
Systolic Automata and P Systems

Roberto Barbuti1, Andrea Maggiolo-Schettini1, Paolo Milazzo1,
Giovanni Pardini1(B), and Simone Tini2

1 Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

{barbuti,maggiolo,milazzo,pardinig}@di.unipi.it
2 Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria,

Via Valleggio 11, 22100 Como, Italy
simone.tini@uninsubria.it

Abstract. Systolic automata are models of highly-concurrent language
acceptors based on identical processors with one-way flow of information,
amenable to efficient hardware implementation as multiprocessor chips.

In this paper we investigate the relationship between Binary Systolic
Tree Automata (BSTA), in which the underlying communication structure
is an infinite complete binary tree with parallel bottom-up computation,
andP systems, a biologically-inspired formalismbased on rewrite rules act-
ing upon multisets of symbols with a maximally-parallel semantics.

In particular, we propose a variant of BSTA as multiset languages
acceptors, termed Multiset BSTA. By exploiting the similarity in the
parallel computation as performed in both BSTA and P systems, we
show how a Multiset BSTA can be simulated by a cooperative P system
while preserving the computational efficiency of systolic automata.

1 Introduction

Systolic automata are highly parallel language acceptors inspired by the func-
tioning of VLSI architectures [14,17]. A systolic automaton is an infinite tree
associated with an input function g and a processing function f . Without loss
of generality, the tree of a systolic automaton is often assumed to be binary,
thus obtaining the class of Binary Systolic Tree Automata (BSTAs). The input
function g maps each symbol of the considered input alphabet into a working
symbol from an operating alphabet. The processing function f , instead, maps
two working symbols into one. The way in which a BSTA processes a candidate
string to determine whether it belongs or not to the accepted language is by
feeding its tree at a suitable level with such a string, and then by applying the
processing function at each level (from bottom to top) in order to produce, in
the root of the tree, a single operating symbol. If such a symbol belongs to the
accepting alphabet (subset of the operating alphabet) then the candidate string
is accepted, otherwise it is not accepted. Note that a string w of length m has
to be accepted at smallest level n of the tree such that m ≤ 2n. Moreover, if
m < 2n, then 2n − m instances of the special symbol � are appended to the
string.
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 17–31, 2014.
DOI: 10.1007/978-3-319-13350-8 2

18 R. Barbuti et al.

It has been proved that BSTAs can accept all regular languages [17]. More-
over, by exploiting the tree structure they can accept higher level languages such
as a2n

b2
n

. The class of languages accepted by a BSTA is a subset of the class
E0L [24] called Systolic E0L [13]. Many variants of systolic automata have been
proposed (see, e.g., [15,16,19]), and many studies have been performed on them
(see, e.g., [18,20,21])

The processing of a candidate string by a BSTA is performed in a highly
parallel way. Symbols to be associated with nodes at level i of the tree can be
obtained by the symbols associated with nodes at level i + 1 by applying f , the
processing function, 2i times in parallel to each pair of children nodes of nodes
at level i. This is repeated for each level of the tree until the root is reached.
Hence, an execution of a BSTA can be seen as a sequence of highly parallel steps
in which all of the currently available symbols are processed and “transformed”
into symbols to be used in the next step. The form of parallelism at the basis
of the functioning of BSTAs is hence very similar to the notion of maximal
parallelism considered in the context of P Systems [23]. P Systems are a form of
hierarchical multiset rewriting systems. Maximal parallelism in P systems states
that, at each step of their execution, rewriting rules must be applied in parallel
to a sub-multiset of the available symbols (possibly to all of them) so that no
rule can be applied to the remaining symbols.

The aim of this paper is hence to investigate the relationship between BSTAs
and P systems based on the similarity of the forms of parallelism they consider.
Since P systems are used to process multisets, the first thing we do is to define a
variant of BSTAs, called MBSTAs, that can be used to accept multiset languages
rather than languages of strings. As usual when passing from string languages
to multiset languages ([12]), we show that MBSTAs can accept every context-
free multiset language. Then, we face the problem of translating a MBSTA into
an equivalent P system (used as language acceptor [9]). To this aim we define
another (equivalent) variant of MBSTAs, called Regular MBSTAs, in which some
regularity conditions are assumed. Finally, we define a translation of RMBSTAs
into P systems and prove that P systems obtained after translation are as efficient
as the original RMBSTAs.

2 Background

Let N be the set of natural numbers and N
+ denote N \ {0}. Elements of sets

are enumerated between { and }, while elements of multisets are enumerated
between {| and |}. Given a finite alphabet Λ, we denote by Λ∗ the set of all finite
strings over Λ, namely ε ∈ Λ∗, for ε the empty string, and aw ∈ Λ∗, for a ∈ Λ
and w ∈ Λ∗. Given two sets of strings Z1, Z2, their concatenation is denoted
Z1.Z2 = {w1w2 | w1 ∈ Z1, w2 ∈ Z2}. The number of occurrences of a symbol a
in a string w is denoted |w|a; moreover, given a set Z ⊆ Λ, |w|Z =

∑
a∈Z |w|a.

