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Abstract. We consider the promise problem AN,r1,r2 on a unary alpha-
bet {σ} studied by Gruska et al. in [21]. This problem is formally defined
as the pair AN,r1,r2 = (AN,r1

yes , AN,r2
no ), with 0 ≤ r1 �= r2 < N , AN,r1

yes =
{σn | n ≡ r1 mod N} and AN,r2

no = {σn | n ≡ r2 mod N}. There, it
is shown that a measure-once one-way quantum automaton can solve
exactly AN,r1,r2 with only 3 basis states, while any one-way determinis-
tic finite automaton requires d states, d being the smallest integer such
that d | N and d � (r2−r1) mod N . Here, we introduce the promise prob-
lem Diof a,N

r1,r2 as an extension of AN,r1,r2 to general alphabets. Even for
this problem, we show the same descriptional superiority of the quantum
paradigm over one-way deterministic automata. Moreover, we prove that
even by adding features to classical automata, namely nondeterminism,
probabilism, two-way motion, we cannot obtain automata for AN,r1,r2

and Diof a,N
r1,r2 smaller than one-way deterministic.

Keywords: Classical and quantum automata · Promise problem ·
Descriptional complexity

1 Introduction

Several features have been added to the original model of one–way deterministic
finite automaton (1dfa) [38]. Thus, we saw one-way nondeterminism (1nfa) [38],
one-way probabilism (1pfa) [37], and the ability of scanning input strings back
and forth, yielding the definition of two-way devices (e.g., 2dfa) [39]. However,
simulation results show that the computational power of 1nfas, 1pfas with
isolated cut point, and 2dfas does not exceed that of 1dfa, i.e., the class of
regular languages.

Beside these classical models, other types of finite automata based on the
quantum paradigm [18] are introduced and investigated in the literature [2,4,
9,16,22,25,28,29,35]. The first and simplest variant of one-way quantum finite
automaton (1qfa) is the measure-once model, where the probability of accepting
words is evaluated by “observing” just once, at the end of input processing.
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Surprisingly enough, measure-once 1qfas working with isolated cut point are
proved to single out a proper subclass of regular languages, namely group (or
reversible) languages [5,14].

In addition to computational power, several works in the literature investigate
the descriptional power of these models, i.e., their ability to provide succinct
language representations. To this regard, a fundamental tool is to study how the
number of states changes when turning one automaton into another. The first
widely known result in this realm compares nondeterminism with determinism
for one-way finite automata: each n-state 1nfa can be simulated by a 1dfa
with 2n states [38]. Moreover, this bound is tight [33]. Another tool to get deeper
insights into the descriptional power of different models of finite automata is
to test them on very specific tasks, such as recognizing unary languages, i.e.,
languages over single-letter alphabets [15,32]. Some results along this line of
research for probabilistic and quantum automata can be found in [8,11,12,31].
Further results on the descriptional power of quantum automata are contained
in [7,10,27,30].

The same questions on the computational and descriptional power of different
models of finite automata have been extended from language recognition to
more general tasks known as promise problem solving. A promise problem on
an alphabet Σ is specified by two nonempty disjoint subsets of Σ∗ called yes-
instances and no-instances. Unlike language recognition, the union of the yes-
instances and no-instances may be a proper subset of Σ∗. A device which solves
the promise problem accepts yes-instances, rejects no-instances and is allowed
arbitrary behavior on the remaining strings. Intuitively, this device is “promised”
that the input is either a yes-instance or a no-instance, and is only required to
distinguish between these two cases.

Recently, the study of promise problems has focused on quantum devices. The
first result in this realm is given by Murakami et al. [34], who showed the existence
of a promise problem solvable exactly by a quantum pushdown automaton, but not
by any deterministic pushdown automaton.Concerning finite automata,Ambainis
and Yakaryilmaz [3] showed the existence of a family of promise problems which
can be solved exactly by a 2-state 1qfa, whereas the size of corresponding 1dfas
and exact 1pfas grows without bound. Gruska et al. showed further results on the
succinctness of 1qfas for promise problems in [20,21,42–44].

