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Preface

Professor Jozef Gruska

Jozef Gruska is a well-known computer scientist
for his many and broad results, but also because
he was “everywhere”—he had 33 long-term vis-
iting positions in Europe, North America, Asia,
and Africa.

Professor Gruska introduced the descrip-
tional complexity (of grammars, automata, and
languages) and is one of pioneers of parallel (sys-
tolic) automata. His other main research interests
include parallel systems and automata and quan-
tum information processing, transmission, and
cryptography. They are all represented by various
contributions to this volume. He is co-founder of
four regular series of conferences in informat-
ics and two in quantum information processing
and the founding chair (1989–1996) of the IFIP
Specialist Group on Foundation of Computer
Science.

When in 1996 Professor Jozef Gruska was presented with the IEEE Computer Pi-
oneer Award, the official citation was: For the development of computer science in the
former Czechoslovakia with fundamental contributions to the theory of computing and
extraordinary organisational activities.

Indeed, Jozef Gruska is the father of theoretical computer science research in
Czechoslovakia and among the first Slovak programmers in the early 1960s. Gruska
was one of the first lecturers on analog/digital computers at Comenius University in
Bratislava and the first lecturer on foundations of computing. In addition, he was active
in establishing the first computer science curricula at the Comenius University. He also
helped the development of computer science education at Masaryk University in Brno
and computing education in Slovak high schools.

In 1966 Gruska started the research seminar Automata, Languages, and Algorithms,
largely credited for the development of a strong group of theoretical computer scien-
tists in Bratislava. For a country on the east side of the iron curtain, Czechoslovakia
vitally needed scientific contacts with foreign colleagues. Jozef Gruska was one of the
main organizers of the first conference on theoretical computer science in Eastern Eu-
rope, MFCS (Mathematical Foundations of Computer Science) 1972, in Jablonna near
Warsaw (Poland). The following year, in 1973, the continuation of this conference was
organized in Štrbské Pleso, High Tatras (Czechoslovakia), with Jozef Gruska as confer-
ence chair. More than 150 participants, including 80 foreigners, was most unusual for
a conference in former socialist countries. The main talks were presented by J. Bečvář
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(Prague), A. Blikle (Warsaw), K. Čulík (Prague), B. Dömölki (Budapest), F. Gécseg
(Szeged), S. Ginsburg (Los Angeles), J. Gruska (Bratislava), P. Hájek (Prague), J. Hart-
manis (Ithaca, New York), P.J. Hayes (Colchester, Essex), G. Hotz (Saarbrücken), N.
Nagornyj (Moscow), M. Nivat (Paris), M. Novotný (Brno), Z. Pawlak (Warsaw), C.A.
Petri (Birlinghoven/Bonn), H. Rasiowa (Warsaw), A. Salomaa (Aarhus), C.P. Schnorr
(Frankfurt am Main), and P.H. Starke (Berlin). Really an international conference! After
this event the proceedings of MFCS were published in the Lecture Notes in Computer
Science (LNCS) of Springer-Verlag.

Rather soon, MFCS became the main East-European conference on theoretical com-
puter science competing with its West-European sister ICALP (International Collo-
quium on Automata, Languages and Programming). ICALP was first organized in 1972
in Paris, France; the second ICALP was held in 1974, and since 1976 ICALP has been
an annual event, also publishing its proceedings in LNCS.

Another successful enterprise by Jozef Gruska and his colleagues was SOFSEM
(SOFtware SEMinar). The first SOFSEM was organized in 1974. Nowadays it is an in-
ternational conference, similar to MFCS. It was started in 1974 as a national event in
Czech or Slovak languages. During those early days of computer science and technol-
ogy SOFSEM supplemented the university education and academic research. Tradition-
ally, the audience consisted of university professors, academic researchers, university
teaching staff, advanced students, and professionals in the field. It was an event for two
weeks during the Winter period. First local, and later on also international, experts were
invited. Each of them presented a series of lectures related to recent topics on computer
science.

The basic format of each SOFSEM consisted of several series of invited talks, each
of 3–5 hours. They were complemented by selected contributions of participants pre-
sented during two half-days in two parallel sessions. The lectures always started early
in the morning and lasted long in the evenings to facilitate long lunch-breaks. The sem-
inar venue was always chosen as far as possible from big towns. An ideal location was
such that you went several hours by train, continued by an infrequent bus, and finally
walked several kilometers. This ensured (to some extent) that SOFSEM was an oasis of
intellectual freedom not much disturbed by government officials.

MFCS and SOFSEM have always been an opportunity for East-European and Soviet
scientists to contact their Western colleagues. Even now—when the iron curtain no
more exists and it is possible to travel elsewhere—there always is a large group of
Latvian students at SOFSEM.

Jozef Gruska deeply feels the importance of research to be modern. This relates not
only to his own research but also to what his students do. In the 1960s his interests con-
centrated on language theory. This resulted not only in regular papers but also in surveys
both in Slovak and English (published in Information and Control and Proceedings of
IFIP Congresses). Later this interest included complexity of computation, finally lead-
ing to the monograph Foundations of Computing (still available from Amazon).

Systolic trellis automata are simple models for VLSI. They are models of hexag-
onally connected and triangular shaped systolic arrays. Gruska’s research on systolic
automata made him really famous. Now it is impossible to write a paper related to sys-
tolic automata and not to refer to Gruska. This was the topic where Jozef Gruska got
many famous co-authors, including K. Culik II, A. Salomaa, J. Wiedermann, E. Fachini,
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A. Maggiolo Schettini, D. Singiorgi, M. Napoli, D. Parente, I. Guessarian, A. Monti,
and many others.

Quantum computing is not merely one of the research interests of Jozef Gruska.
He understood its importance from the very beginning. The first monograph written in
this area of computer science is Gruska’s Quantum Computing, published in 1999 by
McGraw-Hill.

It cannot also be forgotten that he made a great contribution to the ERATO IMAI
Quantum Computation and Information project, Tokyo, Japan, started in 2000. This is
the first project on quantum computation in Japan, chaired by Hiroshi Imai, University
of Tokyo, and awarded by the Japan Science and Technology Agency (JST). Its total
budget was more than 15 million US dollars and ended up with a great success, for
instance, in theory and experiments of quantum cryptography. Jozef Gruska was deeply
involved in this project from the beginning, as a secret “Big Boss", and gave it a lot of
important advice. The big success of the project could never be imagined without his
help.

He also established contacts with Chinese and Korean colleagues and co-founded
in 2001 a series of conferences, named EQIS (ERATO Quantum Information Science)
first and AQIS (Asia Quantum Information Science Conference) later. Since 2003 Jozef
Gruska has been the Chairman of the Steering Committee of AQIS, which was held
since 2001 annually in Japan, China, Korea, and India.

In 1989, the IFIP General Assembly (GA) appointed Jozef Gruska as the founding
chair of the temporary IFIP Special Group SG’14 on Foundations of Computing. He
created this group with 43 top TCS people and chaired it for two terms until 1996, when
he convinced IFIP GA to transfer SG’14 to the permanent IFIP Technical Committee
TC1. It was for the first time since the establishment of IFIP in 1962 that TCS had an
appropriate representation within IFIP. The first chair of TC1 was then G. Ausiello.

Professor Gruska has spent many years visiting universities and research institutes
around the globe. Here is a list of some of them:
1. 1963, 6 months, Moscow, Kyiv, Novosibirsk, USSR, PhD student
2. 1968–1970, 2 academic years, University of Minnesota, USA, visiting professor
3. 1980, 6 months, University of Jena, East Germany, visiting professor
4. 1984, 1987, 1989–1993, 8 semesters, University of Hamburg, West Germany, vis-

iting professor
5. 1994, 1996, 2000, 6 months, University of Karlsruhe, West Germany, visiting pro-

fessor
6. 1988, 1989, 1992, 4 months, University of Salerno, Italy, visiting professor
7. 1990, 1993, 1997, 5 months, University Paris 6, France, visiting professor
8. 1994, 4 months, École Normale Supérieure, Lyon, France, visiting professor
9. 1997–1999, 12 months, University of Nice, France, visiting professor

10. 2001, 2002, 2003, 2004, 2005, 10 months, ERATO Quantum Project, Tokyo, Japan.

We have already mentioned the Computer Pioneer Award (IEEE, 1996). Professor
Gruska was awarded many other distinctions including Bolzano Medal of the Czech
Academy of Sciences (2003), elected member of the Academia Europaea (2006), Doc-
tor Honoris Causa, University of Latvia (2013), the IFIP Silver Core Award (1995),
Slovak Literally Fond Awards (1998, 2000). In the period 2008–2011, he was a mem-
ber of the Council of Academia Europaea.
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His Laboratory of Quantum Information Processing and Cryptography at the
Masaryk University, Brno, Czech Republic has many foreign and local students as well
as a continuous stream of visitors. Jozef Gruska is active as ever—see http://www.fi.
muni.cz/usr/gruska—always ready to give a talk or to start a new collaboration.

Many happy returns, Professor Gruska!

September 2014 Cristian S. Calude, Auckland
Rūsiņš Freivalds, Riga
Kazuo Iwama, Kyoto

http://www.fi.muni.cz/usr/gruska
http://www.fi.muni.cz/usr/gruska
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Abstract. We investigate the state complexity of probabilistic and
ultrametric finite automata for the problem of counting, i.e. recogniz-
ing the one-word unary language Cn = {1n}. We also review the known
results for other types of automata.

For one-way probabilistic automata, we construct a minimal 3-state
automaton for counting to n with isolated cutpoint (but with decreasing
isolation radius as n increases). We construct a two-way probabilistic
automaton that counts to n with a constant number of states. We also
show a minimal 2-state ultrametric automaton for counting.

1 Introduction

One of the main problems in the field of computational complexity theory is to
determine the advantages that probabilistic algorithmshave, comparedwithdeter-
ministic algorithms. The simplest model to explore this is the finite automaton.

In 1981, Freivalds in his invited talk in the International Symposium on
Mathematical Foundations of Computer Science (MFCS) (it is worth mention-
ing that he was invited by Jozef Gruska) showed that for every ε > 0 a nonreg-
ular language L = {0n1n | n ≥ 1} can be recognized by a two-way probabilistic
automaton with probability 1 − ε [9].

In this paper, we investigate the descriptional complexity advantages for
probabilistic and ultrametric automata compared with deterministic, nondeter-
ministic and alternating automata. In [1], Ambainis showed that probabilistic
automata can be significantly smaller than deterministic automata by construct-
ing a one-way probabilistic automaton with n states such that any equivalent
deterministic automaton requires Ω

(
2n log log n

log n

)
states.

We limit our focus to unary languages containing exactly one word. We say
that an automaton counts to n if it recognizes the language Cn = {1n}. We
show that probabilistic and ultrametric automata for the counting problem can
be very succinct, requiring only a constant number of states in many models.

This work has been supported by the European Social Fund within the project
“Support for Doctoral Studies at University of Latvia.”

c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 3–16, 2014.
DOI: 10.1007/978-3-319-13350-8 1
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2 Finite Automata

We assume the familiarity of the reader with finite automata and give only the
standard definitions of the automata. For a description of how the automata
work, see, for example, [10,11].

Definition 1. A one-way deterministic finite automaton (1DFA) is a tuple A =
(Q,S, δ, q0, F ) where

Q is the finite set of states,
S is the input alphabet,
δ : Q × S → Q is the transition function,
q0 ∈ Q is the starting state, and
F ⊆ Q is the set of accepting states.

Definition 2. A one-way nondeterministic finite automaton (1NFA) is a tuple
A = (Q,S, δ, q0, F ) where

Q is the finite set of states,
S is the input alphabet,
δ : Q × S → 2Q is the transition function,
q0 ∈ Q is the starting state, and
F ⊆ Q is the set of accepting states.

Here we summarize the known results about counting with non-probabilistic
(deterministic, nondeterministic and alternating) automata. To keep the article
self-contained, the simple proofs or the proof ideas are also provided.

Theorem 1. For each n there exists a 1DFA with n + 1 states that recognizes
Cn.

Proof. Consider the automaton An = ({0, 1, . . . , n}, {1}, δn, 0, {n}) (see Fig. 1)
where δn(i, 1) = i + 1 for all 0 ≤ i < n and undefined for i = n. It is easy to see
that it indeed accepts the language Cn. ��

0 1 2 3 . . . n

Fig. 1. 1DFA with n+1 states recognizing Cn. Double arrow shows the starting state.
The double-circled state is final.

It is known that n + 1 is also the necessary number of states even for 1NFA.

Theorem 2 ([14]). n+1 states are necessary for recognizing Cn with a 1NFA.
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Proof. Assume that there are fewer than n + 1 states for a 1NFA A recognizing
Cn. An accepting run on w = 1n must visit at least one state more than once;
therefore, it contains a cycle. It therefore follows that more than one word is
accepted by A. ��

However, alternating automata can count to n with fewer states.

Definition 3. A one-way alternating automaton (1AFA) is a tuple M = (Σ,
Π, S, δ, q0, F ) where

Σ and Π are the finite sets of existential and universal states, respectively,
with Σ ∩ Π = ∅ and Q = Σ ∪ Π,
S is the input alphabet,
δ : Q × S → 2Q is the transition function,
q0 ∈ Q is the starting state, and
F ⊆ Q is the set of accepting states.

In [15], Leiss proved that any deterministic n-state automaton has an equiv-
alent alternating automaton with �log n states. Therefore, as noted in [14],
Theorem 1 immediately implies the following theorem:

Theorem 3. For each n, there exists a 1AFA with �log n states that recognizes
Cn.

A 1AFA is called one-switch if it cannot move from an existential state to
a universal state. Thus, a one-switch 1AFA alternates between the branching
modes at most once.

In [5], Birget proved the following theorem:

Theorem 4 ([5]). For each n there exists a one-switch 1AFA that recognizes
Cn with O(log2 n/ log log n) states.

Proof. Consider the automaton in Fig. 2. The concept behind this automaton is
to count the remainder modulo of each of the first k primes p1, p2, . . . , pk such
that p1 · p2 · . . . · pk ≥ n. The first part of the automaton (states ai

j) accepts the
word 1m iff ∀1 ≤ i ≤ k m ≡ n (mod pi). By the Chinese Remainder Theorem,
the unique number less than p1 · p2 · . . . · pk that satisfies this property is n itself.

The second part of the automaton (states bi
j) does the opposite – it rejects

the subwords whose length is m such that ∀1 ≤ i ≤ k m ≡ n (mod pi). This
part is being run on every proper suffix of the input word.

Therefore, the automaton accepts exactly those words w = 1m for which
∀1 ≤ i ≤ k m ≡ n (mod pi) and no proper suffix of w has this property.
Therefore, the only word that is accepted is 1n.

It is known that the sum of the first k primes is
∑k

i=1 pi = 1
2k2 ln k+o(k2 ln k)

and the product of the first k primes is
∏k

i=1 pi = e(1+o(1))k ln k (see for exam-
ple [2]). From this basis, one can derive that the described automaton has
O(log2 n/ log log n) states. ��
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∀1

a1
1 a1

0

a2
1 a2

2 a2
0

...

ak
1 ak

2 ak
3

. . . ak
0

∀2

∃

b10 b11

b22 b20 b21

...

bk2 bk3 bk4 . . . bk1

Fig. 2. 1AFA recognizing Cn. The final states in the first set of cycles are exactly
those ai

j for which n ≡ j (mod pi). State bij is final iff ai
j is not. States ∀1 and ∀2 are

universal; all others states are existential.

3 Probabilistic Automata

Probabilistic finite automata (PFAs) were introduced by Rabin in [17].

Definition 4. A one-way probabilistic finite automaton (1PFA) is a tuple A =
(Q,S, δ, q0, F ) where

Q is the finite set of states,
S is the input alphabet,
δ : Q × S × Q → [0, 1] is the probabilistic transition matrix,
q0 : Q → [0, 1] is the starting vector, and
F ⊆ Q is the set of accepting states.

Definition 5. A two-way probabilistic finite automaton (2PFA) is a tuple A =
(Q,S, δ, q0, F ) where

Q is the finite set of states,
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S is the input alphabet,
δ : Q × S ∪ {�,�} × Q × {L,N,R} → [0, 1] is the probabilistic transition
matrix and � and � are the left and right endmarkers, respectively, and L,
N, R denote the head movement,
q0 : Q → [0, 1] is the starting vector, and
F ⊆ Q is the set of accepting states.

Let A(x) denote the probability that a PFA A accepts the word x.
We say that a PFA A recognizes language L with cutpoint λ ∈ [0, 1] if

∀x ∈ L A(x) > λ and ∀x /∈ L A(x) < λ. We say that a PFA A recognizes
language L with an isolated cutpoint λ ∈ [0, 1] if there exists δ > 0 (called
isolation radius) such that ∀x ∈ L A(x) > λ + δ and ∀x /∈ L A(x) < λ − δ.

We show that 3 states are necessary and sufficient to count to n with a 1PFA
with an isolated cutpoint.

Theorem 5. For each n, there exists a 1PFA that recognizes Cn with 3 states
with an isolated cutpoint.

Proof. Consider the following automaton An = ({1, 2, 3}, {1},Mn, (1, 0, 0), {2})
with the transition matrix

Mn =

⎛
⎝

1 − ε1 ε1 0
0 1 − ε2 ε2
0 0 1

⎞
⎠

where ε1 and ε2 depend on n (see Fig. 3).

a b c
ε1 ε2

1− ε1 1− ε2 1

Fig. 3. 1PFA with 3 states recognizing Cn. The double arrow shows the starting state
(with probability 1). The double-circled state is final.

We will show that it is possible to choose ε1, ε2 such that the acceptance
probability is the highest on the word 1n. Let ε1 = ε2. Then the probability of
accepting 1m is given by

(1 − ε1)m−1ε1m

The derivative of this quantity is

(1 − ε1)m−1ε1(1 + m ln (1 − ε1))

Solving it to be equal to 0 when m = n gives ε1 = 1 − e−1/n.
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Therefore, by setting ε1 = ε2 = 1− e−1/n, we get an automaton that has the
maximal probability of acceptance on the word 1n, and the acceptance proba-
bility decreases as the length of the word increases or decreases.

Note that although as n increases the difference between the probabilities of
the automaton An to accept 1n and 1n+1 (or 1n and 1n−1) decreases, for every
n there exist λ and δ > 0 such that the word 1n is accepted with probability
greater than λ + δ, and the probability to accept any other word is less than
λ − δ, i.e. the cutpoint is isolated. ��

An example plot of the acceptance probability of words 1x with ε1 = ε2 =
1 − e− 1

200 is shown in Fig. 4.

200 400 600 800 1000

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 4. The probability of accepting 1x with ε1 = ε2 = 1 − e− 1
200

Theorem 6. If n > 1 then any 1PFA that recognizes Cn has at least 3 states.

Proof. Assume there exists a 1PFA with 2 states recognizing Cn for n > 1.
Exactly one of the states must be final; otherwise, either all or none of the words
would be accepted. Without loss of generality, assume that the first state is the
non-final state and the second state is the final state. Let

M1 =
(

1 − p p
m 1 − m

)

be the transition matrix of the automaton.

M2
1 =

(
1 − p(2 − m − p) p(2 − m − p)

m(2 − m − p) 1 − m(2 − m − p)

)
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If the automaton is in a probability distribution
(

a
1 − a

)
then after reading

two symbols (twice applying M1), the probability distribution becomes
(

m(2 − m − p) + a(m + p − 1)2

1 − m(2 − m − p) − a(m + p − 1)2

)

Notice that for every a ∈ [0, 1] the probability of being in a final state changes
monotonically after every two symbols read; therefore, the automaton cannot
recognize Cn for n > 1. ��

Notice that although each individual automaton An from Theorem 5 has an
isolated cutpoint, the isolation radius decreases as n increases. In [7], Freivalds
showed how to construct a series of 1PFAs for recognizing Cn with a constant
isolation radius.

Theorem 7 ([7]). For each n, there exists a 1PFA with O(log2 n/ log log n)
states that recognizes Cn with probability 3

5 .

Proof. The automaton is similar to the 1AFA from the proof of Thm. 4. However,
now the rejection of long words is performed by a probabilistic clock rather than
an alternating behavior. The automaton is defined as follows:

An = ({b, a1
0, . . . , a

k
pk−1}, 1, δ, (0,

1
k

, 0, . . . , 0,
1
k

, 0, . . . , 0, . . . ,
1
k

, 0, . . . , 0),

{a1
n mod p1

, . . . , ak
n mod pk

})

with pi states ai
0, . . . , a

i
pi−1 for each of the first k primes p1, . . . , pk (the value of

k is to be determined later). The states ai
0, . . . , a

i
pi−1 form a cycle, which counts

the remainder modulo pi. State ai
j is final iff n ≡ j (mod pi). The starting

probability distribution of the automaton is 1
k in each of the states a1

0, a
2
0, . . . , a

k
0

(see Fig. 5).
From every state there is a transition with probability 1 − ε to the state b.
By the Chinese Remainder Theorem, if p1 < p2 < . . . < pk are the first k

primes and p1 · p2 · . . . · pl ≥ n, then ∀n′ < p1 · p2 · . . . · pl if n′ �= n at most l − 1
of the following congruences are satisfied:

n′ ≡ n (mod p1)
n′ ≡ n (mod p2)

. . .

n′ ≡ n (mod pk)

Let l be the minimal number such that p1 · p2 · . . . · pl ≥ 2n.
Choose k = 3l.
Therefore, any word with length n′ < 2n ≤ p1 · p2 · . . . · pl will be accepted

with probability at most l−1
k < l

3l = 1
3 . Words with length n will be accepted

with probability 1 − E(n) where E(n) is the probability to be in state b after
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reading a word of length n. By the sum of geometric series, E(n) = ε + (1 − ε) ·
ε+(1−ε)2 ·ε+ · · ·+(1−ε)n−1 ·ε =

∑n−1
i=0 ε · (1 − ε)i = ε 1−(1−ε)n

1−(1−ε) = 1−(1−ε)n.
Words of length n′ ≥ 2n will be accepted with probability at most 1 − E(2n).

b

a1
0 a1

1

a2
0 a2

1 a2
2

a3
0 a3

1 a3
2 a3

3 a3
4

...

ak
0 ak

1 ak
2

. . . ak
pk−1

1/k

1/k

1/k

1/k

ε

. . .

1

Fig. 5. 1PFA recognizing Cn. The accepting states in each cycle are exactly those that
correspond to n mod pi For purposes of clarity, the transitions from each state to state
b with probability ε are not drawn. All of the unlabeled transitions have probability
1 − ε.

By choosing ε = 1 − n
√

3
5 we get 1 − E(n) = 3

5 and 1 − E(2n) = 9
25 < 2

5 .

Therefore, 1n is accepted with probability 3
5 , and every other word is accepted

with probability < 2
5 . ��

As the next theorem shows, for the 2-way probabilistic finite automata, even
a constant number of states suffices to recognize Cn with a fixed probability.

Theorem 8. For each ε > 0 there exists a constant cε such that for each n
there exists a 2PFA that recognizes Cn with cε states with probability 1 − ε.

Proof. In [9], Freivalds showed for every ε > 0 how to construct a 2PFA that
recognizes the language Equal = {0n1n | n ≥ 1} with probability 1 − ε.
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In [3], Balodis proved that if languages L,L′ ∈ S∗ are such that there exists
u ∈ S∗ such that ∀x ∈ S∗(x ∈ L′ ⇔ ux ∈ L) then a 2PFA A recognizing L can
be modified into a 2PFA A′ recognizing L′ with the same number of states. The
idea is to change the transition matrix of A on the endmarker � in such a way
that it considers symbol � as a string �u.

One can see that for Cn and Equal, there exists u (namely u = 0n) such
that ∀x ∈ {1}∗ (x ∈ Cn ⇔ ux ∈ Equal). We can therefore use this result to
construct an equally-sized automaton and then restrict it to a smaller alphabet
{1} to obtain an automaton recognizing Cn. ��

4 Ultrametric Automata

Ultrametric finite automata and ultrametric Turing machines were first intro-
duced by Freivalds in [8]. This has been followed by several papers in which
various aspects of these machines are studied in depth. In [4], Balodis et al. have
studied the descriptional complexity of ultrametric automata. They showed that
ultrametric automata can achieve an exponential advantage in terms of the num-
ber of states required when compared with equivalent deterministic automata.
In [13], the reversal complexity of ultrametric Turing machines has been studied.

Ultrametric automata are similar to probabilistic automata, the difference
being that in probabilistic automata real numbers between 0 and 1 called prob-
abilities are used to describe the branching of the automaton, while in ultrametric
automata, p-adic numbers called amplitudes are used instead.

In [18], Turakainen generalized the probabilistic automaton model to allow
the use of generalized probabilities – arbitrary real numbers – and showed that
with such generalized automata, only the same class of languages – stochastic
languages – can be recognized. Following this generalization, there are also no
restrictions for ultrametric automata on the p-adic numbers that are allowed to
be used as the amplitudes.

4.1 p-adic Numbers

In describing the notion of p-adic numbers, we follow the introductory text by
David A. Madore [16].

Introduction to p-adic Numbers. A p-adic digit is a natural number in the
range of 0 to p − 1 (inclusive) where by p we denote an arbitrary prime number.
A p-adic integer is a sequence (ai)i∈N in which each ai is a p-adic digit. This is
the same as · · · ai · · · a2a1a0. It corresponds to a natural number given by

+∞∑
i=0

aip
i,

where p is our chosen prime number. This sequence is infinite to the left side.
Furthermore, a natural number represented in p-adic numbers will have only a
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finite number of non-zero digits. For any given n ∈ N, the non-zero component
of its representation in p-adic numbers will exactly match the representation of
n in base p. Take the number 42 as an example, which is written as 132 in base
5. Its 5-adic representation is · · · 0 · · · 0132.

The situation is different for negative and rational p-adic numbers. Let us
consider the number 1

2 and its 5-adic representation as an example. 5-adic 1
2 is

a number that, when added to itself, gives 1. From this, we can devise that the
5-adic representation of 1

2 is

· · · 2 2 2 2 2 3
+ · · · 2 2 2 2 2 3

· · · 0 0 0 0 0 1

Similarly, we devise subtraction and negative numbers. For example, in 5-
adics

· · · 0 0 0 1 3 2
- · · · 0 0 0 2 3 4
· · · 4 4 4 3 4 3

Interestingly, almost all rational numbers can be expressed as p-adic integers.
The exceptions for a given p are the numbers of the form a

b , where a is not
divisible by p but b is divisible by p.

Numbers that cannot be expressed as p-adic natural numbers can, how-
ever, be expressed as p-adic rational numbers. Let us consider the number 1

5
as an example. It cannot be expressed in 5-adic natural numbers, but it can be
expressed as a 5-adic rational number

· · · 0 · · · 000, 1.

We can note that, as with p-adic natural numbers, p-adic rational numbers are
expressed as a sequence that is infinite to the left side and finite to the right.

All of the usual arithmetic operations can be carried out on p-adic numbers
as well, namely addition, subtraction, multiplication and division. Addition, sub-
traction and multiplication can be carried out in p-adic integers, but the results
of division can be general p-adic numbers.

It is obvious that for every q ∈ Q there exists a prime number p such that q
can be expressed as a p-adic number. The same does not hold for real numbers.
For every p, there exists an irrational number such that it cannot be expressed as
a p-adic number. However, this does not imply that for some p, p-adic numbers
are a subset of real numbers. For every p, there is a continuum of p-adic numbers
that cannot be expressed as a real number [8].

The field of p-adic numbers is denoted as Qp.

p-adic Absolute Values. A function d : X×X → R≥0 where X is a non-empty
set is called a metric iff it satisfies the following conditions:
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1. d(x, y) = 0 iff x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

If the third property can be replaced by its stronger variant – the strong tri-
angle inequality d(x, y) ≤ max {d(x, z), d(z, y)} – the norm is called ultrametric.
Otherwise, it is called Archimedean. [8]

If the set X is equipped with the addition and multiplication operations (and
forms a vector space), then a notion of norm can be introduced. The metric
function is used to find the distances among the elements of a set. The distance
of a given element to zero d(x, 0) is called the norm or absolute value of the
element and is denoted by ‖x‖.

The norm of an element satisfies the following properties:

1. ‖x‖ = 0 if and only if x = 0,
2. ‖x ∗ y‖ = ‖x‖ ∗ ‖y‖,
3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (the triangle inequality).

For every non-zero rational number α there exists a unique prime factoriza-
tion α = ±2α23α35α57α7 · · · where αi ∈ N.

Definition 6. The p-adic absolute value (also called the p-norm) of a rational
number α is

‖α‖p =

{
p−αp , if α �= 0
0, if α = 0.

p-adic numbers in more detail are discussed in [16]. The use of p-adics in
other sciences can be seen in [6,12].

4.2 Automata

Ultrametric automata are defined as in [4].

Definition 7. A finite one-way p-ultrametric automaton (1UpFA) is a sextuple
(Q,S, s0, δ, F, Λ) where

Q is the finite set of states,
S is the input alphabet,
s0 : Q → Qp is the initial amplitude distribution,
δ : (S ∪ {$}) × Q × Q → Qp is the transition function,
F ⊆ Q is the set of final states, and
Λ = (λ, �) is the acceptance condition where λ ∈ R is the acceptance threshold
and � ∈ {≤,≥}.

The automaton works as follows. At every timestep, each of its states has an
associated p-adic number called its amplitude. The automaton starts with the
initial amplitude distribution s0. Then it proceeds by processing the symbols of
the input word w = w1 . . . wn one at a time. The amplitude distribution after pro-
cessing the i-th symbol is denoted as si, with si(y) =

∑
x∈Q si−1(x) · δ (wi, x, y)
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for every y ∈ Q. After the n-th symbol, the end marker $ is processed in the same
way, obtaining the final amplitude distribution sn+1. If the sum of the p-norms
of final amplitudes over final states is at least (or at most) the threshold, i.e.,
if

∑
x∈F ‖sn+1(x)‖p � λ, then the word w is said to be accepted; otherwise, it is

rejected.

Here we show an optimal ultrametric automaton for counting.

Theorem 9. For each n and each prime p there exists a 1UpFA that recognizes
Cn with 2 states.

Proof. Consider the automaton An = ({a, b}, {1}, (pn, p−n), δ, {a, b}, (≤, 2)) (see
Fig. 6) where

δ1 =
(

p 0
0 p−1

)
δ$ =

(
1 0
0 1

)

On a word 1m, the sum of norms of the final states is ‖pn−m‖ + ‖p−n+m‖ =
p−n+m + pn−m, which is equal to 2 if m = n and greater otherwise. ��

a

b

pn

p−n

p−1

p

Fig. 6. 1UpFA with 2 states recognizing Cn. Double arrows show the starting state
amplitude distribution. Edges show the transitions on symbol 1 (the automaton has
the identical transition on the endmarker).

Theorem 10. If n > 0 then any 1UpFA that recognizes Cn has at least 2 states.

Proof. Assume there exists a 1UpFA with 1 state a that recognizes Cn. Let
α = δ(1, a, a) be the coefficient that is multiplied to the amplitude of state a for
every symbol of the input word. The final amplitude after processing word 1m

(and the endmarker) in the state a is s0(a) · αm · δ($, a, a).
Assume α is a p-adic integer. If its rightmost p−adic digit is 0, then mul-

tiplying any p-adic number (except 0) by α decreases the norm. If α is not a
p-adic integer (it has some non-zero digits to the right of the p-adic comma),
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then multiplication with α increases the norm. If α is a p-adic integer whose
rightmost p-adic digit is not 0, then multiplication with α does not change the
norm.

Therefore, as the length of the word increases, the norm increases or decreases
monotonically or does not change, which eliminates the possibility to recognize
Cn for n > 0. ��
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Abstract. Systolic automata are models of highly-concurrent language
acceptors based on identical processors with one-way flow of information,
amenable to efficient hardware implementation as multiprocessor chips.

In this paper we investigate the relationship between Binary Systolic
Tree Automata (BSTA), in which the underlying communication structure
is an infinite complete binary tree with parallel bottom-up computation,
andP systems, a biologically-inspired formalismbased on rewrite rules act-
ing upon multisets of symbols with a maximally-parallel semantics.

In particular, we propose a variant of BSTA as multiset languages
acceptors, termed Multiset BSTA. By exploiting the similarity in the
parallel computation as performed in both BSTA and P systems, we
show how a Multiset BSTA can be simulated by a cooperative P system
while preserving the computational efficiency of systolic automata.

1 Introduction

Systolic automata are highly parallel language acceptors inspired by the func-
tioning of VLSI architectures [14,17]. A systolic automaton is an infinite tree
associated with an input function g and a processing function f . Without loss
of generality, the tree of a systolic automaton is often assumed to be binary,
thus obtaining the class of Binary Systolic Tree Automata (BSTAs). The input
function g maps each symbol of the considered input alphabet into a working
symbol from an operating alphabet. The processing function f , instead, maps
two working symbols into one. The way in which a BSTA processes a candidate
string to determine whether it belongs or not to the accepted language is by
feeding its tree at a suitable level with such a string, and then by applying the
processing function at each level (from bottom to top) in order to produce, in
the root of the tree, a single operating symbol. If such a symbol belongs to the
accepting alphabet (subset of the operating alphabet) then the candidate string
is accepted, otherwise it is not accepted. Note that a string w of length m has
to be accepted at smallest level n of the tree such that m ≤ 2n. Moreover, if
m < 2n, then 2n − m instances of the special symbol � are appended to the
string.
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 17–31, 2014.
DOI: 10.1007/978-3-319-13350-8 2
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It has been proved that BSTAs can accept all regular languages [17]. More-
over, by exploiting the tree structure they can accept higher level languages such
as a2n

b2
n

. The class of languages accepted by a BSTA is a subset of the class
E0L [24] called Systolic E0L [13]. Many variants of systolic automata have been
proposed (see, e.g., [15,16,19]), and many studies have been performed on them
(see, e.g., [18,20,21])

The processing of a candidate string by a BSTA is performed in a highly
parallel way. Symbols to be associated with nodes at level i of the tree can be
obtained by the symbols associated with nodes at level i + 1 by applying f , the
processing function, 2i times in parallel to each pair of children nodes of nodes
at level i. This is repeated for each level of the tree until the root is reached.
Hence, an execution of a BSTA can be seen as a sequence of highly parallel steps
in which all of the currently available symbols are processed and “transformed”
into symbols to be used in the next step. The form of parallelism at the basis
of the functioning of BSTAs is hence very similar to the notion of maximal
parallelism considered in the context of P Systems [23]. P Systems are a form of
hierarchical multiset rewriting systems. Maximal parallelism in P systems states
that, at each step of their execution, rewriting rules must be applied in parallel
to a sub-multiset of the available symbols (possibly to all of them) so that no
rule can be applied to the remaining symbols.

The aim of this paper is hence to investigate the relationship between BSTAs
and P systems based on the similarity of the forms of parallelism they consider.
Since P systems are used to process multisets, the first thing we do is to define a
variant of BSTAs, called MBSTAs, that can be used to accept multiset languages
rather than languages of strings. As usual when passing from string languages
to multiset languages ([12]), we show that MBSTAs can accept every context-
free multiset language. Then, we face the problem of translating a MBSTA into
an equivalent P system (used as language acceptor [9]). To this aim we define
another (equivalent) variant of MBSTAs, called Regular MBSTAs, in which some
regularity conditions are assumed. Finally, we define a translation of RMBSTAs
into P systems and prove that P systems obtained after translation are as efficient
as the original RMBSTAs.

2 Background

Let N be the set of natural numbers and N
+ denote N \ {0}. Elements of sets

are enumerated between { and }, while elements of multisets are enumerated
between {| and |}. Given a finite alphabet Λ, we denote by Λ∗ the set of all finite
strings over Λ, namely ε ∈ Λ∗, for ε the empty string, and aw ∈ Λ∗, for a ∈ Λ
and w ∈ Λ∗. Given two sets of strings Z1, Z2, their concatenation is denoted
Z1.Z2 = {w1w2 | w1 ∈ Z1, w2 ∈ Z2}. The number of occurrences of a symbol a
in a string w is denoted |w|a; moreover, given a set Z ⊆ Λ, |w|Z =

∑
a∈Z |w|a.

The length of w is denoted |w|. The ith element of w is denoted wi. We denote
with Λ+ the set Λ∗ \ {ε}. As usual, a language over Λ is a subset L ⊆ Λ∗.
We denote M(Λ) the set of all the multisets with elements in Λ. The union of
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multisets is denoted by ⊕, \ denotes both the difference between sets and the
difference between multisets, and ∅ denotes both the empty set and the empty
multiset. Moreover, we denote with P(I) the powerset of I, that is the set of all
subsets of the set I. Given a function f : A → A, we define fn as f0(x) = x and
fn(x) = f(fn−1(x)).

Definition 1 (Parikh mapping). Let Λ = {a1, a2, . . . , an} be an ordered
alphabet. The Parikh mapping over strings φ : Λ∗ → N

n is defined as follows:

φ(w) = (|w|a1 , |w|a2 , . . . , |w|an
).

The Parikh mapping of a language L ⊆ Λ∗ is defined as φ(L) = {φ(w) | w ∈ L}.
In the rest of the paper, we always assume alphabets to be ordered. Therefore
there is a one-to-one correspondence between Parikh vectors in N

|Λ| and multi-
sets over Λ. For this reason, with a slight abuse of notation, we assume to denote
by φ(w), for any string w ∈ Λ∗, both the Parikh vector and the multiset over Λ
described by w.

We recall from [22] the definition of Binary Systolic Tree Automata [14,17].

Definition 2 (Binary Systolic Tree Automaton). A Binary Systolic Tree
Automaton (BSTA)1 is a construct K = (Λ,Q, F, f, g), where Λ is the finite
input alphabet, Q ∪ {�} is the finite operating alphabet (with � being a special
symbol outside of Λ, Q), F ⊆ Q ∪ {�} is the accepting alphabet, f : (Q ∪ {�}) ×
(Q ∪ {�}) → Q ∪ {�} is the processing function and g : Λ ∪ {�} → Q ∪ {�} is
the input function. Moreover, the processing function is such that f(x, y) = � iff
x = y = �; while the input function is such that g(x) = � iff x = �.

A BSTA is interpreted as an infinite complete binary tree, in which the
processing function f is associated with each node. A BSTA can accept strings
on the alphabet Λ in the following way. Given a string w ∈ Λ∗ having length
m, we take the smallest level n of the tree with at least m nodes. If m < 2n,
let � = 2n − m. The string w�� is transformed by means of the input function,
by applying g to each one of its symbols, preserving the ordering. The string in
(Q ∪ {�})∗ obtained is then fed to the level n of the tree. Precisely, the symbols
in the transformed string are given as input, in order, to the nodes of the cut at
level n, starting from the leftmost node.

At the first step, once each node of the cut has an input in Q ∪ {�}, all
processing functions of the level n − 1 get, in parallel, the two inputs from their
children nodes and produce their results, a symbol in Q ∪ {�} for each node.
This process is iterated for n steps, resulting in a symbol q ∈ Q ∪ {�} being
produced in the root of the tree. If q ∈ F then the string is accepted, otherwise
it is rejected by the BSTA.

The definition of BSTAs reported here, from [22], includes constraints on the
behaviour of the processing and input function when dealing with the special
symbol � which were not assumed in the original definition ([14]). Note that
1 Also known in the literature by the acronyms SBTA and BT-VLSI.
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Fig. 1. BSTA accepting computation
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Fig. 2. BSTA rejecting computation

such constraints on functions f and g imply that the value of function f(�, x),
for x ∈ Q, is irrelevant, since it is never used by a BSTA. In fact, at each level
of the tree, any and all � symbols may only occur at the end of the string.

Definition 3 (Language accepted by a BSTA). Consider a BSTA, K =
(Λ,Q, F, f, g). We define f : (Q ∪ {�})∗ → (Q ∪ {�})∗ and g : (Λ ∪ {�})∗ →
(Q ∪ {�})∗ as follows:

f(w1w2 . . . wm) = f(w1, w2)f(w3, w4) . . . f(wm−1, wm) if m is even;
g(w1w2 . . . wm) = g(w1)g(w2) . . . g(wm).

Given a string w ∈ Λ∗, let n ∈ N be such that |w| ≤ 2n. Then w is accepted by
K at level n iff f

n
(g(w��)) ∈ F , where � = 2n −|w|. The string w is accepted by

K iff it is accepted at the smallest level n with |w| ≤ 2n. Finally, the language
accepted by K is the set of strings L(K) = {w ∈ Λ∗ | w is accepted by K}.

Example 1. Let us consider the BSTA K = (Λ,Q, F, f, g) where Λ = {a, b},
Q = {a, b,�,�}, F = {�}, g is the identity function, and f is defined as follows:

f(a, a) = a f(b, b) = b f(a, b) = � f(�, �) = �

and f(x, y) = � for any other pair of symbols not defined above. Two possible
computations of K are shown in Figure 1 and 2. The language accepted by the
BSTA is L(K) = {a2n

b2
n | n ∈ N}.

A useful property for the definition of BSTAs is to be able to give the string
as input to any level of the tree with enough nodes, by relaxing the constraint
that requires it to be fed to the smallest possible level. We recall the definition
of stable BSTA, for which the result of either acceptance or rejection of a string
w is independent of the actual level n (|w| ≤ 2n) to which the string is fed.
Moreover, each BSTA can be transformed into an equivalent stable BSTA, as
shown by the theorem which follows.

Definition 4 (Stable BSTA). A BSTA K = (Λ,Q, F, f, g) is stable iff for
each string w ∈ Λ∗ and for all n1, n2 ∈ N with |w| ≤ 2n1 ≤ 2n2 , it holds that

w is accepted by K at level n1 ⇐⇒ w is accepted by K at level n2.

Theorem 1 ([14,22]). For every BSTA K there exists a stable BSTA K ′ such
that L(K) = L(K ′).
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3 Multiset Binary Systolic Tree Automata

A Multiset Binary Systolic Tree Automaton (MBSTA) has the same structure
of a BSTA, but it accepts multisets. Because multisets have no order among the
elements, the elements of the multiset can be given as input to the nodes of the
cut in any order. For a multiset to be accepted by a MBSTA there needs to be
some order of the symbols yielding a final symbol in the root of the tree.

Definition 5 (Multiset language accepted by a MBSTA). Consider a
MBSTA, M = (Λ,Q, F, f, g). Given a multiset μ ∈ M(Λ), let n ∈ N be such
that |μ| ≤ 2n. Then μ is accepted by M at level n iff there exists a string w ∈ Λ∗

such that φ(w) = μ and f
n
(g(w��)) ∈ F , where � = 2n − |μ|. The multiset μ

is accepted by M iff it is accepted at the smallest level n such that |μ| ≤ 2n.
Finally, the multiset language accepted by M is set of multisets L(M) = {μ ∈
M(Λ) | μ is accepted by M}.

The multiset language accepted by a MBSTA is obtained from the language
accepted by the BSTA having the same structure through the Parikh mapping.

Proposition 1. Assume a BSTA K = (Λ,Q, F, f, g) and the MBSTA M =
(Λ,Q, F, f, g) having the same structure. Then

1. If a string w ∈ Λ∗ is accepted by K at level n then the multiset φ(w) ∈ M(Λ)
is accepted by M at level n;

2. If a multiset μ ∈ M(Λ) is accepted by M at level n then there is a string
w ∈ Λ∗ such that φ(w) = μ and w is accepted by K at level n.

Proof. Directly by Definition 5.

Corollary 1. Assume a BSTA K = (Λ,Q, F, f, g) and the MBSTA M = (Λ,Q,
F, f, g) having the same structure. Then L(M) = {φ(w) | w ∈ L(K)}.

The notion of stability is trivially extended to MBSTAs. Moreover, analo-
gously to BSTAs, a MBSTA can always be transformed into an equivalent stable
MBSTA.

Definition 6 (Stable MBSTA). A MBSTA M = (Λ,Q, F, f, g) is stable iff
for each multiset μ ∈ M(Λ) and n1, n2 ∈ N with |μ| ≤ 2n1 ≤ 2n2 , it holds that

μ is accepted by M at level n1 ⇐⇒ μ is accepted by M at level n2.

Proposition 2. Let K = (Λ,Q, F, f, g) be a stable BSTA. Then the MBSTA
M = (Λ,Q, F, f, g) having the same structure is stable.

Proof. Assume any multiset μ ∈ M(Λ) and any pair of naturals n1, n2 ∈ N such
that |μ| ≤ 2n1 ≤ 2n2 . We prove that if μ is accepted by M at level n1 then μ is
accepted by M at level n2, the converse case is analogous. If μ is accepted by M
at level n1, then by Proposition 1 (case 2) there exists some w ∈ Λ∗ such that
φ(w) = μ and w is accepted by K at level n1. Since K is stable we infer that
w is accepted by K at level n2, thus implying, through Proposition 1 (case 1),
that μ is accepted by M at level n2.
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Theorem 2. For every MBSTA M there exists a stable MBSTA M ′ such that
L(M) = L(M ′).

Proof. Given the MBSTA M = (Λ,Q, F, f, g), we consider the BSTA K =
(Λ,Q, F, f, g) having the same structure of M . From Theorem 1 there exists a
stable BSTA K ′ = (Λ,Q′, F ′, f ′, g′) with L(K) = L(K ′). Consider the MBSTA
M ′ = (Λ,Q′, F ′, f ′, g′) having the same structure of K ′. From Proposition 2 we
have that M ′ is stable. It remains to be shown that L(M ′) = L(M). We prove
that for any μ ∈ M(Λ), μ ∈ L(M) implies μ ∈ L(M ′), the converse is analo-
gous. If μ ∈ L(M), then by Corollary 1 we infer w ∈ L(K) for some w ∈ Λ∗ with
φ(w) = μ. From L(K) = L(K ′) we infer w ∈ L(K ′). Since K ′ and M ′ have the
same structure, by Corollary 1 it follows μ ∈ L(M ′).

3.1 MBSTAs and MFAs

In this section we briefly study the expressive power of MBSTAs, by showing
that they can accept all the languages recognized by Multiset Finite Automata.
A Multiset Finite automaton (MFA) [12] is a finite automaton in which the input
is given by a multiset of symbols of the alphabet. It starts in its initial state with
the whole multiset of symbols, and changes its current state based on the state
itself and on a symbol which is chosen from the multiset. The chosen symbol
is removed from the multiset. The MFA stops when either no move is possible
or the multiset is empty. We also recall the important fact that MFAs have the
same expressive power as Multiset Context-Free Grammars ([12]), therefore they
accept the class of context-free multiset languages.

Definition 7 (Multiset Finite Automaton). A Multiset Finite Automaton
is a construct A = (Λ,Z,W, z0, t), where Λ is the input alphabet, Z is the finite
set of states, W is the set of accepting states (W ⊆ Z), z0 ∈ Z is the initial
state, and t is the transition function (t : Z × Λ → P(Z)).

Definition 8 (Multiset language accepted by a MFA). Given the Multiset
Finite Automaton A = (Λ,Z,W, z0, t), a configuration of A is a pair (z, μ),
where z is a state, z ∈ Z, and μ is a multiset of symbols, μ ∈ M(Λ). Let �
denote the following relation on configurations, whose reflexive and transitive
closure is denoted �∗:

(z, μ) � (z′, μ′) ⇐⇒ z′ ∈ t(z, a), a ∈ Λ, μ′ = μ\{|a|}.

A multiset μ ∈ M(Λ) is accepted by A iff (z0, μ) �∗ (z, ∅) for some z ∈ W . The
multiset language accepted by A is L(A) = {μ ∈ M(Λ) | μ is accepted by A}.
Theorem 3. Given an alphabet Λ, every context-free multiset language L is
accepted by a MBSTA.

Proof. The proof follows that in [17]. Consider the MFA A = (Λ,Z,W, z0, t) with
L(A) = L, and build a MBSTA K = (Λ,Q, F, f, g) with L(K) = L as follows.
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The processing alphabet Q of K is defined as Q = P(Z × Z), where each
symbol in Q corresponds therefore to a set of pairs (z1, z2) of states of A.

The input function g : Λ ∪ {�} → Q ∪ {�} is defined as follows:

g(a) = {(zi, zj) | zi, zj ∈ Z, zj ∈ t(zi, a)} a ∈ Λ;
g(�) = �;

while the processing function f : Q ∪ {�} × Q ∪ {�} → Q ∪ {�} is defined as

f(I, J) = {(zi, zj) | (zi, zk) ∈ I, (zk, zj) ∈ J};
f(I, �) = I;
f(�, �) = �.

Finally, let F0 = {I ∈ Q | ∃z ∈ W. (z0, z) ∈ I}; then the accepting alphabet is

F =

{
F0 ∪ {�} if z0 ∈ W ;
F0 if z0 /∈ W.

Let us consider any node of the binary tree computed according to f and g
from a string w�� being fed at some level n, with w ∈ Λ∗ and � = 2n−|w|. Assume
I = � and let σ(I) be the substring of w corresponding to the ordered sequence
of leaves being descendants of I. It is easy to see that I contains precisely the
pairs of states (z1, z2) such that there exists a path in A labelled by the symbols
in σ(I); i.e., given σ(I) = a1a2 . . . ak, then (z1, zk) ∈ I iff there exist states
z1, z2, . . . , zk+1 such that for all i < k we have zi+1 ∈ t(z, ai).

Assume now an arbitray multiset μ ∈ L(A). Then there exist a string w =
a1 . . . ak ∈ Λ∗ with φ(w) = μ and configurations (z0, μ0) � (z1, μ1) � · · · �
(zk, μk+1) such that for all i we have μi+1 = μi \ {ai}, and zk ∈ W is an
accepting state. For n such that k ≤ 2n consider the node Ĩ = f

n
(g(w�2

n−k)).
We have (z0, zk) ∈ Ĩ and, since xk ∈ W , we have Ĩ ∈ F . Therefore μ ∈ L(K).

Assume μ ∈ L(K). Then there exist a n such that k ≤ 2n and a string w =
a1 . . . ak ∈ Λ∗ with φ(w) = μ, a node Ĩ = f

n
(g(w�2

n−k)) ∈ F and configurations
(z0, μ0) � (z1, μ1) � · · · � (zk, μk+1) such that for all i we have μi+1 = μi \ {ai}.
From Ĩ ∈ F we infer zk ∈ W . Therefore μ ∈ L(A). We conclude L(K) = L(A).

3.2 Regular MBSTAs

We introduce variants of BSTAs and MBSTAs, called Regular BSTAs (RBSTAs)
and Regular MBSTAs (RMBSTAs) respectively, in which some regularity con-
ditions are assumed. Regular MBSTA will be used as an intermediate formalism
to ease the construction of a P system which accepts the same multiset language
as a given MBSTA.

Definition 9 (Regular (M)BSTA). A Regular BSTA (resp. Regular
MBSTA) is a BSTA C = (Λ,Q, F, f, g) (resp. MBSTA M = (Λ,Q, F, f, g)) such
that Q can be partitioned into the sets Qo = {q1, . . . , qh} of plain symbols, and
Q�

o = {q�
h+1, . . . , q

�
n} of tagged symbols, and the following regularity conditions

for the functions f and g are satisfied:
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– g(x) ∈ Qo, for all x ∈ Λ;
– f(q1, q2) ∈ Qo, for all q1, q2 ∈ Qo;
– f(q1, �) ∈ Q�

o, for all q1 ∈ Qo ∪ Q�
o;

– f(q1, q2) ∈ Q�
o, for all q1 ∈ Qo, q2 ∈ Q�

o.

Theorem 4. Let K = (Λ,Q, F, f, g) (resp. M = (Λ,Q, F, f, g)) be a stable
BSTA (resp. stable MBSTA). Then we can effectively construct a stable RBSTA
K ′ = (Λ,Q′, F ′, f ′, g) (resp. stable RMBSTA M ′ = (Λ,Q′, F ′, f ′, g)) such that

– L(K) = L(K ′) (resp. L(M) = L(M ′));
– Q′ can be partitioned into the sets Qo = Q and Q�

o = {x� | x ∈ Q}.
Proof. Let F ′ = F ∪ {x� | x ∈ F}, and let f ′ be defined as follows:

– for x, y, z ∈ Qo, if f(x, y) = z then f ′(x, y) = z and f ′(x, y�) = z�;
– for x, z ∈ Qo, if f(x, �) = z then f ′(x, �) = z� and f ′(x�, �) = z�;
– f ′(�, �) = �.

We prove that the thesis holds for BSTAs and MBSTAs by showing that for
all strings w ∈ Λ∗ and n such that |w| ≤ 2n, w can be accepted by K (resp. M)
at level n iff w can be accepted by K ′ (resp. M ′) at level n.

Let � = 2n − |w|, and let ui =
(
f
)i

(g(w��)), u′
i =

(
f ′)i

(g(w��)), for i ∈
{0, . . . , n}. Note that |ui| = |u′

i| = 2n−i. Moreover, let us define the function
θ : (Qo ∪ Q�

o ∪ {�})+ → (Qo ∪ {�})+ as follows:

θ(x) = θ(x�) = x x ∈ Qo

θ(�) = �

θ(x1 . . . xk) = θ(x1) . . . θ(xk)

It suffices to show that for all i ∈ {0, . . . , n}, ui = θ(u′
i), which can be proved by

induction. As regards the base case, u0 = θ(u′
0), since u′

0 = u0 ∈ (Qo ∪ {�})+.
In the inductive case, assume ui = θ(u′

i); we need to prove that ui+1 =
θ(u′

i+1). By the definitions of g and f ′, for all i, each string u′
i is of the form

q1 . . . qk� . . . � with qi ∈ Qo for all i < k and qk ∈ Qo ∪ Q�
o. As a consequence,

only either one of the following two cases may occur (in the following, we assume
f(ε) = ε):

– Case u′
i = αv, with α ∈ Q∗

o, v ∈ {�}∗. It holds that ui = θ(u′
i) = u′

i.
If |α| is even, then u′

i+1 = f ′(u′
i) = f(ui) = ui+1, and hence θ(u′

i+1) =
θ(ui+1) = ui+1.
If |α| is odd, let u′

i = α′x�v′, with α′ ∈ Q∗
o, x ∈ Qo, v′ ∈ {�}∗. Then

u′
i+1 = f ′(α′x�v′) = f(α′)f ′(x, �)f(v′) = f(α′) (f(x, �))� f(v′), and hence

θ(u′
i+1) = f(α′) f(x, �) f(v′) = f(ui) = ui+1.

– Case u′
i = αx�v, with α ∈ Q∗

o, x ∈ Qo, v ∈ {�}∗. It holds that ui = θ(u′
i) =

αxv.
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If |α| is odd, let u′
i = α′yx�v, with α′ ∈ Q∗

o, y ∈ Qo. Then u′
i+1 =

f ′(α′yx�v) = f(α′)f ′(y, x�)f(v) = f(α′) (f(y, x))� f(v)); hence θ(u′
i+1) =

f(α′) f(y, x) f(v) = f(ui) = ui+1.
If |α| is even, let u′

i = αx��v′, with v′ ∈ {�}∗. Then u′
i+1 = f ′(αx��v′) =

f(α)f ′(x�, �)f(v′) = f(α) (f(x, �))� f(v)) (recall that f(x, �) = � by defini-
tion). Hence θ(u′

i+1) = f(α) f(x, �) f(v′) = f(ui) = ui+1.

4 P Systems

P systems [23] are a bio-inspired computational formalism, where the behaviour
is driven by evolution rules applied to multisets of objects. A P system is com-
posed of a hierarchy of membranes, each containing a multiset of objects and
a set of evolution rules. Evolution rules describe how the objects of the system
evolve, for example they can be used to describe chemical reactions, i.e. rules
in which some objects interact and, as a result, they are transformed into some
other objects. Given a membrane m, its evolution rules in the set Rm can be
applied only to the objects contained in the same membrane, and not in any
other membrane. Many versions of P systems have been defined [2,4,7]. Formal
semantics of different versions of P systems are presented in [1,3,5,8,10,11].

An evolution rule is of the form u → v, where u and v are multisets whose
elements are called reactants and products, respectively. When a rule is applied,
the reactants are removed from the membrane and the products are added to the
target membrane, which could be a different membrane than the one in which
the rule is applied. Membranes are univocally labelled with natural numbers.
Given a membrane m, the products of a rule associated with m are described by
a multiset of (possibly) labelled objects having the following forms: a, meaning
that the object a is added to the same membrane m; aout, meaning that the
object a is to be sent out of the membrane; ainx

, meaning that the object a is
to be sent into the child membrane labelled by x.

An evolution rule is said to be cooperative if it contains more than one reac-
tant, otherwise the rule is called non-cooperative. This naming is also extended
to P system models, that is, a non-cooperative P system is such that all its rules
are non-cooperative, otherwise it is a cooperative P system.

A formal definition of P systems follows.

Definition 10. A P system is a tuple Π = (V, μ,w1, . . . , wn, R1, . . . , Rn) where:

– V is a finite alphabet whose elements are called objects;
– μ ⊂ N×N describes the tree-structure of membranes, where (i, j) ∈ μ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
– wi, with 1 ≤ i ≤ n, are strings from V ∗ representing multisets over V

associated with membranes 1, 2, . . . , n of μ;
– Ri, with 1 ≤ i ≤ n, are finite sets of evolution rules associated with mem-

branes 1, 2, . . . , n of μ.
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Fig. 3. An example of P system model

A characteristic of P systems is the way in which rules are applied in each
step, namely with maximal parallelism. In each step, evolution rules are applied
in a maximal non-deterministic way in all membranes, that is, in each membrane,
a multiset of rules is selected non-deterministically to consume the membrane
objects, in such a way that no other rule can be applied to the objects which are
not involved in any rule application.

A configuration of a P system is given by an association of its membranes with
multisets of objects. The multisets of objects w1, . . . , wn in the definition of a P
system Π represent the initial configuration of Π. A computation is a sequence of
transitions between configurations of a given P system Π starting from the initial
configuration. Each transition of a computation describes a maximally parallel
step. A computation is successful if and only if it reaches a configuration in which
no rule is applicable. The result of a successful computation can be defined in
different ways. Unsuccessful computations are those computations which never
halt, thus yielding no result.

Example 2. Figure 3 depicts a P system with two membranes, labelled 1 and 2.
The rules r1 and r2 are associated with membrane 1, while membrane 2 has no
rules associated with it. An application of rule r1 = a → a bin2 c2in2

causes a copy
of object b and two copies of object c to be sent into the inner membrane 2. The
object a is still present after the application, since it appears in the right-hand
part of the rule. Rule r2 = a2 → c3in2

, instead, can be applied to a pair of objects
a, and results in sending three copies of the object c into membrane 2. The initial
state, as depicted, contains two copies of object a in membrane 1, and no objects
in membrane 2.

At the first step, either rule r1 or r2 is applied. In fact, both the rules are
enabled, since their reactants are present in the membrane. Actually, if r1 is
applied to an object a, then the maximality requires it to be applied also to the
other copy of a. This application sends the objects b2c4 into membrane 2. The
objects contained in membrane 1 remain aa after the application, therefore the
double application of rule r1 can be repeated in the subsequent step. Whenever
rule r2 is applied, it causes the two copies of a in membrane 1 to disappear,
thus terminating the computation. In such a case, the objects ccc are sent into
membrane 2. Therefore, any computation of this P system is composed of a
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sequences of steps in which only r1 is applied (twice per step), followed by a
last step in which rule r2 is applied once. Therefore, whenever the P system
terminates, membrane 2 contains a multiset of objects bk c2k+3, for some k ≥ 0.

A P system can be used either as an acceptor or as a generator of a multiset
language over an alphabet Λ [9]. In the first case, a multiset over Λ is inserted
in the outmost membrane of the P system and the result of its computations
says whether such a multiset belongs to the multiset language accepted by the P
system or not. In the second case the P system has a fixed initial configuration
and can give as results (possibly in a non-deterministic way) all the possible
multisets belonging to a given multiset language.

In order to investigate the relationship between (R)MBSTAs and P systems
let us recall from [9] the definition of P system used as language acceptor. From
[6] it follows that any P system Π can be translated into an equivalent P system
Π ′ having a (flat) membrane structure that consists only of one membrane.
Hence, we consider in this paper only flat acceptor P Systems.

Definition 11. A flat acceptor P system over an alphabet Λ is a P system
Π = (Λ ∪ C ∪ {T}, ∅, μ1, R1), where:

– C is a set of control objects such that Λ ∩ C = ∅;
– T is a special object not contained in Λ ∪ C;
– μ1 is a multiset of objects in C.

A multiset μ of objects over Λ is accepted by Π iff, by adding μ to μ1, then
a final configuration can be reached with T occurring in the membrane.

The multiset language accepted by a flat acceptor P system Π is denoted
Ps(Π) (as Parikh set).

4.1 Simulating RMBSTAs with P Systems

Let R = (Λ,Q, F, f, g) be a RMBSTA. Recall that Q can be partitioned into
the sets Qo = {q1, . . . , qh} of plain symbols, and Q�

o = {q�
h+1, . . . , q

�
n} of tagged

symbols. Moreover, assume, without loss of generality, that Λ ∩ Q = ∅.
Let us consider two fresh symbols: ♦,F ∈ Λ ∪ Q. Symbol ♦ is a special trap

symbol that will be used to denote invalid computations, while F (dual to T)
will be used to denote computations that do not accept the input multiset.

We construct an acceptor P system ΠR = (Λ ∪ C ∪ {T}, ∅, μ1, R1) where
C = Q∪{F, �,♦}, μ1 = {|�|}, and R1 is composed of the rules shown in Figure 4.

Theorem 5. Let R = (Λ,Q, F, f, g) be a RMBSTA, and let ΠR = (Λ ∪ C ∪
{T}, ∅, μ1, R1) be the corresponding acceptor P system. Then, for any multiset
μ ∈ M(Λ) the following implications hold:

1. μ is accepted by R at level n =⇒ μ can accepted by ΠR in no more than
n + 2 steps;
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x → y if y = g(x), x ∈ Λ

xy → z if z = f(x, y); x ∈ Qo, y, z ∈ Qo ∪ Q�
o

x� → z� if z = f(x, �); x, z ∈ Qo ∪ Q�
o

x� → T if x ∈ F ∩ (Qo ∪ Q�
o)

x� → F if x ∈ (Qo ∪ Q�
o) \ F

� → T if � ∈ F

� → F if � /∈ F

� → �

x → ♦ if x ∈ Qo ∪ Q�
o

xT → ♦ if x ∈ Qo ∪ Q�
o

xF → ♦ if x ∈ Qo ∪ Q�
o

♦ → ♦

Fig. 4. Evolution rules of a P system which simulates a RMBSTA

2. μ is accepted by ΠR in 1 step =⇒ μ is accepted by R at level 0;
3. μ is accepted by ΠR in n + 2 steps, with n ≥ 0 =⇒ μ is accepted by R at

level n.

As a consequence of these implications we have L(R) = Ps(ΠR).

Proof. Item 1. Let us consider an accepting computation of the RMBSTA R,
starting from a string w ∈ Λ∗ such that φ(w) = μ. Let � = 2n − |w|, and
wh = f

(n−h)
(g(w��)), for h ∈ {0, . . . , n}. It holds w0 ∈ F .

If |w| = 0, then ∀h ∈ {0, . . . , n}. wh ∈ {�}+. Since μ is accepted, w0 = � ∈ F .
The initial configuration of ΠR contains only �, from which the transition � −→ T
can be performed, reaching a final accepting configuration.

Assume |w| > 0. For all h ∈ {0, . . . , n}, wh = w′
h� . . . �, with |wh| = 2h,

w′
h = q1 . . . qk, ∀j < k. qj ∈ Qo, and qk ∈ Qo ∪ Q�

o. Each application of the
processing function f may only involve pairs of symbols (x, y) from one of these
sets: Qo × Qo; Qo × Q�

o; Qo × {�}; {�} × {�}. Note that, for the above cases
(except for f(�, �)), ΠR contains evolution rules which simulate the behaviour of
f . In fact, for the first two cases, ΠR contains an evolution rule xy → z, with
z = f(x, y), while in the third case a rule x� → z�, with z = f(x, �), is present.
Since each symbol in wh is used exactly in one application of f , according to
the definition of the evolution rules of the P system ΠR, the resulting string
wh+1 is such that the transition φ(w′

h�) −→ φ(w′
h+1�) can be performed by ΠR.

Therefore, the P system can perform, from the initial state φ(w�), the sequence
of n + 2 transitions φ(w�) −→ φ(w′

n�) −→ · · · −→ φ(w′
0�) −→ φ(T), where

the first transition corresponds to the application of function g, and the last
transition is made possible because w′

0 = w0 ∈ F .
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Item 2. In this case, only rule � → T may have been applied to the initial
state μ ∪ {|�|}, for the input multiset μ = ∅ ∈ M(Λ), which implies � ∈ F ; hence
μ can be accepted by R at level 0. Otherwise, if |μ| > 0, then the P system may
not have reached a final accepting configuration in one step. In fact, the only
way to yield T is to apply rule � → T while, at the same time, rules x → y with
y = g(x) are applied to each symbol in μ, thus yielding a non-final configuration.

