashion,
using, e. g., Elias encoding [21], summing up to a total of 2�log�log n�� +
�log n� advice bits at most.

2. Knowing n, A constructs M by simulating the randomized online algorithm
R on any possible input. Then, A constructs S and enumerates all algorithms
from S in, e. g., canonical order. After reading another

log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

advice bits, A can pick one algorithm from S, which is then simulated for
the input at hand.

It follows that the competitive ratio of A on any instance is at most (1+ ε)c and
A uses as much as advice as claimed by the theorem. 	


The contraposition of Theorem 1 is particularly interesting. Suppose we
can show that any online algorithm with advice needs an amount of advice
that is asymptotically larger than the value from the theorem statement to be
c-competitive. The it follows that no randomized online algorithm can be c-
competitive in expectation. We will apply this approach to L(2, 1)-coloring and
to the k-server problem in Section 4.

3 Limits of this Approach

As we will see in the next section, the above mentioned technique is widely appli-
cable. However, before giving examples, we want to point out some limitations
and drawbacks.
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First, note that the online algorithm A with advice does not run in polynomial
time (even if R is efficient) if m(n) is large with respect to the input length n,
because A needs to construct the whole matrix M. Clearly, M cannot be a part
of A as it depends on n, which, of course, is not known by A, but is part of the
advice.

Second, the online algorithm A is worse than the original randomized online
algorithm R, even if the difference is very small. A natural question is whether it
is possible to improve Theorem 1 such that A obtains the same competitive ratio
as R. Intriguingly, this is not possible, so we really need this small gap. Consider
the following online problem. The input I = (x1, . . . , xn) starts with a request
x1 = 0. All other requests are bits, i. e., xi ∈ {0, 1}, for 2 ≤ i ≤ n. Moreover, all
answers must be bits, i. e., yi ∈ {0, 1}, for 1 ≤ i ≤ n − 1. If yi = xi+1, for all i,
1 ≤ i ≤ n− 1, the total cost of the corresponding solution is 1, else it is 2. Thus,
an optimal algorithm pays 1 and every other solution pays 2. Obviously, a best
randomized online algorithm chooses every answer such that it is either 0 or 1
with a probability of 1/2 each. This algorithm uses n − 1 random bits and its
expected competitive ratio is not larger than

2n−1−1
2n−1 · 2 + 1

2n−1 · 1
1

= 2 − 1
2n−1

.

Conversely, every online algorithm with advice that uses less than n − 1 advice
bits is at most 2-competitive. It follows that there are problems such that any
online algorithm with advice needs as many advice bits as a randomized online
algorithm needs random bits, or it is worse off.

Third, in this paper as well as in [8], we only considered online minimization
problems. With a similar argument, however, it can be shown that an analogous
statement for online maximization problems is possible [16].

4 Applications

In this section, we show how to apply Theorem 1 both directly and indirectly,
thus creating both online algorithms with advice and lower bounds for random-
ized online algorithms for a selection of online problems.

4.1 Job Shop Scheduling

First, we study the online job shop scheduling problem with l machines and k
jobs that consist of l unit length tasks each, denoted by (k, l)-JSS. More precisely,
we are given k different jobs that need to use l different machines in some fixed
order. A machine can only process one task at a time. Since every job asks for
every machine exactly once, we can view a job as a permutation of the machine
indices. Thus, an example input for (4, 8)-JSS is

Job1 = (1, 2, 3, 4, 5, 6, 7, 8), Job2 = (3, 8, 4, 1, 2, 7, 6, 5),
Job3 = (7, 1, 5, 6, 8, 3, 4, 2), Job4 = (8, 2, 4, 5, 3, 1, 6, 7),
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which means that, e. g., the second job first needs the third machine, then the
eighth, and so on. An algorithm for (k, l)-JSS must assign the machines to the
jobs in the given order. In an online framework, these permutations arrive in
consecutive time steps such that the (i + 1)th machine index of a job is revealed
after the ith request is satisfied (i. e., assigned to a machine). In the example
above, all four machines ask for four different machines in the first time step.
Therefore, machine 1 can be assigned to Job1, machine 3 is assigned to Job2,
and so on. In time step 2, however, two jobs, namely Job1 and Job4, ask for the
same machine 2. In such a situation, an online algorithm needs to delay one of
the two. Obviously, an optimal choice depends on future time steps.

The advice complexity of (2, l)-JSS was studied before by Böckenhauer et
al. [9] and Komm and Královič [28]. Hromkovič et al. [27] constructed a ran-
domized online algorithm which achieves a competitive ratio of 1 + 2k/

√
l in

expectation. Now let us apply Theorem 1. There are (l!)k distinct instances of
(k, l)-JSS of length n = kl, i. e., k-tuples of permutations of length l each. Using
Stirling’s approximation [24], we therefore get

m(n) = (l!)k ≤
((

1 +
1

11l

)(
l

e

)l √
2lπ

)k

different inputs. Applying Theorem 1, it follows that, for any ε > 0, there is a
((1+2k/

√
l) ·(1+ε))-competitive online algorithm with advice that uses at most

�log n� + 2�log�log n�� + log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

≤ 2�log kl� + log

(

dk log

((
l

e

)l √
2lπ

))

≤ 2�log kl� + log(d′kl log l)
≤ d′′ log(d′′′kl)
≤ d′′ log(kl) + d′′′

advice bits, for some constants d, d′, d′′, d′′′. Thus, the advice complexity grows
merely logarithmically in k and l. Note that, since the input length n is fully deter-
mined by these two parameters, the advice complexity can even be reduced further
by a constant factor since we do not need a self-delimiting encoding of n.

Theorem 2. There is a (1+2k/
√

l)-competitive online algorithm A with advice
for (k, l)-JSS which reads O(log kl) advice bits.