In this paper, we consider the unary promise problem introduced in [21] as
AN,r1,r2 = (AN,r1

yes , AN,r2
no ), with 0 ≤ r1 �= r2 < N , AN,r1

yes = {σn | n ≡ r1 mod N}
and AN,r2

no = {σn | n ≡ r2 mod N}. Gruska et al. show that a measure-once 1qfa
can solve exactly AN,r1,r2 with only 3 basis states, while a 1dfa requires d states,
d being the smallest integer such that d | N and d � (r2 − r1) mod N . Here, we
introduce the promise problem Diof a,N

r1,r2
as an extension of AN,r1,r2 to general

alphabets. Even for this problem, we show the same descriptional superiority of
1qfas over 1dfas. Moreover, we prove that adding features to classical automata,
namely nondeterminism, probabilism, two-way motion, does not lead to finite
automata smaller than 1dfas for solving the promise problems AN,r1,r2 and
Diof a,N

r1,r2
. To analyze these latter devices, we use the tool of normal forms for
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unary automata, namely: the Chrobak normal form for one-way nondeterminis-
tic finite automata [15], the cyclic normal form for one-way probabilistic finite
automata [13], and a simplified form for two-way deterministic finite automata
called sweeping [26,41]. Putting automata in such forms, enables us to point out
their ultimate periodic behavior, from which we determine optimal lower limits
for their descriptional power.

2 Preliminaries

2.1 Arithmetics and Linear Algebra

The set of natural (integer) numbers is denoted by N (Z). The greatest com-
mon divisor of a1, . . . , as ∈ Z is denoted by gcd(a1, . . . , as). Their least common
multiple is denoted by lcm(a1, . . . , as). For a, b ∈ N, the notation a | b (a � b)
stands for a divides (does not divide) b. For N > 0, the notation a ≡ b mod N
means that a mod N = b mod N . Clearly, a | b if and only if b ≡ 0 mod a.
By the Fundamental Theorem of Arithmetic, any integer z > 1 can be univo-
cally expressed as a product z =

∏s
i=1 zki

i , where z1 < · · · < zs are primes
and k1, . . . , ks are positive integers. This product is the prime factorization of z.
Given a1, . . . , as, z ∈ Z, a linear Diophantine equation with variables x1, . . . , xs

ranging over Z writes as a1x1 + · · · + asxs = z. It is a very well known fact that
this equation has solutions in N if and only if gcd(a1, . . . , as) | z.

We quickly recall some notions of linear algebra, useful to describe the quan-
tum world. For more details, we refer the reader to, e.g., [40]. The field of real
(complex) numbers is denoted by R (C). Given a complex number z = a+ ib, we
denote its conjugate by z∗ = a− ib and its modulus by |z| =

√
zz∗. We let Cn×m

and Cn (shorthand for C1×n) denote, respectively, the set of n × m matrices
and n-dimensional row vectors with entries in C. The identity matrix is denoted
by I. We let ej = (0, . . . , 0, 1, 0, . . . , 0) be the characteristic vector having 1 in
its jth component and 0 elsewhere.

Given a matrix M ∈ Cn×m, we let Mij denote its (i, j)th entry. The transpose
of M is the matrix MT ∈ Cm×n satisfying MT

ij = Mji, while we let M∗ be the
matrix satisfying M∗

ij = (Mij)
∗. The adjoint of M is the matrix M† = (MT )∗.

For matrices A,B ∈ Cn×m, their sum is the n×m matrix (A+B)ij = Aij +Bij .
For matrices C ∈ Cn×m and D ∈ Cm×r, their product is the n × r matrix
(CD)ij =

∑m
k=1 CikDkj .

A Hilbert space of dimension n is the linear space Cn of n-dimensional com-
plex row vectors equipped with sum and product by elements in C, in which
the inner product 〈ϕ,ψ〉 = ϕψ† is defined, for ϕ,ψ ∈ Cn. The norm of a vector
ϕ ∈ Cn is given by ‖ϕ‖ =

√〈ϕ,ϕ〉. If 〈ϕ,ψ〉 = 0 (and ‖ϕ‖ = 1 = ‖ψ‖), then ϕ
and ψ are orthogonal (orthonormal). The set of orthonormal vectors {e1, . . . , en}
is called the canonical basis of Cn. Two subspaces X,Y ⊆ Cn are orthogonal
if any vector in X is orthogonal to any vector in Y . In this case, we denote by
X � Y the linear space generated by X ∪ Y .
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A matrix M ∈ Cn×n is said to be:

– Boolean: whenever its entries are either 0 or 1.
– Stochastic: whenever its entries are reals from the interval [0, 1] and each row

sums to 1.
– Unitary: whenever MM† = I = M†M ; equivalently, M is unitary if and

only if it preserves the norm, i.e., ‖ϕM‖ = ‖ϕ‖ for any ϕ ∈ Cn. It is easy
to see that the product of unitary matrices is unitary as well.