The length of w is denoted |w|. The ith element of w is denoted wi. We denote
with Λ+ the set Λ∗ \ {ε}. As usual, a language over Λ is a subset L ⊆ Λ∗.
We denote M(Λ) the set of all the multisets with elements in Λ. The union of

Systolic Automata and P Systems 19

multisets is denoted by ⊕, \ denotes both the difference between sets and the
difference between multisets, and ∅ denotes both the empty set and the empty
multiset. Moreover, we denote with P(I) the powerset of I, that is the set of all
subsets of the set I. Given a function f : A → A, we define fn as f0(x) = x and
fn(x) = f(fn−1(x)).

Definition 1 (Parikh mapping). Let Λ = {a1, a2, . . . , an} be an ordered
alphabet. The Parikh mapping over strings φ : Λ∗ → N

n is defined as follows:

φ(w) = (|w|a1 , |w|a2 , . . . , |w|an
).

The Parikh mapping of a language L ⊆ Λ∗ is defined as φ(L) = {φ(w) | w ∈ L}.
In the rest of the paper, we always assume alphabets to be ordered. Therefore
there is a one-to-one correspondence between Parikh vectors in N

|Λ| and multi-
sets over Λ. For this reason, with a slight abuse of notation, we assume to denote
by φ(w), for any string w ∈ Λ∗, both the Parikh vector and the multiset over Λ
described by w.

We recall from [22] the definition of Binary Systolic Tree Automata [14,17].

Definition 2 (Binary Systolic Tree Automaton). A Binary Systolic Tree
Automaton (BSTA)1 is a construct K = (Λ,Q, F, f, g), where Λ is the finite
input alphabet, Q ∪ {�} is the finite operating alphabet (with � being a special
symbol outside of Λ, Q), F ⊆ Q ∪ {�} is the accepting alphabet, f : (Q ∪ {�}) ×
(Q ∪ {�}) → Q ∪ {�} is the processing function and g : Λ ∪ {�} → Q ∪ {�} is
the input function. Moreover, the processing function is such that f(x, y) = � iff
x = y = �; while the input function is such that g(x) = � iff x = �.

A BSTA is interpreted as an infinite complete binary tree, in which the
processing function f is associated with each node. A BSTA can accept strings
on the alphabet Λ in the following way. Given a string w ∈ Λ∗ having length
m, we take the smallest level n of the tree with at least m nodes. If m < 2n,
let � = 2n − m. The string w�� is transformed by means of the input function,
by applying g to each one of its symbols, preserving the ordering. The string in
(Q ∪ {�})∗ obtained is then fed to the level n of the tree. Precisely, the symbols
in the transformed string are given as input, in order, to the nodes of the cut at
level n, starting from the leftmost node.

At the first step, once each node of the cut has an input in Q ∪ {�}, all
processing functions of the level n − 1 get, in parallel, the two inputs from their
children nodes and produce their results, a symbol in Q ∪ {�} for each node.
This process is iterated for n steps, resulting in a symbol q ∈ Q ∪ {�} being
produced in the root of the tree. If q ∈ F then the string is accepted, otherwise
it is rejected by the BSTA.

The definition of BSTAs reported here, from [22], includes constraints on the
behaviour of the processing and input function when dealing with the special
symbol � which were not assumed in the original definition ([14]). Note that
1 Also known in the literature by the acronyms SBTA and BT-VLSI.

20 R. Barbuti et al.

�

a

a

a a

a

a a

b

b

b b

b

b b

Fig. 1. BSTA accepting computation

�

�

a

a a

b

b b

�

b

b b

�

� �

Fig. 2. BSTA rejecting computation

such constraints on functions f and g imply that the value of function f(�, x),
for x ∈ Q, is irrelevant, since it is never used by a BSTA. In fact, at each level
of the tree, any and all � symbols may only occur at the end of the string.

Definition 3 (Language accepted by a BSTA). Consider a BSTA, K =
(Λ,Q, F, f, g). We define f : (Q ∪ {�})∗ → (Q ∪ {�})∗ and g : (Λ ∪ {�})∗ →
(Q ∪ {�})∗ as follows:

f(w1w2 . . . wm) = f(w1, w2)f(w3, w4) . . . f(wm−1, wm) if m is even;
g(w1w2 . . . wm) = g(w1)g(w2) . . . g(wm).

Given a string w ∈ Λ∗, let n ∈ N be such that |w| ≤ 2n. Then w is accepted by
K at level n iff f

n
(g(w��)) ∈ F , where � = 2n −|w|. The string w is accepted by

K iff it is accepted at the smallest level n with |w| ≤ 2n. Finally, the language
accepted by K is the set of strings L(K) = {w ∈ Λ∗ | w is accepted by K}.

Example 1. Let us consider the BSTA K = (Λ,Q, F, f, g) where Λ = {a, b},
Q = {a, b,�,�}, F = {�}, g is the identity function, and f is defined as follows:

f(a, a) = a f(b, b) = b f(a, b) = � f(�, �) = �

and f(x, y) = � for any other pair of symbols not defined above. Two possible
computations of K are shown in Figure 1 and 2. The language accepted by the
BSTA is L(K) = {a2n

b2
n | n ∈ N}.

A useful property for the definition of BSTAs is to be able to give the string
as input to any level of the tree with enough nodes, by relaxing the constraint
that requires it to be fed to the smallest possible level. We recall the definition
of stable BSTA, for which the result of either acceptance or rejection of a string
w is independent of the actual level n (|w| ≤ 2n) to which the string is fed.
Moreover, each BSTA can be transformed into an equivalent stable BSTA, as
shown by the theorem which follows.

