
Computing Boolean Functions
via Quantum Hashing

Farid Ablayev(B) and Alexander Vasiliev

Kazan Federal University, Kazan, Russian Federation
fablayev@gmail.com

Abstract. In this paper we show a computational aspect of the quan-
tum hashing technique. In particular we apply it for computing Boolean
functions in the model of read-once quantum branching programs based
on the properties of specific polynomial presentation of those functions.

1 Introduction

Hashing is widely used in computer science, it is especially useful in crypto-
graphic protocols and data integrity check. In [1] we have introduced a non-
binary quantum hash function for cryptographic scenarios. For instance, the
proposed quantum hashing is a suitable one-way function for quantum digital
signature protocol from [10]. In this paper we consider another application of
the quantum hashing and use it to construct efficient quantum algorithms in a
restricted computational model.

Due to severe limits of existing physical implementations of quantum com-
puter it is natural to consider the restricted models of quantum computations.
The one we consider in this paper is based upon quantum branching programs.
Two variants of quantum branching programs were introduced by Ablayev,
Gainutdinova, Karpinski [3] (leveled programs), and by Nakanishi, Hamaguchi,
Kashiwabara [12] (non-leveled programs). Later it was shown by Sauerhoff [14]
that these two models are polynomially equivalent. The most commonly used
restricted variant of quantum branching programs is the model of Ordered Read-
Once Quantum Branching Programs. In computer science this model is also
known as Ordered Binary Decision Diagrams (OBDDs). This restriction implies
that each input variable may be read at most once, which is the least possible for
any function essentially depending on its variables. Thus, the read-once restric-
tion corresponds to minimizing of computational steps for quantum algorithms.

Essentially, the model of quantum OBDDS is a non-uniform equivalent of
one-way quantum finite automata (QFA) and thus the technique given in this
paper can be used in the QFA model as well.

In order to compute Boolean functions in the quantum OBDD model we exploit
the specific polynomial presentation, which we have called characteristic [5]. The
polynomial presentations of Boolean functions are widely used in theoretical com-
puter science. For instance, an algebraic transformation of Boolean functions has
been applied in [11] and [7] for verification of Boolean functions. In the quantum
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 149–160, 2014.
DOI: 10.1007/978-3-319-13350-8 11

150 F. Ablayev and A. Vasiliev

setting polynomial representations were used for proving lower bounds on commu-
nication complexity in [8] as well as for investigating query complexity in [16]. Our
approach combines the ideas similar to the definition of characteristic polynomial
from [11], [7] and to the notion of zero-error polynomial (see, e.g. [16]).

In this paper we show how the proposed quantum hashing can be used to
compute Boolean functions given by their polynomials in a very restricted com-
putational model of quantum OBDDs. Due to the known general lower bound
on the complexity of quantum OBDDs some of our algorithms turn out to be
optimal.

2 Quantum Branching Programs

We use the notation |i〉 for the vector from Hilbert space Hd, which has a 1
on the i-th position and 0 elsewhere. An orthonormal basis |1〉,. . . ,|d〉 is usually
referred to as the standard computational basis. In this paper we consider all
quantum transformations and measurements with respect to this basis.

Definition 1. A Quantum Branching Program Q over the Hilbert space Hd is
defined as

Q = 〈T, |ψ0〉,Accept〉 , (1)

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
is determined by

the variable xij tested on the step j, and Uj(0), Uj(1) are unitary transformations
in Hd.

Vectors |ψ〉 ∈ Hd are called states (state vectors) of Q, |ψ0〉 ∈ Hd is the
initial state of Q, and Accept ⊆ {1, 2, . . . d} is the set of indices of accepting
basis states.

We define a computation of Q on an input σ = σ1 . . . σn ∈ {0, 1}n as follows:

1. A computation of Q starts from the initial state |ψ0〉;
2. The j-th instruction of Q reads the input symbol σij (the value of xij) and

applies the transition matrix Uj = Uj(σij) to the current state |ψ〉 to obtain
the state |ψ′〉 = Uj(σij)|ψ〉;

3. The final state is

|ψσ〉 =

⎛

⎝
1∏

j=l

Uj(σij)

⎞

⎠ |ψ0〉 . (2)

4. After the l-th (last) step of quantum transformation Q measures its config-
uration |ψσ〉 = (α1, . . . , αd)T , and the input σ is accepted with probability

Praccept(σ) =
∑

i∈Accept

|αi|2 . (3)

Note, that using the set Accept we can construct Maccept – a projector on
the accepting subspace Hd

accept (i.e. a diagonal zero-one projection matrix, which
determines the final projective measurement). Thus, the accepting probability
can be re-written as

Praccept(σ) = 〈ψσM†
accept |Macceptψσ〉 = ||Maccept|ψσ〉||22 . (4)

Computing Boolean Functions via Quantum Hashing 151

Circuit Representation. Quantum algorithms are usually given by using quantum
circuit formalism [9], [17], because this approach is quite straightforward for
describing such algorithms.