Item 3. Let us consider an accepting computation γ0 → γ1 → · · · → γn+2,
n ≥ 0. It holds γn+2 = {|T|}, since no symbol in Q ∪ {F, �,♦} may be present
(note that no more than one of either T or F may be present in a configuration).
In turn, either γn+1 = {|�|} or γn+1 = {|x�|}. The former case implies that
∀i ∈ {0, . . . , n}. γi = {|�|}, since the only rule which may have been applied is
� → �. Hence μ = ∅, which can be accepted by R at any level n ≥ 0.

Let us consider the case γn+1 = {|x�|}, with x ∈ F ∩Q. Let Q̃ = Q∗
o∪(Q∗

o.Q
�
o),

namely Q̃ contains all strings composed of symbols from Qo, possibly ending with
a symbol from Q�

o. We prove that ∀i ∈ {0, . . . , n}, if γn+1−i = φ(α�) with α ∈ Q̃,
|α| ≤ 2i, and f

i
(α��) ∈ F ∩Q where � = 2i −|α|, then γn−i = φ(β�) with β ∈ Q̃,

|β| ≤ 2i+1, and f
i
(α��) = f

i+1
(β��′

), where �′ = 2i+1 − |β|.
Assume γn−i = φ(α�). Due to the maximally-parallel semantics of P systems,

γn−i−1 = φ(β�). In fact, φ(α�) may only have been obtained by either (i) |α|
applications of rule xy → z yielding each symbol in α, and one application of
� → �; or (ii) |α| − 1 applications of rule xy → z yielding each but one symbol
in α, and one application of x� → z�. Moreover, note that |β|Q�

o
≤ |α|Q�

o
≤ 1.

Therefore, in both cases, α�� = f(β��′
), and hence f

i
(α��) = f

i+1
(β��′

).
Note that, at the beginning, γ0 = μ ∪ {|�|}, hence γ1 = {|g(x) | x ∈ μ|} ∪ {|�|}.

It follows that, since γn+1 = {|x�|} with x ∈ F ∩ Q, then f
n
(w��) ∈ F ∩ Q, for

some string w ∈ Q̃ such that φ(w�) = γ1. Therefore w = g(w′), for some w′ such
that φ(w′) = μ, from which we conclude f

n
(g(w′)��) = f

n
(g(w′��)) ∈ F ∩ Q.

Finally, note that Item 1 implies L(R) ⊆ Ps(ΠR), while Items 2 and 3 imply
Ps(ΠR) ⊆ L(R) (note that the initial configuration of ΠR does not contain T,
hence it needs at least one step to reach a final accepting configuration).

5 Conclusions

In this paper we have related systolic automata and P systems. We have extended
systolic automata to accept multisets of symbols, by introducing Multiset Binary
Systolic Tree Automata (MBSTAs). In particular, we have shown how an equiv-
alent variant of MBSTAs (called Regular MBSTAs) can be easily translated into
cooperative P systems.
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Abstract. Soliton automata were defined by Dassow and Jürgensen
about 1986 to model the changes of the bond structure in certain types of
molecules as a result of a soliton wave travelling through the molecules.
We extend the model to include the presence of more than just a sin-
gle soliton. Certain situations are specific to the multi-soliton case and
lead to changes to some of the basic definitions and result in a new class
of soliton automata. In this paper we lay the foundations for a theory
of multi-soliton automata, explain the modelling decisions, and discuss
issues which are new when multiple solitons are considered.

1 Solitons

We consider the switching behaviour of bonds in a molecule when a disturbance,
called a soliton in the sequel, is injected. The bonds are likely to change, leading
to a different molecule. Taking these molecules as states, one gets a system
which behaves like an automaton. It has been shown in particular, that such
automata can simulate logical gates and memories; thus they could be composed
to form a universal computer. However, “when considering unorthodox means of
computation one needs to discard any preconceived ideas, but first investigate
what the new means have to offer and, after that, how to use the new features to
achieve the intended goals.” This was stated by one of the present authors (HJ)
in the 1980s in several talks. A similar opinion is found in [37] where Mario Ruben
states “to do Boolean logic with molecules is to do violence against them”. Hence,
in this paper we investigate the potential of such automata without concern as
to how they may be used in conventional Boolean circuits. Combining many of
such molecules into a larger one forms something akin to a cellular automaton.
One gets a powerful computer at the size of a few hundred Å. We consider only
the components of such a powerful cellular computer and their capabilities.

Solitons can be considered as waves or particles travelling through some
“substance” unhindered, without energy loss, and without interference. They
travel slowly – at the speed of sound, but fast enough when only small distances
need to be covered. They can, however, modify the “field” through which they
travel. We suggest that the reader view solitons as waves because this helps
in the understanding of the formal model. We use the terms of molecule and
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 32–48, 2014.
DOI: 10.1007/978-3-319-13350-8 3
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soliton in a rather metaphorical sense, abstracting radically from the physical
and chemical realities. We speculate about what could be achieved by the soliton
effect in molecules. What can actually be achieved is for researchers in physics,
chemistry and engineering to explore. Utopia may not be that far away. For the
history of solitons we refer to [36, pp. 18–19]. In this paper we only consider
solitons in molecules. For the physics of solitons in such situations we refer to
[22] and [36].

We look at a single situation, that of a soliton travelling through a molecule.
This idea was suggested by Carter in [8–16,30]. The kind of molecules under
consideration is specified below. A soliton is sent through that molecule; the
binding structure of the molecule changes. Hence, if one interprets the prior and
the posterior binding structures as states of a system, the molecule together
with the solitons behaves as an automaton or a switching device. In the early
literature these are called soliton valves. A formal definition of soliton automata
based on this physical or chemical phenomenon is given in [18].

Terminological confusion may arise: There is another definition of soliton
automata, which is completely unrelated to the one used here. It was initiated
by a paper on “Soliton-Like Behavior in Automata” by Park [38]. In that sense
the term soliton automaton is found in many papers on cellular automata, but
has no relation to the physics of solitons.

We return to the basic idea. Not all molecules would work. Polyacetylene
chains and several other types of molecules are known to have a fairly con-
trolled reaction to solitons. Accordingly, research on soliton-based switching or
automata focussed on bond changes in polyacetylene chains or polymers. In
essence, one considers molecules, the basic structure of which is a sequence of
carbon atoms with bonds of alternating weights connecting them and with other
atoms or molecules – of not always logical, but often physical relevance – con-
nected to the carbon atoms. In this paper we only consider the soliton-induced
state changes in polymers – more precisely, abstractions of them. In other words,
we ignore physical and chemical details. In representing molecules, we show
nothing but the carbon atoms and possibly some hydrogen atoms as illustrated
in Fig. 1. Abstracting further, we consider graphs with special properties and
transformations of such graphs into others with the same topology and the same
properties. Such graphs are called soliton graphs in the sequel. In a soliton graph
the nodes have degrees 1, 2 or 3. Nodes of degree 1 are said to be exterior; they
form the entry and exit points for solitons. Nodes of degrees 2 or 3 are interior.
The edges are undirected, there are no loops, and the edges have weights 1 or 2,
these representing single and double bonds, respectively. From entry to exit a
soliton travels along edges of alternating weights. Therefore, the two edges at a
node of degree 2 must have different weights, and of the three edges at a node
of degree 3, two have weight 1 and one has weight 2. Formal definitions of these
concepts are given in Section 3 below.

Informally, a soliton transforms a soliton graph into another soliton graph.
Consequently, a soliton automaton consists of a soliton graph acting as the gen-
erator for the automaton, solitons specified by their entry and exit locations as
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Fig. 1. A very simple polyacytelene molecule before and after abstraction. Interior
nodes are specified by letters when required. Exterior nodes replacing some unknown
attached molecules are represented by numbers.

the input alphabet, the potential state changes as the transition function, and all
reachable soliton graphs as the state space. Regardless of physical and chemical
realities, this leads to an interesting model of computation. Experiments have
shown that, despite well-known quantum effects, this model could be realistic.

The theory of solitons in polymers suggests to study not only the effect of
single solitons as proposed originally by Carter, but also to investigate the effect
of multiple soliton waves. Multiple soliton waves introduce parallelism of a kind
not usually encountered in computer science because soliton waves could pass
each other unchanged.

2 Notation and Basic Notions

We introduce some notation and review basic notions. The sets of positive inte-
gers and of non-negative integers are denoted by N and N0, respectively. An
alphabet is a finite non-empty set the elements of which are called symbols. Let
Σ be an alphabet. The set of all (finite) words over Σ, including the empty word
λ, is denoted by Σ∗; let Σ+ = Σ∗ \ {λ}.

A semi-automaton is a construct A = (Q,Σ, τ) where Q is a non-empty set,
Σ is an alphabet and τ : Q × Σ → 2Q is a mapping. The elements of Q are
called states; Σ is the input alphabet of A; τ is the transition function of A.
We assume that Q is finite and that, for all q ∈ Q and all a ∈ Σ, τ(q, a) �= ∅.
Moreover, we drop the prefix “semi-” as we do not consider any other kind of
automata.

Let A = (Q,Σ, τ) be an automaton. The function τ is extended as follows:
for R ⊆ Q and w ∈ Σ∗, let

τ(R,w) =

{
R, if w = λ,

τ
(⋃

q∈R τ(q, a), v
)

, if w = av with a ∈ Σ and v ∈ Σ∗.

For w ∈ Σ∗, let τw be the mapping defined by τw(R) = τ(R,w) for all R ⊆ Q.
Instead of τw(R) we write Rτw. With this convention, the mapping τ of Σ∗ into
the monoid TQ of all mappings of 2Q into 2Q, which maps w ∈ Σ∗ onto τw, is
a homomorphism, that is, for w = uv with u, v ∈ Σ∗ one has τw = τuv = τuτv.
Let R be a non-empty subset of Q. Define [R] =

⋃
w∈Σ∗ Rτw. The construct

([R], Σ, τ) is the subautomaton of A generated by R.
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The automaton A is said to be deterministic if |τa(q)| = 1 for all a ∈ Σ
and all q ∈ Q. In that case τa is considered as a mapping of Q into Q, that
is as a transformation of Q. The set of transformations of Q induced by τ is a
monoid with the multiplication defined as above, the transition monoid T (A) of
A. The transformation τλ is the identity element of T (A). Inputs u and v of A
are said to be equivalent if and only if τu = τv. As the transition monoid T (A) is
a submonoid of the monoid of all mappings of Q into Q, the full transformation
monoid TQ of Q, the order (cardinality) of T (A) is at most |Q||Q|. The symmetric
group SQ on Q is a maximal subgroup of TQ. For n = |Q|, we identify the
symmetric group on n elements in its natural representation Sn with SQ via an
arbitrary, but fixed numbering of the states in Q.

3 Soliton Graphs and Soliton Paths

In this section and the next one we list and elaborate on, a few definitions taken
from [18]. The model of soliton automata considered there assumes that only
a single soliton is present at any given moment. We summarize known facts
regarding the computational power of soliton automata with this restriction.
The presence of multiple solitons is considered further below. Many of the results
summarized, but not used in the sequel, would require extensive formal defini-
tions. Rather than copying these, we refer the reader to the original publications
and supply only informal explanations.

Definition 1 ([18]). A soliton graph is a weighted graph G = (N,E,w) such
that:
1. N is the finite, non-empty set of nodes.
2. E ⊆ N × N is the set of undirected edges, such that (n, n′) ∈ E implies that

(n′, n) ∈ E. For n ∈ N , d(n) is the degree of n.
3. For no n ∈ N , (n, n) ∈ E.
4. w : E → {1, 2} is a mapping with w(n, n′) = w(n′, n).
5. w extended to w : N → {1, 2, 3, 4} requires that

w(n) =
∑

(n,n′)∈E

w(n, n′) = d(n) + 1.

6. Every connected component of G contains at least one node of degree 1.
Nodes of degree 1 are exterior; all other nodes are interior.

In the sequel we assume, without special mention, that |N | ≥ 3 to exclude
trivial exceptions. Next we define which paths a soliton can take. This definition
only works when no more than one soliton is present. Below we change this
definition in a consistent fashion when we consider multiple solitons.

Definition 2. Let G = (N,E,w) be a soliton graph and let n0 ∈ N be an
exterior node. A partial soliton path Pk of length k ∈ N0 from n0 is a path
n0, n1, . . . , nk constructed from a sequence of partial soliton paths Pi with i =
0, 1, . . . , k as follows:
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1. For i = 0, let G0 = (N,E,w0) = G, and let P0 be the path consisting only
of the node n0.

2. Suppose 0 < i ≤ k, that n0, n1, . . . , ni−1 is a partial soliton path Pi−1 con-
structed so far and that G0, G1, . . . , Gi−1 is the sequence of weighted graphs
considered in the construction. Choose a node ni ∈ N such that (ni−1, ni) ∈
E; when i > 1, ni must differ from ni−2 and satisfy wi−1(ni−1, ni) �=
wi−2(ni−2, ni−1). If no such node exists, the construction ends without suc-
cess. Let Pi be the path n0, n1, . . . , ni−1, ni. Define

wi(n, n′) = wi(n′, n) =

⎧
⎪⎨
⎪⎩

3 − wi−1(n, n′), if n = ni−1 and n′ = ni

or vice versa,

wi−1(n, n′), otherwise.

Let Gi = (N,E,wi). Increase i by 1 and repeat this construction step if
i ≤ k.

Every path n0, n1, . . . , nk with n0 exterior and n1, . . . , nk−1 interior, constructed
in this way, is called a partial soliton path. If k > 0 and nk is exterior the path
is a (total) soliton path.

Definition 2 differs from, but is equivalent to, the corresponding definition of
soliton paths in [18]. We use expressions like “a soliton moves from ni to ni+1” or
“a soliton traverses a path” or “a soliton is at node ni” in a metaphorical sense
to indicate the sequence of changes in the sequence G0, G1, . . . , Gk of graphs.
A soliton starting its path at the exterior node n0 will first move to the unique
node n1 connected to n0 and change the weight of the edge between these nodes.
From then on it can move to a neighbouring node, not reversing direction, if the
previous weight of the edge just traversed differs from the current weight of the
next edge. In every move the weight of the edge being traversed is changed. A
soliton can traverse the same edge several times, but never by just returning.

4 Single-Soliton Automata

Let G = (N,E,w) be a soliton graph, and let X be its set of exterior nodes. For
n, n′ ∈ X, let S(G,n, n′) be the set of weighted graphs obtained by traversing a
soliton path from n to n′. If no such soliton path exists, let S(G,n, n′) = {G}.
Let S(G,n) =

⋃
n′∈X S(G,n, n′). Every graph in S(G,n) is a soliton graph. Let

Γ = Γ (N,E) be the set of all soliton graphs with N and E as sets of nodes and
edges, respectively. For n, n′ ∈ X, define the mappings

τn,n′ : Γ → 2Γ : G 	→ S(G,n, n′)

and
δn : Γ → 2Γ : G 	→ S(G,n).

Let τ : (n, n′) 	→ τn,n′ and δ : n 	→ δn map X × X and X, respectively, to these
mappings. The constructs (Γ,X × X, τ) and (Γ,X, δ) are automata.
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Definition 3 ([18]). Let G = (N,E,w) be a soliton graph. Let X be its set of
exterior nodes. Let Γ and τ be as above. The subautomaton A(G) of (Γ,X×X, τ)
generated by G is the soliton automaton of G. Let S(G) denote the set of states
of A(G).

A similar definition can be formulated with respect to δ. This latter variant,
which involves much nondeterminism, has not been studied in the literature so
far and is not considered in the present work either.

In soliton automata, two kinds of determinism can be observed: (1) Determin-
ism in the usual automaton theoretic sense: |S(G′, n, n′)| = 1 for all G′ ∈ S(G)
and all (n, n′) ∈ X × X. (2) Strong determinism: For all G′ ∈ S(G) and
(n, n′) ∈ X × X, there is at most one soliton path from n to n′. As a physi-
cal building block, a soliton automaton should be deterministic, at least. Strong
determinism is preferable as the behaviour of the soliton automaton with respect
to timing is nondeterministic otherwise. Hence research focussed on deterministic
soliton automata in either sense, on the graph structure implying determinism
and on the computational power of deterministic soliton automata. The latter is
considered in terms of the size and structure of the transition monoids of these
automata. By saying that G is deterministic or strongly deterministic, we mean
that A(G) is deterministic or strongly deterministic, respectively.

A soliton graph G may consist of several connected components. Each com-
ponent defines a soliton automaton with its own input alphabet. Thus, if G
has the connected components G1, G2, . . . , Gk, then T (A(G)) = T (A(G1)) ×
T (A(G2))×· · ·×T (A(Gk)). Beyond the merely graph theoretical notion of con-
nectedness, one also needs to consider another related concept which is based
on the existence or non-existence of soliton paths. A path from n to n′ in the
graph theoretical sense is said to be impervious if none of its edges occurs in a
partial soliton path in any G′ ∈ S(G) [18].
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Fig. 2. A soliton graph with an impervious path from node j to the right

In Fig. 2 we show an example of a soliton graph with an impervious path. In
the single-soliton model, impervious paths can be removed without any change to
the transition monoid (see [20] for the precise statement). Removal of impervious
paths may increase the number of connected components. The transition monoid
of the resulting reduced soliton graph is trivially isomorphic with that of the
original soliton automaton. Hence, one needs to consider only indecomposable
soliton graphs, that is, soliton graphs which, after the removal of impervious
paths, are connected. This holds only when single solitons are considered.
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To measure the computational power of soliton automata we use their transi-
tion monoids as a yardstick. Their structure depends on the cycle structure of the
underlying graphs. Multiple cycles usually cause non-determinism. Otherwise,
mostly symmetric groups or alternating groups in their natural representations
are encountered. For certain types of graphs with cycles of odd lengths, one
finds groups of monomial matrices over the field with three elements [18–21].
The main open questions concern the transition monoids of soliton automata
based on trees [31]. An attempt to connect the structure of soliton graphs to the
corresponding soliton automata in terms of category theory was proposed in [1].

One can think of soliton graphs as being equivalent if and only if their soliton
automata are isomorphic; for the single-soliton model this leads to the follow-
ing simple observation, universally used, but obviously not true when multiple
solitons are present.

Observation 1. Let G = (N,E,w) be a soliton graph. Let n0, n1, . . . , nk be a
partial soliton path such that d(ni) = 2 for i = 0, 1, . . . , k − 1 and k > 3. Let
G′ be the soliton graph obtained from G as follows: (1) Remove n1 and n2 from
N . (2) Redirect edges going into and out of n1 to go into and out of n3. (3)
Remove all edges involving n2. The resulting graph G′ is a soliton graph which
is equivalent to G.

A completely graph theoretic approach to the theory of soliton automata
is taken by Bartha, Krész and others [2–7,32–35]. The approach is based on
matching theory. It will be important to investigate to which extent matching
theory can help in the multi-soliton model as well. A kind of switching theory
for soliton automata is proposed by Groves in [29]. Unfortunately, little of this
important work, except [23,24], is published in versions which would be easily
accessible [25–28].

5 Multiple Soliton Waves Make a Difference

We now turn to modelling the situation, when more than one soliton travels
through a soliton graph. We refer to this as the multi-soliton model. In the
single-soliton model the elementary input symbols are pairs of external nodes.
As mentioned, an alternative, not explored in detail, would be to consider just the
external nodes as input symbols. For the multi-soliton model we define the input
symbols as bursts of external nodes or pairs of external nodes as follows. The
main difficulty in describing the behaviour of multiple solitons in a meaningful
and – as one hopes – realistic way lies in the definition of soliton paths and
the interaction of solitons when they happen to meet. We assume that waves
cannot reverse nor unite, but that they can cross each other. This basic idea
leads to the definition below of a legal configuration trail as the counterpart of
a soliton path. Whether this is adequate at the molecular level is a matter for
physicists to determine. Given that definition, one can then adjust the remaining
definitions for soliton automata. However, several assertions about soliton graphs
and soliton automata change due to the potential interaction of solitons.
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Definition 4 (Bursts of Inputs). Let S be a finite non-empty set not con-
taining the symbols ‖ and ⊥. Moreover, let S ∩ N0 = ∅.

A burst over S is a word of the form

s1‖k1s2‖k2 · · · sm−1‖km−1sm⊥
with the following properties:
1. m ∈ N;
2. s1, s2, . . . , sm ∈ S;
3. k1, k2, . . . , km−1 ∈ N0;

The length of such a burst is m.
For m ∈ N, let Bm(S) be the set of all bursts of length m over S. Let

B≤m(S) =
⋃m

i=1 Bi(S) and B(S) =
⋃∞

i=1 Bi(S).

A burst over S is the basic input symbol to the automata under consideration.
It is to be interpreted as follows. If the burst is initiated at time t, the symbol s1
is input at time t; s2 is input at time t + k1; and, in general, sj is input at time
t +

∑j−1
i=1 ki. Here the empty sum is defined to be 0. The symbol ⊥ indicates

that the input process pauses until the system has stabilized.
Let G be a soliton graph with set X of exterior nodes. A burst as input

has two interpretations: (1) The set S could be the set X with the implied
meaning that x ∈ X indicates the node where the soliton is injected. (2) The
set S could be the set X × X with the implied meaning that (x, x′) ∈ X × X
indicates the nodes where the soliton is injected and received, respectively. As
in the single-soliton model, we only consider the latter case.

We consider a few simple examples which show that changes to Definition 2
are required for the multi-soliton model and that the multi-soliton model allows
for state transitions which do not exist in the single-soliton model. We indicate
the position of the solitons in the graphs by symbols: • for the first one and ◦
for the second one.

Example 1. The 3-tree graph (soliton valve [8], soliton junction [29]):
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For single solitons the automaton is strongly deterministic and has three states.
The transition monoid is the symmetric group S3.

Now consider selected bursts of length 2.
(1) The input (1, 2)‖1(3, 1)⊥ is equivalent to (2, 3)⊥.
(2) The input (1, 2)‖0(3, 2)⊥ leads to the situation shown below. As both

solitons need to leave on the same edge at the same time, it is not clear what
happens to the weight of that edge. The input (1, 2)‖0(3, 1)⊥ leads to the same
situation. By the original definition of soliton paths of [18], one of the two solitons
can leave, while the other one cannot. By Definition 2, both can leave, equivalent
to (2, 3)⊥. This implies that these two definitions are not equivalent in the multi-
soliton case.
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Also the input (1, 2)‖1(1, 2)⊥ reveals that the two definitions are not equiva-
lent. In both cases, Definition 2 leads to an intuitively more convincing result
compared to the original definition of [18].

For the single-soliton model it is sufficient to consider the paths a soliton
might travel through. In the multi-soliton model one needs to consider multiple
paths. This idea is captured in the following definitions. For the sequel, we
assume that G = (N,E,w) is a soliton graph and that the nodes appearing in
bursts are exterior nodes of G.

Definition 5 (Position Map). For m ∈ N, let m = {1, 2, . . . ,m}. Let G =
(N,E,w) be a soliton graph such that N ∩ N0 = ∅. A position map for m is a
mapping of m into N ∪ N0.

If π is a position map for m, then π(i) indicates at which node the ith soliton
is or how many steps are still required until it will enter the graph. π(i) = 0
means that the ith soliton has left the graph.

Definition 6 (Intial Position Map for a Burst). Let

b = (n1, n
′
1)‖k1(n2, n

′
2)‖k2 · · · (nm, n′

m)⊥
be a burst of length m. The initial position map πb for b is defined as follows:
Let r be minimal such that k1 = k2 = · · · kr = 0 and kr+1 > 0 or r = m − 1.
Then

πb(i) =

⎧
⎪⎨
⎪⎩

ni, if 1 ≤ i ≤ r + 1,

kr+1, if i = r + 2,

πb(i − 1) + ki−1, if i > r + 2.

Definition 7 (Final Position Map). A position map π for m is said to be
final if π(i) = 0 for all i ∈ m.

Now we consider the small steps occurring when a burst is the input to
a soliton graph. The original graph undergoes a sequence of changes until it
reaches a (stable) soliton graph again. The duration of the sequence as well as
the actual changes can be non-deterministic. We refer to the (stable) soliton
graphs as states and to the other graphs as intermediate states.

In general, for a soliton graph G = (N,E,w) one considers the underlying
graph Ĝ = (N,E) without weights. We need to consider arbitrary weighted
graphs based on Ĝ (or G) where the weight does not need to satisfy the condition
of soliton graphs. We still restrict the weights of edges to be either one or two.
However, the weight of a node of degree 2 could be 2, 3, or 4 and the weight
of a node of degree 3 could be between 3 and 6. Such weighted graphs serve to
define the state transitions of a soliton automaton.
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Definition 8 (Potential Successor Map). Let G be a soliton graph. Let m ∈
N, and let π and π′ be position maps for m. Let

b = (n1, n
′
1)‖k1(n2, n

′
2)‖k2 · · · (nm, n′

m)⊥

be a burst of length m. The map π′ is a potential successor of π (with respect to
∼ b), if and only if, for i = 1, 2, . . . ,m,

π′(i) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π(i) − 1, if π(i) ∈ N0 and π(i) > 1,

ni, if π(i) ∈ N0 and π(i) = 1,

n, if π(i) ∈ N, n ∈ N and
(
π(i), n

) ∈ E,

0, if π(i) ∈ N is external or if π(i) = 0.

Definition 9 (Configuration Trail). Let G = (N,E,w) be a soliton graph.
Let m ∈ N, and let π and π′ be position maps for m. Let

b = (n1, n
′
1)‖k1(n2, n

′
2)‖k2 · · · (nm, n′

m)⊥

be a burst of length m.
1. A configuration (for b) is a pair (G′, π) such that G′ = (N,E,w′) is a

weighted graph with weights in {1, 2} and π is a position map for m.
2. A configuration trail for G and b is a finite sequence

(G0, π0), (G1, π1), . . .

of configurations with the following properties.
(a) G0 = G, and π0 is the initial position map for b.
(b) Let j ≥ 1. The sequence

(G0, π0), (G1, π1), . . . , (Gj , πj)

is a configuration trail, if and only if

(G0, π0), (G1, π1), . . . , (Gj−1, πj−1)

is a configuration trail such that πj−1 is not final, and Gj(N,E,wj) and
πj and the sequence satisfy the following conditions for all i:
i. πj is a potential successor of πj−1.
ii. If πj−1(i) ∈ N is external and j = 1, then πj(i) ∈ N .
iii. If j > 1 and πj−2(i) = 1, then πj(i) ∈ N .
iv. If j > 1, πj−1(i) ∈ N is external and equal to n′

i, and if πj−2(i) ∈ N ,
then πj(i) = 0.

v. If πj−1(i) ∈ N is internal and πj−2(i) ∈ N , then

wj−2

(
πj−2(i), πj−1(i)

) �= wj−1

(
πj−1(i), πj(i)

)
.

vi. If πj(i) �= 0, then πj(i) �= πj−1(i) and, if j > 1, πj(i) �= πj−2(i).
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vii. Gj is obtained from Gj−1 by changing the weights of some edges as
follows: If

(
πj−1(i), πj(i)

) ∈ E, then

wj

(
πj−1(i), πj(i)

)
= wj

(
πj(i), πj−1(i)

)
= 3 − wj−1

(
πj−1(i), πj(i)

)
.

All other weights remain unchanged.
3. A configuration trail is legal, if it satisfies the following conditions for all

j ≥ 1:
(a) If πj−1(i) and πj−1(i′) are nodes and πj−1(i) = πj−1(i′) for some distinct

i and i′, then πj(i) �= πj(i′).
(b) If πj−1(i) and πj−1(i′) are nodes with

(
πj−1(i), πj−1(i′)

) ∈ E, then
πj(i) �= πj−1(i′) or πj(i′) �= πj−1(i).

4. A configuration trail

(G0, π0), (G1, π1), . . . , (Gj , πj)

is partial if πj is not final. Otherwise it is total.

In the definition, as stated, part (2b) may be undefined without the legality
conditions. We chose this slightly inconsistent presentation to make things easier
to read. The definition restates those parts of Definition 2 which are independent
of the number of solitons while keeping track of all soliton positions. The legality
conditions state that no two solitons can traverse the same edge at the same time
regardless of their mutual directions. As a consequence, no two solitons can enter
the same external node at the same time; this holds true both for exterior nodes
used as entry points and those used as exit points. They can be at an internal
node simultaneously, but must leave it on different edges. Moreover, they cannot
simply swap places.

Proposition 1. Let G = (N,E,w) be a soliton graph and let

b = (n1, n
′
1)‖k1(n2, n

′
2)‖k2 · · · (nm, n′

m)⊥

be a burst. Let (G0, π0), (G1, π1), . . . , (Gj , πj) be any legal configuration trail for
G and b. Then, for h = 0, 1, . . . , j − 1 and all interior nodes n ∈ N , |{i | i ∈
m, πh(i) = n}| < d(n).

Proof. Consider (Gh, πh) with 0 ≤ h < j and an interior node n. Because of
the legality condition, no more than d(n) solitons can arrive at the node n
simultaneously. Hence, we have to show that d(n) solitons cannot arrive at n
simultaneously when there is another legal step in the trail. One distinguishes
several cases according to the degree of n and to how many solitons are at n
prior to the step. We omit the details here. They will be provided in a separate
publication. �
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Using the assumptions of Proposition 1, the statement does not hold in gen-
eral for h = j when the legal configuration trail under consideration is not total.
In that case |{i | i ∈ m, πh(i) = n}| = d(n) is possible. However not all soli-
tons can leave node n because of the legality conditions. Hence, the legal partial
configuration trail cannot be continued into a legal total configuration trail.

Definition 10 (Result of a Burst). Let G be a soliton graph and let b be a
burst. The result of burst b on G is the set Result(G, b) of weighted graphs G′

such that there is a legal total configuration trail for b transforming G into G′.

The set Result(G, b) should be considered as analogous, in the multi-soliton
model, to the set S(G,n, n′) in the single-soliton model. We show below that
every element of Result(G, b) is again a soliton graph.

We extend the operator Result to sets of graphs and bursts and then define
its closure under iteration: As before, let Γ be the set of soliton graphs with the
same underlying graph as G and let G ⊆ Γ . Let X be the set of exterior nodes
of these graphs. Let B ⊆ B(X × X) be a set of bursts. Define

Result(G, B) =
⋃

G∈G

⋃
b∈B

Result(G, b).

For i ∈ N0 let

Resulti(G, B) =

{
G, if i = 0, and
Result

(
Resulti−1(G, B), B

)
, if i > 0.

Finally, let
Result∗(G, B) =

⋃
i≥0

Resulti(G, B).

For a given graph G, the set of soliton graphs with G as underlying graph is
finite. Therefore, the set G is finite. Hence also Result∗(G, B) is finite and there
is a finite subset B′ of B such that Result∗(G, B) is equal to Result∗(G, B′) and
Result∗(G, B′) can be computed in finitely many steps.

Proposition 1 establishes that no interior node n can have more than d(n)−1
solitons occupying it. The following more precise statement clarifies the connec-
tion between the degree of an interior node, its weight, and the number of solitons
at the node.

Proposition 2 (Interior Nodes without Solitons). Let G = (N,E,w) be
a soliton graph and let b = (n1, n

′
1)‖k1(n2, n

′
2)‖k2 · · · (nm, n′

m)⊥ be a burst. Let
(G0, π0), (G1, π1), . . . , (Gj , πj) be any legal configuration trail for G and b with
j > 1. Then, for h = 0, 1, . . . , j and all interior nodes n ∈ N , wh(n) = d(n) + 1
whenever π−1

h (n) = ∅.
Proof. As the trail is legal, at most d(n) − 1 solitons can be at n at any step
h < j. For h = 0 the statement holds true. Consider the smallest h such that
solitons arrive at n for the first time. Let h′ be smallest such that h < h′ ≤ j
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such that no solitons are present at node n at step h′. If no such h and h′ exists,
the statement is trivially true.

Hence, suppose h and h′ exist. One shows that the statement holds true at
step h′ using an extensive case distinction. By induction, this implies the claim.
The details of the proof will be provided in another publication. �

Proposition 3 (Preservation of Soliton Graphs under Bursts). Let G be
a soliton graph and let b a burst. Every G′ ∈ Result(G, b) is a soliton graph.

Proof. Every G′ ∈ Result(G, b) is obtained by a legal total configuration trail.
As the trail is total, there is no soliton on any node in the end. Hence, by
Proposition 2, G′ is a soliton graph. �

Proposition 4 (Model Consistency). Let G be a soliton graph. Let n and
n′ be exterior nodes of G and let b = (n, n′)⊥. Then S(G,n, n′) = Result(G, b).
Moreover, there is a one-to-one correspondence between soliton paths from n
to n′ and legal total configuration trails for b.

Proof. This is a direct consequence of the equivalence of Definition 2 with Defi-
nition 9 for the special case of bursts of length 1. �

Definition 11 (Multi-Soliton Automaton). Let G be a soliton graph with
set X of external nodes. Let B ⊆ B(X × X) be a set of bursts. Let

States(G,B) = Result∗(G,B).

The B-soliton automaton of G is the finite automaton AB(G) with inputs b ∈ B,
state set States(G,B) and non-deterministic transition function

τ(G′, b) =

{
Result(G′, b), if Result(G′, b) �= ∅,

{G′}, otherwise,

for G′ ∈ States(G,B) and b ∈ B.

Note that States(G,B) is finite and that B can always be assumed to be
finite.

Proposition 5. Let G be a soliton graph with set X of external nodes. Let
B ⊆ B(X × X) be a set of bursts. Let m ∈ N.
1. AB(G) is connected (as automaton). Every state can be reached from G.
2. For B = B≤m, AB(G) is strongly connected (as automaton).
3. AB≤m

(G) is a subautomaton of AB≤m+1(G).
4. There is a soliton graph G such that AB1(G) is a proper subautomaton of

AB≤2(G).
5. There is a k ∈ N, depending on G, such that

States(G,B≤k) = States(G,B≤k+j)

for all j ∈ N.
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6. There is a k ∈ N, depending on G, such that AB≤k
(G) = AB≤k+j

(G) for all
j ∈ N.

7. Observation 1 does not hold in general for bursts of length greater than 1.

Proof. The first statement is a direct consequence of the definition of the set
States(G,B). The second statement follows from the fact that AB1(G) is strongly
connected. The third statement is a consequence of the inclusion B≤m ⊆ B≤m+1.
For the fourth statement we provide an example: Let G be the soliton graph of
Fig. 2. The path going to the right at node j is impervious for single solitons.
However, it is used by the burst (1, 1)‖1(1, 1)⊥, and this changes the weights
on both cycles. The automaton AB1(G) has two states while AB≤2(G) has four
states. The transition monoid of the former is S2, that of the latter is S2 ×S2.
The fifth statement is a consequence of the fact that the set of soliton graphs
with the same underlying graph is bounded. The sixth statement follows from
the fifth by finiteness. For the seventh statement one considers different values
of k in the burst (1, 1)‖k(1, 1)⊥ for the soliton graph considered above. �

In the single-soliton model all inputs cause involutorial transformations;
hence the soliton automaton is strongly connected and, moreover, the transition
monoid is a group. We believe that this might be true also for the multi-soliton
model, but expect that some kind of reversal on bursts may be needed. In the
fifth statement of Proposition 5 we only assert that the state set will stabilize
when a certain length of bursts has been reached. The sixth statement says that
at some stage, the automata are the same. We don’t know, whether this happens
at the same stages.

The example used for the fourth statement enables an impervious path lead-
ing to a part of the graph which would be unaccessible otherwise. The example
suggests that we should expect a direct product of transition monoids arising
from the single-soliton model. We do not think that this is the whole picture.

6 From Here, Where?

Modelling the effect of more than a single soliton turned out to be significantly
more complicated than expected. We believe that our model captures most of
the essential facts; whether it does, in essence, should be answered by physics.
One can, however, also treat our model, while originally motivated by physical or
chemical processes, as a network model with complicated traffic, for instance that
of a railway system, in which many trains move around nearly independently,
only controlled by local signals.

Many natural questions remain unanswered and are left for a successor to
this paper: One needs to clarify the distinction between determinism and strong
determinism. What is the time or length bound for bursts, such that adding
bursts exceeding these bounds will not change the transition monoid of the
automaton? Are the transformations induced by bursts involutorial? Can resets
be caused by bursts? Can matching theory help?
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To some of these and further natural questions we have partial answers. It
has become evident, however, that there are fundamental differences between
the single-soliton and the multi-soliton models.

A complete version of the present paper including full proofs, detailed expla-
nations and examples, and further results and discussions is about to be sub-
mitted to a journal.
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Abstract. We consider power series over a graded monoid M of finite
type. We show first that, under certain conditions, the equivalence prob-
lem of power series over M with coefficients in the semiring N of non-
negative integers can be reduced to the equivalence problem of power
series over {x}∗ with coefficients in N. This result is then applied to
rational and recognizable power series over M with coefficients in N, and
to rational power series over Σ∗ with coefficients in the semiring Q+ of
nonnegative rational numbers, where Σ is an alphabet.

1 Power Series over a Graded Monoid and a Decidability
Result

In [4], Sakarovitch considers power series over a graded monoid. Let 〈M, ·, 1〉 be
a monoid and let | | : M → N be a mapping, called length, such that

(i) |m| > 0 for all m ∈ M , m �= 1;
(ii) |m · n| = |m| + |n| for all m,n ∈ M .

Then 〈M, ·, 1〉 is called graded monoid. The definition implies that |1| = 0. If
a graded monoid M is finitely generated, we call M a graded monoid of finite
type. In Section 2 of [4], Sakarovitch proves the following results:

Proposition 1 (Sakarovitch [4]). In a graded monoid of finite type, the number
of elements whose length is less than an arbitrary given integer n > 0 is finite.

A monoid is called finitely decomposable if, for all m ∈ M , the set of pairs
(m1,m2) such that m1m2 = m is finite.

Corollary 1 (Sakarovitch [4]). In a graded monoid of finite type, every element
is finitely decomposable.

Let S be a semiring and M be a graded monoid of finite type. Then any
mapping from M into S is a (formal) power series (over M with coefficients in
S). The set of all these power series is denoted by S〈〈M〉〉. If r is a power series
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then the image of an element m ∈ M under r is denoted by (r,m) which is called
coefficient of m and the power series is written as

r =
∑
m∈M

(r,m)m .

Power series where almost all coefficients are 0 are called polynomials. The set
of all polynomials is denoted by S〈M〉.

For all r1, r2 ∈ S〈〈M〉〉, we consider the following operations:

(i) the (pointwise) addition of r1 and r2, denoted by r1 + r2 and defined by

(r1 + r2,m) = (r1,m) + (r2,m) for all m ∈ M ;

(ii) the (Cauchy) product of r1 and r2, denoted by r1 · r2 and defined by

(r1 · r2,m) =
∑

m1m2=m

(r1,m1)(r2,m2) for all m ∈ M ;

(iii) the (pointwise) Hadamard product of r1 and r2, denoted by r1 � r2 and
defined by

(r1 � r2,m) = (r1,m)(r2,m) for all m ∈ M ;

Moreover, we consider the scalar multiplications of s ∈ S and r ∈ S〈〈M〉〉 denoted
by s · r and r · s and defined by

(s · r,m) = s · (r,m) and (r · s,m) = (r,m) · s for all m ∈ M , respectively.

The power series 0 and 1 are defined by

(0,m) = 0 for all m ∈ M and
(1, 1) = 1, (1,m′) = 0 for all m′ ∈ M , m′ �= m, respectively.

Proposition 2 (Sakarovitch [4]). Let M be a graded monoid of finite type and
S a semiring. Then 〈S〈〈M〉〉,+, ·, 0, 1〉 and 〈S〈M〉,+, ·, 0, 1〉 are semirings.

In the sequel, 〈M, ·, 1〉 will always denote a graded monoid of finite type and
S will denote a semiring.

A power series r ∈ S〈〈M〉〉 is called cycle-free if there exists an n ≥ 1 such
that (r, 1)n = 0; it is called proper if (r, 1) = 0. Let r ∈ S〈〈M〉〉. Then the proper
part of r is the power series

∑
m∈M, m �=1(r,m)m and the constant term of r

is the power series (r, 1)1, also written (r, 1). If r ∈ S〈〈M〉〉 is cycle-free then
{n | (rn,m) �= 0} is locally finite, i. e., is a finite set for all m ∈ M . Hence, the
infinite sum

r∗ =
∑
n≥0

rn

is defined; it is called the star of r.
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Proposition 3 (Sakarovitch [4]). Let r ∈ S〈〈M〉〉 be a cycle-free power series
with constant term r0 and proper part r1. Then

r∗ = (r∗
0r1)∗r∗

0 = r∗
0(r1r

∗
0)∗ .

Defining ϕ : N〈〈M〉〉 → N〈〈{x}∗〉〉, x a symbol, by

ϕ(r) =
∑
m∈M

(r,m)x|m| ,

it is easily shown that ϕ is a semiring morphism. The mapping ϕ is also com-
patible with the star operation applied to a cycle-free power series r, i. e.,

ϕ(r∗) = ϕ(r)∗ if r ∈ N〈〈M〉〉 is cycle-free.

A power series r ∈ S〈〈M〉〉 is termed rational (over S and M) if r can be
obtained from polynomials of S〈M〉 by finitely many applications of the rational
operations +, ·, ∗, where ∗ is applied only to proper power series. The family of
rational power series (over S and M) is denoted by Srat〈〈M〉〉. By Proposition 3,
we get an equivalent definition of rational power series if we replace proper by
cycle-free. The formula telling how a given rational power series r is obtained
from these polynomials by rational operations is referred to as a rational expres-
sion for r.

Theorem 1. Let M be a graded monoid of finite type and assume that | | : M →
N is recursive. Then ϕ, as a mapping N

rat〈〈M〉〉 → N
rat〈〈{x}∗〉〉, is recursive.

Proof. We prove the theorem by induction on the structure of a rational power
series r ∈ N

rat〈〈M〉〉. We show that from a rational expression for r ∈ N
rat〈〈M〉〉

we can compute a rational expression for ϕ(r) since ϕ is a semiring morphism
preserving ∗.

(i) For r = n, n ∈ N, ϕ(r) = nε. For r = a, a ∈ M , ϕ(a) = x|a|. Since ϕ is a
semiring morphism, ϕ(p) ∈ N〈{x}∗〉 for p ∈ N〈M〉.

(ii) Since ϕ is a semiring morphism, we obtain ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)
and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2).

(iii) Since ϕ is a semiring morphism, we obtain, for a proper power series in
N〈〈M〉〉,

ϕ(r∗) =
∑
n≥0

ϕ(rn) =
∑
n≥0

ϕ(r)n = ϕ(r)∗ .

�

We call a power series r ∈ S〈〈M〉〉 unambiguous if, for all m ∈ M , (r,m) ∈
{0, 1}.

In the proof of our next theorem we use the following equality:

(ϕ(r), xk) =
∑

|m|=k

(r,m), r ∈ N〈〈M〉〉, k ≥ 0 .

This next theorem is a generalization of Theorems 16.21 and 16.22 of Kuich,
Salomaa [3].



52 Z. Ésik and W. Kuich

Theorem 2. Let M be a graded monoid of finite type and assume that | | :
M → N is recursive. Then

(i) for r1, r2 ∈ N
rat〈〈M〉〉 with (r1,m) ≥ (r2,m) for all m ∈ M the problem

whether or not r1 = r2 is decidable;
(ii) if R ⊆ N

rat〈〈M〉〉 such that, for s1 ∈ N
rat〈〈M〉〉 and s2 ∈ R, s1 � s2 is in

N
rat〈〈M〉〉, then for two unambiguous power series r1 ∈ N

rat〈〈M〉〉 and r2 ∈ R
the problem whether or not r1 = r2 is decidable.

Proof. By Theorem 1 the mapping ϕ : Nrat〈〈M〉〉 → N
rat〈〈{x}∗〉〉 is recursive. By

Corollary 8.18 of Kuich, Salomaa [3] the equivalence problem for power series in
N

rat〈〈{x}∗〉〉 is decidable. Hence, for two given rational power series r1 and r2 in
N

rat〈〈{x}∗〉〉 we can decide, whether or not ϕ(r1) = ϕ(r2).
(i) If ϕ(r1) = ϕ(r2) then, for all k ≥ 0,

∑
|m|=k(r1,m) =

∑
|m|=k(r2,m).

Hence, (r1,m) ≥ (r2,m) for all m ∈ M implies (r1,m) = (r2,m). If ϕ(r1) �=
ϕ(r2) then, for some k ≥ 0,

∑
|m|=k(r1,m) �= ∑

|m|=k(r2,m). Hence, for some
m′ ∈ M of length k we obtain (r1,m

′) �= (r2,m
′).

(ii) Since (r1,m) and (r2,m) are in {0, 1} for all m ∈ M , we obtain (r1 �
r2,m) ≤ (r1,m) and (r1 � r2,m) ≤ (r2,m) for all m ∈ M . By (i) it is decidable
whether or not r1 � r2 = r1 and r1 � r2 = r2. Clearly, r1 = r2 iff r1 � r2 = r1

and r1 � r2 = r2. Hence, r1 = r2 is decidable. �

2 Decidability Problems for Unambiguous Power Series

In the sequel, Σ, 1 /∈ Σ, denotes a finite generating set of M and S denotes a
semiring. We write Σ∗ for the set of all finite products of elements of Σ. Hence,
we obtain Σ∗ = M . By S〈Σ ∪ {1}〉 and S〈{1}〉 we denote the set of polynomials
of the form p = (p, 1)1 +

∑
x∈Σ(p, x)x and p = (p, 1)1, respectively.

A finite (weighted) automaton (over Σ and S)

A = (Q,R,A, P )

is given by

(i) a finite nonempty set Q of states,
(ii) a transition matrix A ∈ (S〈Σ ∪ {1}〉)Q×Q,
(iii) an initial state vector R ∈ (S〈{1}〉)1×Q,
(iv) an final state vector P ∈ (S〈{1}〉)Q×1.

The finite automaton A is cycle-free (resp. proper) if the isomorphic copy of A
in SQ×Q〈Σ ∪ {1}〉 is cycle-free (resp. proper).

The behavior ||A|| of a cycle-free finite automaton A is defined by

||A|| =
∑

q1,q2∈Q

Rq1(A
∗)q1,q2Pq2 = RA∗P .

(See Sakarovitch [4], Section 3 and Gruska [1], Chapter 3.)
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By Proposition 3.14 of Sakarovitch [4], for each cycle-free finite automaton
there exists a proper finite automaton with the same behavior.

By Theorem 3.10 of Sakarovitch [4], we obtain

Srat〈〈M〉〉 = {||A|| | A is a proper finite automaton over Σ and S} .

Let μ : M → SQ×Q, Q a finite index set, be a morphism, and let λ ∈ S1×Q,
ν ∈ SQ×1. Then (λ, μ, ν) is called S-representation of M of dimension Q. A
power series r ∈ S〈〈M〉〉 is called S-recognizable if there exists a finite set Q and
an S-representation of M of dimension Q (λ, μ, ν) such that

r =
∑
m∈M

(λμ(m)ν)m .

We say then that the S-representation (λ, μ, ν) recognizes r. The set of all S-
recognizable formal power series is denoted by Srec〈〈M〉〉.
Theorem 3 (Sakarovitch [4], Theorem 4.38). Suppose that S is a commuta-
tive semiring. Let r ∈ Srec〈〈M〉〉 and u ∈ Srat〈〈M〉〉. Then r � u ∈ Srat〈〈M〉〉.
Moreover, if r is recognized by an S-representation and u is given by a rational
expression then a rational expression for r � u can be effectively constructed.

Proof. The first sentence of our theorem is implied by Theorem 4.38 of
Sakarovitch [4]. For the proof of the second sentence, we first show that the con-
structions of Theorems 4.13 and 4.35, and of Proposition 4.33 of Sakarovitch [4]
are effective. We use the notation of Sakarovitch [4] as far as possible.
Theorem 4.13: If r and u in Srec〈〈M〉〉 are recognized by the S-representations
(λ, μ, ν) and (η, κ, ξ), respectively, then r � u is recognized by the S-
representation (λ ⊗ η, μ ⊗ κ, ν ⊗ ξ), where ⊗ denotes the Kronecker product.
Clearly, the construction is effective.
Theorem 4.35: Let M and N be graded monoids and θ : M → N be a continuous
monoid morphism, i. e., mθ is unequal to the unit of N for all m ∈ M .

(i) From a rational expression for r ∈ Srat〈〈M〉〉 a rational expression for rθ ∈
Srat〈〈N〉〉 can effectively be constructed.

(ii) If θ is surjective, then from a rational expression for u ∈ Srat〈〈N〉〉 a ratio-
nal expression for some r ∈ Srat〈〈M〉〉 such that rθ = u can effectively be
constructed.

Proposition 4.33: Let θ : M → N be a monoid morphism and u ∈ Srec〈〈M〉〉
be recognized by the S-representation (λ, μ, ν). Then uθ−1 ∈ Srec〈〈M〉〉 is recog-
nized by the S-representation (λ, θμ, ν). Clearly, the construction of the latter
S-representation is effective.

We now prove the second sentence of our theorem. Since M is finitely gen-
erated there exists a finite alphabet Σ′ and a surjective continuous morphism
θ : Σ′∗ → M . Here Σ′ has the same cardinality as the generating set Σ of
M . Assuming Σ = {m1, . . . , mk} and Σ′ = {x1, . . . , xk} we construct effec-
tively θ(xj) = mj , 1 ≤ j ≤ k. By Theorem 4.35(ii) there exists a power series
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u′ ∈ Srat〈〈(Σ′)∗〉〉 such that u′θ = u and a rational expression for u′θ can effec-
tively be constructed by the given rational expression for u.

By Lemma 4.37 of Sakarovitch [4],

r � u = (rθ−1 � u′)θ .

Proposition 4.33 ensures that rθ−1 ∈ Srec〈〈Σ′∗〉〉 = Srat〈〈Σ′∗〉〉. It is wellknown
that a rational expression for rθ−1 can effectively be constructed from an
S-representation that recognizes rθ−1. Hence, a rational expression for rθ−1

can effectively be constructed. Since rθ−1 � u′ ∈ Srec〈〈Σ′∗〉〉 = Srat〈〈Σ′∗〉〉
by Theorem 4.13 a rational expression for rθ−1 � u′ can effectively be con-
structed. Finally, by Theorem 4.35(i) the construction of a rational expression
for (rθ−1 � u′)θ = r � u is effective. �

A monoid M is called rationally enumerable if char(M) ∈ N
rat〈〈M〉〉. Here

char denotes the characterisic series.

Theorem 4 (Sakarovitch [4], Corollary 4.39). Suppose that S is a commutative
semiring. If M is rationally enumerable then Srec〈〈M〉〉 ⊆ Srat〈〈M〉〉. If an S-
representation recognizing r ∈ Srec〈〈M〉〉 is given then a rational expression for
r can effectively be constructed.

Proof. We use the proof of Corollary 4.39 of Sakarovitch [4]. Since r ∈ Srec〈〈M〉〉
and, by hypothesis, char(M) ∈ Srat〈〈M〉〉, we obtain r�char(M) = r ∈ Srat〈〈M〉〉
and, by Theorem 3, a rational expression for r can be effectively constructed from
a given S-representation recognizing r. �

Corollary 2. Let M be a graded monoid of finite type that is rationally enu-
merable and assume that | | : M → N is recursive. Then ϕ, as a function
N

rec〈〈M〉〉 → N
rat〈〈{x}∗〉〉, is recursive.

Theorem 5. Let M be a rationally enumerable graded monoid of finite type
such that | | : M → N is recursive. Then for two unambiguous power series
r ∈ N

rat〈〈M〉〉 and s ∈ N
rec〈〈M〉〉 the problem whether or not r = s is decidable.

Proof. By Theorem 1 and Corollary 2, ϕ : N
rat〈〈M〉〉 → N

rat〈〈{x}∗〉〉 and ϕ :
N

rec〈〈M〉〉 → N
rat〈〈{x}∗〉〉, respectively, are recursive. Now the application of

Corollary 8.18 of Kuich, Salomaa [3] and of Theorems 3 and 2 (ii) proves our
theorem. �

Harju, Karhumäki [2] proved the famous result that the equivalence problem
for deterministic finite multitape automata is decidable. The next corollary states
a weak version of this result.

Corollary 3. Let Σ1, . . . ,Σn be alphabets. Then for a deterministic finite auto-
maton A over Σ = {(a1, ε, . . . , ε) | a1 ∈ Σ1} ∪ · · · ∪ {(ε, ε, . . . , an) | an ∈ Σn}
and N, and an unambiguous power series r ∈ N

rec〈〈Σ∗
1 × · · · × Σ∗

n〉〉 the problem,
whether or not ||A|| = r is decidable.
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An inspection of the proof of Theorem 2 shows that R ⊆ N
rat〈〈M〉〉 can be

replaced by R ⊆ Srat〈〈M〉〉 if the semiring S is ordered and satisfies the following
condition: For all a1, a2, b1, b2 ∈ S,

a1 + a2 = b1 + b2, a1 ≥ b1, a2 ≥ b2 imply a1 = b1, a2 = b2.

A nontrivial complete ordered semiring does not satisfy this condition; the semi-
rings Q+ and R+ do satisfy this condition.

Theorem 6. Let Σ be an alphabet and r ∈ Q
rat
+ 〈〈Σ∗〉〉 such that (r, w) ≤ 1 for

all w ∈ Σ∗. Then it is decidable whether or not r is unambiguous.

Proof. Since (r, w) ≤ 1 for all w ∈ Σ∗ we have r � r ≤ r. Since Q
rat
+ 〈〈Σ∗〉〉 is

closed under Hadamard product, by Corollary 8.18 of Kuich, Salomaa [3] and
by Theorem 2 (i) it is decidable whether or not r � r = r. The theorem is proved
by the observation that r � r = r iff (r, w) ∈ {0, 1} for all w ∈ Σ∗. �
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Abstract. The study of cellular automata rules suitable for cryp-
tographic applications is under consideration. On one hand, cellular
automata can be used to generate pseudo-random sequences as well as
for the design of S-boxes in symmetric cryptography. On the other hand,
Boolean functions with good properties like resiliency and non-linearity
are usually obtained either by exhaustive search or by the use of genetic
algorithms. We propose here to use some recent research in the classi-
fication of Boolean functions and to link it with the study of cellular
automata rules. As a consequence of our technique, this also provides a
mean to get Boolean functions with good cryptographic properties.

Keywords: Cellular automata · Random number generation · Boolean
functions

1 Introduction

Cellular automata (CA) are models of finite state machines used in many appli-
cations. They form a discrete model of parallelism evolving within discrete time
steps according to a local updating rule. CAs are employed for the generation
of cryptographic binary pseudo-random sequences [18] and for solving the fir-
ing squad problem [10]. Pseudo-random sequences (PRS) have a long history
of applications to computational (Monte Carlo sampling, numerical simulation)
and communications problems (coding theory, stream ciphers). In the present
work, we particularly focus on the search for good local CA rules by using math-
ematical tools from Boolean functions. For this, we consider a CA rule as a
Boolean function in several variables (from three up to five) and we search for
Boolean functions that fulfill good cryptographic properties such as non-linearity
and resiliency. Next, we use those good Boolean functions as CA rules that can
be iterated to provide ’extended’ Boolean functions (in nine variables). This
work (starting with Boolean functions in four variables) requires an exhaustive
search among all possible Boolean functions. The methodology that we use can
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provide Boolean functions satisfying non-linearity and resiliency properties with
a large number of variables (up to nine here). Such Boolean functions are (yet)
unreachable by a classical brute force search because of the combinatorial explo-
sion.

Such Boolean functions (or CA rules) can be used in many applications.
Either directly for pseudo-random sequences generation or as updating functions
for providing lightweight random sources of good quality in sensor networks.
Other target applications can be joined compression and data encryption (also
called co*cryption [15]), or used in hardware devices like FPGA or GPU for
quickly providing randomness.

The material is organized as follows. Section 2 introduces the definitions and
notations from both cellular automata and Boolean functions theories. Section 3
recalls related results. More precisely, it provides evidence that there is no rule
with three variables which provides cryptographic pseudo-random sequences. It
also recalls a classification from [11] which lists all equivalence classes containing
rules with four variables suitable for generating cryptographic pseudo-random
sequences. Section 4 presents the main contribution of the paper and gives some
of the five variable rules that can be used for generating cryptographic pseudo-
random sequences. In Section 5, we present some statistical testing against the
sequences generated by using five variable rules selected from Section 4. Finally,
Section 6 concludes the paper and proposes future research directions.

2 Definition and Notation

This section recalls some basic notation and facts on pseudo-randomness, CAs
and Boolean functions.

2.1 Pseudo-Randomness

In [20], three mechanisms responsible for random behavior in systems are
described: (1) Randomness from physics like brownian motion; (2) Randomness
from the initial conditions which is studied by chaos theory; and (3) Random-
ness by design, also called pseudo-randomness. Many algorithms generate PRS.
The behavior of the system is fully determined by knowing the seed and the
algorithm used. They are quicker methods than extracting “true” randomness
from the environment, inaccessible to computers.

The applications of randomness have led to many different methods for gen-
erating random data. These methods may vary as to how unpredictable or statis-
tically random they are, and how quickly they can generate random sequences.
Before the age of computational PRS, generating large amount of random num-
bers required a lot of work and were distributed as random number tables.

In the sequel, we will consider pseudo-random generators (PRG). This cor-
responds to a deterministic algorithm which “stretches” a short truly random
sequence (the seed) into a polynomially longer sequence that appears to be
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“random” (although it isn’t). In other words, although the output of a PRG is
not really random, it is (polynomially for probabilistic distinguishers) unfeasible
to tell the difference. It turns out that pseudorandomness and computational
complexity are linked in a fundamental way (see [8] for further details). More
practically, this corresponds to the behavior of random number generators imple-
mented in operating systems. In this case, the short truly random sequence cor-
responds to the pseudo-device /dev/random and the output of the PRG to the
pseudo-device /dev/urandom for producing more random bits of weaker quality.

2.2 Cellular Automata

One-dimensional binary CAs consist of a line of cells taking their states among
binary values. For practical implementations, the number of cells is finite. There
are two cases: a CA has periodic boundary conditions if the cells are arranged
in a ring and it has null boundary conditions when both extreme cells are con-
tinuously fixed to zero. All the cells are finite state machines with an updating
function which gives the new state of the cell according to its current state and
the current state of its nearest neighbors. For a presentation of CAs, see [9].

In [18], it was proposed to use CAs to produce PRS. Binary CAs with l cells
(l = 2N +1 for N ∈ N) were considered. For a CA, the values of the cells at time
t ≥ 0 are updated synchronously by a Boolean function f with n = r1 + r2 + 1
variables by the rule xi(t + 1) = f(xi−r1(t), . . . , xi(t), . . . , xi+r2(t)). Elementary
CAs are such that r1 = r2 = 1. For a fixed t, the sequence of the values xi(t)
for 1 ≤ i ≤ 2N + 1, is the configuration at time t. It is a mapping c : [[1, l]] → F2

which assigns a Boolean state to each cell. The initial configuration (t = 0)
x1(0), . . . , xl(0) is the seed, the sequence (xN (t))t is the output sequence and,
when r1 = r2 = r, the number r is the radius of the rule. The Wolfram numbering
associates a rule number to any one of the 256 elementary CA; it takes the binary
expansion of a rule number as the truth table of a 3-variable Boolean function.

2.3 Boolean Functions

A Boolean function is a mapping from F
n
2 into F2. In the sequel, additions in Z

(resp. F2) will be denoted by + and Σ (resp. ⊕ and
⊕

), products by × and
∏

(resp. · and
∏

). When there is no ambiguity, + will denote the addition of binary
vectors. If x and y are binary vectors, their inner product is x · y =

∑n
i=1 xiyi.

A very handy representation of Boolean function is the algebraic normal form:

Definition 1 (ANF). A Boolean function f with n variables is represented by
a unique binary polynomial in n variables, called algebraic normal form: f(x) =⊕

u∈F
n
2

au(
∏n

i=1 xui
i ) au ∈ F2, ui is the i-th projection of u.

Example 1. The ANF of rule (30) is x1 ⊕ x2 ⊕ x3 ⊕ x2x3 or 1+2+3+23.

The degree of the ANF or algebraic degree of f corresponds to the number of
variables in the longest term xu1

1 . . . xun
n in the ANF of f . The Hamming weight
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wH(f) of f is the number of x ∈ F
n
2 such that f(x)= 1. The Hamming weight

wH(x) of x ∈ F
n
2 counts the number of 1-valued coordinates in x. f is balanced

if wH(f) = wH(1 ⊕ f) = 2n−1.

Definition 2. f and g Boolean functions in n variables are equivalent iff

f(x) = g ((x · A) ⊕ a) ⊕ (
x · BT

) ⊕ b, ∀x ∈ F
n
2 (1)

where A is a non-singular binary n×n matrix, b a binary constant, a and B ∈ F
n
2 .

An important tool in the study of Boolean functions is the Fourier-Hadamard
transform, a linear mapping which maps a Boolean function f to the real-valued
function f̂(u) =

∑
x∈F

n
2

f(x)(−1)u·x, which describes the spectrum of the latter.
When applied to the sign function fχ(x) = (−1)f(x), the Fourier-Hadamard
transform is the Walsh transform: f̂χ(u) =

∑
x∈F

n
2
(−1)f(x)⊕u·x . Since fχ(u) =

1 − 2f(u), the Fourier-Hadamard transform is:

f̂(u) =
1
2

∑
x∈F

n
2

(−1)u·x − 1
2
f̂χ(u) , (2)

Using Eq. (2), we obtain that f̂χ(u) = 2nδ0 − 2f̂(u), where δ0 denotes the Dirac
symbol defined by δ0(u) = 1 if u is the null vector and δ0(u) = 0 otherwise [4].

If f and g are two equivalent Boolean functions in n variables, it holds that:

f̂χ(u) = (−1)a·A−1(ut+BT )+b ĝχ((u ⊕ B)(A−1)T ) . (3)

This property is used by [3] for counting the number of functions satisfying some
cryptographic properties.

The Walsh transform allows to study the correlation-immunity of a function.

Definition 3. A Boolean function f in n variables is k-correlation-immune
(0 < k < n) if, given any n independent and identically distributed binary ran-
dom variables x1, · · · , xn according to a uniform Bernoulli distribution, then
the random variable Z = f(x1, . . . , xn) is independent from any random vector
(xi1 , xi2 , . . . , xik), 1 ≤ i1 < · · · < ik < n. When f is k-correlation immune and
balanced, it is k-resilient.

In [21], a spectral characterization of resilient functions was given:

Theorem 1. A Boolean function f in n variables is k-resilient iff it is balanced
and f̂(u)=0 for all u ∈ F

n
2 s.t. 0<wH(u)≤ k. Equivalently, f is k-resilient iff

f̂χ(u)=0 for all u ∈ F
n
2 s.t. wH(u)≤k.

Theorem 1 concerns both transforms (refer to [4] for further details).

Theorem 2 (Siegenthaler Bound). For a k-resilient (0 ≤ k < n−1) Boolean
function in n variables, there is an upper bound for its algebraic degree d: d ≤
n − k − 1 if k < n − 1 and d = 1 if k = n − 1.
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2.4 Some Properties of the Fourier-Hadamard Transform

Computing the Fourier-Hadamard transform We use the Fourier-Hadamard
transform from [6] called the Walsh or Sequency Ordered Transform (WHT)w.
This transform is used to study the CA rules in order to find the best rules for
generating PR sequences, like in [7,14]. To check the rules, we use the fast trans-
form algorithm whose time complexity is O(n log n). The algorithm receives as an
input an array F of size 2n which contains the images by the t iterates of the local
rule f of all the configurations of n cells naturally ordered: f t(0), . . . , f t(2n − 1)
and outputs the transform F̂ in the reverse order: f̂ t(2n − 1), . . . , f̂ t(0).

Application to CA rules We proceed step by step with increasing values of t,
which counts the number of times the local rule in 5 variables, supposed to be
1-resilient, is iterated on an initial configuration. In this way, we consider the
natural extension of f : F

5
2 → F2 to f : F

n+4
2 → F

n
2 where:

f(x0, . . . , xn+4) = (y1, . . . , yn) s.t. yj = f(xj−2, xj−1, xj , xj+1, xj+2), j ∈ [[1, n]]

Using the extended f , one can define the t-th iterate of f which is a function
f t : F

4t+1
2 → F2. We compute next the maximum absolute value of the Fourier-

Hadamard transform of the tth-iterate of f at all the points u of Hamming weight
1 and we select the rules with a minimum spectral value.

The computation is repeated with increasing values of t until we identify
rules with flat spectral or relatively small values which are slowly growing.

Some properties on the iterates In order to find other CA rules which preserve
resiliency upon iterates, one can remark that the Fourier-Hadamard transform
is preserved under some transformations like the reflection (which just takes
the mirror-image of the initial configuration). Unfortunately, the other classical
transformations on CAs (conjugation and conjugation-reflection) do not preserve
the resiliency upon iterates in general.

Let Φ denote the reverse operator Φ : F
m
2 → F

m
2 , Φ((v1, . . . , vm)) =

(vm, . . . , v1).

Definition 4. Let f : F
2m+1
2 → F2 be the local function of a CA. Then,

fR(x−m, . . . , x0, . . . , xm) = Φ ◦ f(xm, . . . , x0, . . . , x−m) is the reflection of f .