Definition 4 (Stable BSTA). A BSTA K = (Λ,Q, F, f, g) is stable iff for
each string w ∈ Λ∗ and for all n1, n2 ∈ N with |w| ≤ 2n1 ≤ 2n2 , it holds that

w is accepted by K at level n1 ⇐⇒ w is accepted by K at level n2.

Theorem 1 ([14,22]). For every BSTA K there exists a stable BSTA K ′ such
that L(K) = L(K ′).

Systolic Automata and P Systems 21

3 Multiset Binary Systolic Tree Automata

A Multiset Binary Systolic Tree Automaton (MBSTA) has the same structure
of a BSTA, but it accepts multisets. Because multisets have no order among the
elements, the elements of the multiset can be given as input to the nodes of the
cut in any order. For a multiset to be accepted by a MBSTA there needs to be
some order of the symbols yielding a final symbol in the root of the tree.

Definition 5 (Multiset language accepted by a MBSTA). Consider a
MBSTA, M = (Λ,Q, F, f, g). Given a multiset μ ∈ M(Λ), let n ∈ N be such
that |μ| ≤ 2n. Then μ is accepted by M at level n iff there exists a string w ∈ Λ∗

such that φ(w) = μ and f
n
(g(w��)) ∈ F , where � = 2n − |μ|. The multiset μ

is accepted by M iff it is accepted at the smallest level n such that |μ| ≤ 2n.
Finally, the multiset language accepted by M is set of multisets L(M) = {μ ∈
M(Λ) | μ is accepted by M}.

The multiset language accepted by a MBSTA is obtained from the language
accepted by the BSTA having the same structure through the Parikh mapping.

Proposition 1. Assume a BSTA K = (Λ,Q, F, f, g) and the MBSTA M =
(Λ,Q, F, f, g) having the same structure. Then

1. If a string w ∈ Λ∗ is accepted by K at level n then the multiset φ(w) ∈ M(Λ)
is accepted by M at level n;

2. If a multiset μ ∈ M(Λ) is accepted by M at level n then there is a string
w ∈ Λ∗ such that φ(w) = μ and w is accepted by K at level n.

Proof. Directly by Definition 5.

Corollary 1. Assume a BSTA K = (Λ,Q, F, f, g) and the MBSTA M = (Λ,Q,
F, f, g) having the same structure. Then L(M) = {φ(w) | w ∈ L(K)}.

The notion of stability is trivially extended to MBSTAs. Moreover, analo-
gously to BSTAs, a MBSTA can always be transformed into an equivalent stable
MBSTA.

Definition 6 (Stable MBSTA). A MBSTA M = (Λ,Q, F, f, g) is stable iff
for each multiset μ ∈ M(Λ) and n1, n2 ∈ N with |μ| ≤ 2n1 ≤ 2n2 , it holds that

μ is accepted by M at level n1 ⇐⇒ μ is accepted by M at level n2.

Proposition 2. Let K = (Λ,Q, F, f, g) be a stable BSTA. Then the MBSTA
M = (Λ,Q, F, f, g) having the same structure is stable.

Proof. Assume any multiset μ ∈ M(Λ) and any pair of naturals n1, n2 ∈ N such
that |μ| ≤ 2n1 ≤ 2n2 . We prove that if μ is accepted by M at level n1 then μ is
accepted by M at level n2, the converse case is analogous. If μ is accepted by M
at level n1, then by Proposition 1 (case 2) there exists some w ∈ Λ∗ such that
φ(w) = μ and w is accepted by K at level n1. Since K is stable we infer that
w is accepted by K at level n2, thus implying, through Proposition 1 (case 1),
that μ is accepted by M at level n2.

22 R. Barbuti et al.

Theorem 2. For every MBSTA M there exists a stable MBSTA M ′ such that
L(M) = L(M ′).

Proof. Given the MBSTA M = (Λ,Q, F, f, g), we consider the BSTA K =
(Λ,Q, F, f, g) having the same structure of M . From Theorem 1 there exists a
stable BSTA K ′ = (Λ,Q′, F ′, f ′, g′) with L(K) = L(K ′). Consider the MBSTA
M ′ = (Λ,Q′, F ′, f ′, g′) having the same structure of K ′. From Proposition 2 we
have that M ′ is stable. It remains to be shown that L(M ′) = L(M). We prove
that for any μ ∈ M(Λ), μ ∈ L(M) implies μ ∈ L(M ′), the converse is analo-
gous. If μ ∈ L(M), then by Corollary 1 we infer w ∈ L(K) for some w ∈ Λ∗ with
φ(w) = μ. From L(K) = L(K ′) we infer w ∈ L(K ′). Since K ′ and M ′ have the
same structure, by Corollary 1 it follows μ ∈ L(M ′).

3.1 MBSTAs and MFAs

In this section we briefly study the expressive power of MBSTAs, by showing
that they can accept all the languages recognized by Multiset Finite Automata.
A Multiset Finite automaton (MFA) [12] is a finite automaton in which the input
is given by a multiset of symbols of the alphabet. It starts in its initial state with
the whole multiset of symbols, and changes its current state based on the state
itself and on a symbol which is chosen from the multiset. The chosen symbol
is removed from the multiset. The MFA stops when either no move is possible
or the multiset is empty. We also recall the important fact that MFAs have the
same expressive power as Multiset Context-Free Grammars ([12]), therefore they
accept the class of context-free multiset languages.