We propose, that a QBP represents a classically-controlled quantum system.
That is, a QBP can be viewed as a quantum circuit aided with an ability to read
classical bits as control variables for unitary operations.

xj1 • �������	 · · ·

xj2 • �������	 · · ·
...

xjl · · · • �������	

|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)

�
���

|φ2〉 · · ·

�

���|ψ0〉

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
...

|φq〉 · · ·

�

���

Fig. 1. Circuit presentation of a quantum branching program. Here xi1 , . . . , xil is the
sequence of (not necessarily distinct) variables denoting classical control (input) bits.
Using the common notation single wires carry quantum information and double wires
denote classical information and control.

Example. As an example consider the Boolean function MODm(x1, . . . , xn)
which tests whether the number of ones in it’s input is a multiple of m. For
this function the simple algorithm can be proposed (see Figure 2).

x1 • ···

x2 • ···
...xn ··· •

|0〉 R R ··· R

�

���

|

|0

|1

Fig. 2. Quantum branching program for MODm Boolean function. Here R denotes
the rotation by an angle θ = π/m about the ŷ axis of the Bloch sphere.

The algorithm starts with a qubit in basis state |0〉. At j-th step the value
of xj is tested. Upon input symbol 0 identity transformation I is applied. But if

152 F. Ablayev and A. Vasiliev

the value of xj is 1, then the state of the qubit is transformed by the operator
R, rotating it by the angle proportional to π/m.

The final state is measured in the standard computational basis. The input
σ = σ1 . . . σn is accepted if the result is the basis state |0〉, otherwise the input
σ is rejected. For arbitrary input σ the acceptance probability equals to

Praccept(σ) = cos2
(

π
∑

i σi

m

)
. (5)

Thus, if MODm(σ) = 1 then Praccept(σ) = 1. If MODm(σ) = 0 then the
probability of erroneously obtaining the |0〉 can be close to 1, but this can be
improved by using more qubits.

Complexity Measures. The width of a QBP Q, denoted by width(Q), is the
dimension d of the corresponding state space Hd, and the length of Q, denoted
by length(Q), is the number l of instructions in the sequence T .

In this paper we’re mostly interested in another important complexity for a
QBP Q – a number of quantum bits, denoted by qubits(Q), physically needed
to implement a corresponding quantum system with classical control. From def-
inition it follows that log width(Q) ≤ qubits(Q).

Acceptance Criteria. A QBP Q computes the Boolean function f with bounded
error if there exists an ε ∈ (0, 1/2) (called margin) such that for all inputs the
probability of error is bounded by 1/2 − ε.

In particular, we say that a QBP Q computes the Boolean function f with one-
sided error if there exists an ε ∈ (0, 1) (called error) such that for all σ ∈ f−1(1)
the probability of Q accepting σ is 1 and for all σ ∈ f−1(0) the probability of Q
erroneously accepting σ is less than ε.

Read-Once Branching Programs. Read-once BPs is a well-known restricted vari-
ant of branching programs [15].

Definition 2. We call a QBP Q a quantum OBDD (QOBDD) or read-once
QBP if each variable x ∈ {x1, . . . , xn} occurs in the sequence T of transforma-
tions of Q at most once.

For the rest of the paper we are only interested in QOBDDs, i.e. the length of
all programs would be n (the number of input variables). Note that for OBDD
model size(Q) = n · width(Q) and therefore we are mostly interested in the
width of quantum OBDDs.

The “obliviousness” is inherent for a QBP and therefore this definition is
consistent with the usual notion of an OBDD.

General Lower Bound. The following general lower bound on the width of QOB-
DDs was proven in [4].

Computing Boolean Functions via Quantum Hashing 153

Theorem 1. Let f(x1, . . . , xn) be a Boolean function computed by a quantum
read-once branching program Q with bounded error for some margin ε. Then

width(Q) ≥ log width(P)
2 log

(
1 + 1

ε

) , (6)

where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).
That is, the width of a quantum OBDD cannot be asymptotically less than

logarithm of the width of the minimal deterministic OBDD computing the same
function. And since the deterministic width of many “natural” functions is expo-
nential [15], we obtain the linear lower bound for these functions.