Another basic transformation is given by Ψ(x) = 1 ⊕ x for x ∈ F2. It
corresponds to the negation of the variable and is used for designing the
conjugation and the conjugation-reflection introduced in [19, p. 492]. With
some abuse of notation, Ψ is extended to sequences of Boolean variables: for
u = (u1, u2, . . . , un) with ui ∈ F2, Ψ(u) = (Ψ(u1),Ψ(u2), . . . ,Ψ(un)). Moreover,
Ψ−1 = Ψ.

Definition 5. Let f : F
2m+1
2 → F2 be the local function of a CA. Then

fN (x−m, . . . , x0, . . . , xm) = Ψ ◦ f(Ψ(xm, . . . , x0, x−m)) is the negation of f .

One can see that for any t ∈ N, f t ◦ H = H ◦ f t
R for H = Ψ or H = Φ.
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Lemma 1. Let Ξ : F
2m+1
2 → F

2m+1
2 be 1:1 and f : F

2m+1
2 → F2 a CA. Then,

wH(f) = wH(f ◦ Ξ).

Proposition 1 shows that resiliency is preserved by the reflection when the
local rule is iterated.

Proposition 1. Let f : F
2m+1
2 → F2 be the local function of a CA. For any

t ∈ N, let 0 < k ≤ 2mt + 1. Then, f t
R is k-resilient iff f t is k-resilient.

Proof. The transformation Φ is bijective. Hence, by Lemma 1, we have wH(fR) =
wH(f ◦ Φ) = wH(f). Since f is balanced, wH(fR) = wH(Ψ ◦ f). Now, applying
Lemma 1 to Ψ◦f and using last equation, it holds wH(Ψ◦f) = wH(Ψ◦f ◦Φ) =
wH(Ψ ◦ fR). Let a = B = (0, 0, . . . , 0), b = 0 and A the reverse identity matrix.
Remark that A is non-singular, then, by using Eq. 3, one obtains (̂ft

R)χ(u) =
f̂t
χ(u · (A−1)T ) = f̂t

χ(u · A) = f̂t
χ(A · u) which entails

f̂ t
R(u) = f̂ t(A · u) . (4)

Now, assume that f t is k-resilient. Remark that wH(A · u) = wH(u) for any u,
therefore, by Theorem 1, if f̂ t(u) = 0 for 0 < wH(u) ≤ k, then, by Eq. 4, f̂ t

R(u) =
0 too. For the converse, just remark that A2 is the identity transformation and
then, by Eq. 4, one finds f̂ t

R(Φ(u)) = f̂ t(u). Therefore if f̂ t
R(Φ(u)) = 0, we have

f̂ t(u) = 0. Since Φ is a bijection we have the thesis.

Lemma 2. Let f : F
2m+1
2 → F2 be the local function of a CA. For any t ∈ N,

f t
N is balanced iff f t is balanced.

Proof. Assume f t balanced for some t ∈ N. By definition of f t
N , wH(f t

N ) =
wH(Ψ◦f t ◦Ψ). Remark that Ψ◦f t is a CA; then by Lemma 1, wH(Ψ◦f t ◦Ψ) =
wH(Ψ ◦ f t). Since f t is balanced, wH(Ψ ◦ f t) = wH(f t). Finally, observing that
Ψ2 is the identity and by Lemma 1 again, it holds wH(f t) = wH(Ψ2 ◦ f t) =
wH(Ψ2 ◦ f t ◦ Ψ) = wH(Ψ ◦ f t

N ). For the converse, assume that f t
N is balanced

for some t ∈ N. Then, wH(f t
N ) = wH(Ψ ◦ f t

N ) = wH(Ψ2 ◦ f t ◦ Ψ) = wH(f t ◦ Ψ).
By Lemma 1, wH(f t ◦Ψ) = wH(f t) and therefore wH(f t) = wH(f t

N ). Again, by
Lemma 1, wH(Ψ◦f t) = wH(Ψ◦f t ◦Ψ) = wH(f t

N ). Hence wH(f t) = wH(Ψ◦f t).

Proposition 2. Let f : F
2m+1
2 → F2 be the local function of a CA. For any

t ∈ N, let 0 < k ≤ 2mt + 1. Then, f t is k-resilient iff f t
N is k-resilient.

Proof. Fix k ∈ N as in the hypothesis. By Lemma 2, it suffices to prove that
f̂N (u) = h(u) · f̂(u) for any u ∈ F

2m+1
2 such that 0 < wH(u) ≤ k and h :

F
2m+1
2 → R

+. Let A = Id, a = (1, 1, . . . , 1), b = 1 and B = (0, 0, . . . , 0). Then,
by using Eq. 3, one obtains (̂ft

N )χ(u) = (−1)1+a·u f̂t
χ(u) for any u ∈ F

2mt+1
2 with

0 < wH(u) ≤ 2mt + 1. This entails f̂ t
N (u) = (−1)1+a·uf̂ t(u).
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Consider the equivalence relation R on CA rules such that fRg iff g = fR or
g = fN or g = fRN . According to [5], there are 22

m

(6 + 22
m

) distinct R-classes.
Propositions 1 and 2 say that all elements in a class have the same resiliency
and hence only one element per class should be tested for studying this prop-
erty. However the gain obtained by this quotient of the set of local rules is
minor. Section 5 proposes (among other things) to consider affine transforma-
tions instead. Indeed, even if f and its Boolean equivalent, say fA have the same
resiliency, this does not hold, in general, for their iterates. This is essentially
due to the fact that the above proofs are based on the existence of a bijection
φ and a transformation τ on the local rules such that for any local rule f , it
holds that ∀t ∈ N, [τ(f)]t ◦ φ = φ ◦ f t. This property is not true, in general for
transformations different from negation or reflection.

3 Related Results

3.1 3-variable Boolean Update Function

An exhaustive search of 3-variable Boolean update function was done in [16]:

Theorem 3. There is no non-linear correlation-immune elementary CA.

The same result can be obtained by applying the Siegenthaler bound with n = 3
variables and testing for k = 1-resiliency. It tells that the algebraic degree is
d ≤ n − k − 1 = 1. Thus, only linear functions can be resilient.

Despite this, CA may be used for generating PRS by increasing the number
of variables in the Boolean function which is used as a local CA rule. In the
sequel, we recall which functions in four variables are suitable and we present a
way to gather five variable functions for cryptographic purposes.

3.2 4-variable Boolean Update Function

In [11] the 216 = 65536 elementary CA rules with 4 variables were classified
according to their resiliency and non-linearity. An exhaustive search by the Walsh
transform of all Boolean functions with 4 variables was realized, to find a list of
1-resilient functions, with high non-linearity. There are exactly 200 non linear
balanced functions which are 1-resilient.

A Boolean function in 4 variables is defined by an integer between 0 and
65536, extending Wolfram’s notation for CA rules with 3 variables. For clas-
sifying the functions, we use their ANF. For instance the ANF of rule (280)
(=100011000 in binary) corresponds to the polynomial f(x1, x2, x3, x4) = x1x2⊕
x3 ⊕ x4 = 12 + 3 + 4 .

For the classification of these functions, let σ denote a 4 × 4 permutation
matrix. Recall that two Boolean functions f and g are affine equivalent if there
exists a permutation σ such that f(x) = g(σ(x)) or g(σ(x)) + 1.

The following table gives the set of all 1-resilient function, with a represen-
tative of each class f , its corresponding ANF and the cardinal of each class:
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f ANF ANF card.

34680 280 12+3+4 12
6120 360 4+12+13+23 8
7140 300 2+4+12+13 48
11730 282 1+3+4+12 24
34740 1308 2+3+4+12+24 48
39318 4374 1+2+3+4+34 12
7128 5432 3+4+12+13+24+34 24
11220 380 2+3+12+13+24 24

The non-linearity of these functions is computed for an evaluation of the
resistance against the attack of [1]. The 200 1-resilient Boolean functions with 4
variables have a non-linearity equal to 4.

4 Exploring Radius 2, 1-Resilient Elementary CA Rules

Unlike 3 and 4 variable Boolean update function, we will not explore the whole
class of radius 2 elementary uniform CA rules. Instead, we use the classification
of Boolean functions in 6 variables or less with respect to some cryptographic
properties from [3] where an efficient algebraic approach to the classification of
the affine equivalence classes of the cosets of the first order Reed-Muller error
correcting code is proposed. Indeed, the study of the properties of Boolean func-
tions is related to the study of Reed-Muller codes. The code-words of the r-th
order Reed-Muller code of length 2n, denoted by RM(r, n) correspond to the
truth tables of Boolean functions with degree less or equal to r. [2] classified all
the 226 cosets of RM(1, 5) into 48 equivalence classes under the action of the
group AGL(2, 5). The method is used to classify with respect to the 48 classes
into which the general affine group AGL(2, 5) partitions the cosets of RM(1, 5).
The cryptographic properties considered by [3] are correlation immunity (CI),
resiliency (R) and propagation characteristics as well as their combination.

Table 1. Number of functions satisfying CI(1) and R(1)

Representative NCI(1) NR(1)

12 4840 4120

123 16640 11520
123+14 216 000 133 984

123+14+25 69120 24960
123+145+23 1 029 120 537600

123+145+23+24+35 233 472 96 960

Table 1 is a selection of the representatives of Boolean functions taken out
from [3] which lists the representative and counts the number of equivalent
Boolean functions in the equivalence class which satisfy 1-resiliency (denoted
by R(1) in the table) and correlation immunity of first order (denoted by CI(1)
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in the table). In Table 1, for a property P , NP counts the number of Boolean
functions which fulfills P .

From the original table, we only select representatives of Boolean functions of
algebraic degrees 2 and 3 since, because of the Siegenthaler bound, there cannot
be 1-resilient Boolean function of degree one. The classification done by [3] also
removes Boolean functions of degree 4 if 1-resiliency is considered. Thus, there
are only 6 equivalence classes containing 1-resilient Boolean functions which are
listed in Table 1; 12 is the single equivalence class of degree two Boolean functions
and the remaining 5 are all of degree three.

4.1 Finding the Rules

From the classification by [3], representatives of Boolean functions fulfilling the
property of 1-resiliency were found. We restricted the search of Boolean functions
in the same algebraic coset instead of the equivalence class in order to limit
the combinatorial explosion. Our goal was to find 1-resilient elements in the
cosets. For this, we first explored the elements of the cosets listed in Table 1
by considering all the linear combinations of all possible linear/affine functions
and by computing the Fourier-Hadamard transform on all those elements in the
coset. More precisely, the first step is to generate all coset elements. If we denote
by R(x1, x2, x3, x4, x5) the coset leader (which is the representative), we consider
all elements of the form:

R(x1, x2, x3, x4, x5) ⊕ (ax1) ⊕ (bx2) ⊕ (cx3) ⊕ (dx4) ⊕ (ex5) ⊕ h

for a, b, c, d, e, h Boolean, spanning all the 26 elements of the coset. Then,
for each element, we compute the Fourier-Hadamard transform, we next only
select the balanced Boolean functions and finally the Boolean functions which
are 1-correlation immune among the balanced Boolean functions. That is, among
the balanced Boolean functions, all functions with zero spectral values at points
whose binary decomposition has a Hamming weight of 1. This first step was
done with Mathematica 9.0 and gave us Table 2.

Reading Table 2, we notice that two cosets seem not to contain 1-resilient
functions, although listed in the table by [3]. The reason for this is that we did
not make the complete exploration of the equivalence class. Recall that the table
by [3] classifies the 48 equivalence classes of RM(1, 5) under the action of the
general affine group AGL(2, 5). At first, to check if our approach is valid, we
only generated the coset elements and not the Boolean functions which could be
obtained by the action of AGL(2, 5) and which can be generated using Eq. (1).
The size of the set of functions to explore is thus smaller. We run the fast
transform algorithm on a set containing 6.26 elements which has to be compared
with the whole set with 232 elements. If we had taken into account the action of
AGL(2, 5), we should have explored 6 classes among the 48 equivalence classes
(a ratio of 1/8) on the whole set.
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Table 2. 1-resilient Boolean functions in the cosets. Hexadecimal numbers refer to the
truth table.

Representative 1-resilient functions

12 3c3c3cc3 3c3cc33c 3cc33c3c 3cc3c3c3 5a5a5aa5 5a5aa55a 5aa55a5a
5aa5a5a5 66666699 66669966 66996666 66999999 69696996 69699669
69966969 69969696 96696969 96699696 96966996 96969669 99666666
99669999 99996699 99999966 a55a5a5a a55aa5a5 a5a55aa5 a5a5a55a
c33c3c3c c33cc3c3 c3c33cc3 c3c3c33c

123 66696996 66699669 66966969 66969696 69666699 69669966 69996666
69999999 96666666 96669999 96996699 96999966 99696969 99699696
99966996 99969669

123+14 66695aa5 6669a55a 66965a5a 6696a5a5 696655aa 6966aa55 969955aa
9699aa55 99695a5a 9969a5a5 99965aa5 9996a55a

123+14+25 ∅

123+145+23 1eb4663c 1eb499c3 e14b663c e14b99c3

123+145+23+24+35 ∅

4.2 Testing the Iterates

We use the results from section 4.1 to select rules susceptible of preserv-
ing 1-resiliency, with the same procedure we used in section 2.4. More pre-
cisely, from the set of elementary, radius 2 rules (with a generic element
denoted by f) , we consider the natural extension of f : F

5
2 → F2 to f :

F
n+4
2 → F

n
2 (with n > 0) where: f(x1, . . . , xn+4) = (y1, . . . , yn) such that yj =

f(xj , xj+1, xj+2, xj+3, xj+4), j ∈ [[1, n]]. Using the extended f , one can define the
t-th iterate of f which is a function f t : F

4t+1
2 → F2. We next test the second iter-

ate for selecting rules preserving the 1-resiliency. In other words, we compute the
maximum absolute value of the Fourier-Hadamard transform of the tth-iterate
of f at all the points u of Hamming weight 1 and we select the balanced rules
with a flat spectral value at those points (by Theorem 1).

For every f of Tab. 2, we built f2 and tested its 1-resiliency property. This
property is easily observable on the Fourier-Hadamard spectrum f̂2 : f2 is m-
resilient if ∀u ∈ F

9
2 /wH(u) ≤ m, then f̂2(u) = 0. The spectrum has been com-

puted by the algorithm defined in subsection 2.4 and implemented in C. The results
are in Tab. 3 and shows that few functions (exactly 4 of them) of coset 12 are not 1-
resilient, that every function of coset 123 and coset 123+14 preserves 1-resiliency,
and no function of coset 123+145+23 are 1-resilient after 2 iterations.

5 PRNG Testing

The quality of pseudo-randomness generated by the above mentioned Boolean
functions has been evaluated by using the Diehard test suite, a widely used
tool. It has been developed by Marsaglia from the Florida State University and
consists of 17 different tests which have become something which could be con-
sidered as a “benchmarking tool” for PR number generators (see [12]). It is
meant to evaluate if a stream of numbers is a good PRS. We will not explain
how Diehard really works and we refer the reader to [13] for further details. Basi-
cally, Diehard uses Kolmogorov-Smirnov normality test to quantify the distance
between the distribution of a given data set and the uniform distribution; and
as the documentation says:
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Table 3. 1-resilient Boolean functions after 2 iterations

Coset 12

0x3C3C3CC3 yes 0x3C3CC33C no 0x3CC33C3C no
0x3CC3C3C3 yes 0x5A5A5AA5 yes 0x5A5AA55A yes
0x5AA55A5A yes 0x5AA5A5A5 yes 0x66666699 yes
0x66669966 yes 0x66996666 yes 0x66999999 yes
0x69696996 yes 0x69699669 yes 0x69966969 yes
0x69969696 yes 0x96696969 yes 0x96699696 yes
0x96966996 yes 0x96969669 yes 0x99666666 yes
0x99669999 yes 0x99996699 yes 0x99999966 yes
0xA55A5A5A yes 0xA55AA5A5 yes 0xA5A55AA5 yes
0xA5A5A55A yes 0xC33C3C3C yes 0xC33CC3C3 no
0xC3C33CC3 no 0xC3C3C33C yes

Coset 123

0x66696996 yes 0x66699669 yes 0x66966969 yes
0x66969696 yes 0x69666699 yes 0x69669966 yes
0x69996666 yes 0x69999999 yes 0x96666666 yes
0x96669999 yes 0x96996699 yes 0x96999966 yes
0x99696969 yes 0x99699696 yes 0x99966996 yes
0x99969669 yes

Coset 123+14

0x66695AA5 yes 0x6669A55A yes 0x66965A5A yes
0x6696A5A5 yes 0x696655AA yes 0x6966AA55 yes
0x969955AA yes 0x9699AA55 yes 0x99695A5A yes
0x9969A5A5 yes 0x99965AA5 yes 0x9996A55A yes

Coset 123+145+23

0x1EB4663C no 0x1EB499C3 no 0x2D7855F0 no
0x2D78AA0F no 0x44EE3C66 no 0x44EEC399 no
0x4B1ECC69 no 0x77220FAA no 0x7722F055 no
0x88DD0FAA no 0x88DDF055 no 0xB4E13396 no
0xBB113C66 no 0xBB11C399 no 0xD28755F0 no
0xD287AA0F no 0xE14B663C no 0xE14B99C3 no

Each Diehard test is able to provide probability values (p-value) which
should be uniformly distributed on [0, 1) if the sequence is made of truly
independent bits. Those p-values are obtained by p = F (X) where F is
the assumed distribution of the sample random variable X–often normal.
But that assumed F is just an asymptotic approximation, for which the
fit will be worse in the tail of the distribution. Thus, we should not be
surprised with occasional p-values close to 0 or 1. When a stream really
fails, one gets p-values of 0 or 1 to six or more places. Otherwise, for
each test, its p-value should lie in the interval (0.025, 0.975).

So in order to test our data, we designed a C program in which we included the
Diehard functions that were slightly modified to fit well with our needs. That is
to directly use the results of the CA as a PRG. The 17 different and independent
statistical tests require about 16 Mbyte of PR values in binary format.

Our goal was to generate different number sequences from the CA and test
them against Diehard. Two different tests were made.
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5.1 Randomness Preservation

In this section we describe the experimentation we made to test if a CA “pre-
serves” the randomness through its dynamics. For this experiment, we consider
a CA, whose transition function is f : F

5
2 → F2. Given such a CA, we set up an

initial sequence of bits (bi)i≥0 that we extract from the /dev/random pseudo-
device of a MacOSX system1. Then we compute the sequence of bits (b′

i)i≥0

such that ∀i ≤ 0, b′
i = f(b5i, b5i+1, b5i+2, b5i+3, b5i+4). To ensure some statistical

soundness, for a single CA we build 302 of such sequences from the same entropic
source (each sequence being 16 Mbyte long as required by Diehard).

The measure, illustrated in Fig. 1, shows all the distributions of the indicators
produced by each single sequence passing all the Diehard tests. And it can be
observed that the p-values are well distributed for every data pack. Indeed, there
are no accumulation points near zero or one.

This means that the input to the tests is made of independent bits. Thus,
we can deduce that these functions are good at preserving the randomness. Or,
in other terms, if we feed a CA with a truly random sequence (obtained by the
entropy collector of the BSD kernel) as an input configuration and let the CA
run, the output configuration is still PR, according to the Diehard test suite.

5.2 Random Number Generation

Much more classically, these tests were built to evaluate the possible generation
of a good PR sequence by CAs. While it is well known that radius 1 elementary
CAs are not suitable for generating PR sequences, it is not impossible to build
good PR sequence from simple CAs. As we already tested if the radius-2 func-
tions are good to preserve the randomness, it would be interesting to consider
them as PRNG. So, we tried something very similar to [17].

We set up two rings of cells. Although Wolfram used a ring of 127 cells
and Preneel (1993) suggested a ring of 1024 cells to ensure a better quality
(both used a slightly different mechanisms for random bit extraction), we use
perimeters 64 and 65 as done in [17]. The initial configuration of these rings is
of Hamming weight 1. We let the CA iterate about 2 million times. Then, from
each configuration obtained, we extract two 32-bits words: the “even” (resp.
“odd”), word is built with the state of the first 32 “even” (resp. “odd”) cells. The
sequences of these “even” (resp. “odd”) words constitute two different sequences
of 16 Mbyte.

Then, we use Diehard to produce p-values for each test. We were able to find
some CAs (like the one with rule Ox69999999 given as an example in Fig. 2).
This suggests that it may be possible to obtain a good PRNG from such a CA.

1 The entropy collector of the BSD kernel family is considered as a pretty good source
of random numbers and MacOSX is built on top of a BSD kernel.

2 The repetition of 30 independent experiments comes from statistics. Indeed sample
sizes of at least 30 are for many tests considered as “large” and allows a better
statistical treatment.
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Fig. 1. 0x3C3C3CC3: distribution of the p-values for each data pack. p-values between
the two lines (at 0.025 and 0.975) mean that the corresponding statistical test was
successful.
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Fig. 2. Distribution of the p-values for the ring CA with rule 0x69999999. p-values
between the two lines (at 0.025 and 0.975) mean that the corresponding statistical test
was successful.
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6 Conclusion

The main interest of this work concerns the hardware implementation. The tar-
get hardware model of CAs is the Field Programmable Gate Arrays (known as
FPGAs). FPGAs are now a popular implementation style for digital logic sys-
tems and subsystems. These devices consist of an array of uncommitted logic
gates whose function and interconnection is determined by downloading informa-
tion to the device. When the programming configuration is held in static RAM,
the logic function implemented by those FPGAs can be dynamically reconfigured
in fractions of a second by rewriting the configuration memory contents. Thus,
the use of FPGAs can speed up the computation done by the cellular automata.
Putting all together allows high-rate pseudo-random generation of good quality
that can be used as a basic component for lightweight cryptography requiring
pseudo-random sources.

These results can be extended in many directions. If the number of vari-
ables of a Boolean function must be increased, our approach for extending good
updating rules can be helpful. Increasing the number of variables in a Boolean
function is a classical problem in symmetric cryptography.

Acknowledgments. The authors are grateful to C. Carlet who pointed out Refer-
ence [4] for explaining the difference between Fourier-Hadamard and Walsh transforms
and to J. Mairesse for its help with statistical testing.
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Abstract. Motivated by the application to image compression (K. Čuĺık
II, J. Kari, “Image compression using weighted finite automata”, Com-
puters & Graphics, 1993), the paper considers finite automata represent-
ing formal languages with all strings of the same length, and investigates
relative succinctness of representation by deterministic and nondeter-
ministic finite automata (DFA, NFA). It is shown that an n-state NFA
recognizing a language of strings of length � over a k-symbol alphabet

can be transformed to a DFA with at most � · k

√
2

log2 k
n+3�+3

= 2O(
√

n)

states. At the same time, for every k-symbol alphabet with k � 2, and
for every n � 1, there exists an n-state NFA recognizing an equal-length

language, which requires a DFA with at least k
√

n
k−1 −2

= 2Ω(
√

n) states.

1 Introduction

There is an interesting application of finite automata to representing two-
dimensional images, under which an image is defined by an automaton that
computes the value of each pixel, where the pixel’s coordinates are represented
by a string. Then, automata can be used to generate, to compress or to tranform
such images.

Apparently, these ideas were first proposed in a paper by Berstel and Mor-
crette [3]. The systematic research on representing images was initiated by Čuĺık
and Dube [6], who related it to the theory of fractals [2]. The model was
further studied by Čuĺık and Kari [8], who developed a practical automaton-
based image compression algorithm [9]. For a survey of image processing using
finite automata, the reader is referred to an upcoming handbook chapter by
Karhumäki and Kari [15].

Consider a square picture with resolution 2� × 2�. The coordinates of each
pixel in the image are defined by a string of length � over a four-symbol alphabet
Σ = {a, b, c, d}. In order to locate the pixel pointed to by a string, the image is
progressively subdivided into smaller squares, using each symbol to choose one
of the four quadrants, as illustrated in Figure 1(left). Thus, every string over Σ
of length � defines one of the pixels in an image. For instance, Figure 1(right)
shows a pixel defined by the string bcd. Using this system of coordinates, a
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Fig. 1. (left) Subdivision of a square image into four quadrants; (right) Accessing a
pixel of a 8 × 8 image by a string of length 3

black-and-white image of size 2� × 2� can be defined by listing the coordinates
of all black pixels; this will be a formal language over Σ, in which all strings are
of length �.

In the literature, this basic method is extended to define greyscale pictures
using weighted automata, in which every transition has a probability of making
it, and the automaton accordingly defines the probability of each input string;
this probability can be interpreted as a shade of grey. Furthermore, using infi-
nite strings to access any point in the unit square, one can use finite automata
to define fractal images with an infinite resolution, that is, any sets of points.
This is one of the cases of representing continuous objects by automata; some
related work on representing real function by automata was done by Čuĺık and
Karhumäki [7], by Derencourt et al. [10], and by Karhumäki and Sallinen [17].
These extensions are, however, beyond of the scope of this paper.

This paper investigates the size of finite automata used for representing black-
and-white images of fixed resolution, such as those considered by Karhumäki
et al. [16]. As these automata act as a compressed representation, their size
measures the effectiveness of image compression. The problem studied here is
comparing the size of two compressed formats for images: deterministic finite
automata (DFA) and their nondeterministic counterparts (NFA).

The study of succinctness of finite automata has a long history. Since Rabin
and Scott [24] defined the main types of automata and presented transformations
between them, numerous authors contributed to determining precise succinct-
ness tradeoffs between different automaton models. For instance, Rabin and
Scott [24] showed how to transform an n-state NFA to a 2n-state DFA recogniz-
ing the same language, whereas Lupanov [20] presented n-state NFAs, for which
a DFA requires all 2n states. Similar results for other types of automata were pre-
sented by Moore [22], by Leung [19] and by Kapoutsis [14]; Chrobak [5], Geffert
et al. [11], Okhotin [23] and Kunc and Okhotin [18] studied tradeoffs between
automata over a unary alphabet. Succinctness issues in formal grammars were
first investigated by Gruska [12].

The automata used to represent images in this paper are special in two
respects. Most importantly, the languages they recognize consist of strings of
equal length; in the following, they shall be referred to as equal-length languages.
Another restriction is that these languages are defined over a fixed 4-symbol
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alphabet. Though the general result on the exponential state complexity of the
NFA to DFA transformation [20] uses a small alphabet as well, it relies on infinite
languages, and hence does not apply to the equal-length case.

The most relevant prior work is the research on determinizing NFAs recog-
nizing finite languages. For such an NFA with n states, defined over a 2-symbol
alphabet, Mandl [21] showed that there is an equivalent DFA with only 2

n
2 +1

states. Salomaa and Yu [25] extended this result to finite languages over an
alphabet with k symbols, for which an n-state NFA can be transformed to a
DFA with 1

k−1k� n
log2 k+1 �+1 states.

This paper establishes similar results under a stronger assumption that
the language recognized by an NFA is not only finite, but equal-length. Such
automata were studied, in particular, by Amilhastre et al. [1]. The general
form of equal-length automata is explained in Section 2. Then, in Section 3,
it is shown that every n-state NFA recognizing a language of strings of length
� over a k-symbol alphabet can be transformed to a DFA with as few as

� · k

√
2

log2 k n+3�+3 = 2O(
√

n) states. This is substantially less than for arbitrary
finite languages [25]. A fairly close lower bound of k

√
n

k−1−2 = 2Ω(
√

n) states is
presented in Section 4.

2 Finite Automata and Image Representation

Consider a 2� × 2� image, with � � 0. As explained in the introduction, each
pixel in such an image is identified by a string of length � over a four-symbol
alphabet Σ = {a, b, c, d}. Every subsequent symbol in this string selects one of
four quadrants in a further subdivision of the image, as illustrated in Figure 1
above. Then, any black-and-white image is described by a formal language over
Σ, with all strings of length �, which is accordingly called a equal-length language.

This papers considers the representation of equal-length languages by finite
automata of two kinds: deterministic and nondeterministic.

Definition 1. A deterministic finite automaton (DFA) is a quintuple A =
(Σ,Q, q0, δ, F ), in which

– Σ is an input alphabet,
– Q is a finite set of states,
– δ : Q × Σ → Q is a total transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of accepting states.

For every input string w = a1 . . . a�, with � � 0 and ai ∈ Σ, the computation of
the automaton is a uniquely determined sequence of states p0, p1, . . . , p�, where
p0 = q0 and pi = δ(pi−1, ai) for each i ∈ {1, . . . , �}. The string is accepted if
p� ∈ F .

The language recognized by the automaton, denoted by L(A), is the set of all
strings it accepts.
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A state of a DFA is called dead, if no string can be accepted beginning from
that state. A DFA recognizing a finite language must have at least one dead
state, in which all excessively long strings are rejected. All dead states in any
DFA can always be merged into one, and in the following, every DFA is assumed
to have a unique dead state.

Let A = (Σ,Q, q0, δ, F ) be a DFA that recognizes an equal-length language,
that is, L(A) ⊆ Σ� for some � � 0. Then, as long as A is not in its dead state
qdead, it must remember the length of the string in the current state (otherwise
it would accept some strings of a wrong length). The set of its (non-dead) states
is accordingly separated into � + 1 disjoint subsets as

Q \ {qdead} = Q0 ∪ Q1 ∪ . . . ∪ Q�,

where every state q in each layer Qi is reachable from the initial state only by
strings of length i. In particular, Q0 = {q0}, F = Q�, and all transitions from
any states in a layer Qi may lead only to the states in the subsequent layer Qi+1,
or to the dead state.

Definition 2. A nondeterministic finite automaton (NFA) is a quintuple A =
(Σ,Q,Q0, δ, F ), with a set of initial states Q0 ⊆ Q and with a nondeterministic
transition function δ : Q × Σ → 2Q listing all possible next states.

Let w = a1 . . . a�, where � � 0 and ai ∈ Σ, be an input string. An NFA may
have multiple computations on w. A computation is any sequence p0, p1, . . . , p�,
where p0 ∈ Q0 and pi ∈ δ(pi−1, ai) for each i ∈ {1, . . . , �}. Such a computation
is accepting if p� ∈ F . A string is considered accepted if at least one of these
computations is accepting. The set of all such strings is the langyage recognized
by the automaton, denoted by L(A).

Unlike a deterministic automaton, an NFA need not have a dead state:
instead of entering a dead state, it may use a transition to an empty set of
states. Accordingly, all dead states can be removed from an NFA. Assume that
every NFA has no dead states, that is, can accept some string from each of its
states.

If an NFA A = (Σ,Q,Q0, δ, F ) recognizes an equal-length language L(A) ⊆
Σ�, with � � 0, then it should also remember the length of the string in its state.
Its set of states is split into � + 1 layers as

Q = Q0 ∪ Q1 ∪ . . . ∪ Q�,

and again, all transitions from each layer Qi may go only to the states in the
next layer Qi+1.

3 Determinizing Equal-Length Automata

Any NFA A = (Σ,Q,Q0, δ, F ) can be converted to a DFA B = (Σ,Q′, S0, δ
′, F ′)

recognizing the same language by a well-known transformation, known as the
subset construction. The states of the DFA are subsets of Q, that is, Q′ = 2Q.
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The initial state of B is the set S0 = Q0. Its transition function is defined by
δ′(S, a) =

⋃
q∈S δ(q, a). Finally, a subset is accepting if it contains any states

accepting in the NFA: F ′ = {S ⊆ Q | S ∩ F �= ∅ }. Thus, if n is the number of
states in the original NFA, the resulting DFA has at most 2n states.

This section analyzes the subset construction for equal-length languages, and
shows that in this special case, the number of reachable states in the DFA is much
smaller than 2n.

Let an NFA A = (Σ,Q,Q0, δ, F ) recognize an equal-length language L(B) ⊆
Σ�, with � � 0. Let Q = Q0 ∪ . . .∪Q� be the partition of states into �+1 layers,
so that δ(q, a) ⊆ Qi+1 for all q ∈ Qi and a ∈ Σ. When the subset construction
is applied to such a layered NFA, its layer structure is preserved in the resulting
DFA: the latter has � + 1 layers, and the states in each i-th layer are subsets of
Qi. Another upper bound on the size of each layer of the DFA can be inferred
from its transition structure: if there are k = |Σ| symbols in the alphabet, then
the number of states in every (i+1)-th layer of the DFA cannot be greater than
k times the number of states in its i-th layer. These two conditions are formally
stated in the following lemma.

Lemma 1. Let � � 0 and let A be an NFA over an alphabet Σ, with L(A) ⊆ Σ�.
For each i ∈ {0, . . . , �}, let mi be the number of states in every i-th layer of A.
Consider the DFA B obtained from A by the subset construction, and let Mi be
the number of reachable states in every i-th layer of B. Then:

Mi � 2mi , for all i ∈ {0, . . . , �}, (1a)
Mi+1 � k · Mi, for all i ∈ {1, . . . , �}. (1b)

The next lemma exploits these two conditions to obtain an upper bound on
the size of the DFA.

Lemma 2. Let Σ be a k-symbol alphabet, let L ⊆ Σ� be an equal-length language
recognized by an n-state NFA A. For a layer i, and let m be the number of states
in all layers from 0 to i. Then the DFA obtained from this NFA by the subset

construction has at most k

√
2

log2 k m+3i+3 states in the layer i + 1.

Proof. In the notation of Lemma 1, m = m0 + . . . + mi, M = Mi+1, and it is
claimed that

Mi+1 � k

√
2

log2 k (m0+...+mi)+3i+3
.

The first step of the proof is to estimate the expression under the square root
in terms of M . By the first claim of Lemma 1, each mj is greater than or equal
to log2 Mj , and hence,

2
log2 k

(m0 + . . . + mi) + 3i + 3 � 2
log2 k

(log2 M0 + . . . + log2 Mi) + 3i + 3 =

= 2 logk(M0 · . . . · Mi) + 3i + 3.
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What is the least possible value of the product M0 · . . . ·Mi? By the second claim
of Lemma 1, each factor can be estimated in terms of M = Mi+1 as follows: first,
Mi � M

k ; then, Mi−1 � Mi

k � M
k2 , etc. Furthermore, each Mj must be at least 1.

Thus, the lower bound on M0 · . . . · Mi is obtained by dividing each consecutive
factor by k until 1 is reached:

Mi · . . . · M0 � M

k
· M

k2
· . . . · M

k�logk M	 · 1 · . . . · 1

Using this inequality, the estimation of the expression under the square root
continues as follows.

2 logk(M0 · . . . · Mi) + 3i + 3 � 2 logk

(
M

k
· M

k2
· . . . · M

k�logk M	

)
+ 3i + 3 =

= 2 logk(M�logk M	) − 2 logk(k1+2+...+�logk M	) + 3i + 3 =

= 2	logk M
 logk M − 2
	logk M
(	logk M
 + 1)

2
+ 3i + 3 �

� 2 logk M(logk M − 1) − logk M(logk M + 1) + 3i + 3 =

= (logk M)2 − 3 logk M + 3i + 3

In order to estimate the last expression, consider that Mj � kj for all j: indeed,
this is true for j = 0, as the DFA has one state in layer 0, and the rest is proved
inductively using the second claim of Lemma 1. Thus, M � ki+1, and therefore
logk M � i + 1. Using this estimation,

(logk M)2 − 3 logk M + 3i + 3 � (logk M)2.

Now,

k

√
2

log2 k (m0+...+mi)+3i+3 � k
√

(logk Mi+1)2 = Mi+1,

as claimed. ��
In particular, Lemma 2 implies that the number of states in the last �-th

layer of the DFA—and hence, in each layer—is at most k

√
2

log2 k n+3�+3, where n
is the total number of states in the original NFA. This estimation leads to the
following theorem.

Theorem 1. Let Σ be an alphabet, denote k = |Σ|. Let L ⊆ Σ�, with � � 1, be
an equal-length language recognized by an n-state NFA. Then the DFA obtained

from this NFA by the subset construction has at most � ·k
√

2
log2 k n+3�+3 = 2O(

√
n)

reachable states.

Proof. In layer 0, the DFA has only one state. In each of the subsequent layers,

it has at most k

√
2

log2 k m+3�+3 states by Lemma 2. This yields an upper bound

of 1 + �k

√
2

log2 k m+3�+3 states. In order to get rid of one extra state in this
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rough estimation, consider that there are at most k states in layer 1, whereas

k

√
2

log2 k m+3�+3 � k
√
6 > k + 1. With this correction, the desired upper bound is

obtained.
Since � < n, this bound can be estimated as 2O(

√
n), where the constant in

the exponent depends on the size of the alphabet. ��
Theorem 1 shows that any given n-state NFA recognizing an equal-length

language is simulated by a DFA with 2O(
√

n) states. It is natural to ask whether
there could exist any improved construction that would yield a DFA with signif-
icantly fewer states. A negative answer, that 2Θ(

√
n) states are necessary in the

worst case, shall be given in the next section. In other words, there cannot exist
a better transformation that would always produce 2o(

√
n) states.

4 A Lower Bound on the Determinization Blow-Up

In order to show that determinizing equal-length languages over any alphabet
Σk = {a1, . . . , ak} incurs a 2Ω(

√
n)-state blow-up, it is sufficient to present a

family of witness languages, which are recognized by small NFA, but any DFA
recognizing them must have many states.

The proposed example is a language of all strings of length 2d, with d � 2,
which contain a pair of identical symbols at a distance of exactly d; furthermore,
this repeated symbol shall not be ak. An NFA recognizing this language can
guess the position of the first symbol and then compare it to the other one,
whereas a DFA will have to remember the first d symbols in its state. This leads
to the blow-up established in the following lemma.

Lemma 3. For each k � 2 and d � 2, the language

Lk,d = { s1 . . . s2d | ∃i ∈ {1, . . . , d} : si = si+d ∈ {a1, . . . , ak−1} },

defined over the alphabet Σk = {a1, . . . , ak−1, ak}, is recognized by an NFA with
(k − 1)d2 + 2d states, whereas every DFA recognizing this language must have at
least kd states in the d-th layer.

Proof. An NFA recognizing the language Lk,d is illustrated in Figure 2 for a
4-symbol alphabet and for d = 4. For arbitrary values of k and d, such an NFA
is equipped with an initial block of d states (see the 4 states at the left border of
the figure), in which it reads up to d−1 first symbols while nondeterministically
guessing the position i ∈ {1, . . . , d}, in which it should begin comparing the
symbol si to si+d. Then it remembers one of the k − 1 possible values of si in
its internal state, ignores d− 1 following symbols, and then makes sure than the
subsequent symbol is the same as the remembered symbol; this is implemented
as k − 1 sequential segments of d states each, for each of the d choices of i.
Finally, the automaton ignores d − i final symbols in the last block of d states
(as in the 4 states at the right border of Figure 2). The total number of states
is therefore d + (k − 1)d2 + d, as claimed.
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Fig. 2. A 56-state NFA recognizing the language Lk,d, with k = 4 and d = 4

Consider all strings of length d over Σ; there are kd such strings. It is claimed
that every DFA recognizing Lk,d must reach different states after reading these
strings.

For every two distinct strings u = s1 . . . sd and u′ = s′
1 . . . s′

d, let i be any
position in which they differ, that is, si �= s′

i. At least one of si, s′
i is not ak;

assume, without loss of generality, that si �= ak. Consider the string v = t1 . . . td,
in which the symbol in the i-th position is ti = si, whereas the rest of the
symbols are tj = ak, for all j �= i. Now the string uv belongs to the language
Lk,d, because it has the same symbol si in the positions i and i+d. On the other
hand, the string u′v is not in Lk,d, because it may have matching symbols only
in the positions i and i+ d (as all other positions have the prohibited symbol ak

in the second half of the string), and these symbols, s′
i and ti = si, are known

to be different. Then, in order to accept uv and to reject u′v, a DFA must reach
different states after reading u and u′. Therefore, it should have kd different
states in the d-th layer. ��

Returning to the representation of images by languages over a 4-symbol
alphabet, Lemma 2 with k = 4 defines a family of formal languages representing
some 4d × 4d images. These images can be compressed to NFA with 3d2 + 2d
states, whereas any DFA defining such an image needs at least 4d states.

A 256 × 256 image defined by the language in Lemma 3, with k = 4 and
d = 4, is presented in Figure 3. It is recognized by a 56-state NFA in Figure 2,
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Fig. 3. The 256 × 256 image defined by the language in Lemma 3, with k = 4, d = 4

but every DFA for this language must have at least 44 = 256 states. The latter
lower bound can be observed in the image in Figure 3, where all 256 of its 16×16
pixel blocks are pairwise distinct, and hence require pairwise distinct states in
the 4th layer of the DFA.

It remains to express the number of states in a DFA as a function of the
number of states in the original NFA, leading to the following counterpart to
Theorem 1.

Theorem 2. Let Σ be any alphabet containing at least two symbols, denote
k = |Σ|. Then, for every n � 2, there exists an equal-length language L over
Σ that is recognized by an n-state NFA, whereas every DFA recognizing this
language has at least k

√
n

k−1−2 = 2Ω(
√

n) states.
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Proof. The desired language L is provided by Lemma 3. Given k and n, consider
the largest integer d, for which (k − 1)d2 + 2d � n. It is determined by solving
the equation (k − 1)d2 + 2d = n: consider that

(k − 1)d2 + 2d = (k − 1)
(
d2 +

2d

k − 1

)
= (k − 1)

((
d +

1
k − 1

)2

− 1
(k − 1)2

)
,

and then define

d =

⌊√
n

k − 1
+

1
(k − 1)2

− 1
k − 1

⌋
.

Now, Lemma 3 gives a language recognized by an n-state NFA, for which
every DFA requires at least

kd = k

⌊√
n

k − 1
+

1
(k − 1)2

− 1
k − 1

⌋

� k

√
n

k − 1
− 2

states, as desired. ��
Let fk(n) be the NFA-to-DFA tradeoff function for equal-length languages

over a k-symbol alphabet. In other words, fk(n) is the number of states in a
DFA that is sufficient and in the worst case necessary to represent every equal-
length language recognized by an n-state NFA. Then, Theorems 1 and 2 imply
the following estimation of this function.

Corollary 1. For every alphabet Σ containing at least two symbols, and for
every n � 1, the NFA-to-DFA tradeoff function for equal-length languages over
Σ is estimated as fk(n) = 2Θ(

√
n).

Thus, the complexity of determinizing NFA recognizing equal-length lan-
guages is known up to a constant factor in the exponent. This constant factor
depends on the size of the alphabet. Possibly, the function fk(n) could be rep-
resentable in the form 2(1+o(1))Ck

√
n, where Ck is the desired constant factor; if

this is true, then it would be interesting to determine the exact value of Ck.

5 Further Work

State complexity of operations on finite automata is a common topic of research.
For instance, for finite languages, it was studied by Câmpeanu et al. [4] and by
Han and Salomaa [13].

With images represented by formal languages, operations on images become
operations on languages, and it is useful to investigate the effect of these oper-
ations on the size of automata. One such result is known already: Karhumäki,
Plandowski and Rytter [16] determined the state complexity of cropping an
image, that is, taking an n-state DFA representing a 2� × 2� image, and pro-
ducing a DFA for any 2k × 2k subimage of this image. This operation requires
Θ(n2.5) states, and the bound is tight in the worst case [16].

It might be interesting to consider other questions of this kind. For instance,
what is the complexity of inverting an image represented by an n-state NFA, or,
in other words, of complementing an equal-length NFA?
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Abstract. Some aspects of logical reversibility for computing devices
with a finite number of discrete internal states are addressed. These
devices have a read-only input tape, may be equipped with further
resources, and evolve in discrete time. The reversibility of a computation
means in essence that every configuration has a unique successor configu-
ration and a unique predecessor configuration. The notion of reversibility
is discussed. In which way is the predecessor configuration computed?
May we use a universal device? Do we have to use a device of the same
type? Or else a device with the same computational power? Do we have
to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations? We
present some selected aspects as gradual reversibility and time-symmetry
as well as results on the computational capacity and decidability mainly
of finite automata and pushdown automata, and draw attention to the
overall picture and some of the main ideas involved.

1 Introduction

Computers are information processing devices which are physical realizations of
abstract computational models. So, it is interesting to know whether an abstract
model is able to obey physical laws. Since reversibility is a fundamental principle
in physics, it is interesting to study the models from this point of view. Moreover,
the observation that loss of information results in heat dissipation [26] strongly
suggests to study reversible computations without loss of information.

First studies of this kind have been done for the massively parallel model
of cellular automata since the sixties of the last century. Nowadays it is known
from [29] that every, possibly irreversible, one-dimensional cellular automaton
can always be simulated by a reversible one-dimensional cellular automaton in
a constructive way. Later, in [4] reversible sequential machines, more precisely,
Turing machines have been introduced. Again, a fundamental result is that every
Turing machine can be made reversible. These two types of devices received a
lot of attention in connection with reversibility. They are beyond the scope of
this discussion. Valuable surveys with further references to literature are, for
example, [15] for cellular automata and [30], where one may find a summary of
results on reversible Turing machines, reversible cellular automata, and other
reversible models such as logic gates, logic circuits, or logic elements with mem-
ory (see also [3,17,18,21] for further investigations). Logical reversibility has
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 83–98, 2014.
DOI: 10.1007/978-3-319-13350-8 7
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been studied also for other computational devices such as space-bounded Turing
machines [27], two-way multi-head finite automata [2,31], one-way multi-head
finite automata [20], and queue automata [22].

Here we focus on some aspects of reversibility in sequential devices, where
we mainly restrict the discussion exemplarily to finite automata and pushdown
automata. In Section 2 the notion of reversibility and its possible definitions are
discussed. In Section 3 the simplest device in question is considered. Gradual
reversibility, computational capacity, and decidability of finite automata are the
topics presented. The next level in the basic hierarchy of automata are determin-
istic pushdown automata. Their reversible variants are dealt with in Section 4.
Finally, a further aspect of reversibility, the so-called time-symmetry, is discussed
in Section 5. Basically, this means that one can go back in time by applying the
same transition function as for forward steps after a specific transformation of
the phase-space. So, time-symmetric machines themselves cannot distinguish
whether they run forward or backward in time.

The reader is assumed to be familiar with the basic notions of automata
theory as contained, for example, in [11,14]. In the present paper we will use the
following notational conventions. An alphabet Σ is a non-empty finite set, its
elements are called letters or symbols. We write Σ∗ for the set of all words over
the finite alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \{λ}. The
reversal of a word w is denoted by wR and for the length of w we write |w|. We
use ⊆ for inclusions and ⊂ for strict inclusions. The family of languages accepted
by devices of type X is denoted by (X). In the following, two devices are said
to be equivalent if they accept the same language.

2 Reversibility of Automata – What Is It?

In general, here we consider computing machines with a finite number of discrete
internal states. The machines have a read-only input tape, may be equipped with
further resources, and evolve in discrete time, where each computation step is
driven by a deterministic transition function. Given a configuration represent-
ing the complete “global state” of a device, the transition function is used to
compute the successor configuration. The transition function depends on the cur-
rent internal state and on the status of further resources the machine is equipped
with. It gives the successor state and maybe changes the status of the resources.

Since we are particularly interested in reversible computations of such
devices, we discuss the notion of reversibility first. Basically, reversibility is meant
with respect to the possibility of stepping the computation back and forth. To
this end, the devices have to be also backward deterministic. That is, any con-
figuration must have at most one predecessor. This simple observation raises
several questions.

For example, in which way is the predecessor configuration computed? May
we use a universal device? Do we have to use a device of the same type? Or else
a device with the same computational power? While the idea to step the com-
putation back and forth anticipates not to use a universal machine in general,
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s0 s1

a b

bstart
s0 s1

aa, a bb

ab, b

Fig. 1. A DFA accepting the language a∗b+ (left), and its reverse DFA with lookahead
two (right). The labels on the edges indicate the complete content of the input window
(but only 1 symbol is “consumed”).

the answer to the latter questions is not that clear. Consider the deterministic
finite automaton of Figure 1 that accepts the language a∗b+. If the predecessor
configuration has to be computed by a device of the same type, the DFA is irre-
versible since there are two different transitions entering the same state s1 with
the same input symbol b (see Figure 2). On the other hand, if the predecessor
configuration may be computed by a device with the same computational power,
the DFA is reversible. In this case we may provide a lookahead of size two, that
is, the input window of the backward DFA has size two while nevertheless only
one symbol is processed per time step. The lookahead helps to overcome the
crucial situation of the computation at the borderline between the a’s and b’s
(Figure 3). However, a lookahead does not increase the computational capacity
of DFA. Such devices still characterize the regular languages only.

Another question that comes up in connection with the computability of
predecessor configurations concerns the set of configurations that count. Do we
have to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations, that is, con-
figurations that actually occur in computations? Consider for example the DFA

a a · · · a a b b · · · b b

s0 forward

a a · · · a a b b · · · b b

s0 forward

a a · · · a a b b · · · b b

s1 forward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1 s0

Fig. 2. An irreversible computation of the DFA accepting the language a∗b+
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a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s1backward

a a · · · a a b b · · · b b

s0

Fig. 3. Backward computation of the DFA with lookahead 2

s1

s0 s3

s2 b

a

a

a
b

start

a a a b b b . . .

s3backward

Fig. 4. A DFA (left) and an unreachable configuration (right)

in Figure 4. The configuration on the right-hand side is unreachable from any
initial configuration. Is the DFA reversible? It is for all reachable configurations,
but it is irreversible if all possible configurations count. Reversibility on reach-
able configurations is a wider notion than reversibility on all configurations. A
gentle argument towards the former notion is given by the big bang theory. If
one believes in it everything we are living in evolved from an initial situation.

So, in the sequel we carefully have to distinguish which notion of reversibil-
ity is meant. Unless stated otherwise, we require that the backward steps of a
computation are performed by another device of the same type.

3 Finite-State Machines

Here we turn to the simplest type of device in question. Reversible deterministic
finite automata (REV-DFA) have been introduced and studied in the context of
algorithmic learning theory in [1] (see also [16]). Given a DFA M , the inverse M←

of M is defined by interchanging initial and final states and reversing each tran-
sition arrow. In [1], the finite automaton M is defined to be reversible if and
only if both M and M← are deterministic. Incomplete transition functions are
allowed. In particular, this definition implies that for reversible DFA only one
final state is allowed. Since there are regular languages that are not accepted
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by any DFA with a sole accepting state, by definition, there are non-reversible
regular languages in this setting.

The reversible DFA of [1] are called bideterministic in [33]. The definition of
reversibility has been extended in the latter reference. Now multiple accepting
as well as multiple initial states are allowed. So, reversible DFA in the sense
of [33] may have limited nondeterminism plugged in from the outside world at
the outset of the computation. On the other hand, there are no non-reversible
languages per definition any more.

Here we stick with standard definitions. That is, a REV-DFA has a unique
initial state and may have multiple accepting states. Essentially, in [33] it has
been shown that the regular language a∗b+ of Figure 1 cannot be accepted by
any REV-DFA.

Theorem 1 ([1,33]). There are regular languages which are not reversible, so
there are deterministic finite automata that cannot be simulated by any reversible
finite automaton.

An observation in [1] is that the inherent irreversibility of some regular
language may depend on the size of the input window of the devices. If this
size is increased for backward computations, more languages become reversible.
For example, the inherent irreversible language a∗b+ of Figure 1 is reversibly
accepted with lookahead size 2. This result led to the definition of so-called
k-reversible languages. In [7] this notion has been generalized to DFA in the
definition of [33], and in [24] to pushdown automata (and DFA in standard
definition).

We denote DFA with lookahead size k ≥ 1 by (k)-DFA. So, a classical deter-
ministic finite automaton is a (1)-DFA. A forward DFA is said to be reversible
of degree k (REV(k)-DFA) if the predecessor configuration is unique for all com-
putations that lead to the current configuration along the last k symbols read
in a forward computation. Note, the lookahead for the forward DFA is still 1
(see [24] for formal definitions). So, the lookahead of the backward DFA is used
to determine the unique predecessor configuration from all computations that
lead to the current configuration along the symbols seen in the input window.

This definition includes also non-reachable configurations. Consider once
more the language a∗b+ from above that is accepted by some REV(2)-DFA.
The configuration (baab, s1, bb) is unreachable in any computation starting from
an initial configuration, where baab is the input read so far, s1 is the current
state, and bb is the unread input. The configuration (aaab, s1, bb) is reachable.
Both have two predecessor configurations, namely (baa, s0, bbb), (baa, s1, bbb) and
(aaa, s0, bbb), (aaa, s1, bbb). However, in both cases the predecessor configura-
tion is unique, when the computation comes along the last two input sym-
bols. For the first case we have (ba, s0, abbb) � (baa, s0, bbb) � (baab, s1, bb) and
(ba, s1, abbb) ��∗ (baab, s1, bb).

The next example yields an infinite and strict hierarchy of regular languages
dependent on the degree of reversibility.
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Example 1. Let k ≥ 1 be an integer. Then the language { ambn | m ≥ 0, n ≥ k }
is accepted by some REV(k + 1)-DFA as indicated in Figure 5. However, the
language cannot be accepted by any REV(k)-DFA. ��

s0 s1 . . . sk−1 sk

a b

b b b bstart

. . . a a b . . . b b . . .

skbackward

k︷ ︸︸ ︷

Fig. 5. A REV(k + 1)-DFA accepting the language a∗bkb∗. This DFA is not a
REV(k)-DFA, and there is no other REV(k)-DFA accepting this language.

Theorem 2 ([1,24]). For any integer k ≥ 1, there are regular languages
accepted by REV(k + 1)-DFA that cannot be accepted by any REV(k)-DFA.

So far, it turned out that lookaheads on the input gradually increase the
capability to perform reverse computations. Now we are interested in the ques-
tion whether all regular languages are captured by REV-DFA. Or else, whether
there are regular languages that cannot be accepted by any REV-DFA of any
degree. For the important subclass of finite languages, the answer to the latter
question is no.

Proposition 1 ([24]). Any finite language is accepted by some REV(1)-DFA.

For a second important subclass, the unary languages, reversibility is always
obtained as well, but the degree for REV-DFA cannot be bounded by any num-
ber.

Proposition 2 ([24]). For any unary regular language L, there is an integer
k ≥ 1 so that L is accepted by some REV(k)-DFA.

Finally, we consider the general cases where there are languages for which
even an arbitrarily large degree cannot help.

Theorem 3 ([24]). There are regular languages which cannot be accepted by
any REV(k)-DFA for any degree k ≥ 1.

The idea of the proof is to use a language L over an alphabet Σ that is
accepted with lookahead size 2 but cannot be accepted with lookahead size 1, and
a regular substitution s(a) = a#∗, for a ∈ Σ and a new symbol #. Language s(L)
consists of all words from L with an arbitrary number of # between each two
symbols from Σ. Clearly, s(L) is still accepted by some DFA. On the other
hand, for any k ≥ 1, language s(L) contains all words from s(L) ∩ (Σ#k)∗. So,
when accepting such words there is always at most one symbol of Σ in the
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lookahead. Therefore, if s(L) would be reversible for input lookahead size k, a
direct construction would show that it is reversible for input lookahead size 1 as
well, a contradiction.

Summarizing the results so far, there is an infinite proper hierarchy of k-
reversible languages. The union (REV(∗)-DFA) =

⋃
k≥1 (REV(k)-DFA) of

all levels of the hierarchy is properly included in the family of regular lan-
guages. In order to justify the power of REV(k)-DFA we compare the union
with other well-known subregular language families (see, for example, [5,12] for
further results and references on subregular language families). It turned out
that (REV(∗)-DFA) includes finite as well as unary regular languages prop-
erly. Moreover, in [1] it is shown that (REV(∗)-DFA) includes the definite
languages [32] and the reverse definite languages [10] properly. On the other
hand, (REV(∗)-DFA) is incomparable with the subregular language families
of generalized definite [10] and locally testable languages [28].

Coming to another aspect, we recall that it is well know that the minimal DFA
accepting a given regular language is unique. So there is the natural question
asking for the relations between minimality and reversibility. It turned out that
in this connection the different notions of reversibility do matter. In [33], the
following proposition is cited.

Proposition 3. A language L is accepted by a bideterministic finite automaton
if and only if the minimal finite automaton of L is reversible and has a unique
final state.

This answers the question about the notion of reversibility in [1]. However,
for the other notions of reversibility considered, the minimal reversible finite
automaton for some language can be exponentially larger than the minimal
automaton.

Example 2. Let L be the finite language {aa, ab, ba}. The minimal DFA accept-
ing the 2n-fold concatenation of L is depicted in Figure 6. It has 6n + 1 states.
Since L2n is finite, it is reversible. ��

s1 s4

s0 s3 s6 . . . . . .

s2 s5

a a, b

b a

a a, b

b a

a

b

a, b

a

start

Fig. 6. A minimal DFA accepting the language L2n, for n ≥ 1

Theorem 4 ([13]). Let n ≥ 1. The minimal REV-DFA accepting L2n has
Ω(rn) states, for some r > 1.
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Another aspect concerns the problem to decide whether a given language or
automaton is reversible. In case of finite automata, deciding this problem for
devices is almost trivial. An inspection of the transition function and the set of
accepting states suffices. This observation transfers to languages in the notion
of [1] by Proposition 3. In general, the problem is more involved.

Theorem 5 ([33]). There is a polynomial time algorithm for testing whether
the language accepted by a minimal finite automaton can be accepted by a
reversible finite automaton.

4 Pushdown Automata

The next level in the basic hierarchy of automata are deterministic pushdown
automata (DPDA). Their reversible variants have been introduced and studied
in [19], where only reachable configurations are relevant for reversibility and the
predecessor configurations have to be computed by a device of the same type.
Recall that the transition function δ of DPDA maps the current state, the current
input symbol or λ, and the symbol at the top of the stack to the successor state
and a new (possibly empty) string at the top of the stack. We denote the relation
from one configuration to the next by �.

A DPDA M with transition function δ is said to be reversible (REV-DPDA),
if there exists a reverse transition function δ← inducing a relation �← from one
configuration to the next, so that ci+1 �←

ci, 0 ≤ i ≤ n − 1, for any sequence
c0 � c1 � · · · � cn of configurations passed through by M beginning with an
initial configuration c0 (cf. Figure 7). See [19,23] for detailed definitions.

Example 3 ([19]). The linear context-free languages {wcwR | w ∈ {a, b}∗ } as
well as { ancbn | n ≥ 0 } are accepted by REV-DPDA. A sketch of the basic idea
is shown in Figure 8. ��

A simple observation reveals that the transitions of a REV-DPDA either pop
a symbol, change the symbol at the top of the pushdown store, or push a single

· · · a b c · · ·

s1 Z

Y

...

· · · a b c · · ·

s2 Z ′

Z

Y

...

Fig. 7. Successive configurations of a reversible deterministic pushdown automaton,
where δ(s1, b, Z) = (s2, Z

′Z) (left to right) and δ←(s2, b, Z
′) = (s1, λ) (right to left)
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· · · a c b · · ·

s0 a

a

...

a

⊥

· · · a c b · · ·

s1 a

a

...

a

⊥

· · · b b b

s1 ⊥

· · · b b b

sf ⊥

Fig. 8. Scheme of a forward computation of a REV-DPDA accepting { ancbn | n ≥ 0 }.
The crucial point for backward computations is to determine the time step at which
state s0 has to be reentered. This is given by the c in the input.

symbol. The reason is that the reverse transition has only access to the topmost
symbol. The next result clarifies the role played by λ-steps.

Theorem 6 ([19]). For every REV-DPDA an equivalent realtime REV-DPDA
can effectively be constructed, that is, a REV-DPDA without λ-steps.

It is well known that general deterministic pushdown automata which are
not allowed to perform λ-steps are weaker than DPDA that may move on λ
input [11]. So, Theorem 6 provides a class of irreversible deterministic context-
free languages. Every deterministic context-free language that is not realtime is
not accepted by any REV-DPDA. For example, the language

{ amebncam | m,n ≥ 0 } ∪ { amebndan | m,n ≥ 0 }

does not belong to the family (REV-DPDA) (see, for example, [8,11]). This
result immediately raises the question of whether all realtime deterministic
context-free languages are reversible. The next theorem answers this question
negatively. In particular, it shows that the c in the center of the input of Exam-
ple 3 is essential.

Theorem 7 ([19]). The realtime deterministic linear context-free language
{ anbn | n ≥ 0 } is not accepted by any REV-DPDA.

So, we conclude that the family (REV-DPDA) is strictly included in the
family of languages accepted by realtime deterministic pushdown automata. Not
only in connection with reversibility it is interesting to consider realtime deter-
ministic context-free languages whose reversals are also realtime deterministic
context-free languages. It turned out that this family is incomparable with the
family (REV-DPDA). Furthermore, it is known that the families of linear
context-free languages and (REV-DPDA) are incomparable [19].

In [33], it has been shown that there are regular languages which are not
accepted by any reversible finite automaton. However, the regular languages are
strictly included in (REV-DPDA) [19]. Summarizing the results so far, we
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have obtained the following strict hierarchy, where REG denotes the regular and
rt(DPDA) the realtime deterministic context-free languages:

REG ⊂ (REV-DPDA) ⊂ rt(DPDA) ⊂ (DPDA).

Let us now turn to decidability aspects of REV-DPDA. Problems which are
decidable for DPDA are decidable for REV-DPDA as well. Therefore, emptiness,
universality, equivalence, and regularity are decidable for REV-DPDA. On the
other hand, inclusion is known to be undecidable for DPDA. By reduction of the
Post’s correspondence problem it has been shown that inclusion is undecidable
for REV-DPDA, too [19].

The following theorem contrasts the situation for finite automata, where the
problem is decidable in polynomial time (Theorem 5).

Theorem 8 ([19]). It is undecidable whether the language accepted by a non-
deterministic pushdown automaton can be accepted by a REV-DPDA.

The same problem for deterministic pushdown automata is open. However,
if we consider devices instead of accepted languages, we have the decidabil-
ity of reversibility. The size of a pushdown automaton is the length of its
representation.

Theorem 9 ([19]). Let M be a deterministic pushdown automaton of size n.
Then it is decidable in time O(n4) whether M is a REV-DPDA. Moreover, the
decision problem is P-complete.

Given a nondeterministic pushdown automaton, by inspecting the transition
function one can decide whether or not it is a DPDA. If the answer is yes, then
it can be decided whether it is a REV-DPDA by the previous theorem. If it is
not a DPDA, then it cannot be a REV-DPDA. Therefore, the previous result
transfers to nondeterministic devices.

Corollary 1. Let M be a nondeterministic pushdown automaton of size n. Then
it is decidable in time O(n4) whether M is a REV-DPDA. Moreover, the decision
problem is P-complete.

Next, the degree of reversibility is considered for pushdown automata. Com-
pared with DFA the additional resource pushdown storage allows a more involved
definition of lookaheads and, thus, degrees of reversibility. On the one hand, there
is the possible lookahead on the input as for (k)-DFA. On the other hand, we
consider a lookahead on the stack, that is, the machine can see the topmost l
stack symbols.

Without going into the details of the definition, we say that a determinis-
tic pushdown automaton with lookaheads k and l ((k, l)-DPDA) is a pushdown
automaton having an input lookahead of size k and a lookahead of size l on the
stack. A classical deterministic pushdown automaton is a DPDA with lookaheads
k = 1 and l = 1.
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In this connection we consider all configurations, not only reachable ones. As
for DFA, a DPDA is said to be reversible of degree (k, l) (REV(k, l)-DPDA) if and
only if there exists a reverse (k, l)-DPDA with transition function δ← inducing
a relation �← from one configuration to the next, so that any configuration has
a unique predecessor for all computations that lead to the configuration along
the symbols seen in the input window and are consistent with the symbols at
the top of the stack. Details of the definition can be found in [24].

Example 4. For any integer k ≥ 1, the deterministic linear context-free language
{ anbamban | n ≥ 1,m ≥ k } is accepted by some REV(k + 1, 1)-DPDA. ��

The languages of Example 4 are used as witnesses for an infinite and tight
hierarchy of languages acceptable by reversible pushdown automata of a degree
that depends on the size of the input window only. Large stack windows do not
help.

Theorem 10 ([24]). For any integer k ≥ 1, there are deterministic linear
context-free languages accepted by REV(k + 1, 1)-DPDA that cannot be accepted
by any REV(k, l)-DPDA, for an arbitrary l ≥ 1.

On the other hand, it turned out that the lookahead on the stack is interesting
from a descriptional complexity point of view only. The question whether there
are hierarchies with respect to the size of the stack lookahead has been answered
negatively. In fact, any reversible pushdown automaton of degree (k, l + 1) can
be simulated by a reversible pushdown automaton of degree (k, 1). So, in gen-
eral, a lookahead on the stack does not help to obtain reversibility. We present
the results obtained from two different simulation principles based on where the
information of the topmost stack symbols is maintained. This could be in addi-
tional registers of the states or in the stack symbols. Both methods are construc-
tive. From a practical point of view, states are somehow more active resources
while stack symbols are more passive. So, it depends on the application which
principle is more suitable.

Theorem 11 ([24]). Let k, l ≥ 1 be integers and M be a REV(k, l)-DPDA
with m states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with n

stack symbols and at most m · nl+1

n−1 states can effectively be constructed.

The second construction groups up to l stack symbols into one. However, the
construction has to overcome the problem, that, when the original automaton
pops a symbol, the simulating one has to access the symbol below the topmost.