A matrix H ∈ Cn×n is said to be Hermitian (or self-adjoint) whenever
H = H†. A matrix P ∈ Cn×n is a projector if and only if P is Hermitian and
idempotent, i.e., P 2 = P . The eigenvalues of a projector are either 0 or 1.
More generally, given the Hermitian matrix H, let c1, . . . , cs be its eigenvalues
and E1, . . . , Es the corresponding eigenspaces. It is well known that each eigen-
value ck is real, that Ei is orthogonal to Ej for i �= j, and that E1�· · ·�Es = Cn.
Thus, every vector ϕ ∈ Cn can be uniquely decomposed as ϕ = ϕ1 + · · · + ϕs

for unique ϕj ∈ Ej . The linear transformation ϕ �→ ϕj is the projector Pj onto
the subspace Ej . Actually, the Hermitian matrix H is biunivocally determined
by its eigenvalues and projectors as H =

∑s
i=1 ciPi, where

∑s
i=1 Pi = I.

2.2 Languages and Classical Finite Automata

We assume familiarity with basics in formal language theory (see, e.g., [23]). The
set of all words (including the empty word ε) over a finite alphabet Σ is denoted
by Σ∗. For a word ω ∈ Σ∗, we let |ω| denote its length and ωi its ith symbol.
For σ ∈ Σ, we let |ω|σ denote the number of occurrences of σ in ω. A language
on Σ is any set L ⊆ Σ∗.

In what follows, we quickly outline the types of classical finite automata we
shall be dealing with. For extensive presentations, the reader is referred to [23]
for deterministic and nondeterministic automata, and to [36] for probabilistic
automata.

A one-way deterministic finite automaton (1dfa) is defined by the 5-tuple
A = 〈S,Σ, τ, s1, F 〉, where S =

{
s1, . . . , s|S|

}
is the finite set of states, Σ the

input alphabet, s1 ∈ S the initial state, F ⊆ S the set of accepting states, and
τ : S × Σ → S is the transition function. An input word is accepted by A if
the induced computation starting from the initial state ends in some accepting
state after consuming the whole input. A linear representation for the 1dfa A
is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where α ∈ {0, 1}|S| is the characteristic row
vector of the initial state, M(σ) ∈ {0, 1}|S|×|S| is the boolean stochastic matrix
satisfying M(σ)ij = 1 if and only if τ(si, σ) = sj , and β ∈ {0, 1}|S|×1 is the
characteristic column vector of the final states. The behavior of A on an input
ω ∈ Σ∗ is given by pA(ω) = αM(ω)β, where we let M(ω) =

∏|ω|
i=1 M(ωi). The

language accepted by A is the set L = {ω ∈ Σ∗ | pA(ω) = 1}.
A one-way nondeterministic finite automaton (1nfa) is defined similarly to

a 1dfa, but the transition function now maps to possibly empty subsets of S,
i.e., τ : S × Σ → 2S . This dynamic describes the possibility to have zero or
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more than one next state at each move. A word is accepted if there exists a
computation starting from the initial state and ending in some accepting state
after consuming the whole input. More formally, the linear representation for
a 1nfa A is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where α, β are as before, while
M(σ) ∈ {0, 1}|S|×|S| is the boolean (not necessarily stochastic) matrix satisfying
M(σ)ij = 1 if and only if sj ∈ τ(si, σ). The accepted language is now defined as
the set L = {ω ∈ Σ∗ | pA(ω) ≥ 1}.

A one-way probabilistic finite automaton (1pfa) is defined similarly to above
devices but now, for any given state and input symbol, the transition function
returns a probability distribution over the possible next states. As a consequence,
an accepting probability is associated with each input word. More formally, the
linear representation for a 1pfa A is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where β is
defined as above, α ∈ [0, 1]|S| is a stochastic row vector representing the initial
probability distribution on S, and M(σ) ∈ [0, 1]|S|×|S| is the stochastic matrix
where M(σ)ij is the probability that A moves from the ith to the jth state
upon reading σ. Thus, the behavior pA(ω) now returns the probability that A
accepts the input word ω ∈ Σ∗. The function pA : Σ∗ → [0, 1] is also called
the stochastic event induced by A. Given λ ∈ [0, 1], the language accepted by A
with cut point λ is the set L = {ω ∈ Σ∗ | pA(ω) > λ}. Moreover, λ is said to
be isolated if there exists a positive δ such that |pA(ω)−λ| ≥ δ, for any ω ∈ Σ∗.