Definition 7 (Multiset Finite Automaton). A Multiset Finite Automaton
is a construct A = (Λ,Z,W, z0, t), where Λ is the input alphabet, Z is the finite
set of states, W is the set of accepting states (W ⊆ Z), z0 ∈ Z is the initial
state, and t is the transition function (t : Z × Λ → P(Z)).

Definition 8 (Multiset language accepted by a MFA). Given the Multiset
Finite Automaton A = (Λ,Z,W, z0, t), a configuration of A is a pair (z, μ),
where z is a state, z ∈ Z, and μ is a multiset of symbols, μ ∈ M(Λ). Let �
denote the following relation on configurations, whose reflexive and transitive
closure is denoted �∗:

(z, μ) � (z′, μ′) ⇐⇒ z′ ∈ t(z, a), a ∈ Λ, μ′ = μ\{|a|}.

A multiset μ ∈ M(Λ) is accepted by A iff (z0, μ) �∗ (z, ∅) for some z ∈ W . The
multiset language accepted by A is L(A) = {μ ∈ M(Λ) | μ is accepted by A}.
Theorem 3. Given an alphabet Λ, every context-free multiset language L is
accepted by a MBSTA.

Proof. The proof follows that in [17]. Consider the MFA A = (Λ,Z,W, z0, t) with
L(A) = L, and build a MBSTA K = (Λ,Q, F, f, g) with L(K) = L as follows.

Systolic Automata and P Systems 23

The processing alphabet Q of K is defined as Q = P(Z × Z), where each
symbol in Q corresponds therefore to a set of pairs (z1, z2) of states of A.

The input function g : Λ ∪ {�} → Q ∪ {�} is defined as follows:

g(a) = {(zi, zj) | zi, zj ∈ Z, zj ∈ t(zi, a)} a ∈ Λ;
g(�) = �;

while the processing function f : Q ∪ {�} × Q ∪ {�} → Q ∪ {�} is defined as

f(I, J) = {(zi, zj) | (zi, zk) ∈ I, (zk, zj) ∈ J};
f(I, �) = I;
f(�, �) = �.

Finally, let F0 = {I ∈ Q | ∃z ∈ W. (z0, z) ∈ I}; then the accepting alphabet is

F =

{
F0 ∪ {�} if z0 ∈ W ;
F0 if z0 /∈ W.

Let us consider any node of the binary tree computed according to f and g
from a string w�� being fed at some level n, with w ∈ Λ∗ and � = 2n−|w|. Assume
I = � and let σ(I) be the substring of w corresponding to the ordered sequence
of leaves being descendants of I. It is easy to see that I contains precisely the
pairs of states (z1, z2) such that there exists a path in A labelled by the symbols
in σ(I); i.e., given σ(I) = a1a2 . . . ak, then (z1, zk) ∈ I iff there exist states
z1, z2, . . . , zk+1 such that for all i < k we have zi+1 ∈ t(z, ai).

Assume now an arbitray multiset μ ∈ L(A). Then there exist a string w =
a1 . . . ak ∈ Λ∗ with φ(w) = μ and configurations (z0, μ0) � (z1, μ1) � · · · �
(zk, μk+1) such that for all i we have μi+1 = μi \ {ai}, and zk ∈ W is an
accepting state. For n such that k ≤ 2n consider the node Ĩ = f

n
(g(w�2

n−k)).
We have (z0, zk) ∈ Ĩ and, since xk ∈ W , we have Ĩ ∈ F . Therefore μ ∈ L(K).

Assume μ ∈ L(K). Then there exist a n such that k ≤ 2n and a string w =
a1 . . . ak ∈ Λ∗ with φ(w) = μ, a node Ĩ = f

n
(g(w�2

n−k)) ∈ F and configurations
(z0, μ0) � (z1, μ1) � · · · � (zk, μk+1) such that for all i we have μi+1 = μi \ {ai}.
From Ĩ ∈ F we infer zk ∈ W . Therefore μ ∈ L(A). We conclude L(K) = L(A).

3.2 Regular MBSTAs

We introduce variants of BSTAs and MBSTAs, called Regular BSTAs (RBSTAs)
and Regular MBSTAs (RMBSTAs) respectively, in which some regularity con-
ditions are assumed. Regular MBSTA will be used as an intermediate formalism
to ease the construction of a P system which accepts the same multiset language
as a given MBSTA.

Definition 9 (Regular (M)BSTA). A Regular BSTA (resp. Regular
MBSTA) is a BSTA C = (Λ,Q, F, f, g) (resp. MBSTA M = (Λ,Q, F, f, g)) such
that Q can be partitioned into the sets Qo = {q1, . . . , qh} of plain symbols, and
Q�

o = {q�
h+1, . . . , q

�
n} of tagged symbols, and the following regularity conditions

for the functions f and g are satisfied:

24 R. Barbuti et al.

– g(x) ∈ Qo, for all x ∈ Λ;
– f(q1, q2) ∈ Qo, for all q1, q2 ∈ Qo;
– f(q1, �) ∈ Q�

o, for all q1 ∈ Qo ∪ Q�
o;

– f(q1, q2) ∈ Q�
o, for all q1 ∈ Qo, q2 ∈ Q�

o.