Theorem 12 ([24]). Let k, l ≥ 1 be integers and M be a REV(k, l)-DPDA
with m states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with m

states and at most nl+1

n−1 · (nl + 1) stack symbols can effectively be constructed.

So, as for DFA it turned out that lookaheads on the input gradually increase
the capability to perform reversible computations. On the other hand, lookaheads
on the stack do not. Now we take a look beyond the degrees. Are all realtime
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deterministic context-free languages captured by REV-DPDA? From above it is
known that any finite language is accepted by some REV(1)-DFA and, thus, by
a REV(1, 1)-DPDA. However, the necessity to provide arbitrary degrees to DFA
to accept unary regular languages is not applicable for pushdown automata.

Proposition 4 ([24]). Any unary (deterministic) context-free language is
accepted by some REV(1, 1)-DPDA.

Finally, by a similar idea of translation as for regular languages the next
result is obtained.

Theorem 13 ([24]). There are realtime deterministic context-free languages
which cannot be accepted by any REV(k, l)-DPDA for any degree (k, l), k, l ≥ 1.

5 Time Symmetry

A further aspect of reversibility in real systems is discussed, for example, in [25].
In particular, physical reality reveals that often one can go back in time by
applying the same transition function after a specific transformation of the phase-
space. In [6] it is motivated that, for example, in Newtonian mechanics, relativity,
or quantum mechanics one can go back in time by applying the same dynamics,
provided that the sense of time direction is changed by a specific transformation
of the phase-space. For Newtonian mechanics, the transformation leaves masses
and positions unchanged but reverses the sign of the momenta. This aspect is
called time symmetry. So, time-symmetric machines themselves cannot distin-
guish whether they run forward or backward in time. In this connection, compu-
tational models with discrete internal states, more precisely cellular automata,
have been studied for the first time in [6].

Aspects of time-symmetry for reversible DFA and reversible DPDA have been
considered in [23]. The “direction of time” is adjusted by a weak transformation
of the phase-space, that is, an involution.

Let A,B,C be arbitrary sets, and f : B → C, g : A → B two mappings. For
their composition we write f ◦ g : A → C. A mapping τ : A → A is said to be an
involution if τ ◦τ = id, where id denotes the identity mapping. In general, we say
that an automaton M is time symmetric if there exists an involution τ on the
phase-space so that τ◦δ◦τ = δ←. So, given a configuration c, an application of the
involution τ transforms it, then δ is used to compute a new configuration, which
is again transformed by a second application of τ . The result is the predecessor
configuration of c. Precise definitions naturally depend on the specific type of
automaton considered.

First we turn to REV-DFA. A reversible DFA with state set S is time symmet-
ric if and only if there is an involution τ : S → S so that δ−1

x = τ ◦δx◦τ holds for
all input symbols x, where δx is the next-state function for input symbol x. Look-
ing at two successive steps, we obtain δ−1

x ◦δ−1
y = τ ◦δx◦τ ◦τ ◦δy◦τ = τ ◦δx◦δy◦τ .

Obviously, this generalizes to arbitrary numbers of steps. In some sense τ reverses
the direction in time permanently (that is, until τ is applied again).
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a

start

Fig. 9. Example of a unary reversible DFA accepting the language { aj·p | j ≥ 0 }

Example 5. Consider the p-state DFA M depicted in Figure 9. It turns out
that M is time symmetric. As witness involution one can take τ(i) = p − i − 1
(see Figure 10 for p = 8). We have τ(δa(τ(i))) = τ(δa(p − i − 1)) = τ(p − i) =
i − 1 = δ−1

a (i) = δ←(i, a), for all i (all arithmetic being done mod p). ��

s0

s1

s2

s3

s4

s5

s6

s7

a

a a

a

a

aa

a

start

τ

τ
τ

Fig. 10. Time symmetry of a reversible DFA accepting the language { aj·8 | j ≥ 0 }

The natural question whether all reversible DFA are already time symmetric has
been answered in the negative.

Theorem 14 ([23]). There are reversible DFA which are not time symmetric.

Figure 11 shows a witness for Theorem 14. Nevertheless, the relation between
reversible and time-symmetric DFA is different from the relation between arbi-
trary and reversible DFA.

0 1 2 · · · p-3 p-2 p-1

b b

a a a a a a

b

b

a

start

Fig. 11. Example of a reversible DFA that is not time symmetric
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Theorem 15 ([23]). Let p ≥ 1 and M be a p-state reversible DFA. Then
there exists an equivalent 2p-state time-symmetric DFA. This upper bound is
tight, that is, for p ≥ 6 there is a p-state reversible DFA so that every equivalent
time-symmetric DFA has at least 2p states.

While there are reversible DFA that are not time symmetric in general, every
unary REV-DFA is time-symmetric.

Theorem 16 ([23]). Each reversible unary DFA is time symmetric.

The second type of devices we are going to discuss from the viewpoint of
time symmetry are reversible pushdown automata. The handling of the addi-
tional resource makes the definition of time symmetry more involved. While
the usual presentation of DPDA uses the transition function δ, in the present
context it is advantageous to consider its induced extended transition func-
tion δ̂ : S × (Σ ∪ {λ} × Γ ∗ → S × Γ ∗, where Γ denotes the set of stack sym-
bols, as follows. For any p, q ∈ S, x ∈ Σ ∪ {λ}, Z ∈ Γ , and β, γ ∈ Γ ∗ set
δ̂(q, x, Zγ) = (p, βγ) if and only if δ(q, x, Z) = (p, β).

While in Section 4 reversibility is considered for reachable configurations,
here – to remain in context – we require reversibility for all configurations.

A reversible DPDA is time symmetric if and only if there is an involution
τ : S × Γ ∗ → S × Γ ∗ so that, δ̂−1

x = τ ◦ δ̂x ◦ τ holds for all input symbols x.
For example, the linear context-free language {wcv | w ∈ {a, b}∗, wR = vu }

is accepted by a time-symmetric DPDA showing that time-symmetric DPDA can
accept non-regular languages. However, the next result contrasts the situation
for DFA.

Theorem 17 ([23]). There are reversible unary DPDA which are not time
symmetric.

The unary language { ai | i ≥ n } is a witness for Theorem 17 (see Figure 12
for an example). Since it is regular, it is accepted by a REV-DPDA M . To this

s0 s1 s2 s3 s4

a
push a

a
nop

a
nop

a
nop

a
nop

start

Fig. 12. A non-time-symmetric but reversible REV-DPDA that accepts a4a∗

end, on any sufficiently long input M runs into a cycle and, thus, has to push
the history to get out of it in backward computations. In order to give evidence
that M is not time symmetric we note that in the cycle symbols have to be
pushed. In particular, this means that backward steps have to pop symbols.
However, there are no states in the cycle that pop a symbol. So, there is no state
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to which a push state could be mapped by an involution witnessing the time
symmetry.

As for DFA any reversible DPDA can be simulated by a time-symmetric
DPDA with at most twice as many states.

Theorem 18 ([23]). Let p ≥ 1 and M be a p-state reversible DPDA. Then
there exists an equivalent 2p-state time-symmetric DPDA.

Though it is well known that every unary context-free language is regular [9],
the families of reversible and time-symmetric unary languages are different.

Theorem 19 ([23]). (1) The family of languages accepted by time-symmetric
(unary) DFA is properly included in the family of languages accepted by time-
symmetric (unary) DPDA.

(2) The family of languages accepted by reversible (unary) DFA is properly
included in the family of languages accepted by reversible (unary) DPDA.

Finally, without going into further details, we just mention that the technique
to put a reversible device and its inverse “side by side” also works for other types
of reversible automata. However, whether the increase in size caused by doubling
the number of states is always necessary is an interesting and almost untouched
question.
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Abstract. In this paper, we construct a cellular automaton on the pen-
tagrid which is planar, weakly universal and which have five states only.
This result much improves the best result which was with nine states.

Keywords: Cellular automata · Universality · Tilings · Hyperbolic
geometry

1 Introduction

In this paper, we construct a weakly universal cellular automaton on the pen-
tagrid, see Theorem 2 at the end of the paper. Two papers, [1,7] already con-
structed such a cellular automaton, the first one with 22 states, the second one
with 9 states. In this paper, the cellular automaton we construct has five states
only. It uses the same principle of simulating a register machine through a railway
circuit, but the implementation takes advantage of new ingredients introduced
by the author in his quest to lower down the number of states, see [5]. The
reader is referred to [3–5] for an introduction to hyperbolic geometry turned to
the implementation of cellular automata in this context. A short introduction
can also be found in [2]. However, it is not required to be an expert in hyperbolic
geometry in order to read this paper.

Section 2 reminds the definition we take for weak universality. Section 3
is devoted to the proof of Theorem 2. In that section, Subsection 3.1
reminds the basic model used in the paper, Subsection 3.2 explains its implemen-
tation in the pentagrid, the tiling {5, 4} of the hyperbolic plane, Subsection 3.2
explains the scenario of the simulation performed by the automaton proving
Theorem 2.

2 Universality and Weak Universality

Universality is a well know notion in computer science. However, the single word
’universality’ is understood in different ways, sometimes somehow divergent.

Let us go back to the definition.

c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 99–113, 2014.
DOI: 10.1007/978-3-319-13350-8 8



100 M. Margenstern

Definition 1. Let K be a class of processes. Say that K possesses a univer-
sal element U if, a finite alphabet A being fixed once and for all, there is an
encoding c of K elements into the words on A and of the data for a K-element
into the words on A such that for all element χ of K and for all data d of χ,
U applied to (c(χ), c(d)) ends its computation if and only if χ ends its own one
when it is applied to d and, in that case, if U(c(χ), c(d)) = c(χ(d)).

We also say that U simulates χ or that χ is simulated by U . If K possesses a
universal element, we also say that K possesses the property of being universal.
Note that we get again the standard definition of a universal Turing machine.

In the above definition, there are four elements. Data χ and d, the encoding
of c and the universal element U . From the definition itself, the notion of encod-
ing is an essential feature. Indeed, among the elements of K, it is not difficult
to construct some of them whose encoding is bigger than that of U . Indeed, it
may be assumed that the encoding is an increasing function in this sense that
if χ and ξ are elements of K transforming words on A onto words on A, then
c(ξ◦χ) > c(χ), c(ξ). Consequently, encoding the elements of K into a fixed alpha-
bet is an essential feature. It allows U to simulate objects which are bigger than
itself. Of course, changing the encoding may result in a change on the computa-
tion of U which may then be either faster or slower. At last, when U stops its
computation, the result is an encoding of the result of the element of K simulated
by U .

Now, since a few decades, these three items: the data, the encoding and the
result are not always considered in the same way. From the definition, d is finite,
as a word on A; when the computation of χ on d stops, that of U on c(χ)
and c(d) also stops. Now, whether this latter condition is observed or not, it
happens that when U is applied to c(χ) and c(d), it does not yield c(d) when χ
completes its computation on d, but something else, call it e(d), where e can be
considered as another encoding of d, e being also fixed once and for all. Indeed,
U(c(χ), c(d)) = c(χ(d)) can also be rewritten c−1(U(c(χ), c(d))) = χ(d), so that
χ(d) is restored by decoding U(c(χ), c(d))). Introducing e consists in accepting
that the decoding function can be independent from the encoding one.

Now, the conditions of finiteness on d and on the computation of U when that
of χ on the considered data stops are not always observed. When all conditions
of Definition 1. are observed we say that U is strongly universal. In this
definition of strong universality, it is not required that the decoding be the
inverse function of the encoding. However, it is required that e and c belong
to comparable classes of complexity. Specifically, it is required that there is a
primitive recursive function u such that for any d, c(d), e(d) ≤ u(|d|), where |d|
is the size of c(d), i.e. the number of symbols in c(d).

When the conditions of strong universality are not observed, we say that U
is weakly universal. In case d is in some sense infinite, it is required that c(d),
which is an infinite word be of the form u∗wv∗, where u, v and w are words on A.
The repeated words u and v are called the periodic patterns and it is not required
that u = v. Note that during the computation, we may consider that each step t
of U works on something of the form u∗wtv

∗. It is this situation that we shall
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consider, with this difference that we work in a 2D-space and so, accordingly, we
require a condition of periodicity restricted to the outside of a big enough disc,
this condition being able to involve two different periodic patterns.

3 The Scenario of Our Simulation

Most of the cellular automata in hyperbolic spaces I constructed, myself or with
a co-author, apply the same model of computation. We implement a railway
circuit devised by Ian Stewart, see [8] which we rework in order to simulate a
register machine. This general scenario is described in detail in [4,5]. Here, we
simply give the guidelines in order to introduce the changes which are specific
to this implementation.

3.1 Basic Features

The railway circuits consists of tracks, crossings and switches, and a single loco-
motive runs over the circuit. The tracks are pieces of straight line or arcs of a
circle. In the hyperbolic context, we shall replace these features by assuming
that the tracks travel either on verticals or horizontals and we shall make it
clear a bit later what we call by these words. The crossing is an intersection of
two tracks, and the locomotive which arrives at an intersection by following a
track goes on by the track which naturally continues the track through which
it arrived. Again, later we shall make it clear what this natural continuation is.
Below, Figure 1 illustrates the switches and Figure 2 illustrates the use of the
switches in order to implement a memory element which exactly contains one
bit of information.

The three kinds of switches are the fixed switch, the flip-flop and the
memory switch. In order to understand how the switches work, notice that in
all cases, three tracks abut the same point, the centre of the switch. On one
side switch, there is one track, say a, and on the other side, there are two tracks,
call them b and c. When the locomotive arrives through a, we say that it is an
active crossing of the switch. When it arrives either through b or c, we say that
it is a passive crossing.

In the fixed switch, in an active passage, the locomotive is sent either always
to b or always to c, we say that the selected track is always b or it is always c.
In the passive crossing, the switch does nothing, the locomotive leaves the switch
through a. In the flip-flop, passive crossings are prohibited: the circuit must be
managed in such a way that a passive crossing never occurs at any flip-flop.
During an active passage, the selected track is changed just after the passage
of the locomotive: if it was b, c before the crossing, it becomes c, b respectively
after it. In the memory switch, both active and passive crossing are allowed.
The selected tracks also may change and the change is dictated by the following
rule: after the first crossing, only in case it is active, the selected track is always
defined as the track taken by the locomotive during its last passive crossing of
the switch. The selected track at a given switch defines its position.
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Fig. 1. The switches of the railway circuit. From left to right: the fixed switch, the
flip-flop and the memory switch.

The current configuration of the circuit is the position of all the switches of
the circuit. Note that it may be coded in a finite word, even if the circuit is
infinite, as at each time, only finitely many switches have been visited by the
locomotive.

Figure 2 illustrates how a flip-flop and a memory switch can be coupled in
order to make a one bit memory element.
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Fig. 2. The basic element of the circuit. Second row: Firs two drawings: reading the
element. Last two drawings: writing the element.

3.2 In the Pentagrid

As mentionned in the introduction, the first weakly universal cellular automaton
on the pentagrid was done by the author and a co-author, see [1]. The paper
implements the solution sketchily mentioned in Subsection 3.1 with 22 states. In
the next paper about a weakly universal cellular automaton on the pentagrid,
see [7], the same model is implemented with 9 states. The difference with the
former paper is that in the second paper, the cell which is at the centre of the
switch has the same colour as another cell of the track. The centre of the switch
is signalized by the neighbouring of the centre.

Former Implementations. Figure 4 illustrates the implementation of the
crossing and of the switches performed in [7], showing in particular, the feature
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at which we just pointed. Figure 3 shows the implementation of the verticals,
second row in the figure, and of the horizontal, first row. Both these figures show
how to implement the basic element of Figure 2 in Subsection 3.1. Figure 5 show
a global view of how the tree structure of the tiling can be used to implement a
basic element in the pentagrid.

Fig. 3. Implementation of the tracks in the pentagrid. On the top, running a horizontal
track from left to right. On the bottom, running a vertical track from top to bottom.

Fig. 4. Implementing the crossing and the switches in the pentagrid. From left to right;
crossing, fixed switch, memory switch and flip-flop.

In this implementation, as well as in that of [1], the locomotive is implemented
as two contiguous cell with different colours, which allows the implemented vehi-
cle to find the direction of its motion along the tracks. The colours were chosen
as green and red, green pointing at the front and red at the rear. The direction
is then obvious. These are the elements which allowed us to prove the following
result.

Theorem 1. (Margenstern, Song), cf.[7] − There is a planar cellular automaton
on the pentagrid with 9-states which is weakly universal and rotation invariant.

By planar, we mean that the trajectory of the cells of the cellular automaton
which at some point change their state is a planar structure which contains
infinitely many cycles which cannot be reduced to a 1D-structure. This is in
particular the case of the units which constitute the registers of the register
machine implemented by the railway circuit.
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The New Scenario. In this paper, we take benefit of various improvements
which I brought in the construction of weakly universal cellular automaton con-
structed in other contexts: in the heptagrid, another grid of the hyperbolic plane,
in the hyperbolic 3D-space and in the tiling {13, 3} of the hyperbolic plane, that
latter automaton having two states only, see [5] for details.

Our implementation follows the same general simulation as the one described
in Subsection 3.1. In particular, Figure 5 is still meaningful in this new setting.

Fig. 5. Implementing the basic ellment in the petagrid. The discs on the bottom row,
from left to right, represent the crossing, the fixed switch, the memory switch and the
flip-flop.

However, here, new features are introduced.
The first change is that the tracks are one-way. In some sense this is closer

to what we can see for railways in real life, in particular for highspeed ones.
This change entails a big change in the switches and in the crossings. There is
no change for the flip-flop which was already a one-way structure from the very
beginning as passive crossings are ruled out for this kind of switches. For fixed
switches it introduces a very small change: we keep the structure for a passive
crossing and for the active one, as the selected track is the same, it is enough
to continue the active way without branching at the centre of the switch, see
Figure 6. In the same picture, we can see that the situation is different for the
memory switch. This time, as there are two possible crossings of the switch and
as the selected track may change, we have two one-way switches: an active one
and a passive one. At first glance, the active switch looks like a flip-flop and the
passive switch looks like a one-way fixed one. However, due to the working of the
memory switch, we could say that the active memory switch is passive while the
passive memory switch is active. Indeed, during an active crossing, the selected
track is not changed contrary to what happens in the case of the flip-flop. Now,
during a passive crossing, the switch looks at which track is crossed: the selected
or the non-selected one. If it is the non-selected one, then the selection is changed
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and this change is also transferred to the active switch. Accordingly, there is a
connection between the active and the passive one-way memory switches.

fixed switch memory switch

Fig. 6. The new switches for a one-way structured circuit: the fixed and the memory
ones. Note that the flip-flop remains the same as in Figure 1.

Now, if we wish to significantly reduce the number of states, we also have to
change the tracks themselves, as it appears that giving them the same colour as
the background is better than assigning a special colour to identify the tracks.
The consequence is that we have to place milestones in order to do so. This was
performed in previous works, see [5]. But this is not enough: we also have to
change the crossings. Contrary to what happens in the 3D-space where cross-
ings can be replaced by bridges, which makes the situation significantly easier,
crossings cannot be avoided in the plane.

In [5] we indicate a solution which allowed me to build a weakly universal
cellular automaton in the hyperbolic plane with 2 states only. However, this was
not performed in the pentagrid nor in the heptagrid, but in the tiling {13, 3}.
This solution can be implemented here and this allowed me to reduce the number
of states from 9 down to 5. There is a slight improvement in the present solution
which might allow us to reduce the number of neighbours for a two-state weakly
universal cellular automaton in the hyperbolic plane.

First, we look at a crossing of two one-way tracks. The main idea is that we
organize the crossing in view of a round-about: an interference of road trafic
in our railway circuit. We may notice that the locomotive arriving either from A
or B in Figure 7 has to turn right at the second pattern it meets on its way.
So that it is enough to devise a pattern which allows to count from 1 up to 2
in some way. In the two-states world of the weakly universal cellular automaton
on {13, 3} described in [5], there were four patterns: a first one appears when
the locomotive arrives at the round-about. At this point, a second locomotive is
appended to the arriving one. At the second pattern, one locomotive is removed
and so, as a single locomotive arrives through the round-about at the third
pattern, then it knows that it has to turn right. Here, this scheme is slightly
changed as follows. At the first pattern it meets the locomotive, which, arriving
in a state S, is changed into T. At the second pattern, as a locomotive in the
state T arrives, it is sent on the track which leaves the round-about. This is why
three patterns are needed in Figure 7.

Figure 8 shows us how to assemble four one-way round-abouts in order to
perform a true crossing for the intersection of two two-ways tracks.
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Fig. 7. The new crossing: the one-way tracks fromA and B intersect. We have a three-
quarters round-about. The small disc at f represents a fixed switch. Discs 1, 2 and 3
represent the pattern which dispatches the motion of the locomotive on the appropriate
way. Patterns 1 and 3 are needed as explained in the description of the scenario.
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Fig. 8. The new crossing: four possible one-way track. Assembling them allows us to
perform a two-way crossing. The notations are those of Figure 7. A1, B1 go opposite
to A, B, respectively.
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Now that we have seen the scenario to implement the circuit, we have to
precisely look at how to implement it with five states only. We turn now to this
question.

Implementing the New Scenario. As already announced, we need to use five
states only. The first state is the quiescent state which we denote by W. Remem-
ber it is defined by the following rule: if a cell c and all its neighbours are in the
state W, then at the next top of the clock, the cell c remains in the state W. We
shall also call W the blank and we also shall say that a cell in W is white. The other
states are B, G, R and Y. The cells in these states are said to be blue, green, red or
yellow, respectively. The state B is mainly used for the milestones which delimit
the tracks. The state G is the basic state of the locomotive. In crossings, the loco-
motive turns to R. The state Y is used for special markings in the passive memory
switch. The states B, G and R are also used for marking in the crossings and in the
other switches. The state G also appears in the milestones for the tracks.

Checking the new scenario requires to first study the implementation of the
tracks. We have to define verticals and horizontals.

Vertical and horizontal tracks

The verticals are easy to define, they correspond to branches of the Fibonacci
tree. In fact they are finite sequences of cells for which a side lies on a fixed
line. The line can be changed inside the sequence as illustrated by Figure 9 for
a green locomotive running on a top-down track.

Fig. 9. Top-down traversal of a vertical with a green locomotive

Fig. 10. The elements of the tracks. Leftmost picture: the standard element. Second
and third pictures from left: the element which allows to perform sharp turns. Fourth
and fifth pictures, illustration for a sharp turn.

The structure of an element of the track is simple. Assume that the locomo-
tive leaves the cell through its side 1. Then, the milestones are always on sides 2
and 5. It enters either through sides 3 or 4. Both cases occur as illustrated in
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Figure 9. Now, if we consider the standard numbering of the sides, then the place
of the milestones depends on the direction of the motion. Assume that in the
central cell, side 3 is the horizontal side. Then, for the cell 1(1), cell 1 of sector 1,
the milestones are on the sides 3 and 5 in a bottom-up motion while they are
on the sides 2 and 5 in the top-down one. The leftmost picture of Figure 10
illustrates the milestones as just defined.

The other pictures of Figure 10 illustrate two other patterns for the tracks. The
second and third picture of the figure illustrates an element of the track which
allows the locomotive, either green or red, to perform a sharp turn: this means
that the locomotive enters through a side and exits through a contigous one. Such
a turn is absolutely needed in the pentagrid in order to have cycles in the trajectory
of the locomotive. If such a possibility would not be allowed, the locomotive would
run to infinity without returning to any tile it had already visited.

Fig. 11. A horizontal with a green locomotive, left-right run

The last two patterns of Figure 10 illustrate how to perform a sharp turn. A
blue milestone is replaced by a green one. There are two possiblities and each
of them is used for a direction of the motion. Rules are devised in such a way
that the green milestone prevents a backward motion of the locomotive as can
be checked on the pictures from the above descriptions.

It is the place to remark that as horizontal tracks run on three consecutive
levels, a two-way portion of the tracks require at least seven consecutive levels
as we need at least one level to separate the tracks run on each direction. A
similar remark also holds for vertical lines. A two-way section must be sepa-
rated by several nodes on the same level at the level where the distance between
the supporting line is minimal: this distance must be positive, which guaran-
tees that the lines are not secant. These constraints require much space for the
implementation, but in the hyperbolic plane, we are never short of space.

Implementing the crossings

As indicated in Subsubsection 3.2, the tracks are organized according to what
is depicted in Figures 7 and 8. From the latter figure, it is enough to focus on
the implementation of Figure 7. From the implementation of the tracks, we only
have to look at the implementatation of the patterns symbolically denoted as 1,
2, 3 and f in the figure. As f is a fixed switch whose implementation is indicated
a bit further, we simply implement 1 as the other patterns are strict copies
of this one. Figure 12 illustrates this implementation and the behaviour of the
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locomotive when it crosses the pattern. We can see that the difference strongly
depends on the colour of the locomotive.

From Figure 7, the locomotive always arrives to the pattern from the same
cell, namely 4(4). Then the locomotive goes to the centre, cell 0.

Fig. 12. The key pattern of the crossings. Notice the difference of behaviour depending
on the colour of the locomotive.

When the locomotive is green, it goes to cell 1(1) arriving there as a red cell,
and then it goes out onto the round-about towards the next pattern, still as a
red locomotive. When the locomotive which arrives at cell 4(4) is red, it also
goes to 0 but from there, it goes to 1(5) where it arrives as a green cell. Indeed,
cell 1(5) remains white until it sees a red cell through its side 1. Note that side 1
is clearly indentified thanks to the pattern of the neighbours of cell 1(5). It is
the pattern of an element of the tracks with a red milestone in place of the green
one.

Implementation of a fixed switch

Figure 13 illustrates the passive crossing of a fixed switch for a green locomotive.
With one-way tracks, we need a single kind of passive fixed switch as there

is no need of an active fixed switch, see Figure 6.

Fig. 13. The fixed switch: passive crossing by the green locomotive

Implementation of a flip-flop

With the flip-flop, we introduce the fifth state, Y. Figure 14 illustrates the con-
figuration of a flip-flop and its active crossing by a locomotive.

Note that the change of the selected track occurs some time after the locomo-
tive left the switch. The white cell at 2(2), it has three red neighbours, detects
the passage of the locomotive just before the latter leaves the switch. Then, it
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passes the information to the cell 2(1) through 1(1). This makes 2(1) to flash,
turning from Y to R and then turning back to Y. This flash makes both 1(1)
and 1(5) to change their states in a way which triggers 2(2) and 2(5) to change
their states. When the cell 2(2) is red, a symmetric process occurs.

Fig. 14. The flip-flop

Implementation of a memory switch

Now, we arrive to the most difficult situation. We have to implement two switches
with a connection between them. As already noticed in Subsection 3.2, the active
switch has a passive behaviour when crossed by the locomotive and the passive
switch has an active behaviour when the locomotive takes the non-selected track.
This action of the passive switch triggers the change of selection in the active
switch: hence we have to organize the connection from the passive switch to the
active one. The pattern of these switches, when the locomotive is not present, is
illustrated by Figure 15.

Fig. 15. The stable configuration of the active and passive memory switches. To left,
the switches selected the right-hand side track. To right, they selected the left-hand
side track.

Figure 16 illustrates the crossing of the active switch by the locomotive. Due
to its way of working, the memory switch has two basic positions according to
which is the selected track. We say that the left-, right-hand side switch selects
the left-, right-hand side track respectively. We can check on the figure that the
switch remains unchanged after the traversal of the locomotive.

We can see that the pattern of the active memory switch looks like that of
the flip-flop. The difference is restricted to the cell 2(1) and its neighbours. In the
flip-flop, the cell 2(1) is in Y and three consecutive neighbours are in B: cells 5,
6 and 7 of sector 1. In the active memory switch, the cell 2(1) is in B and the
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Fig. 16. The active memory switch. The left-hand side switch.

cell 6(1) is white. Moreover, the cells 15(1) and 18(1) are in G. We shall see the
role of these green cells in a while.

Before, we look at the crossing of the passive memory switch. We have four
situations as the switch has two positions and as for each position, the locomotive
may arrive either through the selected track or through the non-selected one.

Fig. 17. The passive memory switch. Here a left-hand side switch and a passive crossing
through the non-selected track. Note that the selected track is changed in the right-
hand side half of the figure.

As is clear on Figure 15, the pattern of the passive memory switch is very
different from the active one. Although a part of it is taken from a fixed switch
whose centre would be at the cell 2(3), the surrounding of this cell and the
passive tracks is very specific.

Figure 17 illustrates the case when the locomotive crosses the non-selected
track. We can see that this changes the selection according to the definition of
the memory switch: the non-selected track becomes the new selected track.

Now, this information has to be transferred to the active memory switch. This
is performed by the pattern of the passive memory switch. The crossing through
the non-selected track is detected by the cell 1(5) which is in contact with the
central cell. That latter one has a B-neighbour on the side of the selected track
and a Y-one on the side of the non-selected track. When the locomotive becomes
a neighbour of the central cell, it abuts the cell on the side of the Y-neighbour
or of the B-one. This allows the central cell to know through which track the
locomotive has run. Accordingly, if the run went through the non-selected one,
the central cell flashes: it turns from B to R and then turns back to B. Now, this
flash makes the cells 1(1) and 1(4) to take the opposite colour, from B to Y or
from Y to B: this changes the signalization of the non-selected track. But the
cell 1(5) also can see the flash of the central cell. This makes the cell 1(5) to also
flash: it turns to G and then turns back to Y. Now, the cells 5(1) and 11(5) are
milestones for the cell 4(5) which, accordingly, appears to be a possible element
of a track. Consequently, the flash of 1(5) creates a second locomotive which can
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go along the track whose starting point is cell 4(5). It is enough to define a track
going to the active memory switch to make the needed connection between the
two parts of the memory switch.

Fig. 18. The organisation of the memory switch

Figure 18 illustrates the global setting for implementing the memory switch
with its tow parts, the passive and the active one and the connection between
them. Now, the path whose starting point is the cell 4(5) in the passive switch,
see Figure 15, goes to the active switch as indicated in Figure 18 and it arrives
at the cell 6(1) of the active switch, see Figure 15.

Fig. 19. The change of selection in the active memory switch triggered by the arrival
of the second locomotive at the cell 6(1). To left the case when the left-hand side track
is selected, to right, when it is the case for the right-hand side track. The presence of
the locomotive in 6(1) can be seen in the first picture of each series.

The cells 15(1) and 17(1) allow to make the second locomotive sent from the
passive switch go to the cell 16(1) from where it is driven to the cell 6(1). Now,
when the cell 2(1) can see the second locomotive, it flashes, turning to R and
then back to B, which makes the cells 1(1) and 1(5) trigger the signal to the
cells 2(2) and 2(5) which then take the opposite colour.

Figure 19 illustrates the situation when the second locomotive arriving at the
cell 6(1) triggers the change of selection. As can be seen in the figure, the second
locmotive vanishes just after it arrived at 6(1). This arrival makes the cell 2(1)
flash and then the same mechanism as seen for the flip-flop apply: the situation
for cells 2(2) and 2(5) is exactly the same.
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And so, outside the locomotive which yields the simulation of the computa-
tion in this model, call it the main locomotive, from time to time a second
locomotive appears for a while in order to transmit the appropriate signal to an
active memory switch. It is important to notice that the motion of this second
locomotive does not interfer with the motion of the main one. Indeed, although
the track from a passive memory cell to its corresponding active one is very
long, the distance between whole switches is much larger. In any case it can be
made much larger: this can easily be seen on Figure 5. Also note that the second
locomotive may sometimes be red. Indeed, as indicated by Figure 18, the second
locomotive travels through two crossings.

With this study illustrated by the figures and the rules which can be found
in [6], we completed the proof of the following result:

Theorem 2. There is a rotation invariant cellular automaton on the pentagrid
with 5 states which is planar and weakly universal.
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Abstract. In this paper we present a survey on the minimum and non
minimum time solutions to the Firing Squad Synchronization Problem.
Particular emphasis is on the contribution given by Jozef Gruska, in
honor of which this article is dedicated.

The problem consists in synchronizing a Cellular Automata (CA)
whose cells work at discrete steps at unison. The first cell is initially in
a particular state, called the General, and all the others are in a Latent
state. The problem is solved when, all the cells enter for the first time
and simultaneously a Firing state. In its original and basic formulation,
the cells are arranged as a line, here we consider also other shapes like
rings, rectangular grids and toruses. Also other variations of the problem
are considered, such as the limited link capacitiesand different numbers
and positions of the General state.

We consider both the minimum time needed to synchronize the CA
and some algorithms synchronizing in particular times. Some open prob-
lems are also proposed.

Keywords: FSSP · Cellular Automata · Synchronous Computations ·
Channel Capacity

1 Introduction

Cellular Automata (CA) are perhaps the most intriguing and fascinating model
of computation, and Quantum Cellular Automata, perhaps, the most important
model of information processing by nature. It is therefore of great interest and
large importance to study in depth many natural variants of the basic models of
cellular automata and relations among them. CA have been investigated from
many points of view and applied in fascinating ways in so many areas of science
and technology. One of the first, and still fascinating, problems concerning cellu-
lar automata is the Firing Squad Synchronization Problem (FSSP). When and
how one can make interaction of isolated and simply interconnected identical
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finite automata, to cooperate so effectively that they achieve almost impossible
tasks, to completely synchronize their actions.1

The FSSP was originally proposed by John Myhill in 1957 and printed later
in [Moo64]. Roughly speaking, its setting consists of a network of identical cells
(finite automata) working synchronously at discrete time steps and connected lin-
early, see Fig. 1a. The cells are all in a quiescent state until the leftmost, stimulated
by the external environment, enters a General state and issues a Fire when ready
command and later all the cells (soldiers) enter simultaneously a Fire state.

In his seminal paper, Myhill said that at most four hours are needed to solve
the FSSP, also by non computer science experts, as reported in [GK12]. However,
though this may sound a little intimidating, we think that, as often happens in
describing math problems, the simplicity of its formulation, and why not, also the
elegance, can lead to this idea. What is certainly true is that the basic solution is
quite simple to understand. The next natural step was to find the fastest solution
and at the best of our knowledge, as reported by Umeo in [Ume96], Goto gave
the first minimum time solution in a course note of Harvard University [Got62],
and since then other minimum time solutions have been given, as we will see in
in section 3.1.

In the original formulation of the problem, the cells are arranged as a line.
We discuss time solutions also when cells are arranged in different shapes, such
as ring-shaped or rectangular arrays, and spend few words on higher dimensional
arrays. Besides the time, also the size of the finite automata is important, in fact
processors with few states can function at higher clock rates and the solutions
are faster in absolute time (see [GK12]). In section 3 we will discuss also on this
aspect, and emphasize some open problems.

The importance of FSSP lies clearly also in the fact that synchronizing algo-
rithms are useful when it is necessary to automatically start at the same moment
various activities (e.g. different algorithms). This essentially motivated our stud-
ies reported in section 4, concerning the problem of synchronizing a network at
given times.

Let us underline that this paper does not pretend to be a complete survey
on the FSSP. Actually, in literature there is abundance of material and several
beautiful survey papers have been written by Hiroshi Umeo.

The rest of the paper is organized as follows. In section 2 we give the basic
definitions of the FSSP and of the different networks we consider. In section 3
we present the minimum time solutions. In the last section 4 we survey some
algorithms that synchronize at particular times.

2 The Firing Squad Synchronization Problem

Cellular Automata. A cellular automaton (CA) consists of a regular network of
cells, each in one of a finite number of states (Q denotes the set of such states).
1 This paragraph is the incipit of the introduction written by Jozef in [GLP07], that

we chose to quote in full here for the passion about the CA that it contains and still
distils.
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A neighborhood relation is defined, indicating the neighbors of each cell. All the
cells have the same number N of neighbors, except a fixed number of boundary
cells which have less neighbors. A boundary cell has less than N neighbors. A
cell is intended to be linked to each of its neighbors through communication
channels, and can send and receive, in each time step, binary sequences whose
length is bounded by the capacity of the channels.

Time in the model is discrete. On each time step, every cell updates its
state in accordance to a transition rule that takes as input the state of the cell
itself and the sequences obtained from the cells in its neighborhood. The cells
are then finite automata which operate synchronously, at discrete time unit. At
each time t, a configuration specifies the state of each cell. A computation step
modify the configuration, in accordance to the transition function and depending
on both the current configuration and the sequences sent by the cells. An initial
configuration is a configuration at time 1. Observe that in the classical definition
of CA, the transition function takes as input the state of the cell itself and those
of its neighbors at the previous step. Such classical definition is captured here
when the capacity of the channels is log|Q| and then each cell can send its whole
state in a step.

(a) Line (b) Ring

Fig. 1. One dimensional networks

The FSSP Problem. We assume that among the states of the considered cellular
automaton three are distinguished states: G, the General state, L, the Latent
state, and F , the Firing state. The state L has the property that a cell in this
state can send only 0 to its neighbors, and remains in the same state unless it
receives a different from 0 sequence from one of its neighbors.

The initial configuration for the FSSP problem is such that a cell in a prede-
termined position in the network is in the state G, and is called General, and
all the others cells, called Latent, are in the state L (in some generalization of
the problem, more then one General may occur in the initial configuration).
The problem is to determine a description of a CA (state set and transition func-
tion), which does not depend on the number of cells, such that, starting from
the initial configuration, at some future time, all the cells will simultaneously
and, for the first time, enter the firing state F (synchronization).

We are interested in the time when the cells enter F , and we express it as a
function of a parameter n of the size of the network. (e.g. for a Line or a Ring
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n is its length, for a Square it is the number of rows). A cellular automaton
which provides a synchronization in time t(n) is also called a solution in time
t(n) of the FSSP, or simply a solution.

Communication Networks. The original FSSP problem was defined over a lin-
ear sequence of cells. Later, a number of variations and generalizations of the
problem have been introduced. We deal with FSSP defined over different Com-
munication Networks: the network may have different shape, number of dimen-
sions2, and neighborhood relation, and the channels may vary for capacity and
for direction of the information flow (either two-way or one-way).

(a) Square (b) Torus

Fig. 2. Two-dimensional networks

– One-dimensional networks:
• Line: a linear sequence of cells, with the first and the last cell being the

boundary cells. Boundary cells have just one neighbor, the other cells
have two neighbors. Channels are two-way, and connect every pair of
adjacent cells. The capacity of the channels is log|Q|, that is, they have
the ability to transmit a state of the CA, (see Figure 1a).

• Ring: a one-dimensional network with two-way communication channels
with capacity log|Q|. The peculiarity is that there are no boundary cells,
and all the adjacent cells are linked to each other, (see Figure 1b). Cells
are numbered 1, · · · , n, as for a Line, with the first cell arbitrarily chosen.

• oneWay-Ring: a Ring in which the communication channels are one-
way, that is, they are directed links from cell i to the cell i + 1, modulo
n. Thus, at each step the i-th cell receives the information from the the
cell i − 1, and sends the information to the cell i + 1.

• 1-Line and a 1-Ring: similar to the Line and to the Ring, respectively,
with communication channels having capacity 1. In this way, they have
the ability to transmit just one bit in a time.

– Two-dimensional networks

2 We use the term dimension here with the intended meaning to indicate the number
of coordinates needed to locate a cell.
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• Square: a regular grid of n × n cells, numbered (i, j), for 1 ≤ i, j ≤ n.
Channels, with capacity log|Q|, are two-way, and connect every pair
of adjacent cells, i.e. each cell (i, j), except for the boundary cells, is
connected to cells (i−1, j), (i, j−1), (i+1, j) and (i, j+1) (a boundary
cell may have two or three neighbors, depending on the values of i and
j) (see Figure 2a).

• Rectangle: similar to the Square, but with a grid of m × n cells.
• Torus: Simplifying, it is obtained as a rotation of rings and can be seen

as a two-dimensional regular grid of n× n cells, without boundary cells:
as shown in Figure 2b, every cell has four neighbors.

• oneWay-Torus: similar grid to the Torus, with one-way channels from
each cell (i, j) to the cells (i, j + 1) and (i + 1, j), modulo n.

• 1-Square and 1-Torus: Square and Torus with one-bit communica-
tion channels.

In a natural way, these definitions can be extended to communication networks
with higher dimensions.

As already said, in the initial configuration for FSSP, a General is a cell
in the state G. In the above described networks, the General is the first cell in
the grid, that is the cell 1 in the one-dimensional networks and the cell (1, 1) in
the two-dimensional cases. Several generalizations of the problem have been con-
sidered in literature, by modifying the number or the position of the Generals
in the initial configuration. Let us mention some of them.

– Two-End FSSP, also called Two-End Synchronization: the network is a Line
of n cells, and the synchronization starts from an initial configuration with
a General at each end (i.e., at cells 1 and n).

– Four-End FSSP: the network is a Square of n×n cells, and the synchroniza-
tion starts from an initial configuration with Generals at the four corners
(i.e., at cells (1, 1), (1, n), (n, 1) and (n, n)).

– Generalized FSSP (GFSSP): the General is located on an arbitrary cell.
– Multi-General FSSP (MG-FSSP): in the initial configuration there is an

arbitrary number of Generals, in arbitrary positions.
– Asynchronous Multi-General FSSP (A-MG-FSSP): a generalization of the

MG-FSSP, in which the Generals start their work in an asynchronous way.

3 Minimum Time Solutions to the FSSP

In this section we present minimum time synchronization for several models of
communication networks.

3.1 One-Dimensional Networks

Let us first consider one-dimensional models. We will discuss the optimum time
for each variant of the problem and show that in almost all the considered cases,
optimum time solutions exist.

Line. It is well known that any solution to FSSP over a Line of n cells requires
at least time 2n − 1. Actually, the time required for the General to wake up
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all the Latent cells is n, and other n−1 steps need to get back the information
that all the cells have been awakened.

First minimal solution to FSSP over a Line, using a rather huge number
of states (several thousands), was given in 1962 by Goto. Then, Waksman in
[Wak66] showed a 16-state CA which is a well known algorithm, often considered
to be the first minimum time solution to FSSP. In the same years, Balzer gave
an 8-state solution, [Bal67]. Twenty years later Mazoyer constructed a 6-state
minimum time solution which is the best known solution with respect to the
number of states, [Maz87]. Optimum time solutions to the FSSP over a Line
have been analyzed and compared in [UHS05].

In the generalized version of FSSP problem (GFSSP) the General is located
on any cell, that is an arbitrary cell may be in state G in the initial configuration.
Moore and Langdon, in [ML68], showed a 17-state solution to GFSSP in time
n − 1 + max(p;n − p + 1), which is the minimum time required to synchronize
the cells of a Line where p is the number of cells between the General and the
closest end of the Line.

Other variations of the problem have been considered in literature, by
modifying the number of the Generals in the initial configuration of the
given CA. In the Multi-General FSSP problem (MG-FSSP), there are a num-
ber k of General cells, each being pi cells far from the leftmost one, for
i ∈ [1, · · · , k]. In [SW04] a minimum time solution has been given in time
n+max(mini(pi);n−1−maxi(pi)). In the same paper, a more general case has
also been considered in which the Generals start their work in an asynchronous
way, each at a time ti (A-MG-FSSP problem). In this case a lower bound has
been provided but it has been proved that for each CA solving A-MG-FSSP,
there are infinitely many instances for which the CA does not synchronize in
the optimum time.

An interesting case is when two Generals occur in both the boundary cells,
and the problem arising is known as Two-End synchronization of a Line, [Cul89].
A Two-End synchronization of a Line of n cells can be obtained in time n by
considering the line as being split into two halves. Each of these half-lines can
be seen as a Line with one General, and is synchronized by a minimum time
solution which starts from the boundary cells. In the case n is odd, the central
cell belongs to both half-lines, and each half-line has (n + 1)/2 cells. Thus, all
the cells fire simultaneously in time 2(n+1)/2− 1 = n. When n is even, the line
is divided in two sub-lines of n/2 cells. Anyway, each of the two central cells can
act as the last cell of its half-line only when it receives an input from the other
half-line, thus the synchronization of each half-line needs a further unit of time,
and then it works in time n also in this case.

Concerning cellular automata with the ability to transmit just one bit of
information, Mazoyer, in [Maz96], showed that a minimum time solution exists
even for a 1-Line. Observe that in general 1-CA, i.e. CA using 1-bit channels,
can simulate standard CA but this simulation causes a slow down of a factor
log|Q|, where |Q| is the number of states of the CA.
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The Two-End synchronization outlined above does not work if one uses the
solution to the case of 1-bit communication channel. The main reason is that
the synchronization of 1-CA makes an important use of the information on the
parity of the bits received by each cell. In [GLNP06,GLP07], the authors show
that a unit time of delay is then necessary when the number of cells is even. This
leads to a Two-End synchronization in time 2�n/2� + 1.

Ring and oneWay-Ring. A solution to the FSSP over a Ring of n cells can
simulate a Two-End synchronization of a Line of n + 1 cells. Actually, the cell
number 1 of the Ring can act as both the boundary cells of the Line. This idea
is due to Culik, but he considered that an n cell Ring could simulate a Two-End
synchronization of an n cell Line, thus obtaining an imprecise solution in time
n, [Cul89].

We have already said that a Two-End synchronization of a Line of n + 1
cells can be obtained in time n+ 1, which is indeed the minimum time for an n
cell Ring. This is actually the time required for the General to wake all the
cells up and receive the information back (see [GLP07] for a proof).

When the channels can communicate just one bit of information, the simu-
lation of a Two-End synchronization of a Line of n + 1 cells leads to a solution
to 1-Ring in time 2�n/2�+1, [GLNP06,GLP07]. Hence, there is a gap between
the lower and the upper bounds for the synchronization of a 1-Ring with an
odd number of cells.

The lower bound for the synchronization time, has been refined in [LNP96],
in the case of oneWay-Rings: it has been proved by contradiction that any
solutions over a oneWay-Ring requires at least time 2n. Suppose that a solution
in time less than 2n exists for FSSP over a oneWay-Ring A with n cell, the
same solution does not work correctly for a oneWay-Ring B of 2n cell. One can
see that the state entered by the n-th cell of A in any time t < 2n may be the
same as the state entered by the n-th cell of B at the same time. Hence, if the
cells of A enter the Firing state in a time t < 2n, then, when the algorithm
runs on B, the n-th cell enters the Firing state (the same state entered in A),
while the last cell of B is still Latent (it has not been awakened yet). Observe
that in [Cul89], an imprecise solution in time 2n − 1 was given.

It is easy to see that any synchronization of a Line A of n processors in time
t(n) can be simulated on a oneWay-Ring B in time 2t(n)−1. Actually, suppose
that a cell i of A enters a state p in one step, in accordance to the transition
function, and depending on the states qL, q and qR, of the cells i−1, i and i+1,
respectively. By using two steps, the cell i + 1 of B can get both qL and q from
the cells i − 1 and i, and then can enter the state p. Thus, if A and B start
from the same initial configuration at time 1 and A execute t(n) − 1 steps to
reach a firing configuration, then, with the above simulation, all the cells of B
fire after 2(t(n)− 1) steps, in time 2t(n)− 1. The above idea can be exploited to
get a solution to the FSSP for oneWay-Ring in time 2n. Consider a Two-End
synchronization S of a Line which takes time n. In the first step, a solution over
the oneWay-Ring lets also the second cell enters the state G. Now, the oneWay-
Ring can be seen as beginning from the second cell and ending to the first cell,
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thus having the same initial configuration as the Line when S starts. With an
algorithm implementing the above described simulation, the oneWay-Ring is
synchronized in time 2n, see [LNP96].

The main results of the section are now summarized.

Theorem 1. The following results hold:

– Every solution to FSSP over a Line of n cells requires at least time 2n − 1
and optimum time solutions to FSSP over a Line and a 1-Line exist;

– Every solution to FSSP over a Ring of n cells requires at least time n + 1
and an optimum time solution exists;

– Every solution to FSSP over an oneWay-Ring requires at least time 2n, and
an optimum time solution exists;

– Every solution to FSSP over 1-Ring requires at least time n + 1 and there
is a synchronization of a 1-Ring in time 2�n/2� + 1.

The table in Fig. 3 schematically summarizes the results of this subsection.

Model Variation Synchronization time Reference Minimum time?

Line – 2n − 1 [Wak66] YES
Line Generalized n − 1 + max(p;n − p + 1) [ML68] YES
Line k Generals n − 1 + max(mini(pi);n − maxi(pi) + 1) [SW04] YES
Line 1-bit 2n − 1 [Maz96] YES
Line Two-End n [Cul89] YES
Line Two-End, 1-bit 2�n/2� + 1 [GLNP06,GLP07] for odd n

Ring – n + 1 [Cul89] YES
Ring 1-bit 2�n/2� + 1 [GLNP06,GLP07] for even n

Ring ≥ 2-bit n + 1 [GLNP06,GLP07] YES
Ring oneWay 2n [LNP96] YES

Fig. 3. Solutions for one-dimensional Communication Networks

3.2 Two and Higher Dimensions

Square. Also in this case, a plethora of scenarios and algorithms have been given.
The spark for the two-dimensional case with the general in a corner cell, was
given by the results contained in the Ph.D. thesis of Wendel Terry Beyer, [Bey69]
and of Ilka Shinahr, this latter then published in [Shi74]. For an n× n Square,
lower and upper bounds were given in time 2n− 1. The solution in [Shi74] used
17 states, and still today there is an active research for this case. In [UK10] were
used only 7 states adopting the so-called zebra mapping, and recently another
algorithm has been presented in [UUN11], based on a new technique called one-
sided recursive halving markings and using 37 states and 3271 rules, which is
quite different from the well known classical algorithms of [Bey69,Shi74]. We
omit here even the basic idea of classical algorithms, since it has been exposed
several times in literature, see for example Wikipedia.

Rectangle. In the case of a Rectangle of m × n cells, m �= n, in [Shi74] the
author gave the lower bound for a solution in time n+m+max (m,n)− 2 along
with a matching time algorithm. For this case too there is an active research: in
[UKT13] a new algorithm has been given which has some nice properties, like the
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easiness in the verification of its correctness and the fact that it can be extended
to a solution for generalized FSSP, where the general is at an arbitrary position
in the array (for this feature see also [UK12]). Another peculiarity is that it is
isotropic with respect to the shape of a given rectangle array, that is there is no
need to control the FSSP algorithm for longer-than-wide and wider-than-long
input rectangles.

1-Square. In the case the communication channel is restricted to just 1-bit a
trivial lower bound on the minimum firing time of a square n × n is clearly
2n − 1. For this model, in [GLP04,GLP07], a tight upper bound of time 2n − 1
has been shown, for the first time in this case.

As regards Four-End FSSP, where there are Generals positioned in the four
corners of an n× n Square, some synchronization algorithms have been given.
When the channels have the capacity to transmit a state, it is in time n, while
for the 1 bit case, it is in time 2�n/2� + 1, in a similar way as for Two-End
synchronization of a Line.

It should be noted that many of the optimum time solutions proposed for
the two-dimensional case, are derived from well-known solutions for the one-
dimensional case, for example those in [UK12,GLP07], embed the synchroniza-
tion algorithms given by Mazoyer, the former resembles the one of [Maz87] using
only 6-states, and the latter, given for 1-bit communication channels, combines
that in [Maz96] and the classical of [Shi74].

Torus. As in the one-dimensional case for the Rings, the minimum time to
synchronize is at least the time necessary by the General to send and hence
receive back a message to/from all the other cells. In [GLP07] it has been shown
that in the case of a Torus (sometime called also Square of Rings) this time is n+
1. It is not trivial at all to establish that, in the case of one-way communication,
this time rises to 3n−1, as shown in [LNP96], along with matching upper bound
algorithms. This lower bound is shown by contradiction, in a similar way as for
the lower bound of the synchronization time of a Ring.

In the case of a 1-bit channel, by extensively using the result for Four-End
FSSP, in [GLNP06,GLP07], an almost optimum upper bound is given in time
2�n/2�+1. Let us underline that the restriction on the channel capacity is to be
meant strictly and not as a shorthand for a big-O notation of some constant. In
fact, it is worth noting that in the case of a channel with capacity strictly greater
than 1-bit, in this same paper Gruska et al. showed an algorithm synchronizing
in time n + 1, thus optimum in time. The idea exploited there was to use the
second bit to recognize the type of messages, a thing that in the case of 1-bit
channel was done exploiting the arrival time delay of the messages, thus not
allowing to get the tightness of the bound.

Still for 1-bit communication channel, in [UMK03] some nice non optimum-
time algorithms for synchronize any n × n Square and m × n Rectangle in
2n and m + n + max(m,n) + 1 steps, have been given, respectively. The time
complexities for these two algorithms are one step larger than the optimum ones.
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Array of Dimension Greater than 2. In [UNK12] lower and upper bounds on
optimum synchronization time for arrays of dimension k > 2 have been given. In
particular it has been shown that, in case of one General in a corner of an array
of size n1×n2× . . .×nk, the minimum time is

∑k
i=1 ni+max(n1, n2, . . . , nk)−k

steps. In the same paper, this result has been generalized also for a General
in any position.

We can now summarize the main results of this subsection.

Theorem 2. The following results hold:

– Every synchronization of a Square of n×n cells requires at least time 2n−1,
and an optimum time solution exists over a Square and a 1-Square;

– Every synchronization of a Torus of n×n cells requires at least time n+1,
and an optimum time solution exists;

– Every synchronization of a oneWay-Torus of n × n cells requires at least
time 3n − 1, and an optimum time solution exists;

– Every synchronization of a 1-Torus of n×n cells requires time at least time
n + 1 and a solution exists in time 2�n/2� + 1.

The table in Fig. 4 schematically summarizes the results cited in this sub-
section.

Model Variation Synchronization time Reference Minimum time?
Rectangle – n + m + max (m,n) − 2 [Shi74] YES
Square – 2n-1 [Bey69,Shi74] YES
Square 1-bit 2n − 1 [GLP04,GLP07] YES
Square Four-End, 1-bit 2�n/2� + 1 [GLNP06,GLP07] for odd n
Torus – n + 1 [GLNP06,GLP07] YES
Torus 1-bit 2�n/2� + 1 [GLNP06,GLP07] for even n
Torus 2-bit n + 1 [GLNP06,GLP07] YES
Torus one-way 3n − 1 [LNP96] YES

Fig. 4. Solutions for two-dimensional Communication Networks

A particular mention deserves the, somewhat orthogonal, work on the FSSP
of Kojiro Kobayashi started, at the best of our knowledge, in 1977 with the
paper [Kob77] till the beautiful recent one [GK12]. The trait of Kobayashi’s
studies is easily recognized as his research has been almost always focused on
non regular shapes of the network cells and the FSSP has been related to a
combinatorial problem for which only exponential algorithms are known. For
example in [Kob01] the cells of the network are placed along a path of two-
dimensional array space, and along with Goldstein, in [GK05,GK12], it has been
shown that if a minimum-time solution exists, (for example for the path problem
mentioned above), then there must exist polynomial time algorithms for solving
the diameter problem in the standard RAM model of computation, this implying
that P = NP.

The FSSP has been also studied in a setting where the processors do not share
a global clock, though working in synchrony, and can be faulty [CDDS89]. In this
paper upper and lower bounds are shown on the number of faulty processors that
can be tolerate and still reach a solution. Recently this fault tolerant scenario
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has been resumed in [DHM12] and enriched by the first self-stabilizing firing
squad algorithm, allowing thus recovery from arbitrary transient errors. This
algorithm is optimum with regards to two aspects: if the algorithm is in a safe
state, it reaches the consensus as fast as any other algorithm does once a cell
receives a start signal, and the second is that starting from an arbitrary state,
it converges to a safe state as fast as any other algorithm does.

Finally let us also mention a series of interesting papers related to the FSSP
which have been very recently published by Arnold L. Rosenberg, see for example
[Ros14,Ros13], that model robots with teams of cellular automata whose aim is
to identify and search within squares of n × n mesh of tiles.

3.3 Open Problems

One of the best known open problem in this area regards the minimum number
of states necessary to synchronize a Line. Clearly, any CA solving FSSP has at
least three states (G, L and F ). Sanders, in [San94], showed that no 4-state CA
can solve FSSP. Since the known solution with the least number of states is the
one due to Mazoyer, with 6 states, it is unknown whether the minimum number
of states is indeed 6 or there is a CA beating Mazoyer’s solution.

All the solutions in Theorem 1 and in Theorem 2 are optimum in time, and
thus the lower bounds are tight, except for a gap between the lower and the
upper bounds for synchronization of both a 1-Ring and a 1-Torus with an
odd number of cells. In these cases, the best known synchronization algorithms
require time n+2, whilst the known lower bound is n+1. In [GLNP06,GLP07],
solutions in time n+ 1 have been shown for a Ring and for a Torus with 2-bit
communication channels, thus showing the tightness of the given lower bound in
the case of O(1)-bit channels. It is still an open problem to state whether such
an optimum time solution exists for 1-Ring, or the given lower bound can be
made tighter.

Finally, another interesting matter regards the synchronization of CA over a
Ring and over a Torus with both the restrictions: one-way and 1-bit communi-
cation channels. Clearly, no solution can consume less than 2n time, for a 1-bit
oneWay-Ring and less than 3n − 1 time, for a 1-bit oneWay-Torus. Anyway
we do not know whether such solutions. The idea of the algorithms given for
oneWay-Ring and oneWay-Torus does not work in the same time when 1-bit
communication channels are used, since the number of steps necessary for a cell
to send its state is greater than one in this case.

4 Synchronization Algorithms in Particular Time

In this section we will survey some of the main results known in literature to get
non minimum time synchronization problems. More precisely, particular times
in which, and also particular ways to, synchronize cellular automata ([LNP98,
LNP00,GLNP06]).
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The general pattern to get a synchronization in a particular given (not mini-
mum) time, is the following simple idea: given a communication network A of
parameter n, a signal3 is generated from the General cell and comes back to it in
time (t(n) − min(n)) where min(n) is the minimum time for a CA to solve the
FSSP over A, and t(n) ≥ n. Then a minimum time solution starts, synchronizing
thus A in time t(n). For example, in the case A is an n-cell Line or an n × n
Square, then min(n) = 2n − 1. However, despite its simplicity, sometimes the
implementation of this idea is far from trivial, since it implies different compo-
sitions of different signals and synchronization algorithms. All the results have
been obtained for the most general case, the 1-bit communication channel thus
they hold sic et simpliciter for all types of channel capacities.

Theorem 3. Synchronization algorithms in time n2, 2n, n�log n�, and n�√n�
exist, for a 1-Line, 1-Square, 1-Ring, and a 1-Torus.

Moreover other results have been given in the case of one-way communication.

Theorem 4. Synchronization algorithms in time n2, 2n, and n�log n� exist, for
a 1-oneWay-Ringand 1-oneWay-Torus.

To obtain other particular synchronization times, some signal and synchro-
nization compositional operations have been introduced: parallel, sequential and
iterated. Also sufficient conditions when these operations may be applied have
been provided.

It is easy to implement the standard cross product of automata between two
CA’s A1, A2, using a greater channel capacity: the communication channels are
kept distinct and therefore A1 ×A2 can run in parallel the synchronization algo-
rithms. On top of this a CA that selects between two distinct synchronization
algorithms, according to a given condition P (n), has also been given. Examples
of P (n) are the parity of n or the fastest/slowest synchronization times. In par-
ticular this last feature can be realized as follows: given two CA’s synchronizing
in time t1(n) and t2(n), respectively, another CA is obtained as the cross prod-
uct of the two and of a third one that selects according to the result of the test
t1(n) ≤ t2(n).

Theorem 5. Let A and B be solutions to FSSP with channel capacity a and b,
respectively. It is possible to design a CA with channel capacity a + b + c, for
some integer c, synchronizing in the minimum (maximum) times of A and B.

Other particular times have been obtained, such as the sum and the product,
holding for all the 1-bit models considered so far. In particular, the technique to
obtain the product is interesting. It extends the cross product to let a solution
in time t1(n) to be iterated t2(n) times, without using extra capacity of the
channels.
3 The concept of signal is often used in literature as a way to facilitate the description

of a CA. Informally speaking, a signal can be seen in the space-time unrolling of the
CA as a set of cells that, at a given time, receive/send words, different from all-zero
words, from/to adjacent cells.
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Theorem 6. Given two solutions to the FSSP in time t1(n) and t2(n), and an
integer d ≥ 0, solutions in time t1(n) + t2(n) + d, and t1(n) · t2(n) exist.

The next result provides solutions for a 1-Square and for a 1-Rectangle,
starting from that for a 1-Line. Actually, in an (n×m)-cell Rectangle, several
Lines of n+m−1 cells can be individuated, starting from cell (1, 1) and ending
to cell (n,m) (for example, the cells in the first row and in the last column form
one of such Lines). Analogously, (2n − 1)-cell Lines can be individuated in an
n × n Square. All such Lines can be synchronized in parallel, using the same
algorithm.

Theorem 7. If there is a synchronization of a 1-Linein time t(n), then a syn-
chronization on a 1-Square in time t(2n − 1) and a synchronization on a 1-
Rectangle in time t(n + m − 1) exist.

From this last result and Theorem 3, the next theorems follow.

Theorem 8. Synchronizations on a n×n 1-Square in time K2, 2K ,K ·�logK�
and K · �√K�, for K = 2n − 1, exist.

Theorem 9. Synchronizations on a n × m 1-Rectangle in time J2, 2J , J ·
�log J� and J · �√J�, for J = n + m − 1, exist.

Finally let us also mention that synchronizing algorithms for all the models
we have dealt with in this paper, exist in any time that can be expressed as a
polynomial of n, formally stated in the following theorem.

Theorem 10. Let h ≥ 2 and a0, . . . , ah be integers with ah ≥ 1. A synchroniza-
tion in time ahn

h+ah−1n
h−1+. . .+a1n+a0 exists on an n-cell 1-Line, 1-Ring,

1-oneWay-Ring, and on an (n×n)-cell 1-Square, 1-Torus, 1-oneWay-Torus.
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Abstract. Synchronization of large-scale networks is an important and
fundamental computing primitive in parallel and distributed systems.
The synchronization in cellular automata, known as the firing squad
synchronization problem (FSSP), has been studied extensively for more
than fifty years, and a rich variety of synchronization algorithms has been
proposed not only for one-dimensional but also for two-dimensional, even
multi-dimensional cellular arrays. In the present paper, we construct an
overview of the study of the FSSP algorithms developed so far, focusing
on time-optimum smaller-state solutions to the FSSP.

1 Introduction

Synchronization of large-scale networks is an important and fundamental com-
puting primitive in parallel and distributed systems. The synchronization in ultra
fine-grained parallel computational model of cellular automata has been known
as the firing squad synchronization problem (FSSP) since its development, in
which it was originally proposed by J. Myhill in the book edited by Moore [1964]
to synchronize all/some parts of self-reproducing cellular automata. We study
the FSSP solution that gives a finite-state protocol for synchronizing cellular
automata. The problem has been studied extensively for more than fifty years,
and a rich variety of synchronization algorithms has been proposed not only for
one-dimensional (1D) but also for two-dimensional (2D), even multi-dimensional
cellular arrays.

In the present paper, we construct an overview of the study of FSSP algo-
rithms developed so far, focusing on smaller-state optimum-time solutions to the
FSSP. In Section 2 we give a description of the 1D FSSP and review some basic
results on 1D FSSP algorithms. Section 3 presents two smallest solutions, known
at present in the number of states of the automata realizing optimum-time pro-
tocols for 2D square and rectangle arrays. In Section 4 we introduce a simple
synchronizing schema based on recursive halving marking for multi-dimensional
arrays. It is shown that the schema is a natural extension of a family of the
classical well-known optimum-time FSSP algorithms developed by Waksmann
[1966], Balzer [1967], and Gerken [1987].

c© Springer International Publishing Switzerland 2014
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2 FSSP on One-Dimensional Arrays

2.1 Definition of the FSSP

The firing squad synchronization problem (FSSP) is formalized in terms of a
model of cellular automata. Figure 1 shows a finite one-dimensional (1D) cellular
array consisting of n cells, denoted by Ci, where 1 ≤ i ≤ n. All cells (except
the end cells) are identical finite state automata. The array operates in lock-step
mode such that the next state of each cell (except the end cells) is determined by
both its own present state and the present states of its right and left neighbors.
All cells (soldiers), except the left end cell, are initially in the quiescent state
at time t = 0. The quiescent state has a property whereby the next state of a
quiescent cell having quiescent neighbors is the quiescent state. At time t = 0
the left end cell (general) is in the fire-when-ready state, which is an initiation
signal to the array for the synchronization.

The firing squad synchronization problem is stated as follows. Given an array
of n identical cellular automata, including a general on the left end which is
activated at time t = 0, we want to give the description (state set and next-
state function) of the automata so that, at some future time, all of the cells will
simultaneously and, for the first time, enter a special firing state. The set of
states must be independent of n. Without loss of generality, we assume n ≥ 2.
The tricky part of the problem is that the same kind of soldier having a fixed
number of states must be synchronized, regardless of the length n of the array.