In a two-way deterministic finite automaton (2dfa), moves are dictated by a
partial transition function1 τ : S×(Σ∪{�,�}) → S × {−1,+1}, where �,� �∈ Σ
are two special symbols called left and right endmarker, respectively. In a move,
the 2dfa reads an input symbol, changes its state, and moves the input head
one cell to the right or to the left depending on whether τ returns +1 or −1,
respectively. An input word ω ∈ Σ∗ for A is stored on an input tape surrounded
by the two endmarkers, so that the tape content is � ω �. The machine accepts ω
if the induced computation starting from the initial state with the head on
the left endmarker reaches an accepting state with the head on either of the
endmarkers. Although 2dfas do not have a finite linear representation, we let
pA(ω) = 1 (pA(ω) = 0) to denote that ω is accepted (not accepted) by A. Clearly,
the accepted language is the set L = {ω ∈ Σ∗ | pA(ω) = 1}.

It is well known that 1dfas, 1nfas, isolated cut point 1pfas and 2dfas
share the same computational power, i.e., they characterize the class of regular
languages. Nevertheless, they have different descriptional power: representation
of regular languages may be much more ?economical? — in terms of number of
states — in one system than another. For instance, the following are the state
costs of simulating n-state automata models by 1dfas:

– 1nfas: 2n [33,38],
– 1pfas with δ-isolated cut point: (1 + 1/(2δ))n−1 [1,36,37],
– 2dfas: n(nn − (n − 1)n) [24,39].

These costs are optimal, except the one for isolated cut point 1pfas which is
“quasi optimal”.
1 In the deterministic case, we do not consider stationary moves since they can be
easily removed without augmenting the number of states.
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A language L ⊆ Σ∗ is called unary whenever |Σ| = 1. Unary regular lan-
guages are accepted by unary finite automata, i.e., automata having single-
symbol input alphabets. It is folklore that any unary 1dfa consists of an initial
path followed by a cycle (see Figure 1).

Fig. 1. A unary 1dfa. When depicting unary automata we will always omit the symbol
label, since it would be redundant.

It is well known that unary automata show relevant differences from automata
on general alphabets. For instance, it is proved in [15] that the optimal state cost
of simulating n-state unary 1nfas and 2dfas by 1dfas is “only” e(1+o(1))

√
n·lnn.

For unary 1pfas, several recent simulation results may be found, e.g., in [11,13,
17,31]. All these simulations crucially rely on the fact that unary automata can
be put in some “normal forms”. In Section 4, we will recall such forms, and use
them to get our results on promise problems.

2.3 Quantum Mechanics and Quantum Automata

Before outlining the model of quantum automaton we shall consider, we quickly
present the main ingredients of the mathematical description of a quantum sys-
tem possessing Q = {q1, . . . , qm} basis states and reacting to a set of impulses
represented by the alphabet Σ = {σ1, . . . , σH}. (For more details, we refer the
reader to, e.g., [18].) Every basis state qi ∈ Q can be represented by its charac-
teristic vector ei ∈ {0, 1}m. At any given time, the quantum state of the system
is represented by a superposition π =

∑m
k=1 αkek, where the coefficients αk are

complex amplitudes and ‖π‖ = 1. With every symbol σi ∈ Σ, we associate a
unitary transformation U(σi) : Cm → Cm. An observable is described by an
Hermitian matrix O = c1P1 + · · ·+ csPs. With the system being in the quantum
state π, we can operate:

1. Evolution U(σi): the new state ξ = πU(σi) is reached; this dynamics is
reversible, since π = ξU†(σi).

2. Measurement of O: every outcome in {c1, . . . , cs} can be observed; cj is
obtained with probability ‖πPj‖2 and, after measurement, the state col-
lapses to the new state πPj/ ‖πPj‖. The state transformation induced by a
measurement is typically irreversible.
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Let us now see how quantum finite automata fit in this picture. One-way quan-
tum finite automata (1qfas) are computational devices particularly interesting
because of their simplicity.Moreover, their analysis provides a good insight into the
nature of quantumcomputation, since1qfas are a theoreticalmodel for a quantum
computer with finite memory. From the point of view of computational capabili-
ties, 1qfas present both advantages and disadvantages with respect to their clas-
sical (deterministic, nondeterministic or probabilistic) counterpart. Essentially,
quantum superposition offers some computational advantages on probabilistic
superposition seen for1pfas.On the other hand, quantumdynamics are reversible:
because of limitation of memory, it is generally impossible to simulate classical
automata by quantum automata. Limitations due to reversibility can be partially
attenuated by systematically introducing measurements of suitable observables as
computational steps.