Let bits(P) be the number of bits (memory size) required to implement the
minimal deterministic OBDD P for f and Q is an arbitrary quantum OBDD
computing the same function.

Then Theorem 1 implies the following lower bound in terms of the number
of bits and qubits as the complexity measure.

Corollary 1.
qubits(Q) = Ω(log bits(P)) . (7)

3 Quantum Hashing

In this section we recall a quantum hashing function from [1].
Let q = 2n and B = {b1, b2, . . . , bd} ⊂ Zq. We define a quantum hash function

ψq,B : {0, 1}n → (H2)⊗(log d+1) as follows. For an input x ∈ {0, 1}n we let

|ψq,B(x)〉 =
1√
d

d∑

i=1

|i〉
(

cos
2πbix

q
|0〉 + sin

2πbix

q
|1〉

)
. (8)

It follows from this definition that the quantum hash |ψq,B(x)〉 of an n-bit
string x consists of log d + 1 qubits. We will show that d can be about O(n)
without loosing the quality of hashing.

The set B = {b1, b2, . . . , bd} of hashing parameters not only defines the size
of the hash but also gives the function ψq,B an ability to withstand collisions, i.e.
to distinguish different hashes with bounded error probability. We have called
this property δ-resistance.

Formally, for δ ∈ (0, 1) we call a function ψ : X → (H2)⊗s δ-resistant if for
any pair w,w′ of different inputs

|〈ψ(w) |ψ(w′)〉| ≤ δ . (9)

The value of δ for the hash function ψq,B entirely depends on q (which is
fixed here by the size of the input) and the set B, i.e. δ = δ(q,B). In [1] we have
shown a construction for the set of polylogarithmic size (in n) based on [13]. We
have also proved the following result.

154 F. Ablayev and A. Vasiliev

Theorem 2. For arbitrary δ ∈ (0, 1) there exists a set B = {b1, b2, . . . , bd} of
size d = �(2/δ2) ln(2q)� such that quantum hash function ψq,B is a δ-resistant.

In other words, for arbitrary δ ∈ (0, 1) it is possible construct a δ-resistant
quantum hash function ψq,B that would produce an log d + 1 = O(log log q) =
O(log n)-qubit hash out of n-bit input.

Implementation of the quantum hashing. In order to describe the implementation
of the quantum hashing we introduce the following notations.

We define a Compound Controlled Rotation operator (CCR):

CCRq,B(θ) = CCRq,B,1(θ) · CCRq,B,2(θ) · · · CCRq,B,d(θ), (10)

where operator CCRq,B,i(θ) rotates the target qubit by the angle θ if the control
qubits were in the state |i〉 and is given in Figure 3.

CCRq,B,i(θ) =

•

... |i〉

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭•
(

cos 2πbiθ
q

sin 2πbiθ
q

− sin 2πbiθ
q

cos 2πbiθ
q

)

Fig. 3. A circuit for the operator CCRq,B,i(θ), that rotates the target qubit by the
angle θ if the control qubits were in the state |i〉. Here, the single-qubit rotation is
made around the ŷ axis of the Bloch sphere.

The compound operator CCRq,B(θ) obviously has the following properties.

Property 1. CCR-property

CCRq,B(0) = I,

CCRq,B(θ)|ψq,B(x)〉 = |ψq,B(x + θ)〉,
CCRq,B(θ1)CCRq,B(θ2) = CCRq,B(θ1 + θ2) .

(11)

Thus, the procedure of quantum hashing the input w by the function ψq,B

consists of the following steps:
0. Initialization of the log d + 1 qubits in the state |0 . . . 0〉|0〉.
1. Application of Hadamard transform to the first log d qubits:

1√
d

d∑

i=1

|i〉|0〉 = |ψq,B(0)〉 . (12)

Computing Boolean Functions via Quantum Hashing 155

2. Application of CCRq,B(w) creates the quantum hash of the input bit
string w = w0 . . . wn−1, which is also treated as a number w = w0 +w121 + . . .+
wn−12n−1:

CCRq,B(w)|ψq,B(0)〉 = |ψq,B(w)〉 . (13)

Note, that for the model of quantum branching programs this step consists of
n substeps: for each input bit wj there is an instruction 〈wj , I, CCRq,B(2j)〉 of
the quantum branching program, i.e. when wj = 1 we apply CCRq,B(2j), and
do nothing otherwise. Obviously,