C1 C2 C4 Cn

...
C3

Fig. 1. One-dimensional (1D) cellular automaton

2.2 A Brief History of the Developments of Optimum-Time FSSP
Algorithms

The problem known as the firing squad synchronization problem was devised in
1957 by J. Myhill, and first appeared in print in a paper by E. F. Moore [1964].
This problem has been widely circulated, and has attracted much attention.
The firing squad synchronization problem first arose in connection with the
need to simultaneously turn on all/some parts of a self-reproducing machine.
The problem was first solved by J. McCarthy and M. Minsky who presented a
3n-step algorithm. In 1962, the first optimum-time, i.e. (2n − 2)-step, synchro-
nization algorithm was presented by Goto [1962], with each cell having several
thousands of states. Waksman [1966] presented a 16-state optimum-time syn-
chronization algorithm. Afterward, Balzer [1967] and Gerken [1987] developed
an eight-state algorithm and a seven-state synchronization algorithm, respec-
tively, thus decreasing the number of states required for the synchronization. In
1987, Mazoyer [1987] developed a six-state synchronization algorithm which, at
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present, is the algorithm having the fewest states. Figure 2 shows some snapshots
for synchronizing a cellular array of size 17, implemented by Waksmann [1966],
Balzer [1967], Gerken [1987], and Mazoyer [1987].

2.3 Complexity Measures and Properties in FSSP Algorithms

− Time
Any solution to the original 1D FSSP with the general at one end can be
easily shown to require (2n − 2) steps for synchronizing n cells, since signals
on the array can propagate no faster than one cell per step, and the time
from the general’s instruction until the final synchronization must be at least
2n − 2.

Theorem 1. [Goto [1962] (Lower Bound)] The minimum time in which the
firing squad synchronization could occur is 2n − 2 steps, where the general
is located at one end.

Theorem 2. [Goto [1962]] There exists a cellular automaton that can syn-
chronize any 1D array of length n in optimum 2n−2 steps, where the general
is located at one end.

− Number of States
Number of states of the automata realizing solutions to the FSSP has been
an important complexity measure in the study of the FSSP. The following
three distinct states:
Quiescent state,
General state, and
Firing state
are required in order to define any cellular automaton that can solve the
FSSP. Note that the boundary state for C0 and Cn+1 is not counted histor-
ically as an internal state. Balzer [1967] and Sanders [1994] showed that no
four-state optimum-time solution exists. Umeo and Yanagihara [2009], Yunès
[2008], and Umeo, Kamikawa, and Yunès [2009] gave some 5- and 4-state par-
tial solutions that can solve the synchronization problem for infinitely many
sizes n, but not all, respectively. The solution is referred to as partial solu-
tion, which is compared with usual full solutions that can solve the problem
for all cells. Yunès [2008] and Umeo, Yunès, and Kamikawa [2009] developed
4-state partial solutions based on Wolfram’s rules 60 and 150. They can syn-
chronize any array/ring of length n = 2k for any positive integer k. Details
can be found in Yunès [2008], Umeo, Kamikawa, and Yunès [2009], and Ng
[2011]. Ng [2011] presented a list of 4-state asymmetric solutions to the ring
FSSP.

Theorem 3. [Balzer [1967], Sanders [1994]] There is no four-state full solu-
tion that can synchronize n cells.

Theorem 4. [Yunès [2008], Umeo et al. [2009], Ng [2011]] There exist 4-state
partial solutions to the FSSP.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 P0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 P0 A010 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P0 B0 A011 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 P0 B0 Q A010 Q Q Q Q Q Q Q Q Q Q Q Q Q

4 P0 B0 R0 Q A011 Q Q Q Q Q Q Q Q Q Q Q Q

5 P0 R0 B1 Q Q A010 Q Q Q Q Q Q Q Q Q Q Q

6 P0 B0 B1 Q R0 Q A011 Q Q Q Q Q Q Q Q Q Q

7 P0 B0 B1 R0 Q Q Q A010 Q Q Q Q Q Q Q Q Q

8 P0 B0 Q B0 Q Q R0 Q A011 Q Q Q Q Q Q Q Q

9 P0 B0 Q B0 Q R0 Q Q Q A010 Q Q Q Q Q Q Q

10 P0 B0 Q B0 R0 Q Q Q R0 Q A011 Q Q Q Q Q Q

11 P0 B0 Q R0 B1 Q Q R0 Q Q Q A010 Q Q Q Q Q

12 P0 B0 R0 Q B1 Q R0 Q Q Q R0 Q A011 Q Q Q Q

13 P0 R0 B1 Q B1 R0 Q Q Q R0 Q Q Q A010 Q Q Q

14 P0 B0 B1 Q Q B0 Q Q R0 Q Q Q R0 Q A011 Q Q

15 P0 B0 B1 Q Q B0 Q R0 Q Q Q R0 Q Q Q A010 Q

16 P0 B0 B1 Q Q B0 R0 Q Q Q R0 Q Q Q R0 Q P0

17 P0 B0 B1 Q Q R0 B1 Q Q R0 Q Q Q R0 Q A000 P0

18 P0 B0 B1 Q R0 Q B1 Q R0 Q Q Q R0 Q A001 B0 P0

19 P0 B0 B1 R0 Q Q B1 R0 Q Q Q R0 Q A000 Q B0 P0

20 P0 B0 Q B0 Q Q Q B0 Q Q R0 Q A001 Q R1 B0 P0

21 P0 B0 Q B0 Q Q Q B0 Q R0 Q A000 Q Q B1 R1 P0

22 P0 B0 Q B0 Q Q Q B0 R0 Q A001 Q R1 Q B1 B0 P0

23 P0 B0 Q B0 Q Q Q R0 B1 A000 Q Q Q R1 B1 B0 P0

24 P0 B0 Q B0 Q Q R0 Q P0 Q R1 Q Q B0 Q B0 P0

25 P0 B0 Q B0 Q R0 Q A000 P0 A010 Q R1 Q B0 Q B0 P0

26 P0 B0 Q B0 R0 Q A001 B0 P0 B0 A011 Q R1 B0 Q B0 P0

27 P0 B0 Q R0 B1 A000 Q B0 P0 B0 Q A010 B1 R1 Q B0 P0

28 P0 B0 R0 Q P0 Q R1 B0 P0 B0 R0 Q P0 Q R1 B0 P0

29 P0 R0 B1 A000 P0 A010 B1 R1 P0 R0 B1 A000 P0 A010 B1 R1 P0

30 P0 B0 P0 B0 P0 B0 P0 B0 P0 B0 P0 B0 P0 B0 P0 B0 P0

31 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0

32 T T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 G L L L L L L L L L L L L L L L L

1 A C L L L L L L L L L L L L L L L

2 G B A L L L L L L L L L L L L L L

3 G C G G L L L L L L L L L L L L L

4 G B A B C L L L L L L L L L L L L

5 G C G L C A L L L L L L L L L L L

6 G B A L A A G L L L L L L L L L L

7 G C G L A B B C L L L L L L L L L

8 G B A L L B C C A L L L L L L L L

9 G C G G L L C A A G L L L L L L L

10 G B A B C L A A B B C L L L L L L

11 G C G L C L A B B C C A L L L L L

12 G B A L C L L B C C A A G L L L L

13 G C G L C A L L C A A B B C L L L

14 G B A L A A G L A A B B C C A L L

15 G C G L A B B L A B B C C A A G L

16 G B A L L B G L L B C C A A B B A

17 G C G G L B B C L L C A A B B A C

18 G B A B L B C C A L A A B B A C B

19 G C G G L L C A A L A B B A C B L

20 G B A B C L A A A L L B A C B L L

21 G C G L C L A A A G L G C B L L L

22 G B A L C L A A B B A G B L L L L

23 G C G L C L A B B A C G C L L L L

24 G B A L C L L B A C B G B A L L L

25 G C G L C A L G C B L G C G G L L

26 G B A L A A C G B L L G B A B C L

27 G C G L A C B G C L L G C G L C G

28 G B A L G B L G B A L G B A L G A

29 G C G C G C L G C G C G C G C G C

30 G B G B G B G G B G B G B G B G B

31 G G G G G G G G G G G G G G G G G

32 T T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 M L L L L L L L L L L L L L L L L

1 M C L L L L L L L L L L L L L L L

2 M C C L L L L L L L L L L L L L L

3 M C R C L L L L L L L L L L L L L

4 M C R B C L L L L L L L L L L L L

5 M C C B R C L L L L L L L L L L L

6 M C C R R B C L L L L L L L L L L

7 M C C R B B R C L L L L L L L L L

8 M C C C B R R B C L L L L L L L L

9 M C R C R R B B R C L L L L L L L

10 M C R C R B B R R B C L L L L L L

11 M C R C C B R R B B R C L L L L L

12 M C R B C R R B B R R B C L L L L

13 M C C B C R B B R R B B R C L L L

14 M C C B C C B R R B B R R B C L L

15 M C C B R C R R B B R R B B R C L

16 M C C R R C R B B R R B B R R B M

17 M C C R R C C B R R B B R R B A M

18 M C C R R B C R R B B R R B Q R M

19 M C C R B B C R B B R R B Q R Q M

20 M C C C B B C C B R R B Q R L Q M

21 M C R C B B R C R R B Q R A Q Q M

22 M C R C B R R C R B Q R L L Q Q M

23 M C R C R R R C C Q R A A L Q Q M

24 M C R C R R R B M R L L A Q Q Q M

25 M C R C R R B A M B A L L Q L Q M

26 M C R C R B Q R M L C A L Q L Q M

27 M C R C C Q R Q M C L C Q Q L Q M

28 M C R B M R L Q M C R L M A L Q M

29 M C C A M B Q Q M C C A M B Q Q M

30 M C M Q M C M Q M C M Q M C M Q M

31 M M M M M M M M M M M M M M M M M

32 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 > / / / / / / / / / / / / / / / /

1 > ] / / / / / / / / / / / / / / /

2 > ] > / / / / / / / / / / / / / /

3 > ] ^ ] / / / / / / / / / / / / /

4 > ] ^ / > / / / / / / / / / / / /

5 > ] > ^ ^ ] / / / / / / / / / / /

6 > ] > ^ ^ / > / / / / / / / / / /

7 > ] > ^ / ^ ^ ] / / / / / / / / /

8 > ] > ] ^ ^ ^ / > / / / / / / / /

9 > ] ^ ] ^ ^ / ^ ^ ] / / / / / / /

10 > ] ^ ] ^ / ^ ^ ^ / > / / / / / /

11 > ] ^ ] > ^ ^ ^ / ^ ^ ] / / / / /

12 > ] ^ / > ^ ^ / ^ ^ ^ / > / / / /

13 > ] > ^ > ^ / ^ ^ ^ / ^ ^ ] / / /

14 > ] > ^ > ] ^ ^ ^ / ^ ^ ^ / > / /

15 > ] > ^ ^ ] ^ ^ / ^ ^ ^ / ^ ^ ] /

16 > ] > ^ ^ ] ^ / ^ ^ ^ / ^ ^ ^ / [

17 > ] > ^ ^ ] > ^ ^ ^ / ^ ^ ^ / < [

18 > ] > ^ ^ / > ^ ^ / ^ ^ ^ / [ < [

19 > ] > ^ / ^ > ^ / ^ ^ ^ / < [ / [

20 > ] > ] ^ ^ > ] ^ ^ ^ / [ < ^ / [

21 > ] ^ ] ^ ^ ^ ] ^ ^ / < [ / / < [

22 > ] ^ ] ^ ^ ^ ] ^ / [ < ^ / / < [

23 > ] ^ ] ^ ^ ^ ] > < [ / / ^ / < [

24 > ] ^ ] ^ ^ ^ / [ ] ^ / / / [ < [

25 > ] ^ ] ^ ^ / < [ ] > ^ / / [ / [

26 > ] ^ ] ^ / [ < [ ] > ] ^ / [ / [

27 > ] ^ ] > < [ / [ ] ^ ] > < [ / [

28 > ] ^ / [ ] ^ / [ ] ^ / [ ] ^ / [

29 > ] > < [ ] > < [ ] > < [ ] > < [

30 > ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [

31 > < > < > < > < > < > < > < > < >

32 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 !- .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

1 !! >- .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

2 !! 1- >- .. .. .. .. .. .. .. .. .. .. .. .. .. ..

3 !! 2- .. >- .. .. .. .. .. .. .. .. .. .. .. .. ..

4 !! .. 1- .. >- .. .. .. .. .. .. .. .. .. .. .. ..

5 !! 3- 2- .. .. >- .. .. .. .. .. .. .. .. .. .. ..

6 !! 4- \| 1- .. .. >- .. .. .. .. .. .. .. .. .. ..

7 !! 5- | - 2\ .. .. .. >- .. .. .. .. .. .. .. .. ..

8 !! 6- | - .. 1\ .. .. .. >- .. .. .. .. .. .. .. ..

9 !! 7- | - .. 2- |\ .. .. .. >- .. .. .. .. .. .. ..

10 !! .. 3| .. .. 1- | - .. .. .. >- .. .. .. .. .. ..

11 !! .. 4| .. .. 2- | - .. .. .. .. >- .. .. .. .. ..

12 !! .. 5| .. .. / - 1| .. .. .. .. .. >- .. .. .. ..

13 !! .. 6| .. / - .. 2| .. .. .. .. .. .. >- .. .. ..

14 !! .. 7| / - .. .. | - 1- .. .. .. .. .. .. >- .. ..

15 !! .. | - 3\ .. .. | - 2- .. .. .. .. .. .. .. >- ..

16 !! .. | - 4- \ - .. | - .. 1- .. .. .. .. .. .. .. - (

17 !! .. | - 5- .. \ - | - .. 2- .. .. .. .. .. .. - ( ..

18 !! .. | - 6- .. .. \| .. .. 1- .. .. .. .. - ( .. ..

19 !! .. | - 7- .. .. | - \ - .. 2- .. .. .. - ( .. .. ..

20 !! .. | - .. 3- .. | - .. \ - .. 1- .. - ( .. .. .. ..

21 !! .. | - .. 4- .. | - .. .. \ - 2- : [ .. .. .. .. ..

22 !! .. | - .. 5- .. | - .. .. .. - [ !- .. .. .. .. ..

23 !! .. | - .. 6- .. | - .. .. - [ - 1 !! >- .. .. .. ..

24 !! .. | - .. 7- .. | - .. - [ .. - 2 !! 1- >- .. .. ..

25 !! .. | - .. .. 3- | - <] .. - 1 .. !! 2- .. >- .. ..

26 !! .. | - .. .. 4- -! .. - ] - 2 - 3 !! .. 1- .. >- ..

27 !! .. | - .. .. - < ) ! .. .. w] - 4 !! 3- 2- .. .. - (

28 !! .. | - .. - < - 1 !! ) - .. - w - z !! 4- \| 1- - ( ..

29 !! .. | - ) - .. - 2 !! .. ] : - w - z !! 5- | - <] : ! ..

30 !! .. -! .. ] ! .. !! .. -! ] - - z !! 6- >! .. !- ..

31 !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

32 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Fig. 2. Some snapshots for optimum-time 1D FSSP algorithms (from top to bottom,
left to right in each row), each realizing a 16-state solution (Waksmann [1966]), an
8-state solution (Balzer [1967]), a 6-state solution (Mazoyer [1987]), a 7-state solution
(Gerken [1987]) and a 155-state solution (Gerken [1987])
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− Number of Transition Rules
Any k-state (excluding the boundary state) transition table for the synchro-
nization has at most (k − 1)k2 entries in (k − 1) matrices of size k × k.
The number of transition rules reflects a complexity of synchronization algo-
rithms.

− Filled-In Ratio
To measure the density of entries in the transition table, we introduce a
measure filled-in ratio of the state transition table. The filled-in ratio of the
state transition table A is defined as follows: fA = e/etotal, where e is the
number of exact entries of the next state defined in the table A and etotal is
the number of possible entries defined such that etotal = (k − 1)k2, where k
is the number of internal states of the table A.

− Symmetry vs. Asymmetry
Herman [1971, 1972] investigated a computational power of symmetrical cel-
lular automata, motivated by a biological point of view. Szwerinski [1985]
and Kobuchi [1987] studied a computational relation between symmetrical
and asymmetrical CAs with von Neumann neighborhood. A transition table
for a given CA is said to be symmetric if and only if the transition table
δ : Q3 → Q such that δ(x, y, z) = δ(z, y, x) holds, for any state x, y, z in Q.
A symmetrical cellular automaton has a property that the next state of a
cell depends on its present state and the states of its two neighbors, but it is
same if the states of the left and right neighbors are interchanged. Thus, the
symmetrical CA has no ability to distinguish between its left and right neigh-
bors. Those transition tables developed by Waksmann [1966], Balzer [1967],
and Gerken [1987] are nearly symmetric, but the smallest one implemented
by Mazoyer [1987] is asymmetric.

− State-Change Complexity
Vollmar [1982] introduced a state-change complexity in order to measure
the efficiency of cellular automata, motivated by energy consumption in cer-
tain physical memory systems. The state-change complexity is defined as
the sum of proper state changes of the cellular space during the computa-
tions. Vollmar [1982] showed that Ω(n log n) state-change is required by the
cellular space for the synchronization of n cells in (2n − 2) steps. Gerken
[1987] presented an optimum-time Θ(n log n) state-change synchronization
algorithm.

Theorem 5. [Vollmar [1982] (Lower Bound)] Ω(n log n) state-change is nec-
essary for synchronizing n cells.

Theorem 6. [Gerken [1987]] Θ(n log n) state-change is sufficient for syn-
chronizing n cells in 2n − 2 steps.

Here, we present some tables based on quantitative and qualitative compar-
isons of those FSSP algorithms.
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Table 1. A quantitative comparison of transition rule sets for optimum-time FSSP

algorithms. The “*” symbol in parenthesis shows the correction and reduction of tran-

sition rules made in Umeo et al. [2005]. The “**” symbol indicates the number of states

and rules obtained after the expansion of the original two-layer construction.

Algorithm # of # of State
states transition change

rules complexity

Goto [1962] many — Θ(n log n)
thousands

Waksman [1966] 16 3216(202∗) O(n2)

Balzer [1967] 8 182 (165 ∗) O(n2)

Gerken I [1987] 7 118 (105∗) O(n2)

Mazoyer [1987] 6 120 (119∗) O(n2)
Gerken II [1987] 32(155∗∗) 347(2371∗∗) Θ(n log n)

Table 2. A qualitative comparison of optimum-time FSSP algorithms with respect to

one/two-sided recursive properties and the number of signals being used for simulta-

neous space divisions

Algorithm One-/ Recursive/ # of
two-sided non-recursive signals

Goto [1962] — non-recursive finite
Waksman [1966] two-sided recursive infinite

Balzer [1967] two-sided recursive infinite
Gerken I [1987] two-sided recursive infinite
Mazoyer [1987] one-sided recursive infinite
Gerken II [1987] two-sided recursive finite

2.4 Generalized FSSP

The generalized FSSP (GFSSP, for short) is an extended FSSP version which
allows the initial general to be located at any cell of the array. A key idea behind
the GFSSP algorithm proposed by Moore and Langdon [1968] is to reconstruct
the original FSSP algorithm as if an initial general had been at the left or right
end with being the general state at time t = −(k − 1), where k is the number of
cells between the general and the nearest end. Figure 3 illustrates a space-time
diagram for the GFSSP and some snapshots for the 17-state realization in Moore
and Langdon [1968].

The initial general emits a left- and right-going signal with 1/1 speed and
keeps its position by marking a special symbol. The propagated signals generate a
new general at each end. On reaching the end, they generate the necessary signals
assuming that that end is the far end. The special marking symbol tells the first
1/1 signal generated by the left and right end generals that that side was the
right nearest end. At that point the slope 1/1 signal is generated and it changes
the slope of all the preceding signals to the next higher one, that is, 1/(2� − 1)
becomes 1/(2�+1 − 1). Note that the original optimum-time solution is working
below the dotted line in the Fig. 3 (left). Most of the GFSSP algorithm proposed
afterwards is based on the space-time diagram shown in Fig. 3. Therefore the
optimum-time complexity for the GFSSP is min(k − 1, n − k) steps smaller
than the original FSSP with a general at one end. Thus, the time complexity is
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dotted
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 Q Q Q Q Q Q Q P Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q L D S Q Q Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q L Q D Q S Q Q Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q L Q Q D Q Q S Q Q Q Q Q Q Q Q Q Q Q

4 Q Q Q L Q Q Q D Q Q Q S Q Q Q Q Q Q Q Q Q Q

5 Q Q L Q Q Q Q D Q Q Q Q S Q Q Q Q Q Q Q Q Q

6 Q L Q Q Q Q Q D Q Q Q Q Q S Q Q Q Q Q Q Q Q

7 K Q Q Q Q Q Q D Q Q Q Q Q Q S Q Q Q Q Q Q Q

8 K I Q Q Q Q Q D Q Q Q Q Q Q Q S Q Q Q Q Q Q

9 K R I Q Q Q Q D Q Q Q Q Q Q Q Q S Q Q Q Q Q

10 K A Q I Q Q Q D Q Q Q Q Q Q Q Q Q S Q Q Q Q

11 K A Q R I Q Q D Q Q Q Q Q Q Q Q Q Q S Q Q Q

12 K A R Q Q I Q D Q Q Q Q Q Q Q Q Q Q Q S Q Q

13 K R B Q Q R I D Q Q Q Q Q Q Q Q Q Q Q Q S Q

14 K A B Q R Q Q X Q Q Q Q Q Q Q Q Q Q Q Q Q K

15 K A B R Q Q Q A W Q Q Q Q Q Q Q Q Q Q Q G K

16 K A Q A Q Q Q A R W Q Q Q Q Q Q Q Q Q G H K

17 K A Q A Q Q Q R B Q W Q Q Q Q Q Q Q G Q A K

18 K A Q A Q Q R Q B Q R W Q Q Q Q Q G H Q A K

19 K A Q A Q R Q Q B R Q Q W Q Q Q G Q Q H A K

20 K A Q A R Q Q Q Q A Q Q R W Q G H Q Q B H K

21 K A Q R B Q Q Q Q A Q R Q Q G Q Q H Q B A K

22 K A R Q B Q Q Q Q A R Q Q G H Q Q Q H B A K

23 K R B Q B Q Q Q Q R B Q G Q Q H Q Q A Q A K

24 K A B Q B Q Q Q R Q B G H Q Q Q H Q A Q A K

25 K A B Q B Q Q R Q Q K K Q H Q Q Q H A Q A K

26 K A B Q B Q R Q Q G K K I Q H Q Q B H Q A K

27 K A B Q B R Q Q G H K K R I Q H Q B Q H A K

28 K A B Q Q A Q G Q A K K A Q I Q H B Q B H K

29 K A B Q Q A G H Q A K K A Q R I A Q Q B A K

30 K A B Q Q K Q Q H A K K A R Q Q K Q Q B A K

31 K A B Q G K I Q B H K K R B Q G K I Q B A K

32 K A B G H K R I B A K K A B G H K R I B A K

33 K A K K A K A K K A K K A K K A K A K K A K

34 K K K K K K K K K K K K K K K K K K K K K K

35 T T T T T T T T T T T T T T T T T T T T T T

Fig. 3. Space-time diagram for the GFSSP algorithms on 1D array of length n with
a general on Ck (left) and some snapshots for the 17-state realization on 22 cells with
the general on C8 (right)

2n−2−min(k−1, n−k) = n−1+max(k−1, n−k) = n−2+max(k, n−k+1).
See Umeo, Kamikawa, Nishioka, and Akiguchi [2010] for a detailed survey on
the GFSSP algorithms.

As for the state-change complexity of the GFSSP algorithms, we have:

Theorem 7. [Umeo, Kamikawa, Nishioka, Akiguchi [2010]] Each GFSSP algo-
rithm developed by Moore and Langdon [1968], Varshavsky, Marakhovsky and
Peschansky [1970], Szwerinski [1982], Settle and Simon [2002], Umeo, Hisaoka,
Michisaka, Nishioka and Maeda [2002], and Umeo, Maeda, and Hongyo [2006]
has an O(n2) state-change complexity, respectively.

Here, we present a table based on a quantitative comparison of those GFSSP
algorithms.
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Table 3. A quantitative comparison of transition rule sets for optimum- and non-

optimum-time GFSSP algorithms

Algorithm Time # of # of State
revised change

complexity states (original) complexity
transition

rules

Moore and optimum 17 252 (—) O(n2)
Langdon [1968]

Varshavsky et al. [1969] optimum 10 273 (—) O(n2)

Szwerinski [1982] optimum 10 324 (345) O(n2)

Settle and optimum 9 310 (326) O(n2)
Simon [2002]

UHMNM [2002] optimum 9 203 O(n2)

Umeo, Maeda, non- 6 115 O(n2)
and Hongyo [2006] optimum

Umeo et. al [2010] optimum 8 222 O(n2)

2.5 One-Bit Solutions

A one-dimensional (1D) 1-bit inter-cell communication cellular automaton
(CA1−bit ) consists of a finite array of identical finite state automata, each located
at a positive integer point. The cell at point i is denoted by Ci where i ≥ 1. Each
Ci, except for C1 and Cn, is connected with its left and right neighbor cells via
a left or right one-way communication link, where those communication links
are indicated by right- and left-going arrows, respectively, as shown in Fig. 4.
Each one-way communication link can transmit only one bit at each step in each
direction.

C1 C2 C3 C4 Cn

Fig. 4. A one-dimensional (1D) cellular automaton connected with 1-bit inter-cell com-
munication links

A cellular automaton with 1-bit inter-cell communication (abbreviated as
CA1−bit) consists of a finite array of finite state automaton A = (Q, δ) such that

1. Q is a finite set of internal states.
2. δ is a function that defines the next state of any cell and its binary outputs

to its left and right neighbor cells such that δ: Q × {0, 1} × {0, 1} → Q ×
{0, 1} × {0, 1} where δ(p, x, y) = (q, x′, y′), p, q ∈ Q, x, x′, y, y′ ∈ {0, 1}, has
the following meaning: We assume that, at step t, the cell Ci is in state p
and receives binary inputs x and y from its left and right communication
links, respectively. Then, at the next step t+1, Ci takes a state q and outputs
x′ and y′ to its left and right communication links, respectively. Note that
binary inputs to Ci at step t are also outputs of Ci−1 and Ci+1 at step t. A
quiescent state q ∈ Q has a property such that δ(q, 0, 0) = (q, 0, 0).
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Table 4. Transition table for a 35-state implementation of the optimum-time synchro-

nization algorithm (Umeo and Yanagihara [2011])

1 R = 0 R = 1
L = 0
L = 1

Q

(Q,0,0) (Q,0,0)

(RA,0,1) (LGW,1,1)

2 R = 0 R = 1
L = 0
L = 1

RGW

(RGW,0,1) (F,0,0)

(RGW,1,1) (F,0,0)

3 R = 0 R = 1
L = 0
L = 1

RPW

(RPW,0,1) (LGW,1,1)

-- --

4 R = 0 R = 1
L = 0
L = 1

RA

(RQoS,0,0) --

(RP,0,0) --

5 R = 0 R = 1
L = 0
L = 1

RQoS

(RQ0A,0,1) (LP’,1,0)

(RQeS,0,0) (LP,1,0)

6 R = 0 R = 1
L = 0
L = 1

RQeS

(RQ1B,1,0) --

(RG1,0,1) --

7 R = 0 R = 1
L = 0
L = 1

RQ1A

(RQ0A,0,0) (LG,1,0)

-- --

8 R = 0 R = 1
L = 0
L = 1

RQ0A

(RQ1A,0,0) (RQ1A,1,0)

(RQ1A,0,0) (RP1,1,1)

9 R = 0 R = 1
L = 0
L = 1

RQ1B

(RQ0B,0,0) (LP,1,0)

-- --

10 R = 0 R = 1
L = 0
L = 1

RQ0B

(RQ1B,0,0) (RQ1B,1,0)

(RQ1B,0,0) (RG1,1,1)

11 R = 0 R = 1
L = 0
L = 1

RQ1C

(LQ1B,0,0) (LQ1C,0,0)

(RQ0C,0,0) (LP,1,0)

12 R = 0 R = 1
L = 0
L = 1

RQ0C

(LQ1A,0,1) --

(RQ1C,0,0) (RG1,0,1)

13 R = 0 R = 1
L = 0
L = 1

RG1

(RG0,0,0) (LPW,1,0)

(RG0,0,0) (LPW,1,0)

14 R = 0 R = 1
L = 0
L = 1

RG0

(RG1,0,1) (RQ1B,0,0)

(RG1,0,1) (RQ1C,0,0)

15 R = 0 R = 1
L = 0
L = 1

RP1

(RP0,0,0) (LGW,1,1)

-- --

16 R = 0 R = 1
L = 0
L = 1

RP0

(RP1,0,1) (RQ1A,1,0)

-- --

17 R = 0 R = 1
L = 0
L = 1

RG

(LQ1C,0,0) (LPW,1,0)

(LQ1C,0,0) (LPW,1,0)

18 R = 0 R = 1
L = 0
L = 1

RP

(LQ0C,0,0) (LGW,1,1)

(RP,0,1) (LGW,1,1)

19 R = 0 R = 1
L = 0
L = 1

LGW

(LGW,1,0) (LGW,1,1)

(F,0,0) (F,0,0)

20 R = 0 R = 1
L = 0
L = 1

LPW

(LPW,1,0) --

(RGW,1,1) --

21 R = 0 R = 1
L = 0
L = 1

LQ1A

(LQ0A,0,0) (LQ1B,0,0)

(RG,0,1) (LP1,1,0)

22 R = 0 R = 1
L = 0
L = 1

LQ1B

(LQ0B,0,0) (LQ1A,0,0)

(RP,0,1) (RP,0,0)

23 R = 0 R = 1
L = 0
L = 1

LQ0A

(LQ1A,0,0) (LQ1A,0,0)

(LQ1A,0,1) (LP1,1,1)

24 R = 0 R = 1
L = 0
L = 1

LQ0B

(LQ1B,0,0) (LQ1B,0,0)

(LQ1B,0,1) (LG1,1,1)

25 R = 0 R  = 1
L = 0
L = 1

LQ1C

(RQ1B,0,0) (LQ0C,0,0)

(RQ1C,0,0) (RP,0,1)

26 R = 0 R  = 1
L = 0
L = 1

LQ0C

(RQ1A,1,0) (LQ1C,0,0)

-- (LG1,1,0)

27 R = 0 R  = 1
L = 0
L = 1

LG1

(LG0,0,0) (LG0,0,0)

(RPW,0,1) (RPW,0,1)

28 R = 0 R  = 1
L = 0
L = 1

LG0

(LG1,1,0) (LG1,1,0)

(LQ1B,0,0) (LQ1C,0,0)

29 R = 0 R  = 1
L = 0
L = 1

LP1

(LP0,0,0) (LP0,0,0)

(RGW,1,1) (RPW,0,0)

30 R = 0 R  = 1
L = 0
L = 1

LP0

(LP1,1,0) (LP1,1,0)

(LQ1A,0,1) (LQ1B,0,0)

31 R = 0 R  = 1
L = 0
L = 1

LG

(RQ1C,0,0) (RQ1C,0,0)

(RPW,0,1) (RPW,0,1)

32 R = 0 R  = 1
L = 0
L = 1

LP

(RQ0C,0,0) (LP,1,0)

(RGW,1,1) (RGW,1,1)

33 R = 0 R  = 1
L = 0
L = 1

LP’

-- (LQ1A,0,0)

-- (RPW,0,0)

34 R = 0 R  = 1
L = 0
L = 1

F

-- --

-- --

35 R = 0 R  = 1
L = 0
L = 1

QW

(QW,0,0) --

(LGW,1,0) --

Thus, the CA1−bit is a special subclass of normal (i.e., conventional) cellular
automata. Let N be any normal cellular automaton with a set of states Q and a
transition function δ : Q3 → Q. The state of each cell on N depends on the cell’s
previous state and states on its nearest neighbor cells. This means that the total
information exchanged per step between neighboring cells is O(1) bits. Each
state in Q can be encoded with a binary sequence of length �log2 |Q|� and then
sending the binary sequences sequentially bit-by-bit in each direction via each
one-way communication link. The sequences are then received bit-by-bit and
decoded into their corresponding states in Q. Thus, the CA1−bit can simulate
one step of N in �log2 |Q|� steps.

Umeo and Yanagihara [2011] constructed a smaller optimum-time implemen-
tation based on Gerken’s synchronization algorithm [1987] on O(1)-bit-communi-
cation model. The constructed CA1−bit has 35 internal states and 114 transition
rules. Table 4 presents its transition rule set for the 35-state synchronization
protocol and Figure 5 shows snapshots for synchronization processes on 17 cells,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 RGW Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 RGW RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 RGW RP RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 RGW RP RQoS RA Q Q Q Q Q Q Q Q Q Q Q Q Q

4 RGW RP RQeSRQoS RA Q Q Q Q Q Q Q Q Q Q Q Q

5 RGW RP RG1 RQ0ARQoS RA Q Q Q Q Q Q Q Q Q Q Q

6 RGW RP RG0 RQ1ARQeSRQoS RA Q Q Q Q Q Q Q Q Q Q

7 RGW RP RG1 RQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q Q Q Q Q

8 RGW RP RG0 RP1 RQ0BRQ1ARQeSRQoS RA Q Q Q Q Q Q Q Q

9 RGW RP RQ1C RP0 RQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q Q Q

10 RGW RP RQ0C RP1 RQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q Q Q Q Q

11 RGW RP RQ1C RP0 RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q

12 RGW RP RQ0CRQ1A RG0 RQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q Q Q

13 RGW RP RG1 RQ0A RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q

14 RGW RP RG0 RQ1A RG0 RP1 RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q

15 RGW RP RG1 RQ0ARQ1B RP0 RQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q

16 RGW RP RG0 RQ1ARQ0B RP1 RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSLGW

17 RGW RP RG1 RQ0ARQ1B RP0 RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1B RA LGW

18 RGW RP RG0 RQ1ARQ0BRQ1A RG0 RQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1A LP LQ1ALGW

19 RGW RP RG1 RQ0ARQ1BRQ0A RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1B LG LQ1CLQ1BLGW

20 RGW RP RG0 RP1 RQ0BRQ1A RG0 RP1 RQ0BRQ1ARQ0BRQ1A LP LQ0CLQ1ALQ1ALGW

21 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B RP0 RQ1BRQ0ARQ1B LG LQ1CLQ1BLQ0A LP1 LGW

22 RGW RP RQ0C RP1 RQ0BRQ1ARQ0B RP1 RQ0BRQ1A LP LQ0CLQ1ALQ0BLQ1A LP0 LGW

23 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B RP0 RG1 LG LQ1CLQ1BLQ0ALQ1BLQ0A LP1 LGW

24 RGW RP RQ0C RP1 RQ0BRQ1ARQ0BRQ1ALGW RGWLQ1ALQ0BLQ1ALQ0B LP1 LP0 LGW

25 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B LG LGW RGW RG LQ1BLQ0ALQ1B LP0 LQ1BLGW

26 RGW RP RQ0C RP1 RQ0BRQ1A LP LQ0CLGW RGWRQ0C RP LQ1ALQ0B LP1 LQ1ALGW

27 RGW RP RQ1C RP0 RG1 LG LQ1CLQ1CLGW RGWRQ1CRQ1C RG LG1 LP0 LQ1BLGW

28 RGW RP RQ0CRQ1ALGW RGWLQ1ALQ0CLGW RGWRQ0CRQ1ALGW RGWLQ1ALQ1ALGW

29 RGW RP RG1 LG LGW RGW RG LG1 LGW RGW RG1 LG LGW RGW RG LP1 LGW

30 RGW RP LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW

31 RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW LGW

32 F F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 > / / / / / / / / / / / / / / / /
1 > ] / / / / / / / / / / / / / / /
2 > ] > / / / / / / / / / / / / / /
3 > ] ^ ] / / / / / / / / / / / / /
4 > ] ^ / > / / / / / / / / / / / /
5 > ] > ^ ^ ] / / / / / / / / / / /
6 > ] > ^ ^ / > / / / / / / / / / /
7 > ] > ^ / ^ ^ ] / / / / / / / / /
8 > ] > ] ^ ^ ^ / > / / / / / / / /
9 > ] ^ ] ^ ^ / ^ ^ ] / / / / / / /

10 > ] ^ ] ^ / ^ ^ ^ / > / / / / / /
11 > ] ^ ] > ^ ^ ^ / ^ ^ ] / / / / /
12 > ] ^ / > ^ ^ / ^ ^ ^ / > / / / /
13 > ] > ^ > ^ / ^ ^ ^ / ^ ^ ] / / /
14 > ] > ^ > ] ^ ^ ^ / ^ ^ ^ / > / /
15 > ] > ^ ^ ] ^ ^ / ^ ^ ^ / ^ ^ ] /
16 > ] > ^ ^ ] ^ / ^ ^ ^ / ^ ^ ^ / [
17 > ] > ^ ^ ] > ^ ^ ^ / ^ ^ ^ / < [
18 > ] > ^ ^ / > ^ ^ / ^ ^ ^ / [ < [
19 > ] > ^ / ^ > ^ / ^ ^ ^ / < [ / [
20 > ] > ] ^ ^ > ] ^ ^ ^ / [ < ^ / [
21 > ] ^ ] ^ ^ ^ ] ^ ^ / < [ / / < [
22 > ] ^ ] ^ ^ ^ ] ^ / [ < ^ / / < [
23 > ] ^ ] ^ ^ ^ ] > < [ / / ^ / < [
24 > ] ^ ] ^ ^ ^ / [ ] ^ / / / [ < [
25 > ] ^ ] ^ ^ / < [ ] > ^ / / [ / [
26 > ] ^ ] ^ / [ < [ ] > ] ^ / [ / [
27 > ] ^ ] > < [ / [ ] ^ ] > < [ / [
28 > ] ^ / [ ] ^ / [ ] ^ / [ ] ^ / [
29 > ] > < [ ] > < [ ] > < [ ] > < [
30 > ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [
31 > < > < > < > < > < > < > < > < >
32 F F F F F F F F F F F F F F F F F

Fig. 5. Snapshots for synchronization processes on 17 cells, each for Gerken’s algorithm
[1987] on O(1)-bit-communication model (left) and the 35-state implementation (Umeo
and Yanagihara [2011]) on CA1−bit (right)

each for Gerken’s algorithm [1987] on O(1)-bit-communication model (left) and
the 35-state algorithm on CA1−bit (right).

Theorem 8. [Umeo, Yanagihara [2011]] There exists a 35-state CA1−bit that
can synchronize n cells with the general on the left end in 2n − 2 steps.

3 FSSP on Two-Dimensional Arrays

Figure 6 shows a finite 2D cellular array consisting of m × n cells. Each cell is
an identical (except the border cells) finite-state automaton. The array operates
in lock-step mode in such a way that the next state of each cell (except border
cells) is determined by both its own present state and the present states of
its north, south, east and west neighbors. The FSSP on the 2D array can be
defined similarly. All cells (soldiers), except the north-west corner cell (general),
are initially in the quiescent state at time t = 0 with the property that the next
state of a quiescent cell with quiescent neighbors is the quiescent state again. At
time t = 0, the north-west corner cell C1,1 is in the fire-when-ready state, which
is the initiation signal for the array. The FSSP is to determine a description
(state set and next-state function) for cells that ensures all cells enter the fire
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Fig. 6. A two-dimensional (2D) cellular automaton

state at exactly the same time and for the first time. The tricky part of the
problem is that the same kind of soldier having a fixed number of states must
be synchronized, regardless of the size m × n of the array. The set of states and
next state function must be independent of m and n.

3.1 Rectangular Arrays

A large number of FSSP algorithms on 2D arrays has been proposed by Beyer
[1969], Grasselli [1975], Shinahr [1974], Szwerinski [1982], Umeo, Hisaoka, and
Akiguchi [2005], and Umeo, Nishide, and Kubo [2012]. It has been shown in
Beyer [1969] and Shinahr [1974] independently that there exists no 2D cellu-
lar automaton that can synchronize any 2D array of size m × n in less than
m + n + max(m,n) − 3 steps. In addition they first proposed an optimum-time
synchronization algorithm that can synchronize any 2D array of size m × n in
optimum m + n + max(m,n) − 3 steps. Shinahr [1974] gave a 28-state imple-
mentation. Umeo, Hisaoka and Akiguchi [2005] presented a new 12-state syn-
chronization algorithm operating in optimum-step, realizing a smallest solution
to the rectangle synchronization problem, known at present. As for the time
optimality of the 2D FSSP algorithms, the following theorems have been shown.

Theorem 9. [Beyer [1969], Shinahr [1974]] There exists no cellular automaton
that can synchronize any 2D array of size m×n in less than m+n+max(m,n)−3
steps, where the general is located at one corner of the array.

Theorem 10. [Beyer [1969], Shinahr [1974]] There exists an cellular automaton
that can synchronize any 2D array of size m×n in exactly m+n+max(m,n)−3
steps, where the general is located at one corner of the array.

Umeo, Hisaoka and Akiguchi [2005] presented a 12-state synchronization
algorithm operating in optimum-step, realizing the smallest, known at present,
solution to the rectangle synchronization problem. The constructed 12-state cel-
lular automaton has 1532 transition rules. The details can be found in Umeo,
Hisaoka, and Akiguchi [2005].
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Theorem 11. [Umeo et al. [2005]] There exists a 12-state cellular automaton
that can synchronize any 2D array of size m×n at exactly m+n+max(m,n)−3
steps, where the general is located at one corner of the array.

Concerning its generalized cases where a general is initially positioned at any
point on the 2D array, the following theorems are developed.

Theorem 12. [Umeo, Nishide, Kubo [2012]] There exists no 2D cellular automa-
ton that can synchronize any 2D array of size m × n with an initial general on
Cr,s in less than m + n + max(m,n) − min(r,m − r + 1) − min(s, n − s + 1) − 1
steps, where 1 ≤ r ≤ m, 1 ≤ s ≤ n.

Theorem 13. [Szwerinski [1982], Umeo, Nishide, Kubo [2012]] There exists
an optimum-time synchronization algorithm that can synchronize any m × n
rectangular array with a general at Cr,s in optimum m + n + max(m,n) −
min(r,m − r + 1) − min(s, n − s + 1) − 1 steps, where 1 ≤ r ≤ m, 1 ≤ s ≤ n.

3.2 Square Arrays

Concerning the square synchronization which is a special class of rectangles,
several square synchronization algorithms have been proposed by Beyer [1969],
Shinahr [1974], and Umeo, Maeda, and Fujiwara [2002]. In recent years, Umeo
and Kubo [2010] developed a seven-state square synchronizer, which is a smallest
implementation, known at present, of the optimum-time square FSSP algorithm.
One can easily see that it takes 2n− 2 steps for any signal to travel from C1,1 to
Cn,n due to the von Neumann neighborhood. For some typical square synchro-
nization algorithms, see Umeo [2012].

Concerning the time optimality of the two-dimensional square synchroniza-
tion algorithms, the following theorems have been established.

Theorem 14. [Beyer [1969], Shinahr [1974]] There exists no cellular automaton
that can synchronize any 2D square array of size n×n in less than 2n− 2 steps,
where the general is located at one corner of the array.

Theorem 15. [Shinahr [1974]] There exists a 17-state cellular automaton that
can synchronize any 2D square array of size n × n at exactly 2n − 2 optimum
steps.

Umeo and Kubo [2010] constructed a seven-state optimum-time square syn-
chronizer based on a zebra-like mapping. It is known as the smallest imple-
mentation at present. The constructed seven-state cellular automaton has 787
transition rules. Details can be found in Umeo and Kubo [2010].

Theorem 16. [Umeo, Kubo [2010]] There exists a seven-state cellular automa-
ton that can synchronize any 2D square array of size n × n in optimum 2n − 2
steps.

In Table 5 we present a list of implementations of those FSSP algorithms for
square cellular automata with O(1)-bit and 1-bit communications. The O(1)-bit
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communicationmodel is ausual cellular automaton inwhich the amountof commu-
nication bits exchanged in one step between neighboring cells is assumed to be O(1)
bits. The 1-bit communication model is a subclass of the usual cellular automata,
in which inter-cell communication is restricted to 1-bit communication discussed
in Section 2.5.

Table 5. 2D FSSP algorithms for square arrays

Implementations # of # of Time Communication
states rules complexity model

Beyer [1969] — — 2n − 2 O(1)-bit
Shinahr [1974] 17 — 2n − 2 O(1)-bit

Umeo, Maeda and 9 1718 2n − 2 O(1)-bit
Fujiwara [2002]

Umeo and 7 787 2n − 2 O(1)-bit
Kubo [2010]

Ishii et al. [2006] 15 1614 2n − 2 O(1)-bit
Umeo, Uchino and 37 3271 2n − 2 O(1)-bit

Nomura [2011]
Gruska, Torre and — — 2n − 2 1-bit

Parente [2007]
Umeo and 49 237 2n − 2 1-bit

Yanagihara [2011]

4 FSSP for Multi-Dimensional Arrays

In this section, we review FSSP algorithms for multi-dimensional arrays, which
has been presented in Umeo, Nishide, and Kubo [2012]. A kD FSSP algorithm
is sketched as follows:

Optimum-Time kD FSSP Algorithm

Step 1. Start the recursive-halving marking on cells along each dimension, find
a center cell(s) of the array, generate a general(s) on the center cell(s), and pre-
synchronize the center point(s): zero-dimensional sub-array of the array.
Step 2. Pre-synchronize a 1D sub-array along the 1st dimension containing
the synchronized center cell.
Step 3. to Step k − 1. for j = 1 to k − 1, by increasing the number of
dimensions, pre-synchronize a jD sub-array containing the pre-synchronized
(j − 1)D sub-array.
Step k. Synchronize the kD array. This yields the final synchronization of the
given array.

4.1 3D FSSP/GFSSP Algorithms

We give several theorems for 3D FSSP with a general at one corner or an arbi-
trary position of the array.
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Theorem 17. [Umeo, Nishide, Kubo [2012]] The minimum time in which the
firing squad synchronization could occur is no earlier than n1 + n2 + n3 +
max(n1, n2, n3) − 4 for any 3D array of size n1 × n2 × n3 with a general at
C1,1,1.

Theorem 18. [Umeo, Nishide, Kubo [2012]] There exists an optimum-time syn-
chronization algorithm that can synchronize any 3D array of size n1 × n2 × n3

with a general at C1,1,1 in optimum n1 + n2 + n3 + max(n1, n2, n3) − 4 steps.

Theorem 19. [Umeo, Nishide, Kubo [2012]] The minimum time in which the
firing squad synchronization could occur is no earlier than n1 + n2 + n3 +
max(n1, n2, n3)−min(r1, n1−r1+1)−min(r2, n2−r2+1)−min(r3, n3−r3+1)−1
for any 3D array of size n1 × n2 × n3 with a general at Cr1,r2,r3 .

Theorem 20. [Umeo, Nishide, Kubo [2012]] There exists an optimum-time syn-
chronization algorithm that can synchronize any 3D array of size n1 × n2 × n3

with a general at Cr1,r2,r3 in optimum n1+n2+n3+max(n1, n2, n3)−min(r1, n1−
r1 + 1) − min(r2, n2 − r2 + 1) − min(r3, n3 − r3 + 1) − 1 steps.

4.2 kD FSSP/GFSSP Algorithms

Theorems 17-20 can be expanded to k-dimensional arrays.

Theorem 21. [Umeo, Nishide, Kubo [2012]] There exists no cellular automaton
that can synchronize any kD array of size n1 × n2 × ... × nk with a general at
C1,1,...,1 in less than

∑k
i=1 ni + max(n1, n2, ..., nk) − k − 1 steps

Theorem 22. [Umeo, Nishide, Kubo [2012]] There exists an optimum-time syn-
chronization algorithm that can synchronize any kD array of size n1×n2×...×nk

with a general at C1,1,...,1 in optimum
∑k

i=1 ni +max(n1, n2, ..., nk)−k−1 steps.

Theorem 23. [Umeo, Nishide, Kubo [2012]] There exists no cellular automaton
that can synchronize any kD array of size n1 × n2 × ... × nk with a general at
Cr1,r2,...,rk

in less than
∑k

i=1 ni+max(n1, n2, ..., nk)−∑k
i=1 min(ri, ni−ri+1)−1

steps.

Theorem 24. [Umeo, Nishide, Kubo [2012]] There exists an optimum-time syn-
chronization algorithm that can synchronize any kD array of size n1 × n2 ×
...×nk with a general at Cr1,r2,...,rk

in optimum
∑k

i=1 ni +max(n1, n2, ..., nk)−∑k
i=1 min(ri, ni − ri + 1) − 1 steps.

5 Conclusions

In the present article, we have constructed a survey on recent developments
in constructing FSSP algorithms for 1D, 2D, 3D and multi-dimensional arrays,
focusing on time-optimum smaller-state solutions to the FSSP.
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Abstract. In this paper we show a computational aspect of the quan-
tum hashing technique. In particular we apply it for computing Boolean
functions in the model of read-once quantum branching programs based
on the properties of specific polynomial presentation of those functions.

1 Introduction

Hashing is widely used in computer science, it is especially useful in crypto-
graphic protocols and data integrity check. In [1] we have introduced a non-
binary quantum hash function for cryptographic scenarios. For instance, the
proposed quantum hashing is a suitable one-way function for quantum digital
signature protocol from [10]. In this paper we consider another application of
the quantum hashing and use it to construct efficient quantum algorithms in a
restricted computational model.

Due to severe limits of existing physical implementations of quantum com-
puter it is natural to consider the restricted models of quantum computations.
The one we consider in this paper is based upon quantum branching programs.
Two variants of quantum branching programs were introduced by Ablayev,
Gainutdinova, Karpinski [3] (leveled programs), and by Nakanishi, Hamaguchi,
Kashiwabara [12] (non-leveled programs). Later it was shown by Sauerhoff [14]
that these two models are polynomially equivalent. The most commonly used
restricted variant of quantum branching programs is the model of Ordered Read-
Once Quantum Branching Programs. In computer science this model is also
known as Ordered Binary Decision Diagrams (OBDDs). This restriction implies
that each input variable may be read at most once, which is the least possible for
any function essentially depending on its variables. Thus, the read-once restric-
tion corresponds to minimizing of computational steps for quantum algorithms.

Essentially, the model of quantum OBDDS is a non-uniform equivalent of
one-way quantum finite automata (QFA) and thus the technique given in this
paper can be used in the QFA model as well.

In order to compute Boolean functions in the quantum OBDD model we exploit
the specific polynomial presentation, which we have called characteristic [5]. The
polynomial presentations of Boolean functions are widely used in theoretical com-
puter science. For instance, an algebraic transformation of Boolean functions has
been applied in [11] and [7] for verification of Boolean functions. In the quantum
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 149–160, 2014.
DOI: 10.1007/978-3-319-13350-8 11
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setting polynomial representations were used for proving lower bounds on commu-
nication complexity in [8] as well as for investigating query complexity in [16]. Our
approach combines the ideas similar to the definition of characteristic polynomial
from [11], [7] and to the notion of zero-error polynomial (see, e.g. [16]).

In this paper we show how the proposed quantum hashing can be used to
compute Boolean functions given by their polynomials in a very restricted com-
putational model of quantum OBDDs. Due to the known general lower bound
on the complexity of quantum OBDDs some of our algorithms turn out to be
optimal.

2 Quantum Branching Programs

We use the notation |i〉 for the vector from Hilbert space Hd, which has a 1
on the i-th position and 0 elsewhere. An orthonormal basis |1〉,. . . ,|d〉 is usually
referred to as the standard computational basis. In this paper we consider all
quantum transformations and measurements with respect to this basis.

Definition 1. A Quantum Branching Program Q over the Hilbert space Hd is
defined as

Q = 〈T, |ψ0〉,Accept〉 , (1)

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
is determined by

the variable xij tested on the step j, and Uj(0), Uj(1) are unitary transformations
in Hd.

Vectors |ψ〉 ∈ Hd are called states (state vectors) of Q, |ψ0〉 ∈ Hd is the
initial state of Q, and Accept ⊆ {1, 2, . . . d} is the set of indices of accepting
basis states.

We define a computation of Q on an input σ = σ1 . . . σn ∈ {0, 1}n as follows:

1. A computation of Q starts from the initial state |ψ0〉;
2. The j-th instruction of Q reads the input symbol σij (the value of xij ) and

applies the transition matrix Uj = Uj(σij ) to the current state |ψ〉 to obtain
the state |ψ′〉 = Uj(σij )|ψ〉;

3. The final state is

|ψσ〉 =

⎛
⎝

1∏
j=l

Uj(σij )

⎞
⎠ |ψ0〉 . (2)

4. After the l-th (last) step of quantum transformation Q measures its config-
uration |ψσ〉 = (α1, . . . , αd)T , and the input σ is accepted with probability

Praccept(σ) =
∑

i∈Accept

|αi|2 . (3)

Note, that using the set Accept we can construct Maccept – a projector on
the accepting subspace Hd

accept (i.e. a diagonal zero-one projection matrix, which
determines the final projective measurement). Thus, the accepting probability
can be re-written as

Praccept(σ) = 〈ψσM†
accept |Macceptψσ〉 = ||Maccept|ψσ〉||22 . (4)
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Circuit Representation. Quantum algorithms are usually given by using quantum
circuit formalism [9], [17], because this approach is quite straightforward for
describing such algorithms.

We propose, that a QBP represents a classically-controlled quantum system.
That is, a QBP can be viewed as a quantum circuit aided with an ability to read
classical bits as control variables for unitary operations.

xj1 • �������	 · · ·

xj2 • �������	 · · ·
...

xjl · · · • �������	

|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)


�
���

|φ2〉 · · ·

�

���|ψ0〉

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

...

|φq〉 · · ·

�

���

Fig. 1. Circuit presentation of a quantum branching program. Here xi1 , . . . , xil is the
sequence of (not necessarily distinct) variables denoting classical control (input) bits.
Using the common notation single wires carry quantum information and double wires
denote classical information and control.

Example. As an example consider the Boolean function MODm(x1, . . . , xn)
which tests whether the number of ones in it’s input is a multiple of m. For
this function the simple algorithm can be proposed (see Figure 2).

x1 • ···

x2 • ···
...xn ··· •

|0〉 R R ··· R

�

���

|  

|0  

|1  

 

Fig. 2. Quantum branching program for MODm Boolean function. Here R denotes
the rotation by an angle θ = π/m about the ŷ axis of the Bloch sphere.

The algorithm starts with a qubit in basis state |0〉. At j-th step the value
of xj is tested. Upon input symbol 0 identity transformation I is applied. But if
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the value of xj is 1, then the state of the qubit is transformed by the operator
R, rotating it by the angle proportional to π/m.

The final state is measured in the standard computational basis. The input
σ = σ1 . . . σn is accepted if the result is the basis state |0〉, otherwise the input
σ is rejected. For arbitrary input σ the acceptance probability equals to

Praccept(σ) = cos2
(

π
∑

i σi

m

)
. (5)

Thus, if MODm(σ) = 1 then Praccept(σ) = 1. If MODm(σ) = 0 then the
probability of erroneously obtaining the |0〉 can be close to 1, but this can be
improved by using more qubits.

Complexity Measures. The width of a QBP Q, denoted by width(Q), is the
dimension d of the corresponding state space Hd, and the length of Q, denoted
by length(Q), is the number l of instructions in the sequence T .

In this paper we’re mostly interested in another important complexity for a
QBP Q – a number of quantum bits, denoted by qubits(Q), physically needed
to implement a corresponding quantum system with classical control. From def-
inition it follows that log width(Q) ≤ qubits(Q).

Acceptance Criteria. A QBP Q computes the Boolean function f with bounded
error if there exists an ε ∈ (0, 1/2) (called margin) such that for all inputs the
probability of error is bounded by 1/2 − ε.

In particular, we say that a QBP Q computes the Boolean function f with one-
sided error if there exists an ε ∈ (0, 1) (called error) such that for all σ ∈ f−1(1)
the probability of Q accepting σ is 1 and for all σ ∈ f−1(0) the probability of Q
erroneously accepting σ is less than ε.

Read-Once Branching Programs. Read-once BPs is a well-known restricted vari-
ant of branching programs [15].

Definition 2. We call a QBP Q a quantum OBDD (QOBDD) or read-once
QBP if each variable x ∈ {x1, . . . , xn} occurs in the sequence T of transforma-
tions of Q at most once.

For the rest of the paper we are only interested in QOBDDs, i.e. the length of
all programs would be n (the number of input variables). Note that for OBDD
model size(Q) = n · width(Q) and therefore we are mostly interested in the
width of quantum OBDDs.

The “obliviousness” is inherent for a QBP and therefore this definition is
consistent with the usual notion of an OBDD.

General Lower Bound. The following general lower bound on the width of QOB-
DDs was proven in [4].



Computing Boolean Functions via Quantum Hashing 153

Theorem 1. Let f(x1, . . . , xn) be a Boolean function computed by a quantum
read-once branching program Q with bounded error for some margin ε. Then

width(Q) ≥ log width(P )
2 log

(
1 + 1

ε

) , (6)

where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).
That is, the width of a quantum OBDD cannot be asymptotically less than

logarithm of the width of the minimal deterministic OBDD computing the same
function. And since the deterministic width of many “natural” functions is expo-
nential [15], we obtain the linear lower bound for these functions.

Let bits(P ) be the number of bits (memory size) required to implement the
minimal deterministic OBDD P for f and Q is an arbitrary quantum OBDD
computing the same function.

Then Theorem 1 implies the following lower bound in terms of the number
of bits and qubits as the complexity measure.

Corollary 1.
qubits(Q) = Ω(log bits(P)) . (7)

3 Quantum Hashing

In this section we recall a quantum hashing function from [1].
Let q = 2n and B = {b1, b2, . . . , bd} ⊂ Zq. We define a quantum hash function

ψq,B : {0, 1}n → (H2)⊗(log d+1) as follows. For an input x ∈ {0, 1}n we let

|ψq,B(x)〉 =
1√
d

d∑
i=1

|i〉
(

cos
2πbix

q
|0〉 + sin

2πbix

q
|1〉

)
. (8)

It follows from this definition that the quantum hash |ψq,B(x)〉 of an n-bit
string x consists of log d + 1 qubits. We will show that d can be about O(n)
without loosing the quality of hashing.

The set B = {b1, b2, . . . , bd} of hashing parameters not only defines the size
of the hash but also gives the function ψq,B an ability to withstand collisions, i.e.
to distinguish different hashes with bounded error probability. We have called
this property δ-resistance.

Formally, for δ ∈ (0, 1) we call a function ψ : X → (H2)⊗s δ-resistant if for
any pair w,w′ of different inputs

|〈ψ(w) |ψ(w′)〉| ≤ δ . (9)

The value of δ for the hash function ψq,B entirely depends on q (which is
fixed here by the size of the input) and the set B, i.e. δ = δ(q,B). In [1] we have
shown a construction for the set of polylogarithmic size (in n) based on [13]. We
have also proved the following result.
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Theorem 2. For arbitrary δ ∈ (0, 1) there exists a set B = {b1, b2, . . . , bd} of
size d = �(2/δ2) ln(2q)� such that quantum hash function ψq,B is a δ-resistant.

In other words, for arbitrary δ ∈ (0, 1) it is possible construct a δ-resistant
quantum hash function ψq,B that would produce an log d + 1 = O(log log q) =
O(log n)-qubit hash out of n-bit input.

Implementation of the quantum hashing. In order to describe the implementation
of the quantum hashing we introduce the following notations.

We define a Compound Controlled Rotation operator (CCR):

CCRq,B(θ) = CCRq,B,1(θ) · CCRq,B,2(θ) · · · CCRq,B,d(θ), (10)

where operator CCRq,B,i(θ) rotates the target qubit by the angle θ if the control
qubits were in the state |i〉 and is given in Figure 3.

CCRq,B,i(θ) =

•

... |i〉

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭•
(

cos 2πbiθ
q

sin 2πbiθ
q

− sin 2πbiθ
q

cos 2πbiθ
q

)

Fig. 3. A circuit for the operator CCRq,B,i(θ), that rotates the target qubit by the
angle θ if the control qubits were in the state |i〉. Here, the single-qubit rotation is
made around the ŷ axis of the Bloch sphere.

The compound operator CCRq,B(θ) obviously has the following properties.

Property 1. CCR-property

CCRq,B(0) = I,

CCRq,B(θ)|ψq,B(x)〉 = |ψq,B(x + θ)〉,
CCRq,B(θ1)CCRq,B(θ2) = CCRq,B(θ1 + θ2) .

(11)

Thus, the procedure of quantum hashing the input w by the function ψq,B

consists of the following steps:
0. Initialization of the log d + 1 qubits in the state |0 . . . 0〉|0〉.
1. Application of Hadamard transform to the first log d qubits:

1√
d

d∑
i=1

|i〉|0〉 = |ψq,B(0)〉 . (12)
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2. Application of CCRq,B(w) creates the quantum hash of the input bit
string w = w0 . . . wn−1, which is also treated as a number w = w0 +w121 + . . .+
wn−12n−1:

CCRq,B(w)|ψq,B(0)〉 = |ψq,B(w)〉 . (13)

Note, that for the model of quantum branching programs this step consists of
n substeps: for each input bit wj there is an instruction 〈wj , I, CCRq,B(2j)〉 of
the quantum branching program, i.e. when wj = 1 we apply CCRq,B(2j), and
do nothing otherwise. Obviously,

CCRq,B(w) = CCRq,B(w0) · CCRq,B(w121) · · · CCRq,B(wn−12n−1) . (14)

Thus, an overall number of controlled rotations CCRq,B,i(θ) is nd = O(n2).
From the description above it follows that the input bits are read only once,

and the quantum branching program is actually a quantum OBDD. An illustra-
tive presentation for this program is given in Figure 4.

w0 • ··· • ··· ···
...wn−1 ··· ··· • ··· •

|φ1〉 H ··· • ··· ··· •

|φ2〉 H ··· • ··· ··· •
...

|1〉 |d〉 |1〉 |d〉

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭|φ log d〉 H ··· • ··· ··· •

|φlog d+1〉 R(θ1,0) ··· R(θd,0) ··· R(θ1,n−1) ··· R(θd,n−1)

CCRq,B(M0) CCRq,B(Mn−12
n−1)

Fig. 4. A quantum OBDD in circuit presentation, that hashes an n-bit input w =
w0 . . . wn−1 into the state |ψq,B(M)〉 of O(log n) qubits. R(θi,j) denotes a rotation by

an angle 4πbi2
j

q
around the ŷ axis of the Bloch sphere.

Physical implementation. In [2,6] we have proposed an effective physical imple-
mentation of compound multiply controlled operators for the model of solid state
quantum computer on multiatomic ensembles in the QED cavity. CCRq,B,i(θ)
is exactly such operator and thus can be accelerated in this architecture.

REVERSE-test. Whenever we need to check if a quantum state |ψ(w)〉 is a hash
of a classical string v, one can use the procedure that we call a REVERSE-test
[1].
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Essentially the test applies the procedure that inverts the creation of a quan-
tum hash, i.e. it “uncomputes” the hash to the initial state (usually the all-zero
state).

Formally, let the procedure of quantum hashing the string w be given by
unitary transformation U(w), applied to initial state |0〉, i.e. |ψ(w)〉 = U(w)|0〉.
Then the REVERSE-test, given v and |ψ(w)〉, applies U−1(v) to the state |ψ(w)〉
and measures the resulting state. It outputs v = w iff the measurement outcome
is |0〉. So, if v = w, then U−1(v)|ψ(w)〉 would always give |0〉, and REVERSE-test
would give the correct answer. Otherwise, by δ-resistance property

〈0 |U−1(v)ψ(w)〉 < δ , (15)

which bounds the probability of erroneously outputting v = w.
Overall, this test has one-sided error bounded by δ2 if the quantum hash

function is δ-resistant.
In case of quantum hash function CCRq,B the REVERSE-test consists of

the following steps.
1. Application of CCRq,B(−v) to the state |ψ(w)〉.
2. Application of the Hadamard transform to all but the last qubit.
3. Measurement of the resulting state.

4 Characteristic Polynomials for Boolean Functions

In this section we recall the definition of the characteristic polynomial for a
Boolean function proposed in [5].

Definition 3. We call a polynomial g(x1, . . . , xn) over the ring Zq a character-
istic polynomial of a Boolean function f(x1, . . . , xn) and denote it gf when for
all σ ∈ {0, 1}n gf (σ) = 0 iff f(σ) = 1.

Note, that such a polynomial always exists.

Lemma 1. For any Boolean function f of n variables there exists a character-
istic polynomial gf over Z2n .

Proof. One way to construct such characteristic polynomial gf is transforming
a sum of products representation for ¬f .

Let K1 ∨ . . . ∨ Kl be a sum of products for ¬f and let K̃i be a product of
terms from Ki (negations ¬xj are replaced by 1 − xj). Then K̃1 + . . . + K̃l is a
characteristic polynomial over Z2n for f since it equals 0 ⇐⇒ all of K̃i (and
thus Ki) equal 0. This happens only when the negation of f equals 0.

Generally, there are many polynomials for the same function. For example,
the function EQn, which tests the equality of two n-bit binary strings, has the
following polynomial over Z2n :

n∑
i=1

(xi(1 − yi) + (1 − xi)yi) =
n∑

i=1

(xi + yi − 2xiyi) . (16)
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On the other hand, the same function can be represented by the polynomial
n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1 . (17)

5 Computing Boolean Functions with Quantum Hashing

Now we describe the class of Boolean functions that can be efficiently computed
in the quantum OBDD model using the quantum hashing technique.