Theorem 4. Let K = (Λ,Q, F, f, g) (resp. M = (Λ,Q, F, f, g)) be a stable
BSTA (resp. stable MBSTA). Then we can effectively construct a stable RBSTA
K ′ = (Λ,Q′, F ′, f ′, g) (resp. stable RMBSTA M ′ = (Λ,Q′, F ′, f ′, g)) such that

– L(K) = L(K ′) (resp. L(M) = L(M ′));
– Q′ can be partitioned into the sets Qo = Q and Q�

o = {x� | x ∈ Q}.
Proof. Let F ′ = F ∪ {x� | x ∈ F}, and let f ′ be defined as follows:

– for x, y, z ∈ Qo, if f(x, y) = z then f ′(x, y) = z and f ′(x, y�) = z�;
– for x, z ∈ Qo, if f(x, �) = z then f ′(x, �) = z� and f ′(x�, �) = z�;
– f ′(�, �) = �.

We prove that the thesis holds for BSTAs and MBSTAs by showing that for
all strings w ∈ Λ∗ and n such that |w| ≤ 2n, w can be accepted by K (resp. M)
at level n iff w can be accepted by K ′ (resp. M ′) at level n.

Let � = 2n − |w|, and let ui =
(
f
)i

(g(w��)), u′
i =

(
f ′)i

(g(w��)), for i ∈
{0, . . . , n}. Note that |ui| = |u′

i| = 2n−i. Moreover, let us define the function
θ : (Qo ∪ Q�

o ∪ {�})+ → (Qo ∪ {�})+ as follows:

θ(x) = θ(x�) = x x ∈ Qo

θ(�) = �

θ(x1 . . . xk) = θ(x1) . . . θ(xk)

It suffices to show that for all i ∈ {0, . . . , n}, ui = θ(u′
i), which can be proved by

induction. As regards the base case, u0 = θ(u′
0), since u′

0 = u0 ∈ (Qo ∪ {�})+.
In the inductive case, assume ui = θ(u′

i); we need to prove that ui+1 =
θ(u′

i+1). By the definitions of g and f ′, for all i, each string u′
i is of the form

q1 . . . qk� . . . � with qi ∈ Qo for all i < k and qk ∈ Qo ∪ Q�
o. As a consequence,

only either one of the following two cases may occur (in the following, we assume
f(ε) = ε):

– Case u′
i = αv, with α ∈ Q∗

o, v ∈ {�}∗. It holds that ui = θ(u′
i) = u′

i.
If |α| is even, then u′

i+1 = f ′(u′
i) = f(ui) = ui+1, and hence θ(u′

i+1) =
θ(ui+1) = ui+1.
If |α| is odd, let u′

i = α′x�v′, with α′ ∈ Q∗
o, x ∈ Qo, v′ ∈ {�}∗. Then

u′
i+1 = f ′(α′x�v′) = f(α′)f ′(x, �)f(v′) = f(α′) (f(x, �))� f(v′), and hence

θ(u′
i+1) = f(α′) f(x, �) f(v′) = f(ui) = ui+1.

– Case u′
i = αx�v, with α ∈ Q∗

o, x ∈ Qo, v ∈ {�}∗. It holds that ui = θ(u′
i) =

αxv.

Systolic Automata and P Systems 25

If |α| is odd, let u′
i = α′yx�v, with α′ ∈ Q∗

o, y ∈ Qo. Then u′
i+1 =

f ′(α′yx�v) = f(α′)f ′(y, x�)f(v) = f(α′) (f(y, x))� f(v)); hence θ(u′
i+1) =

f(α′) f(y, x) f(v) = f(ui) = ui+1.
If |α| is even, let u′

i = αx��v′, with v′ ∈ {�}∗. Then u′
i+1 = f ′(αx��v′) =

f(α)f ′(x�, �)f(v′) = f(α) (f(x, �))� f(v)) (recall that f(x, �) = � by defini-
tion). Hence θ(u′

i+1) = f(α) f(x, �) f(v′) = f(ui) = ui+1.

4 P Systems

P systems [23] are a bio-inspired computational formalism, where the behaviour
is driven by evolution rules applied to multisets of objects. A P system is com-
posed of a hierarchy of membranes, each containing a multiset of objects and
a set of evolution rules. Evolution rules describe how the objects of the system
evolve, for example they can be used to describe chemical reactions, i.e. rules
in which some objects interact and, as a result, they are transformed into some
other objects. Given a membrane m, its evolution rules in the set Rm can be
applied only to the objects contained in the same membrane, and not in any
other membrane. Many versions of P systems have been defined [2,4,7]. Formal
semantics of different versions of P systems are presented in [1,3,5,8,10,11].

An evolution rule is of the form u → v, where u and v are multisets whose
elements are called reactants and products, respectively. When a rule is applied,
the reactants are removed from the membrane and the products are added to the
target membrane, which could be a different membrane than the one in which
the rule is applied. Membranes are univocally labelled with natural numbers.
Given a membrane m, the products of a rule associated with m are described by
a multiset of (possibly) labelled objects having the following forms: a, meaning
that the object a is added to the same membrane m; aout, meaning that the
object a is to be sent out of the membrane; ainx

, meaning that the object a is
to be sent into the child membrane labelled by x.