CCRq,B(w) = CCRq,B(w0) · CCRq,B(w121) · · · CCRq,B(wn−12n−1) . (14)

Thus, an overall number of controlled rotations CCRq,B,i(θ) is nd = O(n2).
From the description above it follows that the input bits are read only once,

and the quantum branching program is actually a quantum OBDD. An illustra-
tive presentation for this program is given in Figure 4.

w0 • ··· • ··· ···
...wn−1 ··· ··· • ··· •

|φ1〉 H ··· • ··· ··· •

|φ2〉 H ··· • ··· ··· •
...

|1〉 |d〉 |1〉 |d〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭|φ log d〉 H ··· • ··· ··· •

|φlog d+1〉 R(θ1,0) ··· R(θd,0) ··· R(θ1,n−1) ··· R(θd,n−1)

CCRq,B(M0) CCRq,B(Mn−12
n−1)

Fig. 4. A quantum OBDD in circuit presentation, that hashes an n-bit input w =
w0 . . . wn−1 into the state |ψq,B(M)〉 of O(log n) qubits. R(θi,j) denotes a rotation by

an angle 4πbi2
j

q
around the ŷ axis of the Bloch sphere.

Physical implementation. In [2,6] we have proposed an effective physical imple-
mentation of compound multiply controlled operators for the model of solid state
quantum computer on multiatomic ensembles in the QED cavity. CCRq,B,i(θ)
is exactly such operator and thus can be accelerated in this architecture.

REVERSE-test. Whenever we need to check if a quantum state |ψ(w)〉 is a hash
of a classical string v, one can use the procedure that we call a REVERSE-test
[1].

156 F. Ablayev and A. Vasiliev

Essentially the test applies the procedure that inverts the creation of a quan-
tum hash, i.e. it “uncomputes” the hash to the initial state (usually the all-zero
state).

Formally, let the procedure of quantum hashing the string w be given by
unitary transformation U(w), applied to initial state |0〉, i.e. |ψ(w)〉 = U(w)|0〉.
Then the REVERSE-test, given v and |ψ(w)〉, applies U−1(v) to the state |ψ(w)〉
and measures the resulting state. It outputs v = w iff the measurement outcome
is |0〉. So, if v = w, then U−1(v)|ψ(w)〉 would always give |0〉, and REVERSE-test
would give the correct answer. Otherwise, by δ-resistance property

〈0 |U−1(v)ψ(w)〉 < δ , (15)

which bounds the probability of erroneously outputting v = w.
Overall, this test has one-sided error bounded by δ2 if the quantum hash

function is δ-resistant.
In case of quantum hash function CCRq,B the REVERSE-test consists of

the following steps.
1. Application of CCRq,B(−v) to the state |ψ(w)〉.
2. Application of the Hadamard transform to all but the last qubit.
3. Measurement of the resulting state.

4 Characteristic Polynomials for Boolean Functions

In this section we recall the definition of the characteristic polynomial for a
Boolean function proposed in [5].

Definition 3. We call a polynomial g(x1, . . . , xn) over the ring Zq a character-
istic polynomial of a Boolean function f(x1, . . . , xn) and denote it gf when for
all σ ∈ {0, 1}n gf (σ) = 0 iff f(σ) = 1.

Note, that such a polynomial always exists.

Lemma 1. For any Boolean function f of n variables there exists a character-
istic polynomial gf over Z2n .

Proof. One way to construct such characteristic polynomial gf is transforming
a sum of products representation for ¬f .

Let K1 ∨ . . . ∨ Kl be a sum of products for ¬f and let K̃i be a product of
terms from Ki (negations ¬xj are replaced by 1 − xj). Then K̃1 + . . . + K̃l is a
characteristic polynomial over Z2n for f since it equals 0 ⇐⇒ all of K̃i (and
thus Ki) equal 0. This happens only when the negation of f equals 0.

Generally, there are many polynomials for the same function. For example,
the function EQn, which tests the equality of two n-bit binary strings, has the
following polynomial over Z2n :

n∑

i=1

(xi(1 − yi) + (1 − xi)yi) =
n∑

i=1

(xi + yi − 2xiyi) . (16)

Computing Boolean Functions via Quantum Hashing 157

On the other hand, the same function can be represented by the polynomial
n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1 . (17)

5 Computing Boolean Functions with Quantum Hashing

Now we describe the class of Boolean functions that can be efficiently computed
in the quantum OBDD model using the quantum hashing technique.