Let f(x1, . . . , xn) be a Boolean function and g be its characteristic polyno-
mial. The following theorem holds.

Theorem 3. Let δ ∈ (0, 1). If there exists is a linear polynomial g for a Boolean
function f over Zq, then f can be computed with one-sided error δ2 by a quantum
OBDD on O (log log q + log 1/ε) qubits.

Proof. The key idea is to evaluate the characteristic polynomial and hash the
result simultaneously while reading the input. Below we show that this can be
easily done when the polynomial is linear. After the hash is prepared the value
of the Boolean function f can be obtained by performing the REVERSE-test,
checking whether 0 is hashed or not.

Since the polynomial g is linear, i.e. g = c1x1 + . . . cnxn + c0, hashing its
value can be done by a sequence of CCRq,B operators:

CCRq,B(w) = CCRq,B(c0) · CCRq,B(c1x1) · · · CCRq,B(cnxn) , (18)

and this is easily done while reading the input only once.
Then the REVERSE-test applies CCRq,B(0), which is identity operator, and

finishes with Hadamard transform and measurements. It outputs the correct
answer with the one-sided error probability δ2.

Thus, f can be computed with one-sided error δ2 by a quantum OBDD on s
qubits, where s = O (log log q + log 1/ε).

5.1 Examples

The following functions have the aforementioned linear polynomials and thus
are effectively computed with quantum hashing.

MODm The function MODm tests whether the number of 1’s in the input is 0
modulo m. The linear polynomial over Zm for this function is

n∑
i=1

xi.

The lower bound for the width of deterministic OBDDs computing this function
is Ω(m) [15]. Thus, our method provides an exponential advantage of quantum
OBDD over any deterministic one.
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MOD′
m This function is the same as MODm, but the input is treated as binary

number. Thus, the linear polynomial is

n∑
i=1

xi2i−1.

The lower and upper bounds are equal to those of MODm.

EQn The function EQn, which tests the equality of two n-bit binary strings,
has the following polynomial over Z2n

n∑
i=1

xi2i−1 −
n∑

i=1

yi2i−1.

This function is easy in the deterministic case for a clever choice of the variable
ordering. But for the ordering, where all of x’s are tested first, it is exponentially
hard. In quantum setting, this function can be effectively computed regardless
of the variable ordering.

Palindromen(x1, . . . , xn) This function tests the symmetry of the input, i.e.
whether x1x2 . . . x�n/2� = xnxn−1 . . . x�n/2	+1 or not. The polynomial over Z2�n/2�

is
�n/2�∑
i=1

xi2i−1 −
n∑

i=�n/2	
xi2n−i.

The situation with lower and upper bounds for this function is similar to that
of EQn.

PERMn The Permutation Matrix test function (PERMn) is defined on n2

variables xij (1 ≤ i, j ≤ n). It tests whether the input matrix contains exactly
one 1 in each row and each column. Here is a polynomial over Z(n+1)2n

n∑
i=1

n∑
j=1

xij

(
(n + 1)i−1 + (n + 1)n+j−1

) −
2n∑
i=1

(n + 1)i−1.

Note, that this function cannot be effectively computed by a deterministic
OBDD – the lower bound is Ω(2nn−5/2) regardless of the variable ordering [15].
The width of the best known probabilistic OBDD, computing this function with
one-sided error, is O(n4 log n) [15]. Our algorithm has the width O(n log n). Since
the lower bound Ω(n − log n) follows from Theorem 1, our algorithm is almost
optimal.

The following functions have linear polynomials as well, but we are not aware
of exponential lower bounds in the deterministic case.
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Periods
n(x0, . . . , xn−1) This function equals 1 iff xi = xi+s mod n for all i ∈

{0, . . . , n − 1}. The polynomial over Z2n is

n−1∑
i=0

xi

(
2i − 2i−s mod n

)
.

Semi − Simons
n(x0, . . . , xn−1) This function equals 1 iff xi = xi⊕s for all i ∈

{0, . . . , n − 1}. The polynomial over Z2n is

n−1∑
i=0

xi

(
2i − 2i⊕s

)
.
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Dipartimento di Informatica, Università degli Studi di Milano via Comelico 39,
20135 Milano, Italy

{bianchi,mereghetti,palano}@di.unimi.it

Abstract. We consider the promise problem AN,r1,r2 on a unary alpha-
bet {σ} studied by Gruska et al. in [21]. This problem is formally defined
as the pair AN,r1,r2 = (AN,r1

yes , AN,r2
no ), with 0 ≤ r1 �= r2 < N , AN,r1

yes =
{σn | n ≡ r1 mod N} and AN,r2

no = {σn | n ≡ r2 mod N}. There, it
is shown that a measure-once one-way quantum automaton can solve
exactly AN,r1,r2 with only 3 basis states, while any one-way determinis-
tic finite automaton requires d states, d being the smallest integer such
that d | N and d � (r2−r1) mod N . Here, we introduce the promise prob-
lem Diof a,N

r1,r2 as an extension of AN,r1,r2 to general alphabets. Even for
this problem, we show the same descriptional superiority of the quantum
paradigm over one-way deterministic automata. Moreover, we prove that
even by adding features to classical automata, namely nondeterminism,
probabilism, two-way motion, we cannot obtain automata for AN,r1,r2

and Diof a,N
r1,r2 smaller than one-way deterministic.

Keywords: Classical and quantum automata · Promise problem ·
Descriptional complexity

1 Introduction

Several features have been added to the original model of one–way deterministic
finite automaton (1dfa) [38]. Thus, we saw one-way nondeterminism (1nfa) [38],
one-way probabilism (1pfa) [37], and the ability of scanning input strings back
and forth, yielding the definition of two-way devices (e.g., 2dfa) [39]. However,
simulation results show that the computational power of 1nfas, 1pfas with
isolated cut point, and 2dfas does not exceed that of 1dfa, i.e., the class of
regular languages.

Beside these classical models, other types of finite automata based on the
quantum paradigm [18] are introduced and investigated in the literature [2,4,
9,16,22,25,28,29,35]. The first and simplest variant of one-way quantum finite
automaton (1qfa) is the measure-once model, where the probability of accepting
words is evaluated by “observing” just once, at the end of input processing.
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Surprisingly enough, measure-once 1qfas working with isolated cut point are
proved to single out a proper subclass of regular languages, namely group (or
reversible) languages [5,14].

In addition to computational power, several works in the literature investigate
the descriptional power of these models, i.e., their ability to provide succinct
language representations. To this regard, a fundamental tool is to study how the
number of states changes when turning one automaton into another. The first
widely known result in this realm compares nondeterminism with determinism
for one-way finite automata: each n-state 1nfa can be simulated by a 1dfa
with 2n states [38]. Moreover, this bound is tight [33]. Another tool to get deeper
insights into the descriptional power of different models of finite automata is
to test them on very specific tasks, such as recognizing unary languages, i.e.,
languages over single-letter alphabets [15,32]. Some results along this line of
research for probabilistic and quantum automata can be found in [8,11,12,31].
Further results on the descriptional power of quantum automata are contained
in [7,10,27,30].

The same questions on the computational and descriptional power of different
models of finite automata have been extended from language recognition to
more general tasks known as promise problem solving. A promise problem on
an alphabet Σ is specified by two nonempty disjoint subsets of Σ∗ called yes-
instances and no-instances. Unlike language recognition, the union of the yes-
instances and no-instances may be a proper subset of Σ∗. A device which solves
the promise problem accepts yes-instances, rejects no-instances and is allowed
arbitrary behavior on the remaining strings. Intuitively, this device is “promised”
that the input is either a yes-instance or a no-instance, and is only required to
distinguish between these two cases.

Recently, the study of promise problems has focused on quantum devices. The
first result in this realm is given by Murakami et al. [34], who showed the existence
of a promise problem solvable exactly by a quantum pushdown automaton, but not
by any deterministic pushdown automaton.Concerning finite automata,Ambainis
and Yakaryilmaz [3] showed the existence of a family of promise problems which
can be solved exactly by a 2-state 1qfa, whereas the size of corresponding 1dfas
and exact 1pfas grows without bound. Gruska et al. showed further results on the
succinctness of 1qfas for promise problems in [20,21,42–44].

In this paper, we consider the unary promise problem introduced in [21] as
AN,r1,r2 = (AN,r1

yes , AN,r2
no ), with 0 ≤ r1 �= r2 < N , AN,r1

yes = {σn | n ≡ r1 mod N}
and AN,r2

no = {σn | n ≡ r2 mod N}. Gruska et al. show that a measure-once 1qfa
can solve exactly AN,r1,r2 with only 3 basis states, while a 1dfa requires d states,
d being the smallest integer such that d | N and d � (r2 − r1) mod N . Here, we
introduce the promise problem Diof a,N

r1,r2
as an extension of AN,r1,r2 to general

alphabets. Even for this problem, we show the same descriptional superiority of
1qfas over 1dfas. Moreover, we prove that adding features to classical automata,
namely nondeterminism, probabilism, two-way motion, does not lead to finite
automata smaller than 1dfas for solving the promise problems AN,r1,r2 and
Diof a,N

r1,r2
. To analyze these latter devices, we use the tool of normal forms for
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unary automata, namely: the Chrobak normal form for one-way nondeterminis-
tic finite automata [15], the cyclic normal form for one-way probabilistic finite
automata [13], and a simplified form for two-way deterministic finite automata
called sweeping [26,41]. Putting automata in such forms, enables us to point out
their ultimate periodic behavior, from which we determine optimal lower limits
for their descriptional power.

2 Preliminaries

2.1 Arithmetics and Linear Algebra

The set of natural (integer) numbers is denoted by N (Z). The greatest com-
mon divisor of a1, . . . , as ∈ Z is denoted by gcd(a1, . . . , as). Their least common
multiple is denoted by lcm(a1, . . . , as). For a, b ∈ N, the notation a | b (a � b)
stands for a divides (does not divide) b. For N > 0, the notation a ≡ b mod N
means that a mod N = b mod N . Clearly, a | b if and only if b ≡ 0 mod a.
By the Fundamental Theorem of Arithmetic, any integer z > 1 can be univo-
cally expressed as a product z =

∏s
i=1 zki

i , where z1 < · · · < zs are primes
and k1, . . . , ks are positive integers. This product is the prime factorization of z.
Given a1, . . . , as, z ∈ Z, a linear Diophantine equation with variables x1, . . . , xs

ranging over Z writes as a1x1 + · · · + asxs = z. It is a very well known fact that
this equation has solutions in N if and only if gcd(a1, . . . , as) | z.

We quickly recall some notions of linear algebra, useful to describe the quan-
tum world. For more details, we refer the reader to, e.g., [40]. The field of real
(complex) numbers is denoted by R (C). Given a complex number z = a+ ib, we
denote its conjugate by z∗ = a− ib and its modulus by |z| =

√
zz∗. We let C

n×m

and C
n (shorthand for C

1×n) denote, respectively, the set of n × m matrices
and n-dimensional row vectors with entries in C. The identity matrix is denoted
by I. We let ej = (0, . . . , 0, 1, 0, . . . , 0) be the characteristic vector having 1 in
its jth component and 0 elsewhere.

Given a matrix M ∈ C
n×m, we let Mij denote its (i, j)th entry. The transpose

of M is the matrix MT ∈ C
m×n satisfying MT

ij = Mji, while we let M∗ be the
matrix satisfying M∗

ij = (Mij)
∗. The adjoint of M is the matrix M† = (MT )∗.

For matrices A,B ∈ C
n×m, their sum is the n×m matrix (A+B)ij = Aij +Bij .

For matrices C ∈ C
n×m and D ∈ C

m×r, their product is the n × r matrix
(CD)ij =

∑m
k=1 CikDkj .

A Hilbert space of dimension n is the linear space C
n of n-dimensional com-

plex row vectors equipped with sum and product by elements in C, in which
the inner product 〈ϕ,ψ〉 = ϕψ† is defined, for ϕ,ψ ∈ C

n. The norm of a vector
ϕ ∈ C

n is given by ‖ϕ‖ =
√〈ϕ,ϕ〉. If 〈ϕ,ψ〉 = 0 (and ‖ϕ‖ = 1 = ‖ψ‖), then ϕ

and ψ are orthogonal (orthonormal). The set of orthonormal vectors {e1, . . . , en}
is called the canonical basis of C

n. Two subspaces X,Y ⊆ C
n are orthogonal

if any vector in X is orthogonal to any vector in Y . In this case, we denote by
X � Y the linear space generated by X ∪ Y .
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A matrix M ∈ C
n×n is said to be:

– Boolean: whenever its entries are either 0 or 1.
– Stochastic: whenever its entries are reals from the interval [0, 1] and each row

sums to 1.
– Unitary: whenever MM† = I = M†M ; equivalently, M is unitary if and

only if it preserves the norm, i.e., ‖ϕM‖ = ‖ϕ‖ for any ϕ ∈ C
n. It is easy

to see that the product of unitary matrices is unitary as well.

A matrix H ∈ C
n×n is said to be Hermitian (or self-adjoint) whenever

H = H†. A matrix P ∈ C
n×n is a projector if and only if P is Hermitian and

idempotent, i.e., P 2 = P . The eigenvalues of a projector are either 0 or 1.
More generally, given the Hermitian matrix H, let c1, . . . , cs be its eigenvalues
and E1, . . . , Es the corresponding eigenspaces. It is well known that each eigen-
value ck is real, that Ei is orthogonal to Ej for i �= j, and that E1�· · ·�Es = C

n.
Thus, every vector ϕ ∈ C

n can be uniquely decomposed as ϕ = ϕ1 + · · · + ϕs

for unique ϕj ∈ Ej . The linear transformation ϕ �→ ϕj is the projector Pj onto
the subspace Ej . Actually, the Hermitian matrix H is biunivocally determined
by its eigenvalues and projectors as H =

∑s
i=1 ciPi, where

∑s
i=1 Pi = I.

2.2 Languages and Classical Finite Automata

We assume familiarity with basics in formal language theory (see, e.g., [23]). The
set of all words (including the empty word ε) over a finite alphabet Σ is denoted
by Σ∗. For a word ω ∈ Σ∗, we let |ω| denote its length and ωi its ith symbol.
For σ ∈ Σ, we let |ω|σ denote the number of occurrences of σ in ω. A language
on Σ is any set L ⊆ Σ∗.

In what follows, we quickly outline the types of classical finite automata we
shall be dealing with. For extensive presentations, the reader is referred to [23]
for deterministic and nondeterministic automata, and to [36] for probabilistic
automata.

A one-way deterministic finite automaton (1dfa) is defined by the 5-tuple
A = 〈S,Σ, τ, s1, F 〉, where S =

{
s1, . . . , s|S|

}
is the finite set of states, Σ the

input alphabet, s1 ∈ S the initial state, F ⊆ S the set of accepting states, and
τ : S × Σ → S is the transition function. An input word is accepted by A if
the induced computation starting from the initial state ends in some accepting
state after consuming the whole input. A linear representation for the 1dfa A
is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where α ∈ {0, 1}|S| is the characteristic row
vector of the initial state, M(σ) ∈ {0, 1}|S|×|S| is the boolean stochastic matrix
satisfying M(σ)ij = 1 if and only if τ(si, σ) = sj , and β ∈ {0, 1}|S|×1 is the
characteristic column vector of the final states. The behavior of A on an input
ω ∈ Σ∗ is given by pA(ω) = αM(ω)β, where we let M(ω) =

∏|ω|
i=1 M(ωi). The

language accepted by A is the set L = {ω ∈ Σ∗ | pA(ω) = 1}.
A one-way nondeterministic finite automaton (1nfa) is defined similarly to

a 1dfa, but the transition function now maps to possibly empty subsets of S,
i.e., τ : S × Σ → 2S . This dynamic describes the possibility to have zero or
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more than one next state at each move. A word is accepted if there exists a
computation starting from the initial state and ending in some accepting state
after consuming the whole input. More formally, the linear representation for
a 1nfa A is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where α, β are as before, while
M(σ) ∈ {0, 1}|S|×|S| is the boolean (not necessarily stochastic) matrix satisfying
M(σ)ij = 1 if and only if sj ∈ τ(si, σ). The accepted language is now defined as
the set L = {ω ∈ Σ∗ | pA(ω) ≥ 1}.

A one-way probabilistic finite automaton (1pfa) is defined similarly to above
devices but now, for any given state and input symbol, the transition function
returns a probability distribution over the possible next states. As a consequence,
an accepting probability is associated with each input word. More formally, the
linear representation for a 1pfa A is the 3-tuple 〈α, {M(σ)}σ∈Σ , β〉, where β is
defined as above, α ∈ [0, 1]|S| is a stochastic row vector representing the initial
probability distribution on S, and M(σ) ∈ [0, 1]|S|×|S| is the stochastic matrix
where M(σ)ij is the probability that A moves from the ith to the jth state
upon reading σ. Thus, the behavior pA(ω) now returns the probability that A
accepts the input word ω ∈ Σ∗. The function pA : Σ∗ → [0, 1] is also called
the stochastic event induced by A. Given λ ∈ [0, 1], the language accepted by A
with cut point λ is the set L = {ω ∈ Σ∗ | pA(ω) > λ}. Moreover, λ is said to
be isolated if there exists a positive δ such that |pA(ω)−λ| ≥ δ, for any ω ∈ Σ∗.

In a two-way deterministic finite automaton (2dfa), moves are dictated by a
partial transition function1 τ : S×(Σ∪{�,�}) → S × {−1,+1}, where �,� �∈ Σ
are two special symbols called left and right endmarker, respectively. In a move,
the 2dfa reads an input symbol, changes its state, and moves the input head
one cell to the right or to the left depending on whether τ returns +1 or −1,
respectively. An input word ω ∈ Σ∗ for A is stored on an input tape surrounded
by the two endmarkers, so that the tape content is � ω �. The machine accepts ω
if the induced computation starting from the initial state with the head on
the left endmarker reaches an accepting state with the head on either of the
endmarkers. Although 2dfas do not have a finite linear representation, we let
pA(ω) = 1 (pA(ω) = 0) to denote that ω is accepted (not accepted) by A. Clearly,
the accepted language is the set L = {ω ∈ Σ∗ | pA(ω) = 1}.

It is well known that 1dfas, 1nfas, isolated cut point 1pfas and 2dfas
share the same computational power, i.e., they characterize the class of regular
languages. Nevertheless, they have different descriptional power: representation
of regular languages may be much more ?economical? — in terms of number of
states — in one system than another. For instance, the following are the state
costs of simulating n-state automata models by 1dfas:

– 1nfas: 2n [33,38],
– 1pfas with δ-isolated cut point: (1 + 1/(2δ))n−1 [1,36,37],
– 2dfas: n(nn − (n − 1)n) [24,39].

These costs are optimal, except the one for isolated cut point 1pfas which is
“quasi optimal”.
1 In the deterministic case, we do not consider stationary moves since they can be
easily removed without augmenting the number of states.
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A language L ⊆ Σ∗ is called unary whenever |Σ| = 1. Unary regular lan-
guages are accepted by unary finite automata, i.e., automata having single-
symbol input alphabets. It is folklore that any unary 1dfa consists of an initial
path followed by a cycle (see Figure 1).

Fig. 1. A unary 1dfa. When depicting unary automata we will always omit the symbol
label, since it would be redundant.

It is well known that unary automata show relevant differences from automata
on general alphabets. For instance, it is proved in [15] that the optimal state cost
of simulating n-state unary 1nfas and 2dfas by 1dfas is “only” e(1+o(1))

√
n·lnn.

For unary 1pfas, several recent simulation results may be found, e.g., in [11,13,
17,31]. All these simulations crucially rely on the fact that unary automata can
be put in some “normal forms”. In Section 4, we will recall such forms, and use
them to get our results on promise problems.

2.3 Quantum Mechanics and Quantum Automata

Before outlining the model of quantum automaton we shall consider, we quickly
present the main ingredients of the mathematical description of a quantum sys-
tem possessing Q = {q1, . . . , qm} basis states and reacting to a set of impulses
represented by the alphabet Σ = {σ1, . . . , σH}. (For more details, we refer the
reader to, e.g., [18].) Every basis state qi ∈ Q can be represented by its charac-
teristic vector ei ∈ {0, 1}m. At any given time, the quantum state of the system
is represented by a superposition π =

∑m
k=1 αkek, where the coefficients αk are

complex amplitudes and ‖π‖ = 1. With every symbol σi ∈ Σ, we associate a
unitary transformation U(σi) : C

m → C
m. An observable is described by an

Hermitian matrix O = c1P1 + · · ·+ csPs. With the system being in the quantum
state π, we can operate:

1. Evolution U(σi): the new state ξ = πU(σi) is reached; this dynamics is
reversible, since π = ξU†(σi).

2. Measurement of O: every outcome in {c1, . . . , cs} can be observed; cj is
obtained with probability ‖πPj‖2 and, after measurement, the state col-
lapses to the new state πPj/ ‖πPj‖. The state transformation induced by a
measurement is typically irreversible.
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Let us now see how quantum finite automata fit in this picture. One-way quan-
tum finite automata (1qfas) are computational devices particularly interesting
because of their simplicity.Moreover, their analysis provides a good insight into the
nature of quantumcomputation, since1qfas are a theoreticalmodel for a quantum
computer with finite memory. From the point of view of computational capabili-
ties, 1qfas present both advantages and disadvantages with respect to their clas-
sical (deterministic, nondeterministic or probabilistic) counterpart. Essentially,
quantum superposition offers some computational advantages on probabilistic
superposition seen for1pfas.On the other hand, quantumdynamics are reversible:
because of limitation of memory, it is generally impossible to simulate classical
automata by quantum automata. Limitations due to reversibility can be partially
attenuated by systematically introducing measurements of suitable observables as
computational steps.

Several models of quantum automata are proposed in the literature [2,6? ].
Basically, they differ in measurement policy. In this paper, we only focus on the
measure-once model [5,14,28], where the transformation on an input symbol is
realized by a unitary operator and a unique measurement is performed at the
end of computation. More formally, a measure-once 1qfa with m basis states
and input alphabet Σ is a system A = 〈Q,Σ, {U(σ)}σ∈Σ∪{�,�}, e1, Qa〉, where:

– Q = {e1, . . . , em} is the canonical basis of the Hilbert space C
m; its elements

are the basis states,
– Σ is a finite alphabet of input symbols, and �,� /∈ Σ are the left and right

endmarkers,
– with any σ ∈ Σ ∪ {�,�}, a unitary matrix U(σ) ∈ C

m×m is associated,
– e1 = (1, 0, . . . , 0) ∈ C

m is the initial basis state,
– Qa ⊆ Q is the set of accepting basis states, identifying the projection matrix

Pa =
∑

{i | ei∈Qa} eT
i ei ∈ C

m×m which biunivocally determines the observ-
able O = 1 · Pa + 0 · (I − Pa).

The behavior of A is the stochastic event pA : Σ∗ → [0, 1] defined, for any
x = x1x2 · · · xn ∈ Σ∗, by

pA(x) = ‖e1U(�)U(x1)U(x2) · · · U(xn)U(�)Pa‖2.
The language accepted by A with (isolated) cut-point λ is defined as in Section 2.2
for 1pfas.

From a computational power point of view, in [5,28] it is proved that measure-
once 1qfas are strictly less powerful than classical automata. In fact, with iso-
lated cut point, they characterize the class of group (or reversible) languages, a
proper subclass of regular languages. However, from a descriptional power point
of view, they are shown to greatly outperform classical models. E.g., in [7,8,30],
several families of regular languages are provided, on which measure-once 1qfas
are exponentially smaller than classical paradigms.

We remark that measure-once 1qfas are originally introduced in [5,28]
without the endmarkers, with an arbitrary initial unitary vector, and with an arbi-
trary accepting subspace. More precisely, the automaton is represented as B =
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〈Q,Σ, {U(σ)}σ∈Σ , π, P 〉, where Q,Σ and U(σ) are defined as above, π ∈ C
m is

a unitary vector and P is a projector. In this case, the event induced by B on x is
pB(x) = ‖πU(x1)U(x2) · · · U(xn)P‖2. Actually, the two models are equivalent:

– The automaton A is equivalent to A′ = 〈Q,Σ, {U ′(σ)}σ∈Σ , π′, Pa〉, where
U ′(σ) = U(�)†U(σ)U(�) and π′ = e1U(�)U(�). In fact

pA′(x) = ‖e1U(�)U(�)U†(�)U(x1)U(�) · · · U†(�)U(xn)U(�)Pa‖2 = pA(x).

– The automaton B is equivalent to B′ = 〈Q,Σ, {U(σ)}σ∈Σ∪{�,�}, e1, Qa〉,
where U(�) is a unitary matrix with π as the first row, so that e1U(�) = π.
To set Qa, we notice that P is similar to the diagonal matrix Pa built on
the eigenvalues of P , i.e., P = V PaV † with V being a unitary matrix [40].
Moreover, as recalled in Section 2.1, such eigenvalues are either 0 or 1. So,
we let Qa be the unique subset of Q such that Pa =

∑
{i | ei∈Qa} eT

i ei holds.
In addition, V being unitary, we let U(�) = V , and notice that multiplying
a vector by V † does not change the vector norm. So, we can write

pB′(x) = ‖e1U(�)U(x1)U(x2) · · · U(xn)U(�)Pa‖2
= ‖πU(x1)U(x2) · · · U(xn)V PaV †‖2 = pB(x).

Throughout the rest of the paper, we will simply write 1qfa, understanding the
designation “measure-once”.

3 Quantum Automata for Promise Problems

We recall that a promise problem over an alphabet Σ is a pair A = (Ayes, Ano),
where Ayes, Ano ⊆ Σ∗ are nonempty disjoint sets. An automaton M solves A
with isolated cut point λ if there exists a δ ∈ (

0, 1
2

]
such that

– for any ω ∈ Ayes, pM (ω) ≥ λ + δ, and
– for any ω ∈ Ano, pM (ω) ≤ λ − δ.

If λ = δ = 1
2 , then A is solved by M exactly.

It is easy to see that the classical membership problem for a nonempty lan-
guage L ⊆ Σ∗ may be regarded as the promise problem (L,Σ∗ \ L).

In [21], Gruska et al. propose the promise problem AN,r1,r2 = (AN,r1
yes , AN,r2

no )
on the unary alphabet {σ}, with 0 ≤ r1 �= r2 < N ,

AN,r1
yes = {σn | n ≡ r1 mod N} and AN,r2

no = {σn | n ≡ r2 mod N}.

For the sake of readability, when referring to this problem throughout the rest
of the paper, we let

l = (r2 − r1) mod N.

The following result is proved in [21]:
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Theorem 1. The promise problem AN,r1,r2 can be solved exactly by a 3 basis
states 1qfa, while the minimal 1dfa has d states, where d is the smallest positive
integer such that d | N and d � l.

We recall that the minimal 1dfa for AN,r1,r2 addressed in Theorem 1 consists
of a cycle of length d with a unique final state at distance r1 from the initial
state. We also notice that, by fixing N = 2k+1, r1 = 0 and r2 = 2k, we obtain
the promise problem studied in [3], for which an unbounded size gap between
quantum and deterministic finite automata solution is established. So, Theorem
1 extends this gap to other values of N (e.g., for prime N).

Let us now introduce a generalization of the promise problem AN,r1,r2 on
the multi-letter alphabet Σ = {σ1, σ2, . . . , σH}. For 0 ≤ r1 �= r2 < N and
a = (a1, a2, . . . , aH) ∈ N

H satisfying gcd(a1, a2, . . . , aH , N) = 1, we define the
promise problem Diof a,N

r1,r2
= (Diof a,N,r1

yes ,Diof a,N,r2
no ) as

Diof a,N,r1
yes ={ω ∈ Σ∗ | (a1|ω|σ1 + a2|ω|σ2 + · · · + aH |ω|σH

) ≡ r1 mod N},

Diof a,N,r2
no ={ω ∈ Σ∗ | (a1|ω|σ1 + a2|ω|σ2 + · · · + aH |ω|σH

) ≡ r2 mod N}.

As above, when referring to this problem, we let l = (r2−r1) mod N . Notice that
the condition gcd(a1, a2, . . . , aH , N) = 1 ensures that Diof a,N,r1

yes and Diof a,N,r2
no

are nonempty sets for any r1, r2. In addition, the condition r1 �= r2 ensures
disjointness. By suitably adapting the technique in [21], we exhibit succinct
1qfas for the family Diof a,N

r1,r2
:

Theorem 2. The promise problem Diof a,N
r1,r2

can be solved exactly by a 3 basis
states 1qfa.

Proof. To get our 1qfa, we apply the same construction exhibited in Theorem
1 in [21]. The only difference is that, instead of having the unique matrix Ua

performing a rotation of an angle θ, we here have matrices U(σj) performing
rotations of angles θaj , for 1 ≤ j ≤ H. As a consequence, the product U(ω) =∏|ω|

i=1 U(ωi) describing the computation of the 1qfa on any given input word ω
now yields the matrix

U(ω) =

⎛
⎜⎜⎝

1 0 0
0 cos

(
θ
∑H

j=1 aj |ω|σj

)
sin

(
θ
∑H

j=1 aj |ω|σj

)

0 − sin
(
θ
∑H

j=1 aj |ω|σj

)
cos

(
θ
∑H

j=1 aj |ω|σj

)

⎞
⎟⎟⎠ .

The rest of the proof proceeds as in [21]. ��

4 Classical Automata for Promise Problems

Let us now analyze the size required by classical automata for solving the promise
problems AN,r1,r2 and Diof a,N

r1,r2
. First we consider one-way models: both in the

nondeterministic and probabilistic case, we obtain the same size lower bound as
for 1dfas (Theorem 1). Then, we extend this result to 2dfas.

To study the solution of the promise problem AN,r1,r2 on 1nfas, we recall the
Chrobak normal form for unary automata [15]. This form extends the structure
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of unary 1dfas displayed in Figure 1 and, roughly speaking, consists of an initial
path at the end of which a nondeterministic move leads to more than one cycle
(see Figure 2).

Fig. 2. A unary 1nfa in Chrobak normal form with 3 cycles

More formally, a unary 1nfa A = 〈S, {σ}, τ, s0, F 〉 is in Chrobak normal form
if S can be partitioned into m + 1 disjoint sets S0, C1, . . . , Cm such that:

– S0 = {s0, s1, . . . , st},
– for 1 ≤ i ≤ m, Ci = {pi,0, pi,1, . . . , pi,yi−1},
– for 1 ≤ i ≤ m and 0 ≤ j < yi, τ(pi,j , σ) =

{
pi,(j+1) mod yi

}
, i.e., Ci is a cycle

of length yi,
– for 0 ≤ i < t, τ(si, σ) = {si+1}, i.e., S0 is a path of length t,
– τ(st, σ) = {p1,0, p2,0, . . . , pm,0}, i.e., st is the only state where a nondeter-

ministic move takes place, leading to a single state in each cycle.

In [15], it is proved the following:

Lemma 1. Each unary n-state 1nfa can be simulated by a 1nfa in Chrobak
normal form having O(n2) states in the initial path and at most n states in the
cycles.

The Chrobak normal form is crucial to obtain the following result:

Theorem 3. The minimal 1nfa solving the promise problem AN,r1,r2 has d
states, where d is the smallest positive integer such that d | N and d � l.

Proof. The minimal 1dfa addressed in Theorem 1, is an example of d-state 1nfa
for AN,r1,r2 . So, we only need to prove minimality.

Suppose there exists a 1nfa which solves AN,r1,r2 with p < d states. By
Lemma 1, we can convert this 1nfa into an equivalent 1nfa M in Chrobak
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normal form having t (which is O(p2)) states in the initial path and at most p
states in the cycles.

Let α ∈ N satisfy αN > t. Since σαN+r1 ∈ AN,r1
yes , there exists an accepting

state s reachable by M on input σαN+r1 . Moreover, since αN + r1 exceeds the
length of the initial path, s belongs to a cycle of length � ≤ p. This implies that
the same state s is reachable by M on input σαN+r1+β�, and therefore this word
is accepted. Let g = gcd(�,N). If g | l, then there exist β, γ ∈ N such that the
Diophantine equation β� = γN + l holds. However, for a suitable α′ ∈ N, we get

σαN+r1+β� = σ(α+γ)N+r1+l = σ(α+γ)N+r1+(r2−r1) mod N = σα′N+r2 ∈ AN,r2
no ,

and we have a contradiction. Therefore it must be g � l. But since by definition

g ≤ � ≤ p < d

and g | N , we get a contradiction with the minimality of d. Hence, any 1nfa for
AN,r1,r2 must have at least d states. ��

Theorem 3 shows that for the promise problem AN,r1,r2 nondeterminism
does not help in saving states. We are going to show that even the use of prob-
abilism does not lead to smaller automata.

To this aim, we recall the cyclic normal form [13] for unary 1pfas. This form
is similar to Chrobak normal form, the main difference being in accepting states
and the move from st, i.e., the last state of the initial path. Each cycle must
contain exactly one accepting state, however from st many different states, even
belonging to the same cycle, can be reached by the only allowed probabilistic
move (see Figure 3).

In [13], it is proved the following:

p1
p2

p3

p4

p5

Fig. 3. A unary 1pfa in cyclic normal form with the constraint
∑

i pi = 1
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Lemma 2. Each unary n-state 1pfa with isolated cut point can be converted
into an equivalent 1pfa in cyclic normal form with isolated cut point (not nec-
essarily keeping the same cut point and isolation) and with at most n states in
the cycles.

The cyclic normal form allows us to obtain the following result:

Theorem 4. The minimal 1pfa solving with isolated cut point the promise
problem AN,r1,r2 has d states, where d is the smallest positive integer such that
d | N and d � l.

Proof. The minimal 1dfa addressed in Theorem 1 can obviously be regarded as
a d-state 1pfa solving exactly AN,r1,r2 .

To show minimality, suppose there exists a 1pfa which solves AN,r1,r2 with
isolated cut point and p < d states. By Lemma 2, we can convert this 1pfa into
an isolated cut point 1pfa M in cyclic normal form having t states in the initial
path and a set of cycles of lengths �1, �2, . . . �z, such that

∑z
i=1 �i ≤ p.

We choose α ∈ N satisfying αN > t. The word σαN+r1 brings M from
the initial state to a state s in a cycle with a given probability. By letting
L = lcm(�1, �2, . . . �z), for any β ∈ N the word σβL brings M from s back to s
with certainty. Since this holds for any state s reachable by M on input σαN+r1 ,
we have that pM (σαN+r1) = pM (σαN+r1+βL).

Let g = gcd(L,N). If g | l, then there exist β, γ ∈ N such that the Dio-
phantine equation βL = γN + l holds. So, for a suitable α′ ∈ N, we have
σαN+r1+βL = σα′N+r2 ∈ AN,r2

no , and we get

pM (σαN+r1) = pM (σαN+r1+βL) = pM (σα′N+r2).

However, σαN+r1 ∈ AN,r1
yes and we have a contradiction on M having an isolated

cut point. Therefore, it must be g � l. Let g =
∏h

i=1 gbi
i be the prime factorization

of g. Then, there exists gbκ
κ � l. In addition, notice that gbκ

κ | L and since gbκ
κ is

a prime power there exists 1 ≤ j ≤ z such that gbκ
κ | �j . This implies that

gbκ
κ ≤ �j ≤ p < d.

This, together with gbκ
κ | N and gbκ

κ � l, contradicts the minimality of d. Hence,
any isolated cut point 1pfa for AN,r1,r2 must have at least d states. ��

Even by using two-way motion, we do not manage to design automata smaller
than 1dfas, 1nfas, and 1pfas for solving the promise problem AN,r1,r2 . To this
aim, we consider a simplified form for unary 2dfas: a 2dfa is called sweeping if
its input head changes its direction at the endmarkers only [41]. The following
simulation result is proved in [26]:

Lemma 3. For each unary n-state 2dfa, there exists an equivalent sweeping
2dfa with n + 1 states.

This lemma allows us to show the following result:
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Theorem 5. The minimal sweeping 2dfa solving the promise problem AN,r1,r2

has d states, where d is the smallest positive integer such that d | N and d � l.
Moreover, any 2dfa for AN,r1,r2 must have at least d − 1 states.

Proof. Again, the minimal 1dfa addressed in Theorem 1 can obviously be
regarded as a d-state sweeping 2dfa solving AN,r1,r2 . We now prove that this
automaton is a minimal sweeping 2dfa for AN,r1,r2 .

Suppose there exists, a sweeping 2dfa M with p < d states. Consider the
computation of M accepting σN+r1 ∈ AN,r1

yes in z traversals. Since p < N , in
every traversal M must enter a cycle. Let Ci be the cycle entered along the ith
traversal and �i the length of Ci. By letting L = lcm(�1, . . . , �z), it is not hard to
see that the computation of M on input σN+r1+βL leads to the same accepting
state as for σN+r1 . Indeed, this computation has again z traversals and in the ith
traversal the cycle Ci is repeated βL

�i
more times. Now, consider g = gcd(L,N)

and
∏s

i=1 gbi
i its prime factorization. If g | l, then there exist β, γ ∈ N such that

the Diophantine equation βL = γN + l holds. So, for a suitable α ∈ N, we have
that

σN+r1+βL = σαN+r2 ∈ AN,r2
no

is accepted, leading to a contradiction. Therefore, g � l must hold. In this case,
by proceeding analogously to the proof of Theorem 4, we get a contradiction
with the minimality of d. Hence, any sweeping 2dfa for AN,r1,r2 must have at
least d states.

Finally, since converting a 2dfa into sweeping costs at most one additional
state (Lemma 3), we get that any 2dfa solving AN,r1,r2 must have at least d−1
states. ��

We conclude this section by addressing the size cost of solving the promise
problem Diof a,N

r1,r2
with classical automata.

Theorem 6. To solve the promise problem Diof a,N
r1,r2

, the minimal 1dfa, 1nfa,
isolated cut point 1pfa, and sweeping 2dfa have d states, where d is the smallest
positive integer such that d | N and d � l. Moreover, any 2dfa for Diof a,N

r1,r2
must

have at least d − 1 states.

Proof. For the upper bound, we can design 1dfas, 1nfas, 1pfas, and 2dfas
solving Diof a,N

r1,r2
with the same cyclic structure of the 1dfa for AN,r1,r2 . The

only difference is that, while the automaton for AN,r1,r2 moves one state forward
in the cycle upon reading σ, the automaton for Diof a,N

r1,r2
moves ai states forward

on input σi, for 1 ≤ i ≤ H.
For the lower bound, it suffices to notice that AN,r1,r2 is a particular case of

Diof a,N
r1,r2

with |Σ| = 1 and a = 1. ��
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Abstract. This paper surveys the state of the art of research on quan-
tum algorithms for problems related to matrix multiplication, such as
triangle finding, Boolean matrix multiplication and Boolean product ver-
ification. The exposition highlights how simple tools from quantum com-
puting, and in particular the technique known as quantum search, can
be used in a multitude of situations to design quantum algorithms that
outperform the best known classical algorithms. Some open problems in
this area are also described.

1 Introduction

Quantum computation is a computing paradigm based on the laws of quantum
physics, which is now a recognized branch of computer science. Even restricting
ourselves to applications of this paradigm to algorithm design (i.e., the design
of algorithms for quantum computers, or quantum algorithms), it is now hardly
possible to give a comprehensive description of all the main achievements of
this field. Let us first instead discuss some motivations for studying quantum
algorithms today, when quantum computers have still to be constructed.

A first motivation for studying quantum algorithms is to discover potential
applications of quantum computers, and motivate the significant efforts that
will be needed towards constructing a large-scale quantum computer. Perhaps
the most famous example is Shor’s quantum algorithm [25] that factorizes an
integer in time polynomial in its number of digits, while the best known classical
algorithm uses exponential time. Since several widely used cryptosystems are
based on the assumption that factoring integers is hard, this represents one of
the most noted possible applications of quantum computers.

A second motivation is to unravel properties of concrete computational prob-
lems by studying their complexity in the quantum setting. Research on quantum
algorithms, or more generally insights from quantum computing, can shed a new
light on the complexity of problems well studied in the classical setting, and
can even lead to the construction of new classical algorithms. We refer to the
recent survey by Drucker and de Wolf [8] for several examples of classical results
inspired by quantum arguments.

The third motivation is more theoretical, but also perhaps the most funda-
mental, and consists in understanding the power and the limitations of quantum
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 176–191, 2014.
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computation. As Jozef Gruska wrote in 1999, until recently computing was con-
sidered as “machine processes”, while in the 21th century computing will be seen
as “Nature process” [12]. One of the goals of research on quantum algorithms is
thus also to understand computation allowed by Nature, which at a microscopic
level follows the laws of quantum mechanics. Much success has been achieved in
this direction, by discovering quantum algorithmic techniques with no classical
equivalent, studying the role of resources intrinsic to quantum mechanics (such
as entanglement), or comparing the quantum and classical settings via the model
of query complexity.

This paper considers essentially the second and third motivations, and focuses
on analyzing computational problems related to matrix multiplication. The main
two questions that we will ask ourselves are: For which problems related to matrix
multiplication do quantum algorithms outperform the best classical (i.e., conven-
tional) algorithms? and How do investigations on quantum algorithms give new
insights into these problems ? Note that quantum physics is based on linear alge-
bra and a multitude of algebraic techniques have been developed for studying
quantum computation (a detailed description of some of these techniques can
be found in Jozef Gruska’s survey [14]). Our approach is converse, as we aim
at analyzing how quantum techniques can be applied to better understand the
complexity of algebraic problems.

The reasons why we choose to focus on matrix multiplication and related
problems are that, while these problems are fundamental in theoretical computer
science and easy to state, their complexities are not well understood and have
been the subject of several recent developments. Moreover, interesting quantum
algorithms for these problems can be constructed with simple tools from quan-
tum computing (in particular, quantum search), which enables us to describe in
this paper partial answers to the above two questions without having to intro-
duce sophisticated quantum techniques. Indeed, this paper is intended to be
comprehensible without prior knowledge of quantum computing.

The paper is organized as follows. In Section 2 we introduce the main com-
putational problems considered in this work (triangle finding, Boolean matrix
multiplication, Boolean product verification), the notion of query complexity,
quantum computation and quantum search. In Section 3 we give a survey of
the state of the art of algorithms for these three problems, while in Section 4
we describe a recent breakthrough by Vassilevska Williams and Williams [27]
and its potential applications. Finally, in Section 5 we present several variants
of Boolean matrix multiplication for which fast quantum algorithms have been
constructed recently.

2 Preliminaries

In this section we formally define the three main computational problems stud-
ied in this paper (triangle finding, Boolean matrix multiplication and Boolean
product verification) while introducing the notion of query complexity, in both
the classical and quantum settings.
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2.1 Classical Query and Time Complexities

Consider the following computational task. Let X be a finite set, and f : X →
{0, 1} be a Boolean function over X. Assume that the function f is given as a
black box: a procedure Pf is available that, on input x ∈ X, outputs the value
f(x). The goal is to compute several properties of the function f in this model.
We formally define below the triangle finding problem, the Boolean matrix mul-
tiplication problem and the Boolean product verification problem in this model.

Triangle finding. Let G = (V,E) be an undirected and unweighted graph,
where V represents the set of vertices and E represents the set of edges. Let
E(V ) denote the set of unordered pairs of vertices in V . In this case, the
domain is X = E(V ), and the function considered is fG : E(V ) → {0, 1}
defined as follows (the dependence on G is made explicit by using a sub-
script): for any {u, v} ∈ E(V ),

fG({u, v}) =
{

1 if {u, v} ∈ E,
0 if {u, v} /∈ E.

The triangle finding problem asks to find three distinct vertices u, v, w ∈ V
such that fG({u, v}) = fG({u,w}) = fG({v, w}) = 1, or to report that no
such triple of vertices exists.

Boolean matrix multiplication (BMM). Let A and B be two Boolean matrices
(i.e., matrices in which the entries are either zero or one) of size n×n. In this
case we have X = {1, . . . , n}×{1, . . . , n}×{0, 1} and the function considered
is fA,B : X → {0, 1} defined as follows (again, the dependence on A and B
is made explicit by using subscripts): for any (i, j, d) ∈ X,

fA,B((i, j, d)) =
{

A[i, j] if d = 0,
B[i, j] if d = 1.

The Boolean matrix multiplication problem asks to compute the Boolean
matrix product of A and B, denoted A ∗ B and defined as follows: A ∗ B is
the n × n Boolean matrix such that the entry in the i-th row and the j-th
column is

n∨
k=1

A[i, k] ∧ B[k, j],

for each (i, j) ∈ {1, . . . , n}×{1, . . . , n}, where ∨ denotes the logical OR, and
∧ denotes the logical AND.

Boolean product verification (BPV). Let A,B and C be three Boolean matri-
ces of size n × n. In this case we have X = {1, . . . , n} × {1, . . . , n} × {0, 1, 2}
and the function considered is fA,B,C : X → {0, 1}, defined as follows: for
any (i, j, d) ∈ X,

fA,B,C((i, j, d)) =

⎧
⎨
⎩

A[i, j] if d = 0,
B[i, j] if d = 1,
C[i, j] if d = 2.



Quantum Complexity of Boolean Matrix Multiplication 179

The Boolean product verification problem asks to decide whether A∗B = C.

We will be interested in the query and time complexities of solving such prob-
lems. In the classical query complexity setting, we consider only the number of
calls to the oracle Pf . In the classical time complexity setting, we consider all
the computational steps of the algorithm, assuming that each call to the ora-
cle Pf can be done using one computation step (for the three concrete problems
described above, this corresponds to a model where the entries of the adjacency
matrix of a graph, or the entries of the input matrices, are stored in a random
access memory). Boolean matrix multiplication illustrates well the difference
between time and query complexity. Observe that, with 2n2 queries, one can
obtain all the entries of A and B. Since A ∗ B can then be computed without
any further query, the query complexity of Boolean matrix multiplication is thus
O(n2). We will explain however in the next section that the best known upper
bound on the time complexity of this problem is O(n2.373).

2.2 Generic Search Problems

In this subsection we define a class of problems that we call generic search
problems about f , in order to characterize situations where quantum computation
(introduced in the next subsection) can outperform classical computation.

A generic search problem about f is defined by a finite set Y and a function
g : Y → {0, 1} over Y . The goal is to find one element y ∈ Y such that g(y) = 1,
if such an element exists, or otherwise report that no solution exists. In the
classical setting, we say that the function g can be computed at cost (cq, ct),
where cq and ct are two non-negative integers, if the following conditions hold:

– for any given y ∈ Y , the value g(y) can be computed using at most cq calls
to the oracle Pf ;

– for any given y ∈ Y , the value g(y) can be computed using at most ct

computational steps, assuming that each call to the oracle Pf can be done
using one computation step.

As a simple example of this concept, let us recast triangle finding as an instance
of generic search. An instance of triangle finding over a graph G can be converted
into an instance of generic search by taking Y as the set of unordered triples of
vertices and g : Y → {0, 1} as the following function: for any {u, v, w} ∈ Y ,

g({u, v, w}) =
{

1 if fG({u, v}) = fG({u,w}) = fG({v, w}) = 1,
0 otherwise.

Note that g({u, v, w}) can be computed using three evaluations of the function
fG, so the query cost is cq = 3. The time cost depends on the precise computation
model adopted, but can typically (e.g., when considering Boolean circuits) be
upper bounded as ct = O(1).

Assume that the number of solutions (i.e., the size of {y ∈ Y | g(y) = 1}) of
an instance of generic search is either zero or is greater than m, where m is
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a known positive integer. This generic search problem can be solved classically
with high (e.g., greater than 2/3) probability by repeating the following process
O(|Y |/m) times: take one element y uniformly at random in Y , and then check
if g(y) = 1 using the oracle Pf . The query and time complexities of this classical
randomized algorithm are

O

(
cq × |Y |

m

)
and O

(
ct × |Y |

m

)
, (1)

respectively, assuming that taking one element in Y uniformly at random can
be done in negligible time. For instance, if we assume that the graph has either
zero or at least m triangles, then the triangle finding problem over this graph
can be solved in time O(n3/m). Note that the bounds of Eq. (1) are essentially
tight. In particular, in the case cq = 1, it is easy to show that there exist generic
search problems for which Ω(|Y |/m) queries are needed.

2.3 Quantum Query and Time Complexities

In the quantum setting setting, the function f can be accessed in a quantum
way. Technically, this means that there exists a quantum unitary operation Of

defined as follows that can be applied on a physical system at unit cost (the
reader should feel free to skip this technical definition; the details are given here
only for completeness, and will not be used later in the paper): for any element
x ∈ X, any bit b ∈ {0, 1}, and any binary string z ∈ {0, 1}∗, the operation Of

maps the basis state |x〉|b〉|z〉 to the state Of |x〉|b〉|z〉 = |x〉|b〉|z⊕f(x)〉, where ⊕
denotes the bit parity (i.e., the logical XOR).

We say that a quantum algorithm computing some property of f uses k
queries if the operation Of , given as an oracle, is called k times by the algo-
rithm. The time complexity is defined by assigning a unit cost to each call to
Of , and considering all the other computational steps of the quantum algorithm
(i.e., considering the number of elementary quantum gates in a quantum circuit
implementing the algorithm, see [13] for a complete treatment of quantum cir-
cuits and elementary gates). In the quantum setting, the cost (cq, ct) of a generic
search problem about f is defined as in the classical setting, but considering calls
to Of instead of calls to Pf .

One of the most striking examples showing the power of quantum computa-
tion is Grover algorithm [5,11], which corresponds to the following statement.

Theorem 1 (Quantum search). Consider a generic search problem with cost
(cq, ct) such that the number of solutions is either zero or is greater than m. There
exists a quantum algorithm that solves, with high probability, this problem with
query and time complexities

O

(
cq ×

√
|Y |
m

)
and Õ

(
ct ×

√
|Y |
m

)
,

respectively.1

1 In this paper the notation Õ(·) suppresses the polylogarithmic factors.
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By comparing these bounds with those of Eq. (1), we see that this gives a
quadratic improvement with respect to classical computation. For instance, using
the interpretation given in Section 2.2 of triangle finding as a generic search
problem, Theorem 1 (applied with m = 1) immediately gives the following result.

Proposition 1. There exists a quantum algorithm that solves, with high proba-
bility, the triangle finding problem with query complexity O(n3/2) and time com-
plexity Õ(n3/2).

Consider an instance of Boolean matrix multiplication, i.e., two n×n Boolean
matrices given as function fA,B . Suppose that, given a pair (i, j) ∈ {1, . . . , n} ×
{1, . . . , n}, we want to compute the entry (A∗B)[i, j]. This task can be converted
into a generic search problem with Y = {1, . . . , n}, and function g : Y → {0, 1}
defined as

g(k) =
{

1 if fA,B(i, k, 0) = fA,B(k, j, 1) = 1,
0 otherwise,

for any k ∈ {1, . . . , n}. The costs for this search problem are cq = 2 and ct = O(1).
Since this problem has a solution if and only if (A∗B)[i, j] = 1, Theorem 1 shows
that the value of (A ∗ B)[i, j] can be computed with high probability in O(

√
n)

queries and Õ(
√

n) time using a quantum computer.
Let us conclude by mentioning that, while (cq, ct) have been defined above

as the costs of computing one value of g without error, the upper bounds of
Theorem 1 hold even if (cq, ct) are defined as the costs of computing one value of g
with constant (e.g., larger than 2/3) success probability [15]. With this version
of Theorem 1, we can analyze the complexity of Boolean product verification.

Proposition 2. There exists a quantum algorithm that solves, with high proba-
bility, Boolean product verification with query complexity O(n3/2) and time com-
plexity Õ(n3/2).

Proof. Consider an instance of Boolean product verification. Note that A ∗ B 
=
C if and only if there exists a pair (i, j) ∈ {1, . . . , n} × {1, . . . , n} such that
(A ∗ B)[i, j] 
= C[i, j].

Consider the generic search problem about fA,B,C with Y = {1, . . . , n} ×
{1, . . . , n}, and function g : Y → {0, 1} defined as

g(i, j) =
{

1 if (A ∗ B)[i, j] 
= C[i, j],
0 otherwise,

for any (i, j) ∈ {1, . . . , n} × {1, . . . , n}. The costs for this search problem are
cq = O(

√
n) and ct = Õ(

√
n), since we one entry of A∗B can be computed with

this complexity. Theorem 1 (with m = 1) shows that this generic search problem
can thus be solved with O(n3/2) queries and Õ(n3/2) time. ��

3 Complexity of Triangle Finding, BPV and BMM

In this section we describe the complexity of triangle finding, Boolean product
verification and Boolean matrix multiplication. We start by explaining standard
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reductions between these three problems in Section 3.1, and then in Section 3.2
give a survey of the best known lower and upper bounds on their complexities.

3.1 Standard Reductions Between the Three Problems

A concise, while slightly informal, statement of the relations described in this
subsection is

triangle ≤ BPV ≤ BMM, (2)

where the symbol ≤ represents a reduction from an instance of the problem on
the left side to an instance of the problem on the right side.

Obviously, an algorithm for Boolean matrix multiplication can be used to
solve an instance of Boolean product verification. Triangle finding reduces to
Boolean matrix multiplication as well. The standard reduction works as follows,
and was first explicitly mentioned by Itai and Rodeh [16]. Consider an undirected
and unweighted graph G, and let AG denote the adjacency matrix of the graph.
Then G has a triangle if and only if there exists a pair (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} such that (AG ∗AG)[i, j] = AG[i, j] = 1. It is thus enough to compute
the Boolean product of AG by itself to decide if G has a triangle.

Triangle finding can be reduced to Boolean product verification as well. The
idea is, given an undirected and unweighted graph G, to create an instance of
Boolean product verification with the following three 2n × 2n matrices

A =
(

AG I
0 0

)
, B =

(
AG 0
AḠ 0

)
, C =

(
AḠ 0
0 0

)
,

as inputs, where I denotes the identity matrix of size n × n, AG denotes the
adjacency matrix of G and AḠ denotes the adjacency matrix of the complement
of G (i.e., AḠ(i, j) = 1 if and only if AḠ(i, j) = 0). Note that A∗B 
= C if and only
if there exists a pair (i, j) ∈ {1, . . . , n} × {1, . . . , n} such that (AG ∗ AG)[i, j] = 1
and AḠ[i, j] = 0, which means that G has a triangle.

3.2 Status of These Problems

Table 1 summarizes the best known upper and lower bounds on the query and
time complexities, in both the classical and quantum settings, of triangle finding,
Boolean product verification and Boolean matrix multiplication. We give below
more details and explanations about these bounds.

The classical time complexity of Boolean matrix multiplication is one of the
main open problems in theoretical computer science. The Boolean product of two
n×n Boolean matrices A and B can be obviously computed in O(n3) time. The
best known algorithm for this problem relies on matrix multiplication over a ring:
in order to compute the Boolean matrix product, we interpret A and B as integer
matrices (with entries zero or one), compute the usual product of A and B over
the ring of integers, and then convert each non-zero entry of the product matrix
into one. Since such a matrix product can be computed with time complexity
O(nω+ε) for any ε > 0, where ω is the exponent of matrix multiplication over a
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Table 1. Best known upper and lower bounds on the classical and quantum complexi-
ties of triangle finding, Boolean product verification and Boolean matrix multiplication.
The notation O(nω+ε) means that the upper bound is O(nω+ε) for any ε > 0, where
ω < 2.373 denotes the exponent of square matrix multiplication.

quantum classical quantum classical
time complexity time complexity query complexity query complexity

triangle Õ(n3/2) O(nω+ε)
O(n9/7)

Θ(n2)
Ω(n)

BPV Õ(n3/2) O(nω+ε)
O(n3/2)

Θ(n2)
Ω(n19/18)

BMM O(nω+ε) O(nω+ε) Θ(n2) Θ(n2)

ring (the best known upper bound on ω is ω < 2.373, see [21,26]), the product
A ∗B can be computed with the same complexity. The same upper bound holds
for the complexity of triangle finding and Boolean product verification, from
Relation (2). This is the best known upper bound for all these three problems,
even if randomized algorithms are considered. Note that, interestingly, matrix
product verification over a ring (instead of the Boolean semiring) can be solved,
with high probability, in quadratic time [10].

It is easy to show that the classical query complexity of these three problems
is Θ(n2). The upper bound O(n2) follows trivially from the observation that with
this amount of queries, we can queries all edges of the graph, or all the entries
of the matrices, as mentioned in Section 2. The matching lower bounds follow
from elementary arguments as well. For instance, the Ω(n2)-query lower bound
for triangle finding follows from the observation that removing one edge from a
graph can transform a graph containing a triangle into a triangle-free triangle.
Any classical algorithm (even randomized) would need to query this edge in
order to decide whether the graph contains a triangle or not, which cannot be
done unless Ω(n2) queries are made.

Let us now discuss the quantum time complexity of these problems. We have
already shown (in Propositions 1 and 2) that the quantum time complexity of
triangle finding and Boolean product verification is Õ(n3/2). These simple upper
bounds, obtained by a direct application of quantum search, are still the best
known upper bounds. For computing the Boolean matrix product of two n × n
Boolean matrices, no quantum algorithm outperforming the best known classical
algorithm is known. Indeed, constructing a better quantum algorithm for Boolean
matrix multiplication is one of the main open problems in this area (in Section 5
we will nevertheless mention some variants of the Boolean matrix multiplication
problem for which quantum algorithms better than the best known classical algo-
rithms have been constructed, in the time complexity setting).

Finally, consider the quantum query complexity of these three problems. The
quantum query complexity of triangle finding has been the subject of much
research recently. Magniez, Santha and Szegedy [24] showed how to design quan-
tum algorithms faster than the straightforward algorithm of Proposition 1 and
obtained query complexity Õ(n13/10), using techniques based on quantum walks
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developed by Ambainis [1]. Belovs [4] recently introduced a method called learn-
ing graph and used it to improve the quantum query complexity of triangle
finding to O(n35/27) = O(n1.296...). Lee, Magniez and Santha [23] then showed,
again using learning graphs, how to further improve this query complexity to
O(n9/7) = O(n1.285...), which is currently the best known upper bound. Jeffery,
Kothari and Magniez [18] showed how this complexity can also be achieved, up
to polylogarithmic factors, using quantum walks. Interestingly, the best known
lower bound for triangle finding is still Ω(n). For Boolean product verification,
it is unknown whether quantum algorithms better than straightforward quan-
tum search (i.e., the algorithm of Proposition 2) exist. A Ω(n19/18)-query lower
bound has been obtained by Childs et al. [7], which suggests that this problem
may be harder than triangle finding. For Boolean matrix multiplication, the clas-
sical lower bound Ω(n2) holds also for quantum algorithms (this can formally
proved, for instance, by using a reduction from a threshold problem, see [17]).

4 Boolean Matrix Multiplication and Triangle Finding

As mentioned in Section 3, there is an immediate reduction from triangle find-
ing to Boolean matrix multiplication. In this section we describe a recent break-
through by Vassilevska Williams and Williams [27]: a reduction from Boolean
matrix multiplication to (several instances of) triangle finding. We also discuss
its implications for the design of both classical and quantum algorithms for
Boolean matrix multiplication.

4.1 Graph-Theoretical Interpretation of BMM

The reduction by Vassilevska Williams and Williams is based on an interpre-
tation of the problem of computing the Boolean matrix product of two n × n
Boolean matrices A and B as the problem of finding triangles in a tripartite
graph of size 3n depending of both A and B. We describe this interpretation
below.

Let n be any positive integer. Let I, J and K be three arbitrary disjoint sets
of size n. Let us write I = {u1, . . . , un}, J = {v1, . . . , vn} and K = {w1, . . . , wn}.

For any n × n Boolean matrices A and B, and any set S ⊆ {1, . . . , n} ×
{1, . . . , n}, define the following three sets:

EA =
{

{ui, wk} | (i, k) ∈ {1, . . . , n} × {1, . . . , n} and A[i, k] = 1
}

,

EB =
{

{vj , wk} | (j, k) ∈ {1, . . . , n} × {1, . . . , n} and B[k, j] = 1
}

,

ES =
{

{ui, vj} | (i, j) ∈ S
}

.

We denote by GA,B,S the undirected graph with vertex set I ∪ J ∪ K and edge
set EA ∪ EB ∪ ES . Note that this graph is tripartite. For convenience, we will
write

GA,B = GA,B,{1,...,n}×{1,...,n}.
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For any subsets I ′ ⊆ I, J ′ ⊆ J and K ′ ⊆ K, we denote by GA,B,S(I ′, J ′,K ′) the
subgraph of GA,B,S induced by the vertices in I ′ ∪ J ′ ∪ K ′.

We now describe the reduction from Boolean matrix multiplication to triangle
finding. The key insight is the following simple observation.

Lemma 1. Let A and B be two n × n Boolean matrices, and write C = A ∗ B.
Then, for any (i, j) ∈ {1, . . . , n} × {1, . . . , n}, C[i, j] = 1 if and only if there
exists an index k ∈ {1, . . . , n} such that {ui, vj , wk} is a triangle of GA,B.

Proof. By definition of the Boolean product, C[i, j] = 1 if and only if there exists
an index k ∈ {1, . . . , n} such that A[i, k] = B[k, j] = 1. This latter condition
means that both {ui, wk} and {vj , wk} are edges of GA,B , and thus {ui, vj , wk}
is a triangle of GA,B . ��

Lemma 1 shows that, in order to compute the Boolean product A ∗ B, it is
enough to compute all pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n} such that {ui, vj} is
an edge of a triangle of GA,B . A straightforward implementation of this strategy
gives time complexity O(n2 × T (3n)), where T (3n) denotes the time complexity
of finding a triangle in a graph over 3n vertices. This is of course not efficient,
but we show in the next subsection how to refine these ideas.

4.2 Efficient Reduction

We now describe the efficient reduction obtained in [27] from Boolean matrix
multiplication to triangle finding.

The key ideas is to partition the set I into m = Θ(n2/3) subsets I1, . . . , Im,
each containing at most n1/3 vertices. Similarly, partition the sets J and K into
m subsets J1, . . . , Jm and K1, . . . , Km, respectively, each containing at most
n1/3 vertices. Consider the following strategy: starting with S = {1, . . . , n} ×
{1, . . . , n}, we successively examine each triple (a, b, c) ∈ {1, . . . , m}3 and find
all triangles in the graph in GA,B,S(Ia, Jb,Kc) while immediately removing the
corresponding pair from S as soon as a triangle is reported. The detailed algo-
rithm is described in Fig. 1, and named Algorithm A.

We now analyze Algorithm A. First observe that, from Lemma 1, the
matrix C output at Step 4 is the Boolean matrix product of A and B. Let us now
analyze the time complexity of this algorithm. The complexity is dominated by
the number of calls to the triangle finding procedure. Let eabc denote the number
of triangles reported when processing the triple (a, b, c) ∈ {1, . . . , m}3. Note that∑m

a,b,c=1 eabc ≤ n2, since the size of S is decreased by one each time a triangle is
reported. The number of calls to the triangle finding procedure when processing
the triple (a, b, c) is eabc +1, since one additional call is needed to decide that no
more triangle exists. The total amount of calls to the triangle finding procedure
is thus

m∑
a,b,c=1

(eabc + 1) ≤ m3 + n2 = O(n2),
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Algorithm A
Input: two n × n Boolean matrices A and B
Assumption: a triangle-finding procedure is available

1. Construct the graph GA,B ;
2. S ← {1, . . . , n} × {1, . . . , n};
3. for a from 1 to m do

for b from 1 to m do
for c from 1 to m do

repeat

find a triangle {ui, vj , wk} in GA,B,S(Ia, Jb, Kc);

S ← S \ {(i, j)};

until no triangle is found
4. Output the n×n Boolean matrix C such that, for any (i, j) ∈ {1, . . . , n}×

{1, . . . , n}, C[i, j] = 0 if (i, j) ∈ S and C[i, j] = 1 if (i, j) /∈ S;

Fig. 1. Algorithm A reducing the computation of the Boolean product of two matrices
A and B to several instances of triangle finding

and each call asks to find a triangle in a graph over at most 3 × n1/3 vertices.
We thus obtain the following result.

Theorem 2 ([27]). Assume that we have a procedure that, for any N ≥ 1,
solves the triangle finding problem over a graph of N vertices in time T (N).
Then the Boolean product of two n × n Boolean matrices can be computed in
time O(n2 × T (3n1/3)).

This result was a breakthrough since it showed, for the first time, how fast algo-
rithms for triangle finding can be used to construct fast algorithms for Boolean
matrix multiplication, as discussed in the next subsection.

Note that the above reduction implicitly assumed that the available proce-
dure for triangle finding is classical and deterministic, which means in particular
that the algorithm for Boolean matrix multiplication of Proposition 2 is also
classical and deterministic. It is easy to see that the same result holds for other
modes of computations. In particular, if the procedure for triangle finding is
quantum, then the resulting Boolean matrix multiplication algorithm is quan-
tum.

4.3 Implications: Towards Combinatorial Algorithms for BMM

In Section 3 we showed that the best known classical (and also the best known
quantum) algorithm for computing the Boolean matrix product of two n × n
Boolean matrices has time complexity O(n2.373), which was obtained by using
the best known (classical) algorithm for matrix multiplication over a ring. This
algorithm, based on algebraic techniques, is nevertheless not practical, due to
the huge multiplicative constant involved in its complexity.