Several models of quantum automata are proposed in the literature [2,6? ].
Basically, they differ in measurement policy. In this paper, we only focus on the
measure-once model [5,14,28], where the transformation on an input symbol is
realized by a unitary operator and a unique measurement is performed at the
end of computation. More formally, a measure-once 1qfa with m basis states
and input alphabet Σ is a system A = 〈Q,Σ, {U(σ)}σ∈Σ∪{�,�}, e1, Qa〉, where:

– Q = {e1, . . . , em} is the canonical basis of the Hilbert space Cm; its elements
are the basis states,

– Σ is a finite alphabet of input symbols, and �,� /∈ Σ are the left and right
endmarkers,

– with any σ ∈ Σ ∪ {�,�}, a unitary matrix U(σ) ∈ Cm×m is associated,
– e1 = (1, 0, . . . , 0) ∈ Cm is the initial basis state,
– Qa ⊆ Q is the set of accepting basis states, identifying the projection matrix

Pa =
∑

{i | ei∈Qa} eT
i ei ∈ Cm×m which biunivocally determines the observ-

able O = 1 · Pa + 0 · (I − Pa).

The behavior of A is the stochastic event pA : Σ∗ → [0, 1] defined, for any
x = x1x2 · · · xn ∈ Σ∗, by

pA(x) = ‖e1U(�)U(x1)U(x2) · · · U(xn)U(�)Pa‖2.
The language accepted by A with (isolated) cut-point λ is defined as in Section 2.2
for 1pfas.

From a computational power point of view, in [5,28] it is proved that measure-
once 1qfas are strictly less powerful than classical automata. In fact, with iso-
lated cut point, they characterize the class of group (or reversible) languages, a
proper subclass of regular languages. However, from a descriptional power point
of view, they are shown to greatly outperform classical models. E.g., in [7,8,30],
several families of regular languages are provided, on which measure-once 1qfas
are exponentially smaller than classical paradigms.

We remark that measure-once 1qfas are originally introduced in [5,28]
without the endmarkers, with an arbitrary initial unitary vector, and with an arbi-
trary accepting subspace. More precisely, the automaton is represented as B =
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〈Q,Σ, {U(σ)}σ∈Σ , π, P 〉, where Q,Σ and U(σ) are defined as above, π ∈ Cm is
a unitary vector and P is a projector. In this case, the event induced by B on x is
pB(x) = ‖πU(x1)U(x2) · · · U(xn)P‖2. Actually, the two models are equivalent:

– The automaton A is equivalent to A′ = 〈Q,Σ, {U ′(σ)}σ∈Σ , π′, Pa〉, where
U ′(σ) = U(�)†U(σ)U(�) and π′ = e1U(�)U(�). In fact

pA′(x) = ‖e1U(�)U(�)U†(�)U(x1)U(�) · · · U†(�)U(xn)U(�)Pa‖2 = pA(x).

– The automaton B is equivalent to B′ = 〈Q,Σ, {U(σ)}σ∈Σ∪{�,�}, e1, Qa〉,
where U(�) is a unitary matrix with π as the first row, so that e1U(�) = π.
To set Qa, we notice that P is similar to the diagonal matrix Pa built on
the eigenvalues of P , i.e., P = V PaV † with V being a unitary matrix [40].
Moreover, as recalled in Section 2.1, such eigenvalues are either 0 or 1. So,
we let Qa be the unique subset of Q such that Pa =

∑
{i | ei∈Qa} eT

i ei holds.
In addition, V being unitary, we let U(�) = V , and notice that multiplying
a vector by V † does not change the vector norm. So, we can write

pB′(x) = ‖e1U(�)U(x1)U(x2) · · · U(xn)U(�)Pa‖2
= ‖πU(x1)U(x2) · · · U(xn)V PaV †‖2 = pB(x).

Throughout the rest of the paper, we will simply write 1qfa, understanding the
designation “measure-once”.

3 Quantum Automata for Promise Problems

We recall that a promise problem over an alphabet Σ is a pair A = (Ayes, Ano),
where Ayes, Ano ⊆ Σ∗ are nonempty disjoint sets. An automaton M solves A
with isolated cut point λ if there exists a δ ∈ (

0, 1
2

]
such that

– for any ω ∈ Ayes, pM (ω) ≥ λ + δ, and
– for any ω ∈ Ano, pM (ω) ≤ λ − δ.