An evolution rule is said to be cooperative if it contains more than one reac-
tant, otherwise the rule is called non-cooperative. This naming is also extended
to P system models, that is, a non-cooperative P system is such that all its rules
are non-cooperative, otherwise it is a cooperative P system.

A formal definition of P systems follows.

Definition 10. A P system is a tuple Π = (V, μ,w1, . . . , wn, R1, . . . , Rn) where:

– V is a finite alphabet whose elements are called objects;
– μ ⊂ N×N describes the tree-structure of membranes, where (i, j) ∈ μ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
– wi, with 1 ≤ i ≤ n, are strings from V ∗ representing multisets over V

associated with membranes 1, 2, . . . , n of μ;
– Ri, with 1 ≤ i ≤ n, are finite sets of evolution rules associated with mem-

branes 1, 2, . . . , n of μ.

26 R. Barbuti et al.

Fig. 3. An example of P system model

A characteristic of P systems is the way in which rules are applied in each
step, namely with maximal parallelism. In each step, evolution rules are applied
in a maximal non-deterministic way in all membranes, that is, in each membrane,
a multiset of rules is selected non-deterministically to consume the membrane
objects, in such a way that no other rule can be applied to the objects which are
not involved in any rule application.

A configuration of a P system is given by an association of its membranes with
multisets of objects. The multisets of objects w1, . . . , wn in the definition of a P
system Π represent the initial configuration of Π. A computation is a sequence of
transitions between configurations of a given P system Π starting from the initial
configuration. Each transition of a computation describes a maximally parallel
step. A computation is successful if and only if it reaches a configuration in which
no rule is applicable. The result of a successful computation can be defined in
different ways. Unsuccessful computations are those computations which never
halt, thus yielding no result.

Example 2. Figure 3 depicts a P system with two membranes, labelled 1 and 2.
The rules r1 and r2 are associated with membrane 1, while membrane 2 has no
rules associated with it. An application of rule r1 = a → a bin2 c2in2

causes a copy
of object b and two copies of object c to be sent into the inner membrane 2. The
object a is still present after the application, since it appears in the right-hand
part of the rule. Rule r2 = a2 → c3in2

, instead, can be applied to a pair of objects
a, and results in sending three copies of the object c into membrane 2. The initial
state, as depicted, contains two copies of object a in membrane 1, and no objects
in membrane 2.

At the first step, either rule r1 or r2 is applied. In fact, both the rules are
enabled, since their reactants are present in the membrane. Actually, if r1 is
applied to an object a, then the maximality requires it to be applied also to the
other copy of a. This application sends the objects b2c4 into membrane 2. The
objects contained in membrane 1 remain aa after the application, therefore the
double application of rule r1 can be repeated in the subsequent step. Whenever
rule r2 is applied, it causes the two copies of a in membrane 1 to disappear,
thus terminating the computation. In such a case, the objects ccc are sent into
membrane 2. Therefore, any computation of this P system is composed of a

Systolic Automata and P Systems 27

sequences of steps in which only r1 is applied (twice per step), followed by a
last step in which rule r2 is applied once. Therefore, whenever the P system
terminates, membrane 2 contains a multiset of objects bk c2k+3, for some k ≥ 0.

A P system can be used either as an acceptor or as a generator of a multiset
language over an alphabet Λ [9]. In the first case, a multiset over Λ is inserted
in the outmost membrane of the P system and the result of its computations
says whether such a multiset belongs to the multiset language accepted by the P
system or not. In the second case the P system has a fixed initial configuration
and can give as results (possibly in a non-deterministic way) all the possible
multisets belonging to a given multiset language.

In order to investigate the relationship between (R)MBSTAs and P systems
let us recall from [9] the definition of P system used as language acceptor. From
[6] it follows that any P system Π can be translated into an equivalent P system
Π ′ having a (flat) membrane structure that consists only of one membrane.
Hence, we consider in this paper only flat acceptor P Systems.

Definition 11. A flat acceptor P system over an alphabet Λ is a P system
Π = (Λ ∪ C ∪ {T}, ∅, μ1, R1), where:

– C is a set of control objects such that Λ ∩ C = ∅;
– T is a special object not contained in Λ ∪ C;
– μ1 is a multiset of objects in C.

A multiset μ of objects over Λ is accepted by Π iff, by adding μ to μ1, then
a final configuration can be reached with T occurring in the membrane.

The multiset language accepted by a flat acceptor P system Π is denoted
Ps(Π) (as Parikh set).

4.1 Simulating RMBSTAs with P Systems

Let R = (Λ,Q, F, f, g) be a RMBSTA. Recall that Q can be partitioned into
the sets Qo = {q1, . . . , qh} of plain symbols, and Q�

o = {q�
h+1, . . . , q

�
n} of tagged

symbols. Moreover, assume, without loss of generality, that Λ ∩ Q = ∅.
Let us consider two fresh symbols: ♦,F ∈ Λ ∪ Q. Symbol ♦ is a special trap

symbol that will be used to denote invalid computations, while F (dual to T)
will be used to denote computations that do not accept the input multiset.

We construct an acceptor P system ΠR = (Λ ∪ C ∪ {T}, ∅, μ1, R1) where
C = Q∪{F, �,♦}, μ1 = {|�|}, and R1 is composed of the rules shown in Figure 4.