In the classical setting, a fundamental open problem is to design fast algo-
rithms for Boolean matrix multiplication that do not rely on algebraic tech-
niques. Such algorithms are sometimes referred to as combinatorial algorithms.
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Note that, by preprocessing the data using the so-called “method of four Rus-
sians” [2], it is easy to construct a O(n3/ log n)-time algorithm. Recently, Bansal
and Williams [3] (see also [27]) constructed an algorithm for Boolean matrix mul-
tiplication with time complexity O

(
n3/(log n)2.25

)
by combining this idea with

algorithmic versions of the Szemerédi regularity lemma, via the graph-theoretic
interpretation of Boolean matrix multiplication described in Section 4.1. The
main open problem is still to construct a truly subcubic combinatorial algorithm
for this problem, i.e., an algorithm with complexity O(n3−δ) for some constant
δ > 0. One of the most exciting potential applications of Theorem 2 is that
we now know that any truly subcubic-time combinatorial algorithm for triangle
finding immediately leads to a solution to this open problem (indeed, observe
that the reduction used to prove Theorem 2 is combinatorial, in that it does not
use algebraic techniques).

In the quantum setting, remember that in Section 2 we showed that comput-
ing one entry of the Boolean product of two n×n matrices can be done in Õ(

√
n)

time. This means that all the n2 entries of the output matrix can be computed
in Õ(n2.5) time. Moreover, this algorithm relies on quantum search only, and can
then be considered as “combinatorial”. A natural quantum version of the above
open problem is whether there exists a quantum algorithm based on search (or
other quantum techniques like quantum walks, but not relying on a reduction to
matrix multiplication over a ring) with complexity O(n2.5−δ) for some constant
δ > 0. Theorem 2 gives us a natural approach to solve this problem: try to find
a “combinatorial” quantum algorithm for triangle finding with time complexity
O(n3/2−δ) for some constant δ > 0. This is an open problem, even without any
assumption on the nature of the quantum algorithm.

Open problem 1. Is there a quantum algorithm that solves, with high probabil-
ity, the triangle finding problem in time O(n3/2−δ), for some constant δ > 0?

We believe that this is one of the most fundamental open questions related
to Boolean matrix multiplication in the quantum setting.

5 Fast Quantum Algorithms for Matrix Multiplication

In this section, we discuss variants of Boolean matrix multiplication for which
quantum algorithms performing better than the best known classical algorithms
have been constructed.

5.1 Rectangular Boolean Matrix Multiplication

A basic, but fundamental, example showing the power of quantum algorithms
for problems related to matrices is rectangular Boolean matrix multiplication.
By applying quantum search as described in Section 2, we immediately obtain
the following result.
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Theorem 3. There exists a quantum algorithm that computes, with high proba-
bility, the Boolean product of an n1 × n2 Boolean matrix by an n2 × n3 Boolean
matrix in time Õ(n1n3

√
n2).

For instance, if n1 = n3 = n and n2 = n3, we obtain complexity Õ(n3.5). This
is better than the best known classical algorithm [19], which has complexity
O(n4.208). Actually, it is easy to show that any classical algorithm computing
this rectangular matrix product requires Ω(n4) time, since the size of each input
matrix is n4. For rectangular Boolean matrix multiplication quantum algorithms
can thus outperform classical algorithms.

5.2 Sparse Boolean Matrix Multiplication

Consider again the task of multiplying two n×n Boolean matrices A and B, but
assume that we know that the Boolean matrix product C = A ∗ B contains �
non-zero entries, where 1 ≤ � ≤ n2 is a parameter. Buhrman and Špalek [6]
observed that C can then be computed in time Õ(n3/2

√
�), which is better

than the best known classical algorithm for the same task for moderately small
values of � (we refer to [6,20] for a precise comparison with the performance of
classical algorithms). The idea is to search successively the non-zero entries of C.
Remember that we can compute the value of a specific entry of C in time Õ(

√
n)

using quantum search. Using Theorem 1, and using the fact that there are �
non-zero entries, we can thus find the first non-zero entry of C using a generic
search over the search space {1, . . . , n}×{1, . . . , n}, in time Õ(c×√

n2/�), where
c = Õ(

√
n). We can then do another generic search for finding the second entry

of C, but this time excluding the entry just found from the search space. The
time complexity will be Õ(c × √

n2/(� − 1)). We can continue this strategy to
find all the � non-zero entries of C, which gives overall time complexity

Õ

(
√

n ×
(√

n2

�
+

√
n2

� − 1
+ · · · +

√
n2

2
+

√
n2

1

))
= Õ(n3/2

√
�),

where the equality follows from Cauchy-Swartz inequality and asymptotic
bounds on harmonic series.

Jeffery, Kothari and Magniez [17] have recently shown how to do better in
the query complexity setting, and constructed a quantum algorithm solving this
problem with query complexity Õ(n

√
�). They also showed that this upper bound

is tight, in the query complexity setting, up to possible polylogarithmic factors.
Le Gall [20] showed that the time complexity of this problem is Õ(n

√
� + �

√
n).

Let us give an outline of how these results can be obtained. Let us focus on
finding the first entry. The two above results state that this can be done with
complexity Õ(n), i.e., better than the Õ(n3/2) upper bound from the approach
by Buhrman and Špalek. The idea is that, as mentioned in Section 4.1, finding
the first non-zero entry reduces to finding a triangle in the graph GA,B . Since
in GA,B all the vertices between I and J are connected, this is equivalent to
finding one index k ∈ {1, . . . , n} such that wk is connected to both a vertex
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of I and a vertex of J . Checking if k satisfies this condition can be done in time
Õ(

√
n+

√
n) by using two successive quantum searches. Thus finding an index k

satisfying this condition can be done in time Õ((
√

n +
√

n) × √
n) = Õ(n), by

using Theorem 1 with Y = {1, . . . , n} and m = 1. Once such a k is known, it is
easy, using again quantum search, to find two indexes i, j ∈ {1, . . . , n} such that
A[i, k] = B[k, j] = 1, and thus C[i, j] = 1, in Õ(

√
n) time. This strategy does not

work directly for finding the next non-zero entries of C since I and J will not
be completely connected anymore (there will be m missing edges, if m non-zero
entries of C have been found so far), but Refs. [17,20] show how to adapt this
idea for this situation.

5.3 Matrix Multiplication Over Semirings

Boolean matrix multiplication is an example of matrix product over a semiring,
namely, the Boolean semiring ({0, 1},∨,∧). Given a set R ⊆ Z ∪ {−∞,∞} and
two binary operations ⊕ : R×R → R and � : R×R → R, the structure (R,⊕,�)
is a semiring if it behaves like a ring except that there is no requirement on the
existence of an inverse with respect to the operation ⊕. The definition of matrix
multiplication can naturally be generalized to any semiring, as follows.

Definition 1. Given two n × n matrices A and B over R, the matrix product
over (R,⊕,�) is the n×n matrix C defined as C[i, j] =

⊕n
k=1 (A[i, k] � B[k, j])

for any (i, j) ∈ {1, . . . , n} × {1, . . . , n}.
Note that, whenever the operation ⊕ is such that a term as

⊕n
k=1 xk can be

computed in Õ(
√

n) time using quantum techniques, the matrix product over
the semiring (R,⊕,�) can be computed in time Õ(n2.5) on a quantum computer.
This is true for the Boolean semiring, but also for instance for the semiring (Z∪
{∞},min,+) using a quantum algorithm based on quantum search for minimum
finding [9]. The matrix product over this latter semiring is known as the min-
plus matrix product, and is a key ingredient in a multitude graph algorithms,
but, despite much effort (including a recent breakthrough by Williams [28]), no
truly subcubic-time classical algorithm is known for this problem. This gives an
example of multiplication of square matrices, widely used in practice, for which
quantum computation outperforms the best known classical algorithms.

We conclude by mentioning that Le Gall and Nishimura [22] recently devel-
oped quantum algorithms improving over these Õ(n2.5)-time straightforward
quantum algorithms over several semirings.

References

1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on
Computing 37(1), 210–239 (2007)

2. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical con-
struction of the transitive closure of a directed graph. Soviet Mathematics Doklady
(English translation) 11(5), 1209–1210 (1970)



190 F. Le Gall

3. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory
of Computing 8(1), 69–94 (2012)

4. Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended
abstract. In: Proceedings of STOC, pp. 77–84, 2012 (2012)

5. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4–5), 493–505 (1998)

6. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings
of SODA, pp. 880–889 (2006)

7. Childs, A.M., Kimmel, S., Kothari, R.: The Quantum Query Complexity of Read-
Many Formulas. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 337–348. Springer, Heidelberg (2012)

8. Drucker, A., de Wolf, R.: Quantum Proofs for Classical Theorems. Number 2 in
Graduate Surveys. Theory of Computing Library (2011)
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Abstract. Grover’s Algorithm finds a unique element in an unsorted
stock of N -elements in

√
N queries through quantum search. A single-

query solution can also be designed, but with an overhead of N log2 N
steps to prepare and post process the query, which is worse than the
classical N/2 queries. We show here that by distributing the computing
load on a set of quantum computers, we achieve better information the-
oretic bounds and relaxed space scaling. Howsoever small one quantum
computing node is, by virtue of networking and sharing of data, we can
virtually work with a sufficiently large qubit space.

Keywords: Distributed quantum computing · Grover’s quantum
search · Optical networking

1 Introduction

Today’s digital computer is the cumulation of technological advancements that
began with the mechanical clockwork ideas of Charles Babbage in the nineteenth
century. However, it is surprising that logically, the high speed modern day com-
puter is not fundamentally different from its gigantic 30 ton ancestors, the first of
which were built in 1941 by the German engineer Konrad Zuse. Although comput-
ers nowadays have become more compact and considerably faster in their perfor-
mance, their primary execution methodology has remained the same, which is to
derive a computationally useful result via the manipulation and interpretation of
encoded bits. The underlying mathematical principles are indistinguishable from
those outlined in the visionary Church-Turing hypothesis, proposed in the year
1936, much ahead of the birth of the first computer. Bits, the fundamental units
of information, are the smallest working units of a digital computer and are classi-
cally represented as either 0 or 1 in a digital computer. Classical bits are recognized
by alluding to arbitrary thresholds of high (1) or low (0), and so each classical bit
is physically realized through a macroscopic physical system, such as the magne-
tization of a hard disk or the charge on a capacitor. Information is thus realized as
series of such bits, and these bits are manipulated via Boolean logic gates arranged
in succession to produce an end result [1].

The idea of quantum mechanical computational devices started in the late
1970s when scientists, while trying to determine the fundamental limits of com-
putation, realized that if technology continued to adhere to the Moore’s Law,
c© Springer International Publishing Switzerland 2014
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the proposal of continuous diminishment in the circuits’ sizes on silicon chips
would eventually reach a point, where individual elements would not be larger
than a few atoms. At such sizes, the physical laws governing the behavior and
properties of such miniaturized circuits would inherently be not classical but
quantum mechanical in nature. Consequently, the question of whether a fun-
damentally new kind of computer could be devised based on the principles of
quantum physics surfaced.

Feynman was the first to make efforts to answer this question by producing
an abstract model in the year 1982, which showed the process of computation
using quantum systems [2]. He also explained the capacity of this machine to
efficiently act as a simulator for quantum physics. In other words, a physicist can
effectively carry out experiments related to quantum physics inside a quantum
mechanical computer. Later, in 1985, Deutsch reaffirmed Feynman’s assertion,
showing that any physical process could, in principle, be modeled perfectly by
a quantum computer, which eventually could result in the creation of a general
purpose quantum computer [3]. The search for important applications for such a
general purpose quantum computing machine began with this theoretical work
of Deutsch.

An important breakthrough came in 1994, when Shor [4] devised a method
for using quantum computers to crack factorization, an age-old problem in Num-
ber Theory. In this paper, Shor proposed the use of a group of mathematical
operations, organized and designed specifically for a quantum computer, to fac-
torize huge numbers extremely rapidly compared to conventional computers.
With this, quantum computing went from being a mere scientific curiosity to a
world-wide research interest.

A quantum computer exerts control over qubits by executing a series of
quantum gates, each a unitary transformation acting on qubits. These quantum
gates, when performed in succession, initially result into a complicated unitary
transformation of a set of qubits at some point. The measurements of the qubits
constitute the final computational result. However, on observation, qubits (simi-
lar to their classical counterpart, bits) show that they are of discrete nature and
are individually represented by two states. Such inherent similarities in the cal-
culation process of classical and quantum computers suggest that theoretically,
a classical computer should be able to simulate a quantum computer. Thus, a
classical computer should theoretically be able to do everything that a quantum
computer does, naturally raising questions pertaining to the need for a quantum
computer. Such questions were refuted by the fact that, though a classical com-
puter is theoretically able to simulate a quantum computer, it is highly inept,
and is practically incapable of performing most tasks that a quantum computer
can perform at ease. John S. Bell, for the first time, explained that correlations
among quantum bits differ qualitatively from the correlations among classical
bits [5], making the simulation of a quantum computer on a classical one, a
computationally hard problem that is practically irrelevant.

In fact, the amount of data processing required for a classical computer to
simulate even a hundred qubit quantum computer is prohibitive. A classical
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computer trying to simulate a quantum computer would have to work with
exponentially large matrices to perform calculations for each individual state,
which is also represented as a matrix; thus requiring an exponentially longer time
compared to the time taken by even a primitive quantum computer with only a
hundred qubits that exist in a Hilbert space of ∼ 1030 dimensions. Thus, a system
with only 100 qubits is impossible to simulate classically in any comprehensible
time frame as it represents a quantum superposition of as many as 2100 states.
Each of these states is classically equivalent to a single list of one hundred 1’s
and 0’s. Any quantum operation on that system—a particular pulse of radio
waves, for instance, whose action might be to execute a quantum gate operation
on the 50th and 51st qubits—would simultaneously operate on all the 2100 states.
Hence in a single step, in one tick of the computer’s clock, a quantum operation,
unlike the serial computers, computes not just on one machine state, but on
2100 machine states at a given time. Eventually, however, the system would
collapse to a single quantum state corresponding to a single answer, a single list
of one hundred 1’s and 0’s, dictated by the fundamental measurement axiom
of quantum mechanics [6]. This is an amazing observation as it showcases the
inherent disparity between quantum and classical computers in computational
matters as; what is achieved via the quantum parallelism of superposition by
a primitive quantum computer of 100 qubits would require a classical super
computer perform the operation simultaneously on ∼ 1030 distinct processors; a
practically impossible feat.

With the clever usage of the properties of superposition, interference, entan-
glement, non-clonability and non-determinism, exhibited by all quantum sys-
tems, a new form of “quantum parallelism” seems to be achievable, wherein
an exponential number of computational paths can be explored simultaneously
as opposed to sequentially in a single device. The challenge remains in fram-
ing computational questions in a way so that the most useful and probabilistic
answer is extracted. With the help of right algorithm, it is possible to use this
parallelism to solve certain problems in a fraction of the total time taken by a
classical computer. Such algorithms are notoriously difficult to formulate, and
till date, the most significant examples are Shor’s algorithm [4] and Grover’s
algorithm [7]. Shor’s algorithm allows for the extremely quick factorization of
large numbers, in polynomial time [4] as compared to exponential time required
by classical computers, which in principle, means that in solving some problems,
only quantum computers not conventional digital computers, can provide viable
solutions.

The other epochal quantum algorithm is the search algorithm [7,8,10], since
most of the computable problems in quantum computing can be transformed into
the problem of finding the correct answer amongst all the probable possibilities.
Taking advantage of the quantum parallelism, Grover’s algorithm searches an
unsorted database of N entries in

√
N attempts, while a conventional computer

would take an average of N/2 attempts. The discovery of the quantum error
correction is as significant as the algorithms taking advantage of the quantum
parallelism. In fact, the prospects for quantum computing technology would
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have remained bleak but for the quantum error correction development. Another
important aspect lies in the scaling issues related to quantum computing, which
questions the limitations of the current technologies in quantum computing and
hence derives continuous efforts towards newer, more reliable approaches. Even
conforming to the current practical situation of restricting ourselves to the use
of a small interacting molecular system, where only a small number of qubits
are available for computation; we show that it is possible to achieve higher
computational power provided that the computer systems, each consisting of
only a few atoms or molecules acting as compute nodes are networked. Here we
shall specifically explore the aspects of quantum distributed computing in light
of the possible implementations of Grover’s Algorithm.

2 Problem Statement

Grover’s search algorithm shows that a quantum mechanical system needs at
least O(

√
N) steps in order to identify a unique candidate satisfying a condition

out of an unsorted dataset of N candidates [7,8]. This quadratic improvement is
less optimal than the possible exponential improvement through quantum com-
puting [6,9] as is seen, for example, in Shore’s factorization algorithm [4], but is
highly significant as the search problem is a universal necessity in quantum com-
puting. Grover’s subsequent work [10] concludes that one can overcome O(

√
N)

bottleneck by making more elaborate queries, however, these increase the over-
head in preparing and post-processing queries by O(N log2 N) steps resulting in
a decreased efficiency compared to classical situations.

In this paper, we present a distributed quantum computing approach wherein
we propose to solve the classical search problem by performing the computation
on all the nodes in the network, thereby providing a better lower bound on the
resource usage of Grover’s Algorithm. We show that though we are still restricted
by the quadratic bound at best, we get more relaxed resource usage. This study
is motivated primarily by the fact that at present, achieving a large qubit space
is difficult, which is one of the basic bottlenecks for the effective implementation
success of many of the proposed algorithms. Given that decoherence [11] is a
major concern in quantum computing, the success of quantum teleportation [12]
could be utilized as an effective approach towards scaling quantum computing
power by establishing a network of smaller qubit space quantum computers and
distributing the computing load. The required coherent transfer of information
in the network could also benefit from recent developments in coherent optical
networking schemes [13]. This network of quantum computers would virtually
produce the required qubit space for the effective implementation of various
algorithms [14]. Another advantage of such networking lies in the high security
offered by quantum information processing [15].

3 Theoretical Model

Let us first outline the search problem and pose it mathematically to suit our
quantum distribution needs. Given a database of N elements (X1X2X3...Xn)
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with exactly one element satisfying a condition (say the required element is Xk).
Now there exists a function which knows that the element required is Xk but it
functions like a black box answering queries only as high/low. More explicitly if
asked whether Xi satisfies the condition it sets output signal high only if Xi = Xk

otherwise low. We will refer to such as element satisfying this condition as the
qualified element. The problem is to get the high signal in the minimum number
of queries. Classically, the optimal way is to ask questions that eliminate half
the elements under consideration with each question resulting in approximately
log2 N queries to reach the answer [7,8].

In Grover’s single query approach [10], he considered a quantum system com-
posed of multiple subsystems where each subsystem has an N dimensional state
and each basis state of a subsystem corresponds to an element in the database.
An appropriate single quantum query, pertaining to information regarding all N
elements, resulted in the probability of the state corresponding to the qualified
element(s) of each subsystem being amplified by a small amount. This small
difference in amplitudes was estimated by making a measurement to determine
that the element of the database in each subsystem corresponds to the element
indicated by the most subsystems is the qualified element, provided the number
of subsystems was sufficiently large. The sole purpose was to amplify the proba-
bility of qualified element by performing unitary operations on the subsystems.

Let us now discuss our design of distributed quantum computing wherein
we consider a network of quantum computers which can communicate through
quantum teleportation. The individual computing nodes in the network function
like subsystems as described in Grover’s approach earlier. Let us amplify the
probability of qualified element by sequence of unitary operations. We move
ahead by first applying selective inversion and then performing inversion about
selection operation.

Let us define the black box which answers the query as high/low (0/1) is
a function f(z) such that f(z) = 1 for qualified element, i.e.,Xk, otherwise
f(z) = 0 for all Xi, where i �= k. The work of Boyer et. al. [16] shows that there
exists a quantum circuit such that state |x, b〉 can be converted to |x, f(x) ⊕ b〉,
and if bit ‘b’ is placed in superposition of 1√

2
(|0〉 − |1〉), we keep intact the

amplitudes of all elements but the qualified element. The amplitude of qualified
element gets inverted. Next we apply inversion about average operator to amplify
the probability of the qualified item. The inversion about average operation is by
definition the unitary operation D : Dij = 2

N if i �= j; Dii = −1 + 2
N ; where D

can be shown to be physically implemented as a product of three local unitary
matrices [8]. Assume that D is applied to a superposition with each element
of the superposition having amplitude equal to 1√

N
, excepting one. Then, the

single component that is different has an amplitude of - 1√
N

. After the unitary
operation, the one that had the negative amplitude now becomes positive and its
magnitude increases to approximately 3√

N
; while the rest stay unchanged. This

would boost up the amplitude of the qualified element in each subsystem and
we have sufficiently large number of identical subsystems (say total η such sub-
systems) to observe for which element the probability is higher. Each subsystem
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has N dimensional state space and each of N basis states actually corresponds
to an element in the database. Consider each subsystem to have equal amplitude
in all N states. Thus the state vector for the system (which is a tensor product
of these η identical subsystems) would be (|S1S1S1...S1〉 + |S2S2S2...S2〉 + ...Nη

such terms) if S1, S2, ...SN denote N states.
Let us now query the database: whether the number of subsystems in the

state corresponding to the marked item is odd or even. If it is odd, the phase
is left untouched otherwise it is inverted. This is selective inversion as discussed
earlier. If Sk is the state which stands for the qualified element, we can write the
state vector as (|S1〉 + |S2〉 + ... + (−|Sk〉) + ... + |SN 〉)η. We then perform the
inversion about average operation independently on each of subsystems to boost
the amplitude of the qualified element. As we discussed before, inversion about
average operation allows us to amplify the probability of the state in negative
phase by a factor of 3 in the positive direction. Mathematically, therefore, we
can represent the vector state as (|S1〉 + |S2〉 + ... + (3|Sk〉) + ... + |SN 〉)η. We
cycle these steps for n times.

4 Results and Discussions

We will now try different values of n to see when it reaches an optimum.
For a generalized case: After n such cycles, the state vector can be written as

(|S1〉 + |S2〉 + ... + ((2n + 1)|Sk〉) + ... + |SN 〉)η. The probability of obtaining the
basis state corresponding to the qualified element in each of the η subsystems is
approximately (2n+1)2

N and the probability of obtaining a different basis state is
approximately 1

N . Thus, it follows by the law of large numbers [17] that out of η

subsystems, (2n+1)2η
N ±O(

√
η

N ) lie in state Sk. Assuming n to be large enough the
equation is simplified to 4n2η

N ± O(
√

η

N ) and if we let η = KN , then the equation
can be rewritten as 4n2K ± O(

√
K). We can test the extreme values of ‘n’ for

which the system will give an optimum value and hence provide both the upper
and lower bounds.

For small size case, such as n =
√

log2 N : The state vector can be written
as (|S1〉 + |S2〉 + ... + (2

√
log2 N + 1)|Sk〉 + ... + |SN 〉)η. The probability of

obtaining the basis state corresponding to the marked state in each of the η
subsystems is approximately 4 log2 N

N and the probability of obtaining a different
basis state is approximately 1

N . Again it follows by the law of large numbers [17]
that out of η subsystems, 4Klog2 N ± O(

√
K) lie in state Sk, where K = η

N .
In fact, it follows by the central limit theorem [18] that the probability of a
particular variable deviating by more than ±γ

√
K from its expected value is

less than exp[−O(γ2)]. Thus, if η is of the order of N then the equation becomes
4 log2 N ± O(1), which means that the overall effectiveness of the algorithm in
this case has no improvement over the classical case.

It is important to note here that the value of n has to be less than
√

N
2 or

else it will become a certain condition, with the probability reaching 1, thus all
of the subsystems will be in the qualified state. Let us test this other limit now.
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Testing the upper limit for n =
√

N
2 : The state vector can be written as

(|S1〉 + |S2〉 + ... + (
√

N + 1)|Sk〉 + ... + |SN 〉)η. The probability of obtaining
the basis state corresponding to the qualified state in each of the η subsystems
is approximately 1 and the probability of obtaining a different basis state is
approximately 1

N . By the law of large numbers [17], therefore, it follows that
out of η subsystems, η ± O(

√
η

N ) lie in state Sk. Typically, η � N , so the uncer-
tainty due to O(

√
η

N ) can be neglected. There will be post processing steps of
the order O(

√
η). Thus, the overall effectiveness of the algorithm increases to

O(
√

N), since η � N .
We have, therefore, managed to show that the distributed quantum comput-

ing approach essentially preserves the benefits of Grover?s search algorithm for
big data problems while for small problems the situation converges to the limit of
the classical case. Since the scaling issue is prevalent for large computing sizes,
distributing the computing load over smaller quantum nodes is an important
feasibility criterion related to the scaling issues in quantum computing.

5 Conclusions

We distributed the computational load of Grover’s search algorithm over a quan-
tum network, which is facilitated through ideal teleportation communications.
Grover’s single-query method carries a lot of overhead pertaining to the prepa-
ration and post-processing of the query [O(N log2 N) steps]. Hence, we relax
the single-query constraint in order to achieve more optimal performance, which
is significantly better than classical methodology [O(log2 N)]. Essentially this
extension of Grover’s approach, being assisted by quantum-networking ideas is
crucial for scaling the problem. We have managed to show that if we replicate
Grover’s algorithmic approach of amplifying the probability of the eligible candi-
date in database ‘n’ times, we are bound by O(

√
N) for a much improved upper

limit of n (n =
√

N
2 ) though the lower bound is an unchanged classical case of

O(N) for small n. However, since we would only be distributing the computing
load for a large enough data-size, the advantages are evident. Furthermore, our
approach addresses and substantially dilutes the practical concern regarding the
limited qubit space associated with one quantum computer. Hence it should be
seen as a promising computing framework. These results also provide substan-
tial encouragement and impetus for scaling quantum computation by coupling
quantum teleportation of multiple small quantum computer nodes.
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Abstract. A pseudo-telepathy game is a non-local game which can
be won with probability one using quantum strategies but not using
classical ones. Our central question is whether there exist two-party
pseudo-telepathy games which cannot be won with probability one
using a maximally entangled state. Towards answering this question,
we develop conditions under which maximally entangled state suffices.
Our main result shows that for any game G, there exists a game G̃ such
that G admits a perfect strategy using a maximally entangled state if
and only if G̃ admits some perfect finite-dimensional quantum strategy.

Keywords: Nonlocal game · Entanglement · Projection game · Maxi-
mally entangled state · Pseudo-telepathy

1 Introduction

Entanglement is a central feature of quantum information processing (see [Gru99]
or [NC10] for a general introduction). In many cases it can be used to perform
nonlocal tasks that would otherwise be impossible or very inefficient. Therefore,
entanglement is a resource and one is interested in means of measuring the
entanglement content of a quantum state. Many such entanglement measures
have been introduced and studied (see [PV07] for a survey). The usual approach
is to define entanglement as the resource that cannot be increased using local
quantum operations and classical communication (LOCC). Here, we will only
be concerned with the two-party scenarios. In such a case, any desired shared
state can be obtained via LOCC from the so-called maximally entangled state

|Ψd〉 :=
1√
d

d∑
i=1

|ii〉.

Therefore, according to any entanglement measure, the state |Ψd〉 possesses the
highest entanglement content among all states in C

d ⊗ C
d. It would perhaps

be natural to expect that maximally entangled states are the most useful ones
for accomplishing nonlocal tasks. It turns out that this intuition fails and there
are known examples where less entangled states allow for better performance
c© Springer International Publishing Switzerland 2014
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[ADGL02,AGG05,ZG08]. Moreover, in some cases, maximally entangled states
are shown to be suboptimal even if we do not restrict the dimension d of the
maximally entangled states [JP11,VW11,LVB11,Reg12]. Most of these examples
are given in terms of Bell inequality violations and when stated in terms of
nonlocal games they yield games at which entangled players cannot succeed
with probability one. Therefore, it could be possible that maximally entangled
states are sufficient to achieve perfect performance, whenever this can be done
using some entangled state.

In a one-round two-party nonlocal game G = (S, T,A,B, V, π), two isolated
parties, commonly known as Alice and Bob, play against the verifier. The
verifier chooses a pair of questions (s, t) ∈ S × T according to some probability
distribution π and sends s to Alice and t to Bob. The players need to respond
with a ∈ A and b ∈ B respectively. They win if V (a, b|s, t) = 1, where
V : A × B × S × T → {0, 1} is a public verification function. The players’
goal is to coordinate strategies so as to maximize their probability of winning;
quantum players can use shared entanglement to improve their chances of
winning. We say that a strategy is perfect if it allows the players to win
with probability one. Games which admit perfect quantum but not classical
strategies are known as pseudo-telepathy games [BBT05]. It is a challenging
open question to understand if the optimal success probability of a game can
always be achieved using a finite-dimensional strategy. Therefore, in this paper
we focus on pseudo-telepathy games that admit a finite dimensional perfect
strategy. In this terminology the central question of this paper is as follows:

Do there exist pseudo-telepathy games that cannot be won using maximally
entangled state?

Answering the above question in the negative would imply that maximally
entangled state is sufficient for zero-error communication over a noisy classical
channel. This is due to the equivalence of zero-error communication protocols
and a certain type of nonlocal games outlined in [CLMW10].

Previous results. It is known that maximally entangled state is sufficient for
binary1 and unique games2 [CHTW04]. However, this is due to a trivial reason,
since no entanglement is needed to win these games with probability one if it can
be done in principle. Therefore, these two classes of games do not contain any
pseudo-telepathy games and hence are not relevant to our question. Maximally
entangled state is also sufficient for the games based on graph homomorphisms
[RM12] and binary constraint system games [CM12]. These two classes are more
relevant to our question, since they contain pseudo-telepathy games.

Our results. We partially answer the above question by exhibiting a class of
games for which maximally entangled state is sufficient to reach perfect perfor-
mance (see Theorem 1). The definition of this class is similar to that of projection
1 In a binary game Alice and Bob need to answer bits, i.e., S = T = {0, 1}.
2 In a unique game for every pair of questions (s, t) ∈ S×T there exists a permutation

σst, such that V (a, b|s, t) = 1 if and only if a = σ(b).
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games. This class subsumes both pseudo-telepathy graph homomorphism games
and pseudo-telepathy binary constraint system games. Our proof technique is
inspired by the one used in [CMN+07] in the context of quantum chromatic num-
ber. Finally, our main result is a characterization of pseudo-telepathy games for
which maximally entangled states is sufficient (see Theorem 2).

2 Preliminaries

We use the mapping vec : M(dA, dB) → C
dA ⊗ C

dB defined via

vec : |i〉〈j| �→ |i〉|j〉

for all i ∈ [dA], j ∈ [dB ] and extended by linearity.
We now derive a formula that will often be used later. Applying the fact

that vec(AXBT) = A ⊗ B vec(X) and vec(A)† vec(B) = Tr(A†B), and choosing
matrix D such that vec D = |ψ〉 we obtain

Tr(A ⊗ B|ψ〉〈ψ|) = 〈ψ|(A ⊗ B)|ψ〉
= vec(D)†(A ⊗ B) vec(D) (1)

= vec(D)† vec(ADBT)

= Tr(D†ADBT)

for all A ∈ M(dA, dA), B ∈ M(dB , dB) and |ψ〉 ∈ C
dA ⊗ C

dB .
Consider a state |ψ〉 ∈ C

dA ⊗ C
dB of full Schmidt rank. Then dA = dB and

TrA |ψ〉〈ψ| = TrB |ψ〉〈ψ|. Moreover, if we work in a Schmidt basis of |ψ〉, we have
that

vec
√

TrB(|ψ〉〈ψ|) = vec
√∑

iλ
2
i |i〉〈i| = |ψ〉.

3 Results

In the context of nonlocal games the following lemma states that maximally
entangled state can be used in place of any shared entangled state whose reduced
state on either party commutes with the corresponding party’s measurement
operators.

Lemma 1. Let {Ei}i∈[n], {Fi}i∈[m] ⊆ Pos(Cd ⊗ C
d) be measurements. Also

let |ψ〉 ∈ C
d ⊗ C

d be a state of full Schmidt rank and D :=
√

TrB |ψ〉〈ψ| =√
TrA |ψ〉〈ψ|.
If [D,Ei] = 0 for all i ∈ [n] or [D,Fi] = 0 for all i ∈ [m] then for all

i ∈ [n], j ∈ [m] we have

Tr(Ei ⊗ Fj |ψ〉〈ψ|) = 0 ⇔ Tr(Ei ⊗ Fj |Ψ〉〈Ψ |) = 0,

where |Ψ〉 := 1√
d

∑
i |αi〉|βi〉 and |αi〉|βi〉 is a Schmidt basis of |ψ〉.
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Proof. Let us work in a Schmidt basis of |ψ〉. Then vec D = vec
√

TrB |ψ〉〈ψ| =
|ψ〉. Since Tr(Ei⊗Fj |ψ〉〈ψ|) = Tr(D†EiDFT

j ) by Equation (1) and D†EiD,FT
j �

0, we obtain that

Tr(Ei ⊗ Fj |ψ〉〈ψ|) = 0 ⇔ D†EiDFj = 0.

We now assume that [D,Ei] = 0 for all i ∈ [n] (the other case can be proven
similarly). Since D†EiDFT

j = D†DEiF
T
j and D has full rank, we have

D†EiDFT
j = 0 ⇔ EiF

T
j = 0.

Observe that vec |Ψ〉 = Id and hence Tr(Ei ⊗ Fj |Ψ〉〈Ψ |) = Tr(Id† Ei IdFT
j ) =

Tr(EiF
T
j ). Thus we obtain

EiF
T
j = 0 ⇔ Tr(Ei ⊗ Fj |Ψ〉〈Ψ |) = 0

which completes the proof.

In the context of local measurements, the following lemma states that only
projective local measurements can give rise to perfectly correlated outcomes.
Moreover, in such a case maximally entangled state |Ψ〉 can be used as the
shared entangled state.

Lemma 2. Let {Ei}i∈[n], {Fi}i∈[n] ⊆ Pos(Cd ⊗ C
d) be two measurements and

|ψ〉 ∈ C
d ⊗ C

d be a state of full Schmidt rank and D :=
√

TrB |ψ〉〈ψ|. If for all
distinct i, j ∈ [n]

Tr(Ei ⊗ Fj |ψ〉〈ψ|) = 0 (2)

then for all i ∈ [n] we have that

– operators Ei, Fi are projectors and
– [D,Ei] = [D,Fi] = 0.

Proof. First, note that D can be assumed to be diagonal, if we work in the
Schmidt basis of |ψ〉 and hence D† = DT = D. Now we rewrite Equation (2) as

Tr(D†EiDFT
j ) = 0, (3)

for all distinct i, j ∈ [n]. It now follows that Tr
(
D†EiD(Id −FT

i )
)

= 0 and hence

supp(D†EiD) ⊆ suppFT
i ,

where supp(M) denotes the span of the columns of M . Similarly, the fact that
Tr

(
(Id −Ei)DFT

i D†) = 0 gives

supp(DFT
i D†) ⊆ supp(Ei).
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Since conjugation by full rank matrix D does not change the rank, the two above
inclusions imply that

suppFT
i = supp(D†EiD) and supp(Ei) = supp(DFT

i D†).

Combining this with the orthogonality constraints (3), we get that

suppFT
i ⊥ suppFT

j and suppEi ⊥ suppEj

for all distinct i, j ∈ [n]. Hence, both {Ei}i∈[n] and {Fi}i∈[n] are projective
measurements and moreover

Ei = supp(DFT
i D†) and FT

i = supp(D†EiD),

where by slight abuse of notation we use supp(M) to denote the projector onto
the span of the columns of M .

We now show that [D,Ei] = 0 for all i ∈ [n] (the proof for [D,Fi] = 0 is
similar). From the orthogonality condition (3) and the fact that D†EiD,FT

j � 0,
we obtain that for all distinct i, j ∈ [n]

0 = D†EiDFT
j = D†EiD supp(D†EjD).

Hence, for all distinct i, j ∈ [n] we also have D†EiDD†EjD = 0 and thus
EiD

2Ej = 0, since D has full rank and D† = D. Now, EiD
2Ej = 0 implies that

D2 is block-diagonal with respect to the partition of the space corresponding to
projectors Ei. Since in such a partition each Ei is block-diagonal with the blocks
being c Id, where c ∈ {0, 1}, it follows that [D2, Ei] = 0. Hence also [D,Ei] = 0
for all i ∈ [n] as desired.

It follows from Lemma 2 that maximally entangled state is essentially the
only state that gives rise to perfectly correlated outcomes. Since the operators
Ei and Fi commute with D, their off-diagonal entries corresponding to different
Schmidt coefficients of |ψ〉 must be zero. Thus Ei and Fi are block-diagonal,
where the blocks are labeled by distinct Schmidt coefficients of |ψ〉. Hence, mea-
surements {Ei} and {Fi} are direct sums of measurements each of which is
performed on a maximally entangled state.

We now establish a result similar to Lemma 2 for two measurements with
different number of outcomes.

Corollary 1. Let {Ei}i∈[n], {Fi}i∈[m] ⊆ Pos(Cd⊗C
d) be two measurements and

|ψ〉 ∈ C
d ⊗ C

d be a state of full Schmidt rank and D :=
√

TrB |ψ〉〈ψ|. If there
exists a function f : [n] → [m] such that for all i ∈ [n] and j = f(i)

Tr(Ei ⊗ Fj |ψ〉〈ψ|) = 0 (4)

then for all i ∈ [m] we have that

– operators Fj , E
′
j :=

∑
i:f(i)=j Ei are projectors and

– [D,E′
j ] = [D,Fj ] = 0.
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Proof. This is exactly the statement of Lemma 2 for measurements {E′
j}j∈[m]

and {Fj}j∈[m].

We now define a class of nonlocal games for which we will later show that
maximally entangled state can be used to win with certainty, whenever it can
be done using some finite-dimensional quantum strategy.

Definition 1. We say that a nonlocal game G = (S, T,A,B, V, π) is weakly
projective for Bob, if for each of Bob’s inputs t ∈ T there exists an input s ∈ S
for Alice and a function fst : A → B such that V (s, t, a, b) = 1 if and only if
b = fst(a).

The definition for a nonlocal game that is weakly projective for Alice is similar.
The term “weak projection game” was chosen since G is called a projection game
if for all pairs (s, t) ∈ S ×T there exists a function fst such that V (s, t, a, b) = 1
if and only if fst(a) = b. Any projection game is weakly projective for both Alice
and Bob; the converse, however, does not hold.

Theorem 1. Suppose that a nonlocal game G = (S, T,A,B, V, π) is weakly pro-
jective for Bob. If a shared entangled state |ψ〉 ∈ C

d⊗C
d of full Schmidt rank and

measurements E(s) := {Es
i }i∈A and F (t) := {F t

i }i∈B specify a perfect strategy
for G then

1. operators F t
j are projectors for all t ∈ T, j ∈ B;

2. a maximally entangled state |Ψ〉 can be used in place of |ψ〉.

Proof. To prove the theorem, for each t ∈ T we apply Corollary 1 to mea-
surements E(s(t)) and F (t), where s(t) is Alice’s input corresponding to t from
Definition 1. This gives us item (1) and that [F t

j ,D] = 0 for all values of t, j.
Now, by Lemma 1 we get item (2).

Definition 2. Given game G = (S, T,A,B, V, π), let G̃B := (S, T, Ã, B, Ṽ , π),
where

S̃ := {(s, 0), (t, 1) : s ∈ S, t ∈ T},

Ã := A ∪ B, and

Ṽ
(
a, b|(s, i), t) :=

{
V (a, b|s, t) if i = 0
δab if i = 1

The game G̃A is defined similarly.

It is easy to see that G̃A (G̃B) is a weak projection game for Alice (Bob) and
therefore can be won using a maximally entangled state whenever some perfect
quantum strategy exists. Also, any strategy used to win G̃A or G̃B , can be used
to win G. Hence, we obtain the following:

Theorem 2. A nonlocal game G admits a perfect finite-dimensional quantum
strategy if and only if G̃A or G̃B admits some perfect finite-dimensional quantum
strategy.
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The above theorem can be used to show that a maximally entangled state is
sufficient for both binary constraint system and homomorphism games.

In a binary constraint system game G, Alice is asked to assign values to the
binary variables in a constraint cs and Bob is asked to assign a value to a binary
variable xt. To win, their answers need to be consistent and Alice’s assignment
has to satisfy the constraint cs. Any strategy used to win game G can also be
used to win G̃B . This is because upon receiving input (t, 1) Alice can perform
any measurement corresponding to a constraint cs that contains variable xt and
respond with the value she would have assigned to the variable xt.

In a homomorphism game G, Alice and Bob have the same input and output
sets (S = T and A = B) and their answers need to agree when they are given
the same outputs. Therefore, any strategy used to win G can be used to win
both G̃A and G̃B (essentially by ignoring the extra bit in the modified game).

4 Discussion

In this paper we have looked at the question of whether there exist pseudo-
telepathy games that cannot be won with certainty using a maximally entangled
state in some dimension d. As partial progress towards answering this question we
have exhibited a class of pseudo-telepathy games for which maximally entangled
state is always sufficient. Additionally, we have characterized pseudo-telepathy
games which admit perfect strategies with a maximally entangled state. We
hope that this characterization might help in producing an example of pseudo-
telepathy which does not admit a maximally entangled perfect strategy (assum-
ing such games exist).

An intersting open question is whether Lemma 2 admits an approximate ver-
sion. More formally: suppose two measurements produce almost perfectly corre-
lated outcomes, does it imply that the measurement operators almost commute
with the reduced state D?
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RM12. Roberson, D.E., Mančinska, L.: Graph homomorphisms for quantum players

(2012). arXiv:1212.1724
VW11. Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev.

A, 83:052310 (May 2011). arXiv:1011.5206
ZG08. Zohren, S.,Gill,R.D.:Maximal violationof theCollins-Gisin-Linden-Massar-

Popescu inequality for infinite dimensional states. Phys. Rev. Lett. 100(12),
120–406 (2008). arXiv:quant-ph/0612020

http://arxiv.org/abs/quant-ph/0404076
http://arxiv.org/abs/0911.5300
http://arxiv.org/abs/1209.2729
http://arxiv.org/abs/quant-ph/0608016
http://arxiv.org/abs/1007.3043
http://arxiv.org/abs/1012.1513
http://arxiv.org/abs/quant-ph/0504163
http://arxiv.org/abs/1101.0576
http://arxiv.org/abs/1212.1724
http://arxiv.org/abs/1011.5206
http://arxiv.org/abs/quant-ph/0612020


Quantum Finite Automata: A Modern
Introduction

A.C. Cem Say1 and Abuzer Yakaryılmaz2(B)

1 Department of Computer Engineering, Boğaziçi University,
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Abstract. We present five examples where quantum finite automata
(QFAs) outperform their classical counterparts. This may be useful as a
relatively simple technique to introduce quantum computation concepts
to computer scientists. We also describe a modern QFA model involving
superoperators that is able to simulate all known QFA and classical finite
automaton variants.

1 Introduction

Due to their relative simplicity, quantum finite automata (QFAs) form a sound
pedagogical basis for introducing quantum computation concepts to computer
scientists. Early QFA models were problematic, in the sense that they did not
embody the full power provided by quantum physics, and led to confusing results
where a “quantum” machine was not able to simulate its classical counterpart.
In this paper, we present several simple QFA algorithms which demonstrate
the superiority of quantum computation over classical computation. We then
systematically construct the definition of a general QFA model, which is able to
simulate all known QFA and classical finite automaton variants.

2 Preliminaries

Throughout the paper, Σ denotes the input alphabet, not including the left and
right end-markers, ¢ and $, respectively. We fix unary and binary alphabets as
Σ = {a} and Σ = {a, b}, respectively. A real-time finite automaton does not
need to store the input. The given input is fed to the real-time machine from
left to right, symbol by symbol. Moreover, a real-time machine can read ¢ before
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the input and $ after the input for pre- and post-processing, respectively. This
ability does not increase the computational power of the standard automaton
models, but a more detailed analysis is needed for the restricted models. In
this paper, our real-time QFA algorithms and models do not use end-markers.
Two-way models, on the other hand, have a read-only semi-infinite input tape,
composed of infinitely many cells indexed by the natural numbers, on which the
input w ∈ Σ∗ is placed as ¢w$ in the cells indexed 0 to |w| + 1. This tape is
scanned by a head which can move one square to the left or right, never moving
beyond the end-markers, in each step.

We assume that the reader is familiar with the basics of automata theory.
An n-state real-time probabilistic finite automaton (rtPFA) M is a 5-tuple

M = (S,Σ, {Aσ | σ ∈ Σ}, s1, Sa),

where S = {s1, . . . , sn} is the set of states, s1 is the initial state, Sa ⊆ S is the
set of accepting states, and Aσ is a left stochastic transition matrix for σ ∈ Σ
such that Sσ(i, j) is the probability of going from sj to si upon reading σ. The
computation starts in state s1, and the given input is accepted if it finishes in
an accepting state. The overall computation on input w ∈ Σ∗ can be traced by
a stochastic column vector representing the probabilistic distribution of states
in each step, whose initial value is v0 = (1 0 · · · 0)T . After reading the tth
symbol (1 ≤ t ≤ |w|), the new state vector can be calculated as

vt = Awt
vt−1.

The overall acceptance probability of w by M is then

fM (w) =
∑

sj∈Sa

v|w|(j).

Note that the input is rejected with probability 1 − fM (w). If the transition
matrices are restricted to contain only zeros or ones as their entries, we obtain
a real-time deterministic finite automaton (rtDFA).

3 Basics of Quantum Computation

An n-state quantum register is represented by an n-dimensional Hilbert space
Hn for some positive integer n. We denote the standard bases for Hn as Bn =
{|q1〉, . . . , |qn〉}, where |qj〉 is an n-dimensional vector whose jth entry is 1, and
all other entries are zeros for 1 ≤ j ≤ n. Each q where |q〉 ∈ Bn can be seen as
a classical state, with the basis state |q〉 as its quantum counterpart. We denote
the set {q1, . . . , qn} by Q.

A (pure) quantum state of the register is a column vector in Hn, say,

|ψ〉 =

⎛
⎜⎝

α1

...
αn

⎞
⎟⎠ = α1|q1〉 + · · · + αn|qn〉,
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which is a linear combination of basis states such that the length of |ψ〉 is 1, i.e.
√

〈ψ|ψ〉 = 1, or equivalently, |α1|2 + · · · + |αn|2 = 1,

where 〈·|·〉 is the inner product of any two given vectors, and, for any j ∈
{1, . . . , n}, αj ∈ C is called the amplitude of |qj〉, with |αj |2 representing the
probability of being in the jth state.

To observe the classical state of the system, a measurement in the computa-
tional basis, which determines whether the system is in |q1〉, |q2〉,. . ., or |qn〉, is
applied. This measurement therefore has n outcomes, respectively “1”,. . .,“n”.
If the system is in the quantum state |ψ〉 exemplified above before the measure-
ment, the outcome “j” can be obtained with probability pj = |αj |2.

If a system is closed, i.e. there is no interaction (including measurements) with
the environment, quantum mechanics dictates that its evolution is governed by
some unitary operators. Any operator defined on complex numbers is unitary if
it is length-preserving, i.e. it maps any quantum state to another quantum state.
Thus, we can say that |ψ′〉 = U |ψ〉 is also a quantum state and so its length is 1
too. If U ∈ C

n×n is unitary, then it also has the following equivalent properties:
(i) all rows form an orthonormal set, (ii) all columns form an orthonormal set,
and (iii) U †U = UU † = I, where U † is the conjugate transpose of U .

One of the earliest quantum finite automaton definitions [8,20] was obtained
by “quantumizing” the rtPFA model of Section 2 by positing that the transition
matrix for each symbol should be unitary. According to that definition,

M = {Q,Σ, {Uσ | σ ∈ Σ}, q1, Qa}

denotes a real-time quantum finite automaton (rtQFA) with state set Q, as
described above, and alphabet Σ. The machine starts out in the quantum state
|q1〉, which evolves by being multiplied with the unitary matrix Uσ whenever the
symbol σ is consumed, until the end of the left-to-right scanning of the input.
At that point, the state is measured, and the input is accepted if any member
of the set of accept states Qa ⊆ Q is observed.

We will see later (Sections 4.5 and 5) that one needs somewhat more gen-
eral operators to reach the full potential of QFAs. But this simple introduction
is already sufficient to demonstrate several examples where quantum machines
outperform their classical counterparts, as we are going to do in the next section.

4 Quantum Beats Classical: Five QFA-Based Examples

The algorithms to be presented in this section are based on a simple common
component, which we now describe.

Consider a QFA whose entire memory can have only two states forming
the set Q = {q1, q2}, i.e. just a quantum bit (qubit). We restrict ourselves to
real numbers as amplitudes. Any quantum state of such a single-qubit machine
can then be represented as a point on the unit circle of R

2, and any possible
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Fig. 1. The representation of rotation Uθ

unitary operator on it is either a reflection or a rotation. Let θ be the angle of
a counterclockwise rotation denoted Uθ (see also Figure 1):

Uθ =
(

cos θ − sin θ
sin θ cos θ

)
or

Uθ|q1〉 → cos θ|q1〉 + sin θ|q2〉
Uθ|q1〉 → − sin θ|q1〉 + cos θ|q2〉 .

Note that the (i, j)th entry of Uθ represents the amplitude of the transition from
state qj to state qj , where 1 ≤ i, j ≤ 2.

It is a well-known fact that if θ is a rational multiple of π, then Uθ is periodic,
and its repeated application causes the quantum state to visit a finite number
of points on the unit circle, returning to the same point after a finite number
steps. On the other hand, if θ is an irrational multiple of π, then Uθ is aperiodic
and dense on the unit circle, i.e. the quantum state would never visit the same
position on the unit circle.

We proceed with several examples that use such rotations in interesting ways.

4.1 A QFA Can Recognize Far More Tally Languages with Cutpoint

Define a rtQFA Rθ with state set Q as described above, and |q1〉 as the initial
state. Our alphabet is unary, Σ = {a}, and Rθ simply applies Uθ to the qubit
upon reading each a. At the end of the computation, the qubit is measured in
the computational basis, and the input is accepted if |q1〉 is observed.

It is clear that the empty string is accepted with probability 1. After reading
the string ak (k > 0), the qubit will be in state

|ψk〉 = cos kθ|q1〉 + sin kθ|q2〉.

Therefore, the acceptance probability of ak by Rθ is cos2 kθ.
As can be noticed by the reader, a QFA defines a probability distribution

over the strings on its input alphabet, {(w, fM (w)) | w ∈ Σ∗}. So, for the empty
string ε, fRαπ

(ε) is always 1 for any α ∈ R. If α is irrational, then there is no
nonempty string ak such that fRαπ

(ak) is 0 or 1. On the other hand, if α is
rational, then there is a minimum positive k such that fRαπ

(ak) is 1 (and so
fRαπ

(ajk) for any j ∈ N). We leave it as an exercise to the reader to determine
the values of α for which fRαπ

(ak) would equal 0.
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Since a QFA, say M , associates each string with a number in [0, 1], we can
split the set of all strings into three groups by picking a cutpoint λ in the interval
[0, 1]: the strings whose acceptance probabilities are less than, greater than, or
equal to the cutpoint. The strings accepted with probability greater than λ form
the language recognized (or “defined,” in somewhat older terminology) by M
with cutpoint λ [23]:

L(M,λ) = {w ∈ Σ∗ | fM (w) > λ}.

So, any QFA (or PFA) defines a language with a cutpoint. A language recognized
by a PFA with a cutpoint is called stochastic, and, it was shown that any language
recognized by a QFA with a cutpoint is guaranteed to be stochastic, too [27].

In his seminal paper on probabilistic automata, Rabin showed that there
are uncountably infinitely many stochastic languages [23]. He presented a 2-
state PFA on a binary alphabet, and then showed that a different language
is recognized by that PFA for each different cutpoint. This is not so for tally
languages, since 2-state PFAs can define only regular languages, and any n-state
PFA can define at most n nonregular languages with any cutpoint if the input
alphabet is unary [21]. On the other hand, a 2-state QFA can define uncountably
infinitely many tally languages [25], as we argue below:

Let Uαπ be a rotation with an irrational α, e.g.

Uαπ =

⎛
⎝

3
5 − 4

5

4
5

3
5

⎞
⎠ .

Since Uαπ is dense on the unit circle, there is always a k for any given two different
cutpoints λ1 and λ2 such that the accepting probability of ak lies between λ1 and
λ2. Thus, L(Rαπ, λ1) and L(Rαπ, λ2) are different. Since there are uncountably
many different possible cutpoints, the rtQFA Rαπ defines uncountably many
unary languages.

4.2 Nondeterministic QFAs Can Recognize Nonregular Languages

Quantum nondeterminism is defined as language recognition with cutpoint 0 [1].
In the classical case, realtime nondeterministic finite automata (equivalently, rtP-
FAs with cutpoint 0) define only regular languages. On the other hand, rtQFAs
with cutpoint 0 can recognize every language in a superset of regular languages
known as the exclusive stochastic languages (S�=) [26], where a language is defined
to be in S�= if there exists a PFA such that all and only the non-members are
accepted with probability 1

2 . Here, we present a very simple example.
Let M be a 2-state QFA defined on the binary alphabet Σ = {a, b}, with

initial state q1, and q2 as the single accept state. After reading an a (resp., a
b), M applies the rotation U√

2π (resp., the rotation U−√
2π). We consider the

language recognized by M with cutpoint 0.
It is clear that if M reads an equal number of a’s and b’s, the quantum

state will be in its initial position |q1〉, and so the accepting probability will be
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0. That is, each string containing equal number of a’s and b’s is definitely not
in the recognized language. For any other string, the quantum state ends up
on a point of the unit circle that does not intersect the main axes, and so the
acceptance probability will be nonzero, leading to the conclusion that each such
string is in the language. Therefore, M recognizes the nonregular language

NEQ = {w | |w|a �= |w|b},

where |w|σ denotes the number of occurrences of the symbol σ in string w, with
cutpoint 0 [8].

4.3 Succinct Exact Solution of Promise Problems

From a practical point of view, a useful algorithm should classify the input strings
with no error, or at least with high probability of correctness. We continue with
an exact QFA algorithm.

A promise problem P = (Pyes, Pno) (defined on Σ) is a pair of two disjoint
sets Pyes ⊆ Σ∗ and Pno ⊆ Σ∗. A promise problem P is said to be solved by a QFA
M exactly if M accepts each w ∈ Pyes with probability 1, and M accepts each
w ∈ Pno with probability 0. Note that there can be strings outside Pyes ∪ Pno,
and we do not care about the acceptance probabilities of these strings.

Real-time QFAs cannot be more succinct than real-time DFAs in the case of
exact language recognition [17], but things change for certain promise problems
[7]. For any k > 0, the promise problem EVENODDk is defined as

EVENODDkyes = {aj2k | j is a nonnegative even integer}
EVENODDkno = {aj2k | j is a nonnegative odd integer} .

If we pick θ = π
2k+1 , then the rtQFA Rθ (from Section 4.1) can solve EVENODDk

exactly: It starts in state |q1〉 and, after reading each block of a2k

, it visits
|q2〉,−|q1〉,−|q2〉, |q1〉, · · · . So we can solve each EVENODDk by a 2-state QFA. On
the other hand, any rtDFA solving EVENODDk requires at least 2k+1 states [7].1

The interested reader may find it enjoyable to obtain the result for rtDFAs as an
exercise. We also refer the reader to the recent works by Gruska and colleagues
[14,15,28] for further results on the succinctness of exact QFAs.

4.4 Succinct Bounded-Error Language Recognition

Consider the language

MODp = {ajp | j is a nonnegative integer}
for some prime number p. Any rtPFA that recognizes MODp with bounded error
has at least p states [4].

1 In fact, any bounded-error PFA or any two-way NFA also requires at least 2k+1

states for this problem [11,24].
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If we pick a θ = 2π
p , the familiar rtQFA Rθ can accept each member of MODp

exactly, and each non-member with some nonzero probability less than 1. The
maximum possible erroneous acceptance probability for non-members is realized
for input strings that bring the quantum state closest to −|q1〉 at the end of its
journey on the unit circle, as shown in Figure 2. The acceptance probabilities
for non-members can therefore be bound by

cos2
(

π

p

)
= 1 − sin2

(
π

p

)
,

and the rejection probability would be at least sin2
(

π
p

)
. As such, the error

Fig. 2. These two vectors are the closest that the quantum state can get to −|q1〉

committed by this family of algorithms nears 1 as p gets larger. But one can
obtain a O(log p)-state machine for any MODp for any desired (nonzero) amount
of tolerable error by combining several small machines with carefully selected
rotation angles. That means that the succinctness gap between QFAs and PFAs
can be exponential in the case of bounded-error language recognition [4,5]. In
fact, this bound is tight for the simple rtQFA model, employing only unitary
transformations, discussed in this section. We note that any language recognized
by an n-state (general) QFA with bounded-error can be recognized by a 2O(n2)-
state DFA, but whether this bound is tight is still an open question [6].

4.5 Bounded-Error Recognition of Nonregular Languages in
Polynomial Time

Our final example is about two-way automata, which can move their tape head
back and forth over the input string, and for which runtime is therefore an issue.
It is known that two-way PFAs cannot recognize any nonregular language with
bounded error in polynomial (expected) time [10]. We will show how to construct
a two-way QFA that recognizes the nonregular language

EQ = {w | |w|a = |w|b},
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with bounded error in polynomial time [2].
Our two-way QFA is actually just a two-way deterministic finite automaton

augmented with a qubit (see [2] for the general definition). The state set is
partitioned to three subsets, namely, the accept, reject, and non-halting states.
In each step of the execution, the classical portion of the machine determines
either a unitary operator or a measurement in the computational basis to be
applied to the quantum register.2 After this quantum evolution, the machine
makes a classical transition based on the scanned input symbol, current classical
state, and latest measurement outcome, updating the classical state and head
position accordingly. Execution ends when an accept or reject state is entered.

Note that we encountered a quantum machine which recognizes the comple-
ment of EQ with cutpoint 0 in Section 4.2. Modifying that machine by setting q1
as a non-halting state and designating q2 as a reject state, we obtain a QFA M
that is guaranteed to reject any member of EQ with probability 0, and to reject
non-members with some nonzero probability, in a single pass of the input from
the left to the right.

One of the nice properties of the rotation with angle
√

2π used by M is
that, if you start on the x-axis (|q1〉), the rotating vector always ends up in an
orientation that is no closer than an amount proportional to the inverse of the
number of rotation steps to the x-axis (see Figure 3). As indicated in the figure,
the rejection probability of any non-member is the square of 1√

2(|w|a−|w|b) , which

can be at least prej = 1
2|w|2 , where w is the input string.

Fig. 3. The minimum distance to the x-axis after k rotations (see [2] for the proof)

Consider what happens if we augment M to run in a loop, moving its head
back to the beginning of the tape and restarting if its left-to-right pass ends in the
non-halting state: For input strings in EQ, this new machine would run forever.
If the input is not in EQ, however, it would halt with rejection in polynomial
expected time.
2 Note that this machine does not fit the simplistic model of Section 3, since it allows

more than just unitary transformations of the quantum register. See Section 5.
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All that remains is to fix this machine so that it would eventually halt with
acceptance, rather than run forever, with high probability for input strings
in EQ, making sure that this fix does not spoil the property of non-members
being rejected with high probability. This is achieved by inserting a call to a
polynomial-time subroutine which accepts the input with probability pacc = prej

2
at the end of each iteration of the loop.

So our algorithm for EQ is:
-Run M
-Accept with probability 1

4|w|2
-If not halted yet, restart.
Since M never rejects a member of EQ erroneously, it is clear that this algo-

rithm accepts every member with probability 1. Any non-members would be
rejected with probability at least

∞∑
j=0

(1 − pacc − prej)j(prej) =
1

pacc + prej
prej =

2pacc

3pacc
=

2
3
,

meaning that the probability of erroneous acceptance is at most 1
3 , that is the

error bound. By repeating this procedure t times, and accepting only when all
t runs accept, the error bound can be reduced to 1

3t . The expected runtime is
polynomially bounded, since we made sure that each iteration of the loop has a
sufficiently great probability of halting.

And how do we implement the polynomial-time subroutine that accepts with
just the probability described above? This task is in fact realizable by classical
automata. A two-way PFA can easily implement a random walk: The head starts
on the first symbol of the input. Then, in each step, a fair coin is flipped, and the
head moves to the right (resp. left) if the result is heads (resp. tails), and, the
walk is terminated if the head reaches an end-marker. The details of such a walk
are given in Figure 4. A fair coin toss can be obtained by applying a rotation of
angle π

4 , i.e.
(

1√
2

− 1√
2

1√
2

1√
2

)
,

to a qubit in a computational basis state, and then measuring it.
It is another exercise for the reader to show how this subroutine can be

designed to accept the input with probability pacc = 1
4|w|2 by using random

walks.

5 General QFAs

As mentioned earlier, the requirement that the program of a QFA should con-
sist wholly of unitary transformations is an overly restrictive one, and several
subclasses of regular languages that cannot be recognized by the rtQFA model
of Section 3 have been identified [8]. In fact, this is true even for some proposed
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Fig. 4. The details of a random walk on the input w

generalizations of this QFA model, e.g., [3,12,18]. In Section 4.5, we saw a two-
way QFA model that has classical as well as quantum states, and the classical
states govern the computation flow and the determination of whether interme-
diate measurements or unitary transformations should be performed, depending
on both input symbols and previous measurement results. A real-time version
of such a model, realizing a unitary transformation, a projective measurement
(see Figure 5), and classical evolution in each step, has been defined formally in
[29], and can easily simulate any rtPFA, for instance. In this section, we focus
on a restricted version of this model, and show that the full power of superoper-
ators, generalizing unitary evolution and measurement transformations, is still
retained.

Projective measurements are a generalization of measurements in the computational
basis. Let Q be the set of states, and |ψ〉 be the current state. The state set may
have been decomposed into some disjoint subsets, e.g. Q = Q1 ∪ · · · ∪ Qk for some
k ∈ {1, . . . , n}. Based on this, we can decompose the whole space:

Hn = H1
n ⊕ · · · ⊕ Hk

n, Hj
n = span{|q〉 | q ∈ Qj} (1 ≤ j ≤ n).

Similarly, we can decompose |ψ〉 as |ψ̃1〉 + · · · + |ψ̃k〉 where |ψ̃j〉 ∈ Hj (1 ≤ j ≤ n)
and we use the ˜ notation for vectors whose lengths can be less than 1. A measure-
ment operator based on this decomposition forces the system to collapse into one of
these sub-systems when it is applied: There are k outcomes, say “1”,. . .,“k”, and the
outcome “j” can be obtained with probability

pj =
∑

ql∈Qj

|αl|2 = 〈ψ̃j |ψ̃j〉 (1 ≤ j ≤ k).

After getting the outcome “j” (pj > 0), the system collapses into the jth subspace,

and the new state is the normalization of |ψ̃j〉, which is
|ψ̃j〉√

pj
.

Fig. 5. Projective measurements

Suppose that the quantum register of our rtQFA is composed of two systems
called the main system (with the set of states Q = {q1, . . . , qn}) and the auxiliary
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system (with the set of states Ω = {ω1, . . . , ωl}, for some l, n > 0. So the state
space is Hl ⊗ Hn, and the set of quantum states is

{(ωj , qk) | 1 ≤ j ≤ l and 1 ≤ k ≤ n}.

Our machine also has l classical states {s1, s2, . . . , sl}, in correspondence with
the members of Ω, as will be described below.

Now suppose that the quantum state is |ωj〉 ⊗ |ψ〉, where |ωj〉 is one of the
computational basis states of the auxiliary system, and |ψ〉 ∈ Hn. That is, the
quantum states of the auxiliary and main systems are |ωj〉 and |ψ〉, respectively.
It will be guaranteed that the classical state in this case will be sj , mirroring
the auxiliary system state.

We will trace the execution of our machine for a single computational step.
The unitary operator Usj ,σ to be applied to the quantum register is determined
by the classical state sj , and the scanned symbol σ. All such operators of this
machine are products of two matrices

Usj ,σ = UσUsj
,

where the functionality of Usj
is to rotate the auxiliary state to ω1 from ωj , so

that the operator Uσ finds the quantum state of the overall system to be

|Ψ〉 = (|ψ〉(1), . . . , |ψ〉(n), 0, . . . , 0︸ ︷︷ ︸
n times

, . . . , 0, . . . , 0︸ ︷︷ ︸
n times

)†

before it acts. Note that only the first n columns of Uσ determine the state
attained after the evolution. Let us partition Uσ to n × n blocks. There are l2

of these blocks, but only the “leftmost” l, designated E1 through El below, are
significant for our purposes:

Uσ =

⎛
⎜⎜⎜⎝

E1 ∗ · · · ∗
E2 ∗ · · · ∗
...

...
. . .

...
El ∗ · · · ∗

⎞
⎟⎟⎟⎠ .