If λ = δ = 1
2 , then A is solved by M exactly.

It is easy to see that the classical membership problem for a nonempty lan-
guage L ⊆ Σ∗ may be regarded as the promise problem (L,Σ∗ \ L).

In [21], Gruska et al. propose the promise problem AN,r1,r2 = (AN,r1
yes , AN,r2

no )
on the unary alphabet {σ}, with 0 ≤ r1 �= r2 < N ,

AN,r1
yes = {σn | n ≡ r1 mod N} and AN,r2

no = {σn | n ≡ r2 mod N}.

For the sake of readability, when referring to this problem throughout the rest
of the paper, we let

l = (r2 − r1) mod N.

The following result is proved in [21]:
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Theorem 1. The promise problem AN,r1,r2 can be solved exactly by a 3 basis
states 1qfa, while the minimal 1dfa has d states, where d is the smallest positive
integer such that d | N and d � l.

We recall that the minimal 1dfa for AN,r1,r2 addressed in Theorem 1 consists
of a cycle of length d with a unique final state at distance r1 from the initial
state. We also notice that, by fixing N = 2k+1, r1 = 0 and r2 = 2k, we obtain
the promise problem studied in [3], for which an unbounded size gap between
quantum and deterministic finite automata solution is established. So, Theorem
1 extends this gap to other values of N (e.g., for prime N).

Let us now introduce a generalization of the promise problem AN,r1,r2 on
the multi-letter alphabet Σ = {σ1, σ2, . . . , σH}. For 0 ≤ r1 �= r2 < N and
a = (a1, a2, . . . , aH) ∈ NH satisfying gcd(a1, a2, . . . , aH , N) = 1, we define the
promise problem Diof a,N

r1,r2
= (Diof a,N,r1

yes ,Diof a,N,r2
no ) as

Diof a,N,r1
yes ={ω ∈ Σ∗ | (a1|ω|σ1 + a2|ω|σ2 + · · · + aH |ω|σH

) ≡ r1 mod N},

Diof a,N,r2
no ={ω ∈ Σ∗ | (a1|ω|σ1 + a2|ω|σ2 + · · · + aH |ω|σH

) ≡ r2 mod N}.

As above, when referring to this problem, we let l = (r2−r1) mod N . Notice that
the condition gcd(a1, a2, . . . , aH , N) = 1 ensures that Diof a,N,r1

yes and Diof a,N,r2
no

are nonempty sets for any r1, r2. In addition, the condition r1 �= r2 ensures
disjointness. By suitably adapting the technique in [21], we exhibit succinct
1qfas for the family Diof a,N

r1,r2
:

Theorem 2. The promise problem Diof a,N
r1,r2

can be solved exactly by a 3 basis
states 1qfa.

Proof. To get our 1qfa, we apply the same construction exhibited in Theorem
1 in [21]. The only difference is that, instead of having the unique matrix Ua

performing a rotation of an angle θ, we here have matrices U(σj) performing
rotations of angles θaj , for 1 ≤ j ≤ H. As a consequence, the product U(ω) =
∏|ω|

i=1 U(ωi) describing the computation of the 1qfa on any given input word ω
now yields the matrix

U(ω) =

⎛

⎜
⎜
⎝

1 0 0
0 cos

(
θ
∑H

j=1 aj |ω|σj

)
sin

(
θ
∑H

j=1 aj |ω|σj

)

0 − sin
(
θ
∑H

j=1 aj |ω|σj

)
cos

(
θ
∑H

j=1 aj |ω|σj

)

⎞

⎟
⎟
⎠ .

The rest of the proof proceeds as in [21]. ��

4 Classical Automata for Promise Problems

Let us now analyze the size required by classical automata for solving the promise
problems AN,r1,r2 and Diof a,N

r1,r2
. First we consider one-way models: both in the

nondeterministic and probabilistic case, we obtain the same size lower bound as
for 1dfas (Theorem 1). Then, we extend this result to 2dfas.

To study the solution of the promise problem AN,r1,r2 on 1nfas, we recall the
Chrobak normal form for unary automata [15]. This form extends the structure
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of unary 1dfas displayed in Figure 1 and, roughly speaking, consists of an initial
path at the end of which a nondeterministic move leads to more than one cycle
(see Figure 2).