This is the first time, an upper bound of the general version of the problem
(i. e., for k different jobs) was studied in terms of advice complexity. So far,
the case for k = 2 was investigated by Böckenhauer et al. [9] and Komm and
Královič [28].
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4.2 L(2, 1)-Coloring

Another application of Theorem 1 is a version of graph coloring that arises in
the context of assigning frequencies to transmitters in a multihop radio network.
The difference between the frequencies that are used by the transmitters should
be anti-proportional to their proximity to avoid interference. A simple graph-
theoretic model of the frequency assignment problem has been introduced by
Griggs and Yeh [25]. Here, the transmitters are the vertices of a graph and the
frequencies are modeled by colors from a finite, ordered set, usually {0, 1, . . . , λ},
for some natural number λ. In the easiest case, two levels of proximity are con-
sidered, neighboring vertices have to be assigned colors with a distance of at
least 2 in the given order, and vertices at distance 2 in the graph still have to get
different colors. The resulting problem of finding a coloring minimizing the color
range λ is called L(2, 1)-coloring. The advice complexity of the online version of
the L(2, 1)-coloring problem was studied by Bianchi et al. [4]. Here, a graph is
given online, one vertex after another, and together with every vertex, exactly
those edges are uncovered that are adjacent to vertices that are already known.
If a vertex is revealed in some time step, an online algorithm must immediately
assign it a color.

Among other results, Bianchi et al. [4] showed that every online algorithm
with advice for L(2, 1)-coloring with a competitive ratio of 5/4 needs to read
at least 3.9402 · 10−10n advice bits, even if the online graph has a maximum
degree of 2, i. e., is a collection of paths and cycles. Although the constant fac-
tor in this linear lower bound is very small, the following lower bound on the
expected competitive ratio of any randomized online algorithm was proven using
Theorem 1.

Theorem 3 (Bianchi et al. [4]). For arbitrarily small δ > 0, every random-
ized algorithm for the online L(2, 1)-coloring problem on graphs with maximum
degree 2 has a worst-case expected competitive ratio of at least 5

4 (1 − δ) on suf-
ficiently large instances.

Proof sketch. By an easy counting argument, there are m(n) ≤ 2(n
2)n! online

graphs on n vertices. It is easy to see that there exists a threshold n0 on the
input length such that the bound from Theorem 1 with this value of m(n)
plugged in exceeds 3.9402 · 10−10n for all n ≥ n0 (see the original paper [4] for
the details of the calculation).

Since we already know that (even when restricting the considered online
graphs to paths), with this number of advice bits, no online algorithm with
advice can be better than 5/4, the result follows immediately by Theorem 1. 	


4.3 The k-Server Problem

The k-server problem is one of the most prominent online minimization problems.
In this setup, we are given a metric space and k so-called servers that can be
moved through this space. In every time step, a request is made that is given by
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some point. An answer is given by a server that is moved to this point, incurring
a cost that is given by the distance between the original position of the server
and the requested point.

Introduced in 1988 by Manasse et al. [31], the k-server problem is still not
fully understood. There are, so far, two conjectures about the best possible
deterministic and randomized online algorithms for the problem. Here, we want
to focus on the randomized k-server conjecture which claims that there is a
randomized online algorithm which is Θ(log k)-competitive in expectation. The
following theorem shows how our technique could possibly be used to disprove
the conjecture.

Theorem 4 (Böckenhauer et al. [8]). If every online algorithm with advice
for the k-server problem needs to use at least ω(log n) advice bits to be O(log k)-
competitive, the randomized k-server conjecture does not hold.

Proof. Let us only consider inputs for k-server such that the size of the metric
space is bounded from above by 2n, where n is the input length. As above, let
m(n) denote the number of inputs of length n. In every time step, a point is
requested, thus

m(n) = (2n)n
.

Consider a randomized online algorithm R that is O(log k)-competitive in expec-
tation on all of these instances. Then, there exists a constant c > 0 such that
R is (c · log k)-competitive. Let ε = 1. Following Theorem 1, there also is a
(2 · c · log k)-competitive online algorithm with advice, which uses at most

�log n� + 2�log�log n�� + log(
log ((2n)n)� + 1) ∈ O(log n)

advice bits.
If we could prove that any online algorithm with advice needs asymptotically

more advice, this is a contradiction to the existence of R. 	

Note that, so far, the best known randomized online algorithm for k-server

for arbitrary metric spaces is the (2k − 1)-competitive algorithm of Koutsoupias
and Papadimitriou [30]. Considering the advice complexity, a lower bound is only
known for optimality (approximately n log k advice bits are necessary [8]). Fur-
thermore, Renault and Rosén [32] constructed a ��log k�/(b − 2)�-competitive
online algorithm with advice which reads b advice bits per request (this improves
a previous result by Böckenhauer et al. [8] by a factor of 2). To be O(log k)-
competitive, this algorithm thus needs a number of advice bits that is linear in n.
As shown in the proof of Theorem 4, if the randomized k-server conjecture holds,
there is an O(log k)-competitive online algorithm with advice that uses O(log n)
advice bits as long as the size of the metric space is at most 2n. Thus, there
remains an interesting exponential gap. A step towards proving the conjecture
was made by Bansal et al. who constructed a randomized online algorithm with
an expected competitive ratio of O((log l)3(log k)2 log log n) in expectation [5],
where l is the number of points of the underlying metric space. This algorithm
improves over the one by Koutsoupias and Papadimitriou if l ∈ o(2(2k)−(3+ε)

)
and its competitive ratio is polylogarithmic in k if l is polynomial in k.
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10. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Com-
plexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 61–72. Springer, Heidelberg (2012)

11. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

12. Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with
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