Let f(x1, . . . , xn) be a Boolean function and g be its characteristic polyno-
mial. The following theorem holds.

Theorem 3. Let δ ∈ (0, 1). If there exists is a linear polynomial g for a Boolean
function f over Zq, then f can be computed with one-sided error δ2 by a quantum
OBDD on O (log log q + log 1/ε) qubits.

Proof. The key idea is to evaluate the characteristic polynomial and hash the
result simultaneously while reading the input. Below we show that this can be
easily done when the polynomial is linear. After the hash is prepared the value
of the Boolean function f can be obtained by performing the REVERSE-test,
checking whether 0 is hashed or not.

Since the polynomial g is linear, i.e. g = c1x1 + . . . cnxn + c0, hashing its
value can be done by a sequence of CCRq,B operators:

CCRq,B(w) = CCRq,B(c0) · CCRq,B(c1x1) · · · CCRq,B(cnxn) , (18)

and this is easily done while reading the input only once.
Then the REVERSE-test applies CCRq,B(0), which is identity operator, and

finishes with Hadamard transform and measurements. It outputs the correct
answer with the one-sided error probability δ2.

Thus, f can be computed with one-sided error δ2 by a quantum OBDD on s
qubits, where s = O (log log q + log 1/ε).

5.1 Examples

The following functions have the aforementioned linear polynomials and thus
are effectively computed with quantum hashing.

MODm The function MODm tests whether the number of 1’s in the input is 0
modulo m. The linear polynomial over Zm for this function is

n∑

i=1

xi.

The lower bound for the width of deterministic OBDDs computing this function
is Ω(m) [15]. Thus, our method provides an exponential advantage of quantum
OBDD over any deterministic one.

158 F. Ablayev and A. Vasiliev

MOD′
m This function is the same as MODm, but the input is treated as binary

number. Thus, the linear polynomial is

n∑

i=1

xi2i−1.

The lower and upper bounds are equal to those of MODm.

EQn The function EQn, which tests the equality of two n-bit binary strings,
has the following polynomial over Z2n

n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1.

This function is easy in the deterministic case for a clever choice of the variable
ordering. But for the ordering, where all of x’s are tested first, it is exponentially
hard. In quantum setting, this function can be effectively computed regardless
of the variable ordering.

Palindromen(x1, . . . , xn) This function tests the symmetry of the input, i.e.
whether x1x2 . . . x�n/2� = xnxn−1 . . . x�n/2	+1 or not. The polynomial over Z2�n/2�

is
�n/2�∑

i=1

xi2i−1 −
n∑

i=�n/2	
xi2n−i.

The situation with lower and upper bounds for this function is similar to that
of EQn.

PERMn The Permutation Matrix test function (PERMn) is defined on n2

variables xij (1 ≤ i, j ≤ n). It tests whether the input matrix contains exactly
one 1 in each row and each column. Here is a polynomial over Z(n+1)2n

n∑

i=1

n∑

j=1

xij

(
(n + 1)i−1 + (n + 1)n+j−1

) −
2n∑

i=1

(n + 1)i−1.

Note, that this function cannot be effectively computed by a deterministic
OBDD – the lower bound is Ω(2nn−5/2) regardless of the variable ordering [15].
The width of the best known probabilistic OBDD, computing this function with
one-sided error, is O(n4 log n) [15]. Our algorithm has the width O(n log n). Since
the lower bound Ω(n − log n) follows from Theorem 1, our algorithm is almost
optimal.

The following functions have linear polynomials as well, but we are not aware
of exponential lower bounds in the deterministic case.

Computing Boolean Functions via Quantum Hashing 159

Periods
n(x0, . . . , xn−1) This function equals 1 iff xi = xi+s mod n for all i ∈

{0, . . . , n − 1}. The polynomial over Z2n is

n−1∑

i=0

xi

(
2i − 2i−s mod n

)
.

Semi − Simons
n(x0, . . . , xn−1) This function equals 1 iff xi = xi⊕s for all i ∈

{0, . . . , n − 1}. The polynomial over Z2n is

n−1∑

i=0

xi

(
2i − 2i⊕s

)
.

Acknowledgments. The work is performed according to the Russian Government
Program of Competitive Growth of Kazan Federal University. Work was in part sup-
ported by the Russian Foundation for Basic Research (under the grants 12-07-97016,
14-07-00878).