Fig. 2. A unary 1nfa in Chrobak normal form with 3 cycles

More formally, a unary 1nfa A = 〈S, {σ}, τ, s0, F 〉 is in Chrobak normal form
if S can be partitioned into m + 1 disjoint sets S0, C1, . . . , Cm such that:

– S0 = {s0, s1, . . . , st},
– for 1 ≤ i ≤ m, Ci = {pi,0, pi,1, . . . , pi,yi−1},
– for 1 ≤ i ≤ m and 0 ≤ j < yi, τ(pi,j , σ) =

{
pi,(j+1) mod yi

}
, i.e., Ci is a cycle

of length yi,
– for 0 ≤ i < t, τ(si, σ) = {si+1}, i.e., S0 is a path of length t,
– τ(st, σ) = {p1,0, p2,0, . . . , pm,0}, i.e., st is the only state where a nondeter-

ministic move takes place, leading to a single state in each cycle.

In [15], it is proved the following:

Lemma 1. Each unary n-state 1nfa can be simulated by a 1nfa in Chrobak
normal form having O(n2) states in the initial path and at most n states in the
cycles.

The Chrobak normal form is crucial to obtain the following result:

Theorem 3. The minimal 1nfa solving the promise problem AN,r1,r2 has d
states, where d is the smallest positive integer such that d | N and d � l.

Proof. The minimal 1dfa addressed in Theorem 1, is an example of d-state 1nfa
for AN,r1,r2 . So, we only need to prove minimality.

Suppose there exists a 1nfa which solves AN,r1,r2 with p < d states. By
Lemma 1, we can convert this 1nfa into an equivalent 1nfa M in Chrobak
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normal form having t (which is O(p2)) states in the initial path and at most p
states in the cycles.

Let α ∈ N satisfy αN > t. Since σαN+r1 ∈ AN,r1
yes , there exists an accepting

state s reachable by M on input σαN+r1 . Moreover, since αN + r1 exceeds the
length of the initial path, s belongs to a cycle of length � ≤ p. This implies that
the same state s is reachable by M on input σαN+r1+β�, and therefore this word
is accepted. Let g = gcd(�,N). If g | l, then there exist β, γ ∈ N such that the
Diophantine equation β� = γN + l holds. However, for a suitable α′ ∈ N, we get

σαN+r1+β� = σ(α+γ)N+r1+l = σ(α+γ)N+r1+(r2−r1) mod N = σα′N+r2 ∈ AN,r2
no ,

and we have a contradiction. Therefore it must be g � l. But since by definition

g ≤ � ≤ p < d

and g | N , we get a contradiction with the minimality of d. Hence, any 1nfa for
AN,r1,r2 must have at least d states. ��

Theorem 3 shows that for the promise problem AN,r1,r2 nondeterminism
does not help in saving states. We are going to show that even the use of prob-
abilism does not lead to smaller automata.

To this aim, we recall the cyclic normal form [13] for unary 1pfas. This form
is similar to Chrobak normal form, the main difference being in accepting states
and the move from st, i.e., the last state of the initial path. Each cycle must
contain exactly one accepting state, however from st many different states, even
belonging to the same cycle, can be reached by the only allowed probabilistic
move (see Figure 3).

In [13], it is proved the following:

p1
p2

p3

p4

p5

Fig. 3. A unary 1pfa in cyclic normal form with the constraint
∑

i pi = 1
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Lemma 2. Each unary n-state 1pfa with isolated cut point can be converted
into an equivalent 1pfa in cyclic normal form with isolated cut point (not nec-
essarily keeping the same cut point and isolation) and with at most n states in
the cycles.

The cyclic normal form allows us to obtain the following result:

Theorem 4. The minimal 1pfa solving with isolated cut point the promise
problem AN,r1,r2 has d states, where d is the smallest positive integer such that
d | N and d � l.

Proof. The minimal 1dfa addressed in Theorem 1 can obviously be regarded as
a d-state 1pfa solving exactly AN,r1,r2 .

To show minimality, suppose there exists a 1pfa which solves AN,r1,r2 with
isolated cut point and p < d states. By Lemma 2, we can convert this 1pfa into
an isolated cut point 1pfa M in cyclic normal form having t states in the initial
path and a set of cycles of lengths �1, �2, . . . �z, such that

∑z
i=1 �i ≤ p.

We choose α ∈ N satisfying αN > t. The word σαN+r1 brings M from
the initial state to a state s in a cycle with a given probability. By letting
L = lcm(�1, �2, . . . �z), for any β ∈ N the word σβL brings M from s back to s
with certainty. Since this holds for any state s reachable by M on input σαN+r1 ,
we have that pM (σαN+r1) = pM (σαN+r1+βL).