Theorem 5. Let R = (Λ,Q, F, f, g) be a RMBSTA, and let ΠR = (Λ ∪ C ∪
{T}, ∅, μ1, R1) be the corresponding acceptor P system. Then, for any multiset
μ ∈ M(Λ) the following implications hold:

1. μ is accepted by R at level n =⇒ μ can accepted by ΠR in no more than
n + 2 steps;

28 R. Barbuti et al.

x → y if y = g(x), x ∈ Λ

xy → z if z = f(x, y); x ∈ Qo, y, z ∈ Qo ∪ Q�
o

x� → z� if z = f(x, �); x, z ∈ Qo ∪ Q�
o

x� → T if x ∈ F ∩ (Qo ∪ Q�
o)

x� → F if x ∈ (Qo ∪ Q�
o) \ F

� → T if � ∈ F

� → F if � /∈ F

� → �

x → ♦ if x ∈ Qo ∪ Q�
o

xT → ♦ if x ∈ Qo ∪ Q�
o

xF → ♦ if x ∈ Qo ∪ Q�
o

♦ → ♦

Fig. 4. Evolution rules of a P system which simulates a RMBSTA

2. μ is accepted by ΠR in 1 step =⇒ μ is accepted by R at level 0;
3. μ is accepted by ΠR in n + 2 steps, with n ≥ 0 =⇒ μ is accepted by R at

level n.

As a consequence of these implications we have L(R) = Ps(ΠR).

Proof. Item 1. Let us consider an accepting computation of the RMBSTA R,
starting from a string w ∈ Λ∗ such that φ(w) = μ. Let � = 2n − |w|, and
wh = f

(n−h)
(g(w��)), for h ∈ {0, . . . , n}. It holds w0 ∈ F .

If |w| = 0, then ∀h ∈ {0, . . . , n}. wh ∈ {�}+. Since μ is accepted, w0 = � ∈ F .
The initial configuration of ΠR contains only �, from which the transition � −→ T
can be performed, reaching a final accepting configuration.

Assume |w| > 0. For all h ∈ {0, . . . , n}, wh = w′
h� . . . �, with |wh| = 2h,

w′
h = q1 . . . qk, ∀j < k. qj ∈ Qo, and qk ∈ Qo ∪ Q�

o. Each application of the
processing function f may only involve pairs of symbols (x, y) from one of these
sets: Qo × Qo; Qo × Q�

o; Qo × {�}; {�} × {�}. Note that, for the above cases
(except for f(�, �)), ΠR contains evolution rules which simulate the behaviour of
f . In fact, for the first two cases, ΠR contains an evolution rule xy → z, with
z = f(x, y), while in the third case a rule x� → z�, with z = f(x, �), is present.
Since each symbol in wh is used exactly in one application of f , according to
the definition of the evolution rules of the P system ΠR, the resulting string
wh+1 is such that the transition φ(w′

h�) −→ φ(w′
h+1�) can be performed by ΠR.

Therefore, the P system can perform, from the initial state φ(w�), the sequence
of n + 2 transitions φ(w�) −→ φ(w′

n�) −→ · · · −→ φ(w′
0�) −→ φ(T), where

the first transition corresponds to the application of function g, and the last
transition is made possible because w′

0 = w0 ∈ F .

Systolic Automata and P Systems 29

Item 2. In this case, only rule � → T may have been applied to the initial
state μ ∪ {|�|}, for the input multiset μ = ∅ ∈ M(Λ), which implies � ∈ F ; hence
μ can be accepted by R at level 0. Otherwise, if |μ| > 0, then the P system may
not have reached a final accepting configuration in one step. In fact, the only
way to yield T is to apply rule � → T while, at the same time, rules x → y with
y = g(x) are applied to each symbol in μ, thus yielding a non-final configuration.

Item 3. Let us consider an accepting computation γ0 → γ1 → · · · → γn+2,
n ≥ 0. It holds γn+2 = {|T|}, since no symbol in Q ∪ {F, �,♦} may be present
(note that no more than one of either T or F may be present in a configuration).
In turn, either γn+1 = {|�|} or γn+1 = {|x�|}. The former case implies that
∀i ∈ {0, . . . , n}. γi = {|�|}, since the only rule which may have been applied is
� → �. Hence μ = ∅, which can be accepted by R at any level n ≥ 0.

Let us consider the case γn+1 = {|x�|}, with x ∈ F ∩Q. Let Q̃ = Q∗
o∪(Q∗

o.Q
�
o),

namely Q̃ contains all strings composed of symbols from Qo, possibly ending with
a symbol from Q�

o. We prove that ∀i ∈ {0, . . . , n}, if γn+1−i = φ(α�) with α ∈ Q̃,
|α| ≤ 2i, and f

i
(α��) ∈ F ∩Q where � = 2i −|α|, then γn−i = φ(β�) with β ∈ Q̃,

|β| ≤ 2i+1, and f
i
(α��) = f

i+1
(β��′

), where �′ = 2i+1 − |β|.
Assume γn−i = φ(α�). Due to the maximally-parallel semantics of P systems,

γn−i−1 = φ(β�). In fact, φ(α�) may only have been obtained by either (i) |α|
applications of rule xy → z yielding each symbol in α, and one application of
� → �; or (ii) |α| − 1 applications of rule xy → z yielding each but one symbol
in α, and one application of x� → z�. Moreover, note that |β|Q�

o
≤ |α|Q�

o
≤ 1.