References

1. Ablayev, F.M., Vasiliev, A.V.: Cryptographic quantum hashing. Laser Physics Let-
ters 11(2), 025202 (2014). http://stacks.iop.org/1612-202X/11/i=2/a=025202

2. Ablayev, F., Andrianov, S., Moiseev, S., Vasiliev, A.: Encoded universality of quan-
tum computations on the multi-atomic ensembles in the qed cavity. Tech. Rep.
arXiv:1109.0291 [quant-ph]. Cornell University Library (September 2011). http://
arxiv.org/abs/1109.0291

3. Ablayev, F., Gainutdinova, A., Karpinski, M.: On Computational Power of Quan-
tum Branching Programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp.
59–70. Springer, Heidelberg (2001)

4. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the com-
putational power of probabilistic and quantum branching programs of constant
width. Information and Computation 203, 145–162 (2005). http://dx.doi.org/10.
1016/j.ic.2005.04.003

5. Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on
fingerprinting. Electronic Proceedings in Theoretical Computer Science 9, 1–11
(2009). http://arxiv.org/abs/0911.2317

6. Ablayev, F., Andrianov, S., Moiseev, S., Vasiliev, A.: Quantum computer with
atomic logical qubits encoded on macroscopic three-level systems in common quan-
tum electrodynamic cavity. Lobachevskii Journal of Mathematics 34(4), 291–303
(2013). http://dx.doi.org/10.1134/S1995080213040094

7. Agrawal, V., Lee, D., Wozniakowski, H.: Numerical computation of characteristic
polynomials of boolean functions and its applications. Numerical Algorithms 17,
261–278 (1998). http://dx.doi.org/10.1023/A:1016632423579

8. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87(16), 167902 (2001). www.arXiv.org/quant-ph/0102001v1

9. Deutsch, D.: Quantum computational networks. Royal Society of London Proceed-
ings Series A 425, 73–90 (1989). http://dx.doi.org/10.1098/rspa.1989.0099

http://stacks.iop.org/1612-202X/11/i=2/a=025202
http://arxiv.org/abs/1109.0291
http://arxiv.org/abs/1109.0291
http://arxiv.org/abs/1109.0291
http://dx.doi.org/10.1016/j.ic.2005.04.003
http://dx.doi.org/10.1016/j.ic.2005.04.003
http://arxiv.org/abs/0911.2317
http://dx.doi.org/10.1134/S1995080213040094
http://dx.doi.org/10.1023/A:1016632423579
www.arXiv.org/quant-ph/0102001v1
http://dx.doi.org/10.1098/rspa.1989.0099

160 F. Ablayev and A. Vasiliev

10. Gottesman, D., Chuang, I.: Quantum digital signatures. Tech. Rep.
arXiv:quant-ph/0105032. Cornell University Library (November 2001). http://
arxiv.org/abs/quant-ph/0105032

11. Jain, J., Abraham, J.A., Bitner, J., Fussell, D.S.: Probabilistic verification of
boolean functions. Formal Methods in System Design 1, 61–115 (1992)

12. Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered Quantum Branching
Programs Are More Powerful than Ordered Probabilistic Branching Programs
under a Bounded-Width Restriction. In: Du, D.-Z., Eades, P., Sharma, A.K.,
Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 467–476.
Springer, Heidelberg (2000)

13. Razborov, A.A., Szemeredi, E., Wigderson, A.: Constructing small sets that are
uniform in arithmetic progressions. Combinatorics, Probability & Computing 2,
513–518 (1993)

14. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theoretical Computer Science 334(1–3), 177–225
(2005). http://arxiv.org/abs/quant-ph/0403164

15. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM Press (2000)

16. de Wolf, R.: Quantum Computing and Communication Complexity. Ph.D. thesis,
University of Amsterdam (2001)

17. Yao, A.C.C.: Quantum circuit complexity. In: Proceedings of Thirty-fourth IEEE
Symposium on Foundations of Computer Science, pp. 352–361. IEEE Computer
Society, Palo Alto (1993)

http://arxiv.org/abs/quant-ph/0105032
http://arxiv.org/abs/quant-ph/0105032
http://arxiv.org/abs/quant-ph/0105032
http://arxiv.org/abs/quant-ph/0403164

	Computing Boolean Functions via Quantum Hashing
	1 Introduction
	2 Quantum Branching Programs
	3 Quantum Hashing
	4 Characteristic Polynomials for Boolean Functions
	5 Computing Boolean Functions with Quantum Hashing
	5.1 Examples

	References