Let g = gcd(L,N). If g | l, then there exist β, γ ∈ N such that the Dio-
phantine equation βL = γN + l holds. So, for a suitable α′ ∈ N, we have
σαN+r1+βL = σα′N+r2 ∈ AN,r2

no , and we get

pM (σαN+r1) = pM (σαN+r1+βL) = pM (σα′N+r2).

However, σαN+r1 ∈ AN,r1
yes and we have a contradiction on M having an isolated

cut point. Therefore, it must be g � l. Let g =
∏h

i=1 gbi
i be the prime factorization

of g. Then, there exists gbκ
κ � l. In addition, notice that gbκ

κ | L and since gbκ
κ is

a prime power there exists 1 ≤ j ≤ z such that gbκ
κ | �j . This implies that

gbκ
κ ≤ �j ≤ p < d.

This, together with gbκ
κ | N and gbκ

κ � l, contradicts the minimality of d. Hence,
any isolated cut point 1pfa for AN,r1,r2 must have at least d states. ��

Even by using two-way motion, we do not manage to design automata smaller
than 1dfas, 1nfas, and 1pfas for solving the promise problem AN,r1,r2 . To this
aim, we consider a simplified form for unary 2dfas: a 2dfa is called sweeping if
its input head changes its direction at the endmarkers only [41]. The following
simulation result is proved in [26]:

Lemma 3. For each unary n-state 2dfa, there exists an equivalent sweeping
2dfa with n + 1 states.

This lemma allows us to show the following result:
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Theorem 5. The minimal sweeping 2dfa solving the promise problem AN,r1,r2

has d states, where d is the smallest positive integer such that d | N and d � l.
Moreover, any 2dfa for AN,r1,r2 must have at least d − 1 states.

Proof. Again, the minimal 1dfa addressed in Theorem 1 can obviously be
regarded as a d-state sweeping 2dfa solving AN,r1,r2 . We now prove that this
automaton is a minimal sweeping 2dfa for AN,r1,r2 .

Suppose there exists, a sweeping 2dfa M with p < d states. Consider the
computation of M accepting σN+r1 ∈ AN,r1

yes in z traversals. Since p < N , in
every traversal M must enter a cycle. Let Ci be the cycle entered along the ith
traversal and �i the length of Ci. By letting L = lcm(�1, . . . , �z), it is not hard to
see that the computation of M on input σN+r1+βL leads to the same accepting
state as for σN+r1 . Indeed, this computation has again z traversals and in the ith
traversal the cycle Ci is repeated βL

�i
more times. Now, consider g = gcd(L,N)

and
∏s

i=1 gbi
i its prime factorization. If g | l, then there exist β, γ ∈ N such that

the Diophantine equation βL = γN + l holds. So, for a suitable α ∈ N, we have
that

σN+r1+βL = σαN+r2 ∈ AN,r2
no

is accepted, leading to a contradiction. Therefore, g � l must hold. In this case,
by proceeding analogously to the proof of Theorem 4, we get a contradiction
with the minimality of d. Hence, any sweeping 2dfa for AN,r1,r2 must have at
least d states.

Finally, since converting a 2dfa into sweeping costs at most one additional
state (Lemma 3), we get that any 2dfa solving AN,r1,r2 must have at least d−1
states. ��

We conclude this section by addressing the size cost of solving the promise
problem Diof a,N

r1,r2
with classical automata.

Theorem 6. To solve the promise problem Diof a,N
r1,r2

, the minimal 1dfa, 1nfa,
isolated cut point 1pfa, and sweeping 2dfa have d states, where d is the smallest
positive integer such that d | N and d � l. Moreover, any 2dfa for Diof a,N

r1,r2
must

have at least d − 1 states.

Proof. For the upper bound, we can design 1dfas, 1nfas, 1pfas, and 2dfas
solving Diof a,N

r1,r2
with the same cyclic structure of the 1dfa for AN,r1,r2 . The

only difference is that, while the automaton for AN,r1,r2 moves one state forward
in the cycle upon reading σ, the automaton for Diof a,N

r1,r2
moves ai states forward

on input σi, for 1 ≤ i ≤ H.
For the lower bound, it suffices to notice that AN,r1,r2 is a particular case of

Diof a,N
r1,r2

with |Σ| = 1 and a = 1. ��
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