Therefore, in both cases, α�� = f(β��′
), and hence f

i
(α��) = f

i+1
(β��′

).
Note that, at the beginning, γ0 = μ ∪ {|�|}, hence γ1 = {|g(x) | x ∈ μ|} ∪ {|�|}.

It follows that, since γn+1 = {|x�|} with x ∈ F ∩ Q, then f
n
(w��) ∈ F ∩ Q, for

some string w ∈ Q̃ such that φ(w�) = γ1. Therefore w = g(w′), for some w′ such
that φ(w′) = μ, from which we conclude f

n
(g(w′)��) = f

n
(g(w′��)) ∈ F ∩ Q.

Finally, note that Item 1 implies L(R) ⊆ Ps(ΠR), while Items 2 and 3 imply
Ps(ΠR) ⊆ L(R) (note that the initial configuration of ΠR does not contain T,
hence it needs at least one step to reach a final accepting configuration).

5 Conclusions

In this paper we have related systolic automata and P systems. We have extended
systolic automata to accept multisets of symbols, by introducing Multiset Binary
Systolic Tree Automata (MBSTAs). In particular, we have shown how an equiv-
alent variant of MBSTAs (called Regular MBSTAs) can be easily translated into
cooperative P systems.

References

1. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theoretical Computer Science 373(3), 163–181
(2007)

30 R. Barbuti et al.

2. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: P systems with
endosomes. International Journal of Computers, Communications and Control
4(3), 214–223 (2009)

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of spatial
P system models. Theoretical Computer Science 529, 11–45 (2014)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Natural Computing 10(1), 3–16 (2011)

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics
and behavioral equivalences for P systems. Theoretical Computer Science 395(1),
77–100 (2008)

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P systems flat form
preserving step-by-step behaviour. Fundamenta Informaticae 87(1), 1–34 (2008)

7. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: P systems with transport
and diffusion membrane channels. Fundamenta Informaticae 93(1–3), 17–31 (2009)

8. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics
of spiking neural P systems. Journal of Logic and Algebraic Programming 79(6),
304–316 (2010)

9. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Membrane systems work-
ing in generating and accepting modes: Expressiveness and encodings. In: Gheo-
rghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010.
LNCS, vol. 6501, pp. 103–118. Springer, Heidelberg (2010)

10. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview on opera-
tional semantics in membrane computing. International Journal of Foundations of
Computer Science 22(1), 119–131 (2011)

11. Busi, N.: Using well-structured transition systems to decide divergence for catalytic
P systems. Theoretical Computer Science 372(2–3), 125–135 (2007)

12. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Multiset Automata. In: Calude,
C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol.
2235, pp. 69–83. Springer, Heidelberg (2001)

13. Culik II, K., Gruska, J., Salomaa, A.: On a family of L languages resulting from
systolic tree automata. Theoretical Computer Science 23(3), 231–242 (1983)

14. Culik II, K., Gruska, J., Salomaa, A.: Systolic automata for VLSI on balanced
trees. Acta Informatica 18(4), 335–344 (1983)

15. Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata I. International
Journal of Computer Mathematics 15(1–4), 195–212 (1984)

16. Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata II. International
Journal of Computer Mathematics 16(1), 3–22 (1984)

17. Culik II, K., Salomaa, A., Wood, D.: Systolic tree acceptors. RAIRO-Theoretical
Informatics and Applications-Informatique Théorique et Applications 18(1), 53–69
(1984)

18. Fachini, E., Gruska, J., Maggiolo-Schettini, A., Sangiorgi, D.: Simulation of sys-
tolic tree automata on trellis automata. International Journal of Foundations of
Computer Science 1(2), 87–110 (1990)

19. Fachini, E., Maggiolo-Schettini, A., Resta, G., Sangiorgi, D.: Nonacceptability cri-
teria and closure properties for the class of languages accepted by binary systolic
tree automata. Theoretical Computer Science 83(2), 249–260 (1991)

20. Fachini, E., Maggiolo-Schettini, A., Sangiorgi, D.: Comparisons among classes of Y-
tree systolic automata. In: Rovan, B. (ed.) Mathematical Foundations of Computer
Science 1990. LNCS, vol. 452, pp. 254–260. Springer, Berlin Heidelberg (1990)

Systolic Automata and P Systems 31

21. Fachini, E., Maggiolo-Schettini, A., Sangiorgi, D.: Classes of systolic Y-tree
automata and a comparison with systolic trellis automata. Acta Informatica
29(6/7), 623–643 (1992)

22. Gruska, J., Monti, A., Napoli, M., Parente, D.: Succinctness of descriptions of
SBTA-languages. Theoretical Computer Science 179(1–2), 251–271 (1997)

23. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
24. Rozenberg, G., Salomaa, A.: The mathematical theory of L systems. Academic

Press (1980)

	Systolic Automata and P Systems
	1 Introduction
	2 Background
	3 Multiset Binary Systolic Tree Automata
	3.1 MBSTAs and MFAs
	3.2 Regular MBSTAs

	4 P Systems
	4.1 Simulating RMBSTAs with P Systems

	5 Conclusions
	References