The reader can also verify that the state obtained after applying Uσ to |Ψ〉 is

|Ψ ′〉 =

⎛
⎜⎜⎜⎜⎝

|ψ̃1〉
|ψ̃2〉

...
|ψ̃l〉

⎞
⎟⎟⎟⎟⎠

,

where |ψ̃i〉 = Ei|ψ〉 for i ∈ {1, · · · , l}. Following this evolution, the auxiliary
system is measured in the computational basis, which amounts to a projective
measurement on the composite system. (This measurement is independent of
the input symbol processed at the current step.) The probability of obtaining
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outcome “k” (where 1 ≤ k ≤ l) is pk = 〈ψ̃k|ψ̃k〉, and if “k” is observed (pk > 0),

the quantum state of the main system collapses to |ψk〉 = |ψ̃k〉√
pk

. As the final
action of every computational step for any input symbol, the classical state is
set to sk to mirror the observation result “k”.

The reader might have noticed that all the information relevant to the com-
putation is kept in the main system, and only the first l columns of the unitary
operator actually affect the computation. It is therefore possible to trace the
entire computation by just knowing E = {E1, . . . , El}, and forgetting about the
classical state and the auxiliary system. E is in fact what is called a superoperator,
and each of the Ej are said to be its operation elements. Since they are composed
of l orthonormal columns of a unitary operator, the operation elements satisfy
the following equation that the reader can prove as an exercise:

l∑
j=1

E†
jEj = I.

We can now focus only on the main system as our machine, and think of the
classical state and the auxiliary system as representing the environment that the
machine interacts with. In that view, the computational step described above
has caused the machine to be in a mixture of pure states, appropriately called a
mixed state, which can be represented as

{(pj , |ψj〉) | 1 ≤ j ≤ l}.

But there is a more convenient way to represent such a mixture as a single
mathematical object, called a density matrix. Here is how to obtain the density
matrix describing the mixture above:

ρ =
l∑

j=1

pj |ψj〉〈ψj |.

(〈ψj | is defined to be the conjugate transpose of |ψj〉.) The reader can verify that,
for each j, the jth diagonal entry of ρ represents the probability of the system
being observed in the jth state. Therefore, the sum of all diagonal entries, the
trace of the matrix (Tr(ρ)), is equal to 1.

A simple derivation reveals how this mixed state resulted from the pure state
|ψ〉 through the application of our superoperator, as we represent ρ in terms of
|ψ〉 and the operation elements:

ρ =
l∑

j=1

pj |ψj〉〈ψj | =
l∑

j=1

pj
|ψ̃j〉√

pj

〈ψ̃j |√
pj

=
l∑

j=1

|ψ̃j〉〈ψ̃j | =
l∑

j=1

Ej |ψ〉〈ψ|E†
j .

In general, this is how you apply a superoperator to a state ρ to obtain the new
state ρ′:

ρ′ = E(ρ) =
l∑

j=1

EjρE†
j .
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A density matrix ρ has the following properties: (i) Tr(ρ) = 1, (ii) it is Hermitian,
and (iii) it is semi-positive. Moreover, any density matrix corresponds to an
actual mixed state.

We are ready to give the formal definition of a general QFA [16,27]. An
n-state QFA M is a five-tuple

{Q,Σ, {Eσ | σ ∈ Σ}, q1, Qa},

where (i) Q = {q1, . . . , qn} is the set of states, q1 ∈ Q is the initial state, and
Qa ⊆ Q is the set of accepting states; (ii) Σ is the alphabet; and, (iii) Eσ is the
superoperator defined for σ ∈ Σ with lσ operation elements: {Eσ,1, . . . , Eσ,lσ}.

Let w ∈ Σ∗ be the input. The computation starts in state ρ0 = |q1〉〈q1|.
After reading each symbol, the defined superoperator is applied,

ρt = Ewt
(ρt−1) =

lσ∑
j=1

Ewt,jρt−1E
†
wt,j ,

where 1 ≤ t ≤ |w|. After reading the whole input, a measurement in the compu-
tational basis is made, and the input is accepted if one of the accepting states
is observed. The overall accepting probability can be calculated as

fM (w) =
∑

qj∈Qa

ρ(j, j).

Simulation of Classical Machines. Let v be the state of an n-state proba-
bilistic system, say P : ⎛

⎜⎜⎜⎝

p1
p2
...

pn

⎞
⎟⎟⎟⎠ ,

n∑
j=1

pi = 1.

An n-state quantum system, say M , can represent v as

|v〉 =

⎛
⎜⎜⎜⎝

√
p1√
p2
...√
pn

⎞
⎟⎟⎟⎠ .

Suppose that P is updated by a stochastic matrix A, i.e. v′ = Av. Let us focus
on the jth state, whose probability is pj in v. Operator A maps pj to

pj

⎛
⎜⎜⎜⎝

A(1, j)
A(2, j)

...
A(n, j)

⎞
⎟⎟⎟⎠ ,
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that represents the contribution of the jth state of v to v′. Now, we define
a superoperator E with n operation elements {E1, . . . , En} that simulates the
effect of A as follows: The jth column of Ej is (

√
A1,j ,

√
A2,j , . . . ,

√
An,j)T ,

and all other entries are zeros. (The reader can easily verify that E is a valid
superoperator.) Then Ej maps |v〉 to

√
pj

⎛
⎜⎜⎜⎝

√
A(1, j)√
A(2, j)

...√
A(n, j)

⎞
⎟⎟⎟⎠ ,

that reflects the contribution of the jth column of A. By considering all oper-
ation elements, we can follow that the whole effect of A on v can be simulated
by E . Therefore, the evolution of P can be simulated by M by using a corre-
sponding superoperator for each stochastic operator if a measurement in the
computational basis is applied at the end of the computation of M.

A straightforward conclusion is that any rtPFA can be simulated by a rtQFA
having the same number of states. Moreover, since the tensor product of two
superoperators is another superoperator, a rtQFA can simulate the computations
of two rtQFAs in parallel. Therefore, rtQFAs are sufficiently general to simulate
all known classical and quantum real-time finite state automata.3

For two recent surveys on QFAs, we refer the reader to [22] and [6].

Acknowledgments. We first met quantum finite automata in Prof. Gruska’s book
on quantum computing [13], for which we would like to extend him our thanks.
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Abstract. We analyze the physical aspects and origins of currently pro-
posed oracles for (absolute) randomness.
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1 Metamathematical and Metaphysical Origin of Oracles
for Randomness

Jozef Gruska’s extensive reviews of the foundations of computing [11], and quan-
tum computing [12] documents his continued interest in the foundations of,
and the connections between, computation and physics. This encouraged me
to contribute to the physics of computation, in particular, by discussing non-
algorithmic oracles for randomness certified by physical principles.

The very existence of physical unknowables [17] and indeterminism is subject
to an ongoing debate that can be expected not to terminate at any time soon.
Thereby, like Odysseus trapped between Scylla and Charybdis, our perception
of how the universe is organized has been vacuously oscillating between, and
irritated by, claims of complete physical determinism on the one hand, as well
as indeterminism on the other hand.

Rather than arguing for one side or another, I would like to state upfront
that both positions are metaphysical; more precisely: from a physical perspective,
these claims are non-operational. And, formally, by reduction to the halting prob-
lem [11, Sec. 642], both of them are provably unprovable. Because, from a purely
phenomenological point of view, that is, in terms of the symbolic behaviour of
physical systems, any proof of determinism would imply solvability of the rule
inference problem, as well as total predictability even beyond the Busy Beaver
bound. Likewise, any claim of total indeterminism encounters the problem of
enumerating an infinity of “candidate theories of everything”, let alone their
future behaviour, as mentioned earlier.

Nevertheless, one way of corroborating physical indeterminism, which could
then be used for the construction of evidence-based oracles for randomness, would
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be to “screw open” physical boxes which allegedly produce random bits. We may
not be able to do so, because, say, relative to certain physical assumptions and
formal theorems such as complementarity and value indefiniteness, “nothing could
be in” such boxes. But even then we may, at least, put forward some theoretical
arguments which are based on what we are inclined to believe [3, 866]. In what
follows we shall do exactly this: we mention such oracles for randomness; that is,
some boxes containing allegedly indeterministic physical resources, and why we
believe (or not believe) that they act as physical sources of random bits.

A necessary and sufficient condition for this is the existence of gaps in the
natural laws, as discussed by Frank [8, Chapter III, Sec. 12]. Such gaps allow,
or rather necessitate, “unlawful behaviour” which could be utilized for physical
oracles of randomness.

2 Spontaneous Symmetry Breakdown and Deterministic
Chaos

Already in 1873, Maxwell identified a certain kind of instability at singular points
as rendering a gap in the natural laws [4, 211-212]: “. . . when an infinitely small
variation in the present state may bring about a finite difference in the state of
the system in a finite time, the condition of the system is said to be unstable.
It is manifest that the existence of unstable conditions renders impossible the
prediction of future events, if our knowledge of the present state is only approxi-
mate, and not accurate. . . . the system has a quantity of potential energy, which
is capable of being transformed into motion, but which cannot begin to be so
transformed till the system has reached a certain configuration, to attain which
requires an expenditure of work, which in certain cases may be infinitesimally
small, and in general bears no definite proportion to the energy developed in
consequence thereof.”

Fig. 1 depicts a one dimensional gap configuration envisioned by Maxwell:
a “rock loosed by frost and balanced on a singular point of the mountain-side,
the little spark which kindles the great forest, . . .” On top, the rock is in perfect
balanced symmetry. A small perturbation or (pressure or thermal) fluctuation
causes this symmetry to be broken, thereby pushing the rock either to the left
or to the right hand side of the potential divide. This dichotomic alternative can
be coded by 0 and by 1, respectively.

One may object to this scenario of spontaneous symmetry breaking by main-
taining that, if indeed the symmetry is perfect, there is no movement, and the
particle or rock stays on top of the tip (potential). Any slightest movement
might either result from a microscopic asymmetry of the initial state of the par-
ticle, or from fluctuations of any form, either in the particle’s position, or by
the surrounding environment of the particle. For instance, any collision of gas
molecules with the rock may push the latter over the edge by thermal fluctu-
ations. Therefore, the randomness resides in the fluctuations, amplified by the
instability. Whether or not any such fluctuation may be considered as creating
a gap is a question related to debates in statistical physics mentioned later.
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Fig. 1. (Color online) A gap created by a black particle sitting on top of a potential
well. The two final states are indicated by grey circles. Their positions can be coded
by 0 and 1, respectively.

A somewhat related scenario is that of deterministic chaos, because, as
Poincaré pointed out [15, Chapter 4, Section 2, p.+56–57] “it can be the case
that small differences in the initial values produce great differences in the later
phenomena; a small error in the former may result in a large error in the latter.
The prediction becomes impossible and we have a “random phenomenon.”

3 Quantum Beam Splitter

A quantum mechanical gap can be realized by a beam splitter, such as a half-
silvered mirror, with a 50:50 chance of transmission and reflection, as depicted
in Fig. 2. A gap certified by quantum value indefiniteness necessarily has to
operate with more than two exclusive outcomes [2]. Ref. [1] presents such a
qutrit configuration.
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1

Fig. 2. (Color online) A gap created by a quantum coin toss. A single quantum (symbol-
ized by a black circle from a source (left crossed circle) impinges on a semi-transparent
mirror (dashed line), where it is reflected and transmitted with a 50:50 chance. The
two final states are indicated by grey circles. The exit ports of the mirror can be coded
by 0 and 1, respectively.

One may object to this scenario of quantum indeterminism by pointing out
that it is merely based on a belief – actually, Born’s inclinations “to give up
determinism in the world of atoms” [3, p. 866] – with provable formal improv-
ability. We shall come back to related issues later.

One may also object that a lossless beam splitter has a quantum mechanical
representation as an invertible unitary operator U, and therefore is reversible.
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Indeed, this can be readily demonstrated operationally by serially composing
a lossless Mach-Zehnder interferometer with two beam splitters, thereby recon-
structing the original quantum state (signal); that is, more formally, U†U = I,
where “†” indicates the Hermitian adjoint, and I stands for the identity opera-
tor. How this kind of unitarity conforms with the view that a beam splitter can
be considered an “active element” of quantum randomness remains unresolved,
and is actually highly questionable [6,20]. Often vacuum fluctuations originat-
ing from the second, empty, input port are mentioned, but, pointedly stated [10,
p. 249], these “mysterious vacuum fluctuations . . . may be regarded as sugar
coating for the bitter pill of quantum theory.”

A lossless 50:50 beam splitter can be modelled by a normalized 2 × 2
Hadamard transformation U = 1√

2
H2 with rows ( 1√

2
, 1√

2
) and (− 1√

2
, 1√

2
),

respectively.

More generally, suppose we would like to construct a
1
n

:
1
n

: . . . :
1
n︸ ︷︷ ︸

n times

beam

splitter represented by a normalized Hadamard matrix 1√
n
Hn; that is, an

Hadamard matrix Hn divided by the square of (the dimension) n. An n × n
Hadamard matrix Hn has entries in {−1, 1} such that any two distinct rows or
columns of Hn, interpreted as vectors in a Hilbert space, have scalar product
zero; that is, they are orthogonal (or, equivalently, by requiring that its transpose
HT

n satisfies HnH
T
n = nIn).

A necessary condition for such a construction is that n = 1, n = 2, or
n = 4k for any k ∈ N. Hadamard’s conjecture claims that this is also a sufficient
condition for the existence of an n-dimensional Hadamard transformation; and
thus, for a corresponding equi-decomposition of quantum states into coherent
superpositions. (Of course, a quantum state can be decomposed into any fraction
of unity by suitable unitary transformations; this just represents a permutation
of the original state, or, in a different interpretation, a base change [16].)

A quantum oracle for Hadamard’s conjecture would be one which would, for
any k ∈ N, output 4k orthogonal 1

4k -equi-weighted mixtures of orthogonal states
spanning the entire 4k-dimensional (real) Hilbert space. A beam splitter realizing
Hadamard’s conjecture would possess the remarkable property that it converts a
signal input in any one of the 4k input ports into a coherent equi-superposition
of all output ports; with relative phase differences equal to 0 (corresponding to
equal relative sign), and π (corresponding to relative sign “−”).

At the same time, in terms of quantum states forming bases (or, by other
namings, blocks, subalgebras or contexts), Hadamard’s conjecture translates into
the existence of a particular kind of pure states equivalent to the projectors
corresponding to the row (column) vector of a normalized Hadamard matrix.
The set of row vectors of 1√

4k
H4k correspond to an orthogonal basis which is

(mutually) unbiased with respect to the Cartesian standard basis in R
4k.

Schwinger’s construction [16] can be used for the rendition of mutually unbi-
ased bases in arbitrary dimensions n; alas the base vectors may have com-
plex coordinates. The construction starts with the Cartesian standard basis
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{|e1〉, |e2〉, . . . , |en〉} and involves three steps: (i) a cyclic shift of the basis vectors
{|f1 = e2〉, . . . , |fn−1 = en〉, |fn = e1〉}, (ii) the construction of a unitary opera-
tor U by U =

∑n
i=1 |ei〉〈fi|; and finally (iii) the identification of the normalized

eigenvectors of U with the elements of a basis which is unbiased with respect
to the Cartesian standard basis. The associated normalized complex Hadamard
matrix is just the row (column) matrix of the elements of this basis. For the
sake of an example, we can readily write an algorithm [18] yielding a complex
Hadamard matrix of dimension 8; that is,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
i −1 −i 1 i −1 −i 1

−i −1 i 1 −i −1 i 1
(−1)1/4 i (−1)3/4 −1 −(−1)1/4 −i −(−1)3/4 1

−(−1)3/4 −i −(−1)1/4 −1 (−1)3/4 i (−1)1/4 1
(−1)3/4 −i (−1)1/4 −1 −(−1)3/4 i −(−1)1/4 1

−(−1)1/4 i −(−1)3/4 −1 (−1)1/4 −i (−1)3/4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Whether the Schwinger construction, for n = 4k, k ∈ N, can be extended to
produce only the real entries in {−1, 1} instead of complex numbers of modulus
unity remains unknown. One may conjecture that in this case the Dita decom-
position [5] of unitary matrices into products of diagonal phase matrices (with
modulus one entries) and orthogonal matrices – which in turn can be written
as compositions of rotations in two-dimensional subspaces – yields the appropri-
ate real Hadamard matrices by substituting 0 or π for all phases in the phase
matrices (thereby rendering diagonal elements 1 and −1, respectively), as well
as by identifying all rotation angles with ±π/4 (thereby rendering factors whose
absolute value is 1/

√
2).

4 Quantum Vacuum Fluctuations

As stated by Milonni [13, p. xiii] and others, “. . . there is no vacuum in the
ordinary sense of tranquil nothingness. There is instead a fluctuating quantum
vacuum.” One of the observable vacuum effects is the spontaneous emission
of radiation [19]: “. . . the process of spontaneous emission of radiation is one
in which “particles” are actually created. Before the event, it consists of an
excited atom, whereas after the event, it consists of an atom in a state of lower
energy, plus a photon.” Recent experiments achieve single photon production by
spontaneous emission, for instance by electroluminescence. Indeed, most of the
visible light emitted by the sun or other sources of blackbody radiation, including
incandescent bulbs, is due to spontaneous emission [13, p. 78] and thus is subject
to creatio ex nihilo.

A gap based on vacuum fluctuations is schematically depicted in Fig. 3. It
consists of an atom in an excited state, which transits into a state of lower
energy, thereby producing a photon. The photon (non-)creation can be coded
by the symbols 0 and 1, respectively.
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Fig. 3. (Color online) A gap created by the spontaneous creation of a photon

5 Analogies in Statistical Physics

In the following we shall briefly glance at two related physical issues – the pur-
ported (ir-)reversibility of quantum measurements, as well the character of the
second law of thermodynamics [14].

5.1 Wigner’s and Everett’s Arguments Against Quantum
Measurement

An extension of the observation context is what Wigner [20] and, in particu-
lar, Everett [6,7] had in mind when they argued against (irreversible and, in
principal, for reversible) measurement, because quantum mechanics allows for
two types of evolution: (i) the first type comprises irreversible measurements,
whereas (ii) the second mode is characterized by the unitary, that is, reversible
permutation, of quantum states in-between aforementioned measurements.

Alas, this is true only for all practical purposes, that is, relative to the physical
means [14] available to resolve the huge number of degrees of freedom involving
a “macroscopic” measurement apparatus. And yet, at least in principle, if the
unitary quantum evolution is taken to be universally valid, then any distinction
or cut between the observer and the measurement apparatus on the one side, and
the quantized object on the other side, is not absolute or ontic, but epistemic,
means-relative, subjective and conventional.

5.2 Analogies to the Second Law of Thermodynamics

There are good reasons to believe that also irreversibility in statistical physics
is means relative [14] and thus epistemic: if we cannot resolve individual con-
stituents of a group, and their degrees of freedom, then irreversibility is the
epistemic expression of our incapacity to do so. In contradistinction, suppose
the molecules are taken individually. In this case the second law might “dis-
solve into thin air” because of reversibility on the micro-description level. In
Maxwell’s own words [9, Document 15, p. 422] “I carefully abstain from asking
the molecules which enter where they last started from. I only count them and
register their mean velocities, avoiding all personal enquiries which would only
get me into trouble.”
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6 Caveats and Afterthoughts

Stated pointedly, we have essentially been talking about the emergence of events
out of nothing (e.g. creatio ex nihilo), and without any cause. Thereby, and for the
sake of accepting classical and quantum oracles for randomness, we are denying
the principle of sufficient reason, as well as negating Parmenides’ nothing comes
from nothing, which so powerfully guided the ancient Greek and modern western
Enlightenments.

More technically, we note without further discussion that any “diluted” inde-
terminism, or gap mechanism, could be “concentrated” to Borel normality by
assuming independence of bits in binary sequences.

As a last speculation, it might not be too unreasonable to contemplate that all
gap scenarios, including spontaneous symmetry breakdown and quantum oracles,
are ultimately based on vacuum fluctuations.
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Abstract. State complexity of quantum finite automata is one of the
interesting topics in studying the power of quantum finite automata. It
is therefore of importance to develop general methods how to show state
succinctness results for quantum finite automata. One such method is
presented and demonstrated in this paper. In particular, we show that
state succinctness results can be derived out of query complexity results.

1 Introduction

An important way to get deeper insights into the power of various quantum
resources and operations is to explore the power of various quantum variations
of the basic models of classical automata. Of a special interest is to do that
for various quantum variations of the classical automata, especially for those
models that use very limited amounts of quantum resources: states, correlations,
operations and measurements. This paper aims to contribute to such a line of
research.

Number of (basis) states used is a natural complexity measure for (quantum)
finite automata. The size of a (quantum) finite automaton is defined as the
number of (basis) states of the (Hilbert) space on which the automaton will
operate. In case of a hybrid, that is quantum/classical finite automata, it is
natural to consider both complexity measures – the number of classical states
and also the number of quantum (basis) states.

Quantum finite automata were introduced by Kondacs and Watrous [28] and
also by Moore and Crutchfields [33], and since that time they were intensively
explored [1,13,34,38]. State complexity and succinctness results are an impor-
tant research area of the classical finite automata theory, see [37], with a variety
of applications. Once quantum versions of classical finite automata were intro-
duced and explored, it started to be of large interest to find out, also through
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Science Foundation of China (Nos. 61272058, 61073054).

© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 231–245, 2014.
DOI: 10.1007/978-3-319-13350-8 18



232 S. Zheng and D. Qiu

succinctness results, a relation between the power of classical and quantum finite
automata models. This has turned out to be an area of surprising outcomes that
again indicated that the relations between the classical and the correspond-
ing quantum finite automata models are intriguing. In the past twenty years,
state complexity of several variants of quantum finite automata were deeply and
broadly studied [2–5,10,11,19,22–24,29–31,39,41–43].

State succinctness results were proved for some special languages and promise
problems and for several automata models. The methods used to prove those
results are various and often ad hoc. It is therefore natural to try to find out
whether there are quite general methods to get state succinctness results for
quantum finite automata. The answer is yes. We will show, in this paper, that
state succinctness results can be derived in a nice way out of query complexity
results. Here is the basic idea: State complexity is deeply related to commu-
nication complexity [27]. Buhrman et al. proved that various communication
complexity results can be derived out of query complexity results [14]. If a com-
munication protocol is simple enough, then we can use quantum finite automata
to implement it. By using this line of thought, state succinctness results can be
derived.

Quantum query complexity is the quantum generalization of the model of
decision tree complexity. In this model, an algorithm to compute a Boolean
function f : {0, 1}n → {0, 1} is charged for “queries” to the input bits, while any
intermediate computation is considered as free (see [15]).

Communication complexity was introduced by Yao [36] in 1979. In the setting
of two parties, Alice is given x ∈ {0, 1}n, Bob is given y ∈ {0, 1}n and their task
is to communicate in order to determine the value of some Boolean function f :
{0, 1}n ×{0, 1}n → {0, 1}, while exchanging as small number of bits as possible.
In this model, local computation is considered to be free, but communication is
considered to be expensive and has to be minimized. Moreover, for computation,
Alice and Bob can use all power available. There are usually three types of
communication complexities considered according to the models of protocols
used by Alice and Bob: deterministic, probabilistic and quantum.

Query complexity and communication complexity are related to each other.
By using a simulation technique that transforms quantum query algorithms to
quantum communication protocols, Buhrman et al. [14,16] obtained new quan-
tum communication protocols and showed the first impressively (exponential)
gap between quantum and classical communication complexity. In the reverse
direction, Buhrman et al. showed that how to use lower bounds for quantum
communication protocols to derive lower bounds for quantum query algorithms.

State complexity of finite automata and communication complexity are also
related to each other. We can use communication complexity results to prove
lower bounds on state complexity [25–27]. On the other hand, if the communi-
cation protocols are easy enough, then they can be simulated by finite automata
and obtain new state complexity results (upper bounds) for finite automata.

Therefore, we can build connections from query complexity to state com-
plexity. This could be a potential framework to get state succinctness results for
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quantum finite automata comparing to classical finite automata. We will demon-
strate for several cases in this paper, that how to use quantum query complexity
results to derive state succinctness results of finite automata.

We first consider the promise problem (partial function) studied in [32].
Namely, the problem

DJ′(x) =
{

1 if W (x) ∈ {0, 1, n − 1, n}
0 if W (x) = n

2 ,
(1)

where W (x) is the Hamming weight of x. Montanaro et al. [32] gave a quantum
query algorithm for DJ′ with 2 queries. However, their proof is quite complicated.
Motivated by the method from [7], we give a simpler quantum query algorithm
with 2 queries for DJ′.

Based on this simple query algorithm, we design a quantum communication
protocol for the following promise problem

EQ′(x, y) =
{

1 if H(x, y) ∈ {0, 1, n − 1, n}
0 if H(x, y) = n

2 ,
(2)

where H(x, y) is the Hamming distance between bit strings x and y. We further
prove that the exact quantum communication complexity of EQ′ is O(log n)
while the deterministic communication complexity is Ω(n).

Finally, we consider the promise problem A(n) = (Ayes(n), Ano(n)), where
Ayes(n) = {x#y##x#y |H(x, y) ∈ {0, 1, n−1, n}, x, y ∈ {0, 1}n} and Ano(n) =
{x#y##x#y |H(x, y) = n

2 , x, y ∈ {0, 1}n}. We will prove that the promise
problem A(n) can be solved exactly by a one-way finite automata with quantum
and classical state (1QCFA) with O(n2) quantum basis states and O(n3) clas-
sical states, whereas the sizes of the corresponding one-way deterministic finite
automata (1DFA) are 2Ω(n).

The paper is structured as follows. In Section 2 basic concepts and notations
are introduced and models involved are described in some details. A new quan-
tum query algorithm is given for DJ′ in Section 3. Communication complexity
of EQ′ is explored in Section 4. State complexity results for the promise problem
A(n) are showed in Section 5.

2 Preliminaries

In this section, we recall some basic definitions about query complexity, commu-
nication complexity and quantum finite automata. Concerning basic concepts
and notations of quantum information processing and finite automata, we refer
the reader to [20–22,35].

2.1 Exact Query Complexity

Exact quantum query complexity for partial functions was dealt with in [12,
17,23] and for total functions in [6–9,32]. Concerning more basic concepts and
notations concerning query complexity, we refer the reader to [15].
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An exact classical (deterministic) query algorithm for computing a Boolean
function f : {0, 1}n → {0, 1} can be described by a decision tree. A decision tree
T is a rooted binary tree where each internal vertex has exactly two children,
each internal vertex is labeled with a variable xi and each leaf is labeled with a
value 0 or 1. T computes a Boolean function f as follows: The start is at the root.
If this is a leaf then stop. Otherwise, query the variable xi that labels the root.
If xi = 0, then recursively evaluate the left subtree, if xi = 1 then recursively
evaluate the right subtree. The output of the tree is the value of the leaf that is
reached at the end of this process. The depth of T is the maximal length of a path
from the root to a leaf (i.e. the worst-case number of queries used on any input).
The exact classical query complexity (deterministic query complexity, decision
tree complexity) is the minimal depth over all decision trees computing f .

Let f : {0, 1}n → {0, 1} be a Boolean function and x = x1x2 · · · xn be an
input bit string. An exact quantum query algorithm for f works in a Hilbert
space with some fixed number of basis states. It starts in a fixed starting state,
then performs on it a sequence of transformations U1, Q, U2, Q, . . . , Ut, Q,
Ut+1. Unitary transformations Ui do not depend on the input bits, while Q,
called the query transformation, does, in the following way. Each of the basis
states corresponds to either one or none of the input bits. If the basis state
|ψ〉 corresponds to the i-th input bit, then Q|ψ〉 = (−1)xi |ψ〉. If it does not
correspond to any input bit, then Q leaves it unchanged: Q|ψ〉 = |ψ〉. Finally,
the algorithm performs a measurement in the standard basis. Depending on the
result of the measurement, the algorithm outputs either 0 or 1 which must be
equal to f(x). The exact quantum query complexity is the minimum number of
queries made by any quantum algorithm computing f .

2.2 Communication Complexity

We recall here only very basic concepts and notations of communication com-
plexity, and we refer the reader to [27] for more details. We will deal with the
situation that there are two communicating parties and with very simple tasks
of computing two inputs Boolean functions for the case one input is known to
one party and the other input to the other party. We will completely ignore
computational resources needed by parties and focus solely on the amount of
communication need to be exchanged between both parties in order to compute
the value of a given Boolean function.

More technically, let X,Y be finite subsets of {0, 1}n. We will consider two-
input functions f : X × Y → {0, 1} and two communicating parties. Alice is
given x ∈ X and Bob is given y ∈ Y . They want to compute f(x, y). If f is
defined only on a proper subset of X × Y , f is said to be a partial function or a
promise problem.

The computation of f(x, y) will be done using a communication protocol.
During the execution of the protocol, the two parties alternate roles in sending
messages. Each of these messages is a bit-string. The protocol, whose steps are
based on the communication so far, specifies also for each step whether the
communication terminates (in which case it also specifies what is the output).



From Quantum Query Complexity to State Complexity 235

If the communication is not to terminate, the protocol specifies what kind of
message the sender (Alice or Bob) should send next, as a function of its input
and communication so far.

A deterministic communication protocol P computes a (partial) function f ,
if for every (promised) input pair (x, y) ∈ X × Y the protocol terminates with
the value f(x, y) as its output. In a probabilistic protocol, Alice and Bob may
also flip coins during the protocol execution and proceed according to its output
and the protocol can also have an erroneous output with a small probability. In
a quantum protocol, Alice and Bob may use quantum resources to produce the
output or (qu)bits for communication.

Let P(x, y) denote the output of the protocol P. For an exact protocol, that
always outputs the correct answer, Pr(P(x, y) = f(x, y)) = 1.

The communication complexity of a protocol P is the worst case number of
(qu)bits exchanged. The communication complexity of f is, with which respect
to the communication mode used, the complexity of an optimal protocol for f .

We will use D(f) to denote the deterministic communication complexity and
QE(f) to denote the exact quantum communication complexity.

2.3 One-way Finite Automata with Quantum and Classical States

In this subsection we recall the definition of 1QCFA.
Two-way finite automata with quantum and classical states were introduced

by Ambainis and Watrous [1] and then explored in [39–44]. 1QCFA are one-
way versions of 2QCFA, which were introduced by Zheng et al. [41]. Informally,
a 1QCFA can be seen as a 1DFA which has access to a quantum memory of
a constant size (dimension), upon which it performs quantum transformations
and measurements. Given a finite set of quantum basis states Q, we denote by
H(Q) the Hilbert space spanned by Q. Let U(H(Q)) and O(H(Q)) denote the
sets of unitary operators and projective measurements over H(Q), respectively.

Definition 1. A one-way finite automaton with quantum and classical states A
is specified by a 10-tuple

A = (Q,S,Σ,Θ,Δ, δ, |q0〉, s0, Sacc, Srej) (3)

where:

1. Q is a finite set of orthonormal quantum basis states.
2. S is a finite set of classical states.
3. Σ is a finite alphabet of input symbols and let Σ′ = Σ ∪ {¢, $}, where ¢ will

be used as the left end-marker and $ as the right end-marker.
4. |q0〉 ∈ Q is the initial quantum state.
5. s0 is the initial classical state.
6. Sacc ⊂ S and Srej ⊂ S, where Sacc ∩ Srej = ∅, are sets of the classical

accepting and rejecting states, respectively.
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7. Θ is a quantum transition function

Θ : S \ (Sacc ∪ Srej) × Σ′ → U(H(Q)), (4)

assigning to each pair (s, γ) a unitary transformation.
8. Δ is a mapping

Δ : S × Σ′ → O(H(Q)), (5)

where each Δ(s, γ) corresponds to a projective measurement (a projective
measurement will be taken each time a unitary transformation is applied; if
we do not need a measurement, we denote that Δ(s, γ) = I, and we assume
the result of the measurement to be a fixed c).

9. δ is a special transition function of classical states. Let the results set of the
measurement be C = {c1, c2, . . . , cs}, then

δ : S × Σ′ × C → S, (6)

where δ(s, γ)(ci) = s′ means that if a tape symbol γ ∈ Σ′ is being scanned
and the projective measurement result is ci, then the state s is changed to s′.

Given an input w = σ1 · · · σl, the word on the tape will be w = ¢w$ (for
convenience, we denote σ0 = ¢ and σl+1 = $). Now, we define the behavior of
1QCFA A on the input word w. The computation starts in the classical state s0
and the quantum state |q0〉, then the transformations associated with symbols in
the word σ0σ1 · · · , σl+1 are applied in succession. The transformation associated
with a state s ∈ S and a symbol σ ∈ Σ′ consists of three steps:

1. Firstly, Θ(s, σ) is applied to the current quantum state |φ〉, yielding the new
state |φ′〉 = Θ(s, σ)|φ〉.

2. Secondly, the observable Δ(s, σ) = O is measured on |φ′〉. The set of pos-
sible results is C = {c1, · · · , cs}. According to quantum mechanics princi-
ples, such a measurement yields the classical outcome ck with probability
pk = ||P (ck)|φ′〉||2, and the quantum state of A collapses to P (ck)|φ′〉/√

pk.
3. Thirdly, the current classical state s will be changed to δ(s, σ)(ck) = s′.

An input word w is assumed to be accepted (rejected) if and only if the classical
state after scanning σl+1 is an accepting (rejecting) state. We assume that δ
is well defined so that 1QCFA A always accepts or rejects at the end of the
computation.

Language acceptance is a special case of so called promise problem solving.
A promise problem is a pair A = (Ayes, Ano), where Ayes, Ano ⊂ Σ∗ are disjoint
sets. Languages may be viewed as promise problems that obey the additional
constraint Ayes ∪ Ano = Σ∗.

A promise problem A = (Ayes, Ano) is solved exactly by a finite automaton
A if

1. ∀w ∈ Ayes, Pr[A accepts w] = 1, and
2. ∀w ∈ Ano, Pr[A rejects w] = 1.
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3 An Exact Quantum Query Algorithm for DJ′(x)

Montanaro et al. [32] gave a quantum algorithm for DJ′ with 2 queries. However,
their proof is complicated. Motivated by the method from [7], we give a simpler
algorithm with 2 queries for DJ′ as follow:

We use basis states |0, 0〉, |i, 0〉, |i, j〉 and |k〉 with 0 ≤ i < j ≤ n and
1 ≤ k ≤ n − 2. A basis state |i, j〉 corresponds to an input bit xi for 1 ≤ i ≤ n;
a basis state |k〉 corresponds to an input bit yk for 1 ≤ k ≤ n − 2 (yk is some
certain bit xi) and the other basis states do not correspond to any input bit.

1. The algorithm A begins in the state |0, 0〉 and then a unitary mapping U1 is
applied on it:

U1|0, 0〉 =
n∑

i=1

1√
n

|i, 0〉. (7)

2. A then performs the query:

n∑
i=1

1√
n

|i, 0〉 →
n∑

i=1

1√
n

(−1)xi |i, 0〉. (8)

3. A performs a unitary mapping U2 to the current state such that

U2|i, 0〉 =
∑

j>i≥1

1√
n

|i, j〉 −
∑

1≤j<i

1√
n

|j, i〉 +
1√
n

|0, 0〉 (9)

and the resulting quantum state will be

U2

n∑
i=1

1√
n

(−1)xi |i, 0〉 =
1
n

n∑
i=1

(−1)xi |0, 0〉 +
1
n

∑
1≤i<j

((−1)xi − (−1)xj )|i, j〉.

(10)
4. A measures the resulting state in the standard basis. If the outcome is |0, 0〉,

then
∑n

i=1(−1)xi �= 0 and DJ′(x) = 1. Otherwise, suppose that we get the
state |i, j〉, then we have xi �= xj . Let y = x \ {xi, xj}, we have W (y) ∈
{0, n − 2, n−2

2 }. If W (y) = n−2
2 , then DJ′(x) = 0. If W (y) ∈ {0, n − 2}, then

DJ′(x) = 1. The remaining question is exactly the Deutsch-Jozsa promise
problem [17] and we can get the answer with 1 query as follows: we use the
subalgorithm B to solve the remaining promise problem using n−2 quantum
basis states |1〉, . . . , |n − 2〉 that will work as follows:
(a) B begins in the state |1〉 and performs on it a unitary transformation U3

such that

U3|1〉 =
n−2∑
k=1

1√
n − 2

|k〉. (11)

(b) B performs a query Q:

n−2∑
k=1

1√
n − 2

|k〉 →
n−2∑
k=1

1√
n − 2

(−1)yk |k〉 (12)
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(c) B performs a unitary transformation U4 = U−1
3 and

U−1
3

n−2∑
k=1

1√
n − 2

(−1)yk |k〉 =
1

n − 2

n−2∑
k=1

(−1)yk |1〉 +
n−2∑
k=2

βk|k〉, (13)

where βk are amplitudes that we do not need to be specified exactly.
(d) B measures the resulting state in the standard basis and outputs 1 if the

measurement outcome is |1〉 and 0 otherwise.
According to [7], the unitary mapping U2 exists. The rest of the proof is easy
to verify. Obviously, the algorithm A uses 2 queries.

4 Communication Complexity of EQ′(x, y)

In this section, we will prove that QE(EQ′) is O(log n) while D(EQ′) is Ω(n).

Theorem 1. QE(EQ′) ∈ O(log n).

Proof. Assume that Alice is given an input x = x1, · · · , xn and Bob an input
y = y1, · · · , yn. The following quantum communication protocol P computes EQ′

using O(n2) quantum basis states |0, 0〉, |i, 0〉, |i, j〉 and |k〉 with 0 ≤ i < j ≤ n
and 1 ≤ k ≤ n − 2 as follows:

1. Alice begins with the quantum state |ψ0〉 = |0, 0〉 and performs on it the
unitary map U1. The quantum state is changed to

|ψ1〉 = U1|0, 0〉 =
1√
n

n∑
i=1

|i, 0〉. (14)

2. Alice applies the unitary map Ux to the current state such that Ux|i, 0〉 =
(−1)xi |i, 0〉 for i > 0 and the quantum state is changed to

|ψ2〉 = Ux|ψ1〉 =
1√
n

n∑
i=1

(−1)xi |i, 0〉. (15)

3. Alice then sends her current quantum state |ψ2〉 to Bob.
4. Bob applies the unitary map Uy to the state that he has received such that

Uy|i, 0〉 = (−1)yi |i, 0〉 for i > 0 and the quantum state is changed to

|ψ3〉 = Uy|ψ2〉Ux =
1√
n

n∑
i=1

(−1)xi+yi |i, 0〉. (16)

5. Bob applies the unitary map U2 to his quantum state and the quantum state
is changed to

|ψ4〉 = U2|ψ3〉 =
1
n

n∑
i=1

(−1)xi+yi |0, 0〉+
1
n

∑
1≤i<j

((−1)xi+yi − (−1)xj+yj )|i, j〉.

(17)
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6. Bob measures the resulting state in the standard basis and outputs 1 if the
measurement outcome is |0, 0〉. Otherwise, suppose that the outcome is |i, j〉.
Bob sends i and j to Alice using classical bits.

7. After Alice receives i and j, let x′ = x1 . . . xi−1xi+1 . . . xj−1xj+1 . . . xn. (In
convenience, we write x′ = x′

1 . . . x′
n−2). Alice applies U3 to the basis state

|1〉 such that the quantum state is changed to

|ψ5〉 = U3|1〉 =
1√

n − 2

n−2∑
k=1

|k〉. (18)

8. Alice then applies Ux′ to the current state such that Ux′ |k〉 = (−1)x′
k |k〉 for

k > 0 and the quantum state is changed to

|ψ6〉 =
1√

n − 2

n−2∑
k=1

(−1)x′
k |k〉. (19)

9. Alice sends her current quantum state |ψ6〉 to Bob.
10. Bob applies the unitary map Uy′ to the state that he has received such that

Uy′ |k〉 = (−1)y′
k |k〉 for k > 0, where y′ = y1 . . . yi−1yi+1 . . . yj−1yj+1 . . . yn.

(In convenience, we write y′ = y′
1 . . . y′

n−2). The quantum state is changed
to

|ψ7〉 =
1√

n − 2

n−2∑
k=1

(−1)x′
k+y′

k |k〉. (20)

11. Bob performs a unitary transformation U4 = U−1
3 to the current state and

the quantum state is changed to

|ψ8〉 = U4|ψ7〉 =
1

n − 2

n−2∑
k=1

(−1)x′
k+y′

k |1〉 +
n−2∑
k=2

βk|k〉, (21)

where βk are amplitudes that we do not need to be specified exactly.
12. Bob measures the resulting state in standard basis and outputs 1 if the

measurement outcome is |1〉 and outputs 0 otherwise.

The unitary transformations U1, U2, U3 and U4 are the same ones as defined in
Section 3.

If H(x, y) ∈ {0, n}, then the quantum state in Step 5 is

|ψ4〉 =
1
n

n∑
i=1

(−1)xi+yi |0, 0〉 = ±|0, 0〉. (22)

Bob will get the quantum state |0, 0〉 after the measurement in Step 6 and output
1 as the result of EQ′(x, y).

If H(x, y) ∈ {1, n − 1}, then there are two cases:

a) If the measurement outcome in Step 6 is |0, 0〉 and Bob outputs 1 as the
result of EQ′(x, y).
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b) If the measurement outcome in Step 6 is |i, j〉, then H(x′, y′) ∈ {0, n − 2}
and the quantum state in Step 11 is

|ψ8〉 =
1

n − 2

n−2∑
k=1

(−1)x′
k+y′

k |1〉 = ±|1〉 (23)

Bob will get the quantum state |1〉 after the measurement in Step 12 and
output 1 as the result of EQ′(x, y).

If H(x, y) = n
2 , then Bob will output 0 as the result of EQ′(x, y) in Step 12.

In Step 3 Alice sends log(n2)� qubits, in Step 6 Bob sends 2log(n)� bits
and in Step 9 Alice sends log(n − 2)� qubits. Since we can use qubits to send
bits, it is clear that this protocol uses only O(log n) qubits for communication.

The proof for deterministic communication lower bound is similar to the ones
in [15,16]. In order to obtain an exponential quantum speed-up in [16], n

2 must
be an even integer in the distributed Deutsch-Jozsa promise problem (see [23]
for argument). However, n

2 can be arbitrary integer in the promise problem EQ′

in this paper.
We use so called “rectangles” lower bound method [27] to prove the result.
A rectangle in X × Y is a subset R ⊆ X × Y such that R = A × B for some

A ⊆ X and B ⊆ Y . A rectangle R = A×B is called 1(0)-rectangle of a function
f : X × Y → {0, 1} if for every x ∈ A and y ∈ B the value of f(x, y) is 1 (0).
Moreover, Ci(f) is defined as the minimum number of i-rectangles that partition
the space of i-inputs (such inputs x and y that f(x, y) = i) of f .

Lemma 1. [27] D(f) ≥ max{log C1(f), log C0(f)}.
Remark 1. For a partial function f : X ×Y → {0, 1} with domain D, a rectangle
R = A × B is called 1(0)-rectangle if the value of f(x, y) is 1(0) for every
(x, y) ∈ D ∩ (A × B) – we do not care about values for (x, y) �∈ D. The above
lemma still holds for promise problems (that is for partial functions).

Theorem 2. D(EQ′) ∈ Ω(n).

Proof. Let P be a deterministic protocol for EQ′. There are two cases:
Case 1: n

2 is even. We consider the set E = {(x, x), (x, x) |W (x) = n
2 }. For

every (x, y) ∈ E, we have P(x, y) = 1. Suppose there is a 1-monochromatic
rectangle R = A×B ⊆ {0, 1}n ×{0, 1}n such that P(x, y) = 1 for every promise
pair (x, y) ∈ R. Let S = R ∩ E. For x, y ∈ {0, 1}n, let us denote |x ∧ y| =∑n

i=1 xi ∧ yi. We now prove that for any distinct (x, x′), (y, y′) ∈ S, |x ∧ y| �= n
4 .

According to the assumption that (y, y′) ∈ S ⊂ E, we have y′ = y or y′ = y.
If |x ∧ y| = n

4 , then H(x, y) = 2(n
2 − n

4 ) = n
2 = H(x, y) and P(x, y′) = 0. Since

(x, x′) ∈ R and (y, y′) ∈ R, we have (x, y′) ∈ R and P(x, y′) = 0, which is a
contradiction.



From Quantum Query Complexity to State Complexity 241

According to Corollary 1.2 from [18], we have |S| ≤ 1.99n. Therefore, the
minimum number of 1-monochromatic rectangles that partition the space of
inputs is

C1(EQ′) ≥ |E|
|S| ≥

2
(

n
n/2

)

(1.99)n
>

2n+1/n

(1.99)n
. (24)

The deterministic communication complexity is then

D(EQ′) ≥ log C1(EQ′) > log
2n+1/n

(1.99)n
> 0.0073n. (25)

Case 2: n
2 is odd. We assume that n = 4k + 2. We consider the set E =

{(x, x′) |W (x) = n
2 }, where x′

n = xn = 1 and x′
i = 1 − xi for i < n. For every

(x, x′) ∈ E, we have H(x, x′) = n − 1 and P(x, x′) = 1. Suppose there is a
1-monochromatic rectangle R = A×B ⊆ {0, 1}n ×{0, 1}n such that P(x, y) = 1
for every promise pair (x, y) ∈ R. Let S = R ∩ E. We now prove that for any
distinct (x, x′), (y, y′) ∈ S,

∑n−1
i=1 |xi ∧ yi| �= k, that is |x ∧ y| �= k + 1.

If |x∧y| = k+1, without a lost of generality, let x =

k︷ ︸︸ ︷
1 · · · 1

k︷ ︸︸ ︷
1 · · · 1

k︷ ︸︸ ︷
0 · · · 0

k+1︷ ︸︸ ︷
0 · · · 0 1,

and y =

k︷ ︸︸ ︷
1 · · · 1

k︷ ︸︸ ︷
0 · · · 0

k︷ ︸︸ ︷
1 · · · 1

k+1︷ ︸︸ ︷
0 · · · 0 1. We have H(x, y′) = k + k + 1 = n

2 and
P(x, y′) = 0. Since (x, x′) ∈ R and (y, y′) ∈ R, we have (x, y′) ∈ R and
P(x, y′) = 0, which is a contradiction.

According to Corollary 1.2 from [18], we have |S| ≤ 1.99n. Therefore, the
minimum number of 1-monochromatic rectangles that partition the space of
inputs is

C1(EQ′) ≥ |E|
|S| ≥

(
n−1

n/2−1

)

(1.99)n−1
>

2n−1/(n − 1)
(1.99)n−1

. (26)

The deterministic communication complexity is then

D(EQ′) ≥ log C1(EQ′) > log
2n−1/(n − 1)

(1.99)n−1
> 0.0073n. (27)

Therefore the theorem has been proved.

5 State Succinctness Results

Now we are ready to derive the state succinctness result.

Theorem 3. The promise problem A(n) can be solved exactly by a 1QCFA A(n)
with O(n2) quantum basis states and O(n3) classical states, whereas the sizes of
the corresponding 1DFA are 2Ω(n).

Proof. Let x = x1 · · · xn and y = y1 · · · yn be in {0, 1}n. The input word on the
tape will be w = ¢x#y##x#y$. Let us consider a 1QCFA A(n) with O(n2)
quantum basis states {|0, 0〉, |i, 0〉, |i, j〉, |k〉 : 0 ≤ i < j ≤ n, 1 ≤ k ≤ n − 2} and
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O(n3) classical states {Sijp : 0 ≤ i, j, p ≤ n + 1} (some of the states may be not
used in the automaton actions).

A(n) starts in the initial quantum state |0, 0〉 and the initial classical state
S000. We use classical states Sijp (1 ≤ p ≤ n + 1) to point out the positions of
the tape head that will provide some information for quantum transformations.
If the classical state of A(n) will be Sijp (1 ≤ p ≤ n) that will mean that the
next scanned symbol of the tape head is the p-th symbol of x(y) and Sijn+1

means that the next scanned symbol of the tape head is #($).
The behavior of A(n) is composed of two parts. The first part is the behavior

of A(n) when reading the prefix of the input, namely ¢x#y#. In this part, A(n)
uses quantum basis state {|0, 0〉, |i, 0〉, |i, j〉 : 0 ≤ i < j ≤ n} and classical states
S00p (0 ≤ p ≤ n+1) to simulate Steps 1 to 6 in the proof of Theorem 1. After the
measurement at the end of the first part, if the outcome is |0, 0〉, then the input
is accepted. Otherwise, suppose that the outcome is |i, j〉, the classical state will
be changed to Sij0 (1 ≤ i < j ≤ n, which means that H(xixj , yiyj) = 1 and the
input bits xi, xj , yi, yj will be skipped during the second part of the behavior
of A(n). The second part is the behavior of the automation when reading the
second part of the input #x#y$. In this part, A(n) uses quantum basis states
{|k〉 : 1 ≤ k ≤ n − 2} and classical states Sijp (0 ≤ p ≤ n + 1) to simulate Steps
7 to 12 in the proof of Theorem 1. The automaton proceeds as follows:

1. A(n) reads the left end-marker ¢, performs U1 on the initial quantum state
|0, 0〉, changes its classical state to δ(S000, ¢) = S001, and moves the tape
head one cell to the right.

2. Until the currently scanned symbol σ is not #, A(n) does the following:
(a) Applies Θ(S00p, σ) = Up,σ to the current quantum state.
(b) Changes the classical state S00p to S00p+1 and moves the tape head one

cell to the right.
3. A(n) changes the classical state S00p+1 to S001 and moves the tape head one

cell to the right.
4. Until the currently scanned symbol σ is not #, A(n) does the following:

(a) Applies Θ(S00p, σ) = Up,σ to the current quantum state.
(b) Changes the classical state S00p to S00p+1 and moves the tape head one

cell to the right.
5. When # is reached, A(n) performs U2 on the current quantum state.
6. A(n) measures the current quantum state in the standard basis. If the out-

come is |0, 0〉, A(n) accepts the input; otherwise, suppose that the outcome
is |i, j〉, A(n) changes the classical state to Sij0, moves the tape head one
cell to the right.

7. A(n) reads #, applies Θ(Sij0,#) = U3Uij to the current quantum state,
changes its classical state to Sij1, and moves the tape head one cell to the
right.

8. Until the currently scanned symbol σ is not #, A(n) does the following:
(a) Applies Θ(Sijp, σ) = Uijp,σ to the current quantum state.
(b) Changes the classical state Sijp to Sijp+1 and moves the tape head one

cell to the right.
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9. A(n) changes the classical state Sijp+1 to Sij1 and moves the tape head one
cell to the right.

10. While the currently scanned symbol σ is not the right end-marker $, A(n)
does the following:
(a) Applies Θ(Sijp, σ) = Uijp,σ to the current quantum state.
(b) Changes the classical state Sijp to Sijp+1 and moves the tape head one

cell to the right.
11. When the right end-marker is reached, A(n) performs U4 on the current

quantum state.
12. A(n) measures the current quantum state in the standard basis. If the out-

come is |1〉, A(n) accepts the input; otherwise, rejects the input.

where unitary transformations U1, U2, U3, U4 are the ones defined in the proof
of Theorem 1 and

Up,σ|i, j〉 = (−1)σ|i, j〉 if i = p;
Up,σ|i, j〉 = |i, j〉 if i �= p;
Uij |i, j〉 = |1〉;

Uijp,σ|k〉 = (−1)σ|k〉 if p < i and k = p;
Uijp,σ|k〉 = |k〉 if p < i and k �= p;
Uijp,σ|k〉 = |k〉 if p = i;
Uijp,σ|k〉 = (−1)σ|k〉 if i < p < j and k = p − 1;
Uijp,σ|k〉 = |k〉 if i < p < j and k �= p − 1;
Uijp,σ|k〉 = |k〉 if p = j;
Uijp,σ|k〉 = (−1)σ|k〉 if p > j and k = p − 2;
Uijp,σ|k〉 = |k〉 if p > j and k �= p − 2.

It is easy to verify that unitary transformation Up,σ, Uij and Uijp,σ exist.
The rest of the proof is analogues to the proof in Theorem 1.

According to Theorem 2 , D(EQ′) ∈ Ω(n). Therefore, it is easy to see that
the sizes of the corresponding 1DFA for A(n) are 2Ω(n) [27].
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artiom@math.md
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61, av. Général de Gaulle, 94010 Créteil, France
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Abstract. In this paper we overview several universal universality con-
structions for different type of devices based on (circular) string rewrit-
ing, multiset rewriting and splicing operations. We consider systems that
have relatively small description and that are or can be effectively used
for subsequent constructions of (small) universal devices.

1 Introduction

The concept of universality was first formulated by A. Turing in [45]. He con-
structed a universal (Turing) machine capable of simulating the computation of
any other (Turing) machine. This universal machine takes as input a description
of the machine to simulate, the contents of its input tape, and computes the
result of its execution on the given input.

More generally, the universality problem for a class of computing devices (or
functions) C consists in finding a fixed element M of C able to simulate the
computation of any element M′ of C using an appropriate fixed encoding. More
precisely, if M′ computes y on an input x (we will write this as M′(x) = y),
then M′(x) = f(M(g(M′), h(x))), where h and f are the encoding and decod-
ing functions, respectively, and g is the function retrieving the number of M′

in some fixed enumeration of C. These functions should not be too complicated,
otherwise the universal machine will be trivial, e.g. when f is partially recursive
the machine can contain only one instruction – stop. It is commonly admitted
that (general) recursive functions can be used for encoding and decoding. We
remark that M can be also considered as a unary function by using an appro-
priate encoding of M′ and x.

Let us stress here an important distinction between computational complete-
ness and universality. Given a class C of computability models, we say that C
is computationally complete if the devices in C can characterize the power of
Turing machines (or of any other type of equivalent devices). This means that
given a Turing machine M one can find an element C in C such that C is equiv-
alent with M . Thus, completeness refers to the capacity of covering the level
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of computability (in grammatical terms, this means to generate all recursively
enumerable languages). Universality is an internal property of C and it means
the existence of a fixed element M of C which is able to simulate any given
element E (of C), providing that an appropriate encoding of E and of the input
is given. If C does not have a universal element, then there is a family C′ ⊃ C
that contains an element M universal for C. We note that C′ is not necessarily
universal for RE. We remark that these notions refer to the classical comput-
ing models. When additional features are present, like for example in quantum
computing, the notions of the universality and completeness become completely
different [17,18].

In 1956 Shannon [44] considered the question of finding the smallest pos-
sible universal Turing machine where the size is calculated as the number of
states and symbols. In the early sixties, Minsky and Watanabe had a running
competition to see who could find the smallest universal Turing machine [30,
47]. Later, Rogozhin showed the construction of several small universal Turing
machines [40]. An overview of recent results on this topic can be found in [33].
Other computational models were also considered, e.g. cellular automata [46]
with a construction of universal cellular automata of rather small size; see [34,48]
for an overview.

Small universal devices have mostly theoretical importance as they demon-
strate the minimal ingredients needed to achieve a complex (universal) compu-
tation. Their construction is a long-standing and fascinating challenge involving
a lot of interconnections between different models, constructions, and encodings.

In this paper we adopt a unified view on computational devices and con-
sider four classes of models based on different underlying operations: (1) string
rewriting; (2) circular string rewriting; (3) multiset rewriting; and (4) splicing.
Turing machines are well known examples of the models from the first class,
Post systems are a representative of the second class. The third class contains
such models as Petri nets and the fourth class contains for example time varying
distributed H systems. We remark that models dealing with integer numbers
directly can be interpreted in terms of multiset rewriting, which offers a repre-
sentation of an arbitrary integer mapping. For each considered model we give a
sketch of its definition and of the corresponding universality construction.

2 Models Based on String Rewriting

In this section we consider the operation of string rewriting r : u → v, which
is applicable to a string w1uw2 yielding w1vw2 (we denote this as w1uw2 ⇒r

w1vw2). It can be seen that a Turing machine can be considered as instance of
such an operation, especially if the string representation of the configuration is
used. We also remark that considering a string rewriting operation on multiple
strings in parallel yields multi-tape Turing machines and using a matrix or a
graph controlled framework permits to represent multi-head machines.
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2.1 Turing Machines

We will consider a standard definition of a Turing machine, e.g. from [16,40]. We
will use the notation M = (Q,T, a0, q0, F, δ), where Q is a finite set of states, T is
the tape alphabet, a0 ∈ T is the blank symbol, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states and where δ is a transition function. A configuration
of the Turing machine M is the following word w1qiakw2, where w1akw2 is the
part of the tape which is not empty, qi is the state of the machine and ak is the
cell which is examined by the head of the machine.

It can be easily seen that the transition from configuration w1qiakw2 to
w1alqjw2 corresponds to the application of rewriting rule qiak → alqj . Similarly,
a left move corresponds to a set of rewriting rules aqiak → qjaal, for all a ∈ T
and a stationary move corresponds to the rewriting qiak → qjal. For the result
it is sufficient to consider rules that erase a final state qf → λ, qf ∈ F .

The topic related to universal Turing machines is very well covered in the
literature. We refer to some good overviews from this area [27,33] for more dis-
cussion on the subject. We only give in Figure 1 the sizes of known constructions
of universal Turing machines [33].
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Fig. 1. State-symbol plot of known results on small universal Turing machines

We remark that when translating Turing machines to string rewriting, the
number of left instructions and the number of symbols mostly counts for a uni-
versal construction. In this case, universal type-0 grammars with 68 rules can be
constructed based on universal Turing machine with 18 states and 2 symbols.
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2.2 Networks of Evolutionary Processors

In this subsection we would like to give another example of a universal construc-
tion based on a string rewriting. The model of a network of evolutionary proces-
sors is obtained as a restriction of the model of networks of language processors.
The main idea is that the rewriting system is composed of several components
(groups) arranged in a (communication) graph and containing simple rewrit-
ing rules (inserting or deleting or substituting one symbol in the string). Each
component also have two regular input and output filters (languages). The com-
putation is performed as a sequence of two subsequent steps. At the computation
step, one of the applicable rewriting rules is performed. At the communication
step the string being processed by component i can be further processed by a
component j if it belongs to the regular language of the output filter of i and of
the input filter of j (of cause we suppose that i and j are connected on the com-
munication graph). This is quite powerful feature similar to regulated rewriting
using target languages. The result consists of all strings that reach some final
component. We refer to [8,10] for more details.

In the article [23] a universal construction using only 4 rules is given. This
construction simulates register machines and it is clear that the whole complex-
ity is hidden in the regular filter. Another construction from the same article
simulates any Turing machine in polynomial time and has 7 rules.

3 Models Based on Circular String Rewriting

While the models considered in this section are based on the circular string
rewriting, the result of the computation is often considered as a linear string.
This can be obtained by considering that each string has a start (or end) marker,
say, #, that permits to linearize the string, this marker being usually omitted
from the final result. In the remaining of this section we will require that the
marker # shall be present once at both sides of any rewriting rule.

Consider a circular rewriting rule x#u → v#y, where u, x, y, v ∈ V ∗. Note
that this rule may be viewed as synchronized (linear) string rewriting at both
ends: it applies to a string starting with u and ending with x, replacing them
with y and v, respectively (uwx ⇒ ywv).

Moreover, it is possible to use a graph-controlled mechanism for the rewriting.
In this case we track the current state during the computation and the rules
from each state indicate what is the next state. We will write such a rule as
(x#u → v#y, p → q), where p, q are states. This rule is applied to a string uwx
in state p, resulting in string ywv in state q. Such a rule can be written in a very
simple way, writing states p and q instead of # marker: xpu → vqy.

The following are important special case of circular rewriting rules, where at
least x and y are empty.

Post normal rewriting rule P [u/v] ≡ #u → v#, u, v ∈ V ∗, deletes u after
the marker (i.e., at the left end of the string) and inserts v before the marker (i.e.,
at the right end of the string in the linear interpretation): uw ⇒ wv, w ∈ V ∗.
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Left deletion rule DL[u] ≡ P [u/λ] ≡ #u → #, where u ∈ V ∗, deletes u
after the marker: uw ⇒ w, w ∈ V ∗.

Right insertion rule IR[v] ≡ P [λ/v] ≡ # → v#, where v ∈ V ∗, inserts u
before the marker: IR[v](u) = wv, w ∈ V ∗.

Normal Post systems consist of a set of Post normal rewriting rules. They
compute by applying the rules iteratively over an initial string until no more
application is possible. It is known that such systems are computationally com-
plete and there are universal constructions having 194 rules [11].

3.1 Tag Systems

Tag systems [9,31,35] are special normal Post systems, obtained in the following
way. Let V = {a1, · · · , an+1 and consider words Pi, 1 ≤ i ≤ n and a number
m > 0. Then, the rules of a tag system are exactly #aiu → Pi#, 1 ≤ i ≤ n for
all u ∈ V m−1. Words u are not reflected in the notation of tag system rules that
are given directly as ai → Pi. The computation is performed on an input word
and halts when either a special halting symbol is encountered or the length of
the string is smaller than m.

Tag systems are an important tool for universality constructions as they
exhibit an extremely simple behavior. Most small universality constructions are
based on a tag systems simulation. It is worth to note that there are no known
concrete constructions for universal tag systems. By taking the constructions
from [32] it is possible to estimate the size of such a system to around 400 rules.

3.2 Tag Systems with States

It is possible to use the graph control for tag systems. We say that a tag system
is graph-controlled (also called a tag system with states), if the rules of the tag
systems are accompanied by the edges of the control graph, and the initial/final
states are distinguished. A rule (ai → Pi, p → q) is applicable to a string if it is
in state p and if rule ai → Pi is applicable as defined above. The resulting string
is as defined above, (the first symbol ai is removed together with the next m−1
symbols, and Pi is appended to the right end of the string), and the new state is
q. The graph-controlled tag systems are computationally complete already with
degree 1 [42], however no bound on the number of rules is given.

3.3 Bi-tag and Cyclic Tag Systems

Bi-tag systems are Post normal systems with rules P [a/a], P [ea/be′] and
P [ea/bce′], where a, b, c ∈ A, e, e′ ∈ E and A ∩ E = ∅.

Cyclic tag systems are graph-controlled 1-tag systems, where there are given
n ∈ N and Pi, 0 ≤ i ≤ n − 1, and the rules are (0 → λ, i → (i + 1) mod n) and
(1 → Pi, i → (i + 1) mod n), 0 ≤ i ≤ n − 1.

The advantage of above models is that it is shown that they are polynomial-
time simulators of Turing machines. Moreover, smallest known universal Turing
machines from [32] are constructed using a simulation of bi-tag and cyclic tag
systems.
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3.4 Circular Post Machines

Circular Post machines (CPMs) may be viewed as a special case of circular string
rewriting systems, or as a special case of graph-controlled Post normal systems.
There are several variants of these machines and the Table 1 shows the type
of circular rewriting rules used by each variant. We recall that bold symbols
correspond to a state represented by a special marker.

Table 1. Variants of circular Post machines

CPM0 CPM1 CPM2 CPM3 CPM4 CPM5

px → q px → q px → q px → q px → q px → q
px → yq px → yq px → yq px → yq px → yq
p0 → yq0 px → xq0 px → yq0 px → yzq px → yxq p → yq

Universal circular Post machines were considered for CPM0 vari-
ant where following results are obtained [4] (state/symbol pairs are
given): UPM0(2, 46), UPM0(3, 22), UPM0(4, 11), UPM0(5, 8), UPM0(6, 6),
UPM0(8, 5), UPM0(11, 4), UPM0(16, 3), UPM0(32, 2).

4 Models Based on Multiset Rewriting

In this section we group models using multiset rewriting and models using num-
bers directly. These two classes are extremely similar, because multiset rewriting
permits to represent any numerical mapping. The difference between two repre-
sentations mostly relies in the encoding and decoding concepts as well as in the
descriptional complexity issues.

In what follows we will use the term and the definitions related to the multiset
rewriting, but we would like to remark that there is one-to-one correspondence
between many models based on this operation, e.g. vector addition systems, Petri
nets, population protocols and P systems. So, the constructions presented below
can be easily interpreted in terms of any of these models.

We will recall the terminology considered by Korec [25] and call a construc-
tion strongly universal if the encoding and decoding functions are identities,
otherwise the corresponding construction will be called (weakly) universal. Some
authors [25,26] implicitly consider only the strong notion of universality as the
encoding and decoding functions can perform quite complicated transformations,
which are not necessarily doable in the original devices [7,43]. We refer to [25]
for a more detailed discussion of different variants of the universality and to [27]
for a survey on this topic.

4.1 Multiset Rewriting with Inhibitors

A multiset is a mapping M from a finite alphabet O of symbols to the natural
numbers N, called the multiplicities of these symbols. It is common to denote
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multisets by strings, the multiplicity M(a) of each symbol a being represented
by the corresponding number of occurrences |w|a of the symbol in the string w.
In the following, we write x ⊆ y for strings x, y ∈ O∗ if |x|a ≤ |y|a.

A multiset rewriting rule can thus be written as u → v, where u, v ∈ O∗. A
rule r : u → v can be applied to a configuration w producing w′ (w ⇒r w′), if
u ⊆ w and |w′|a = |w|a − |ua| + |va| for each a ∈ O.

A multiset rewriting rule with inhibitors is written as u → v|¬x1,··· ,¬xm
,

where u, v ∈ O∗ and xi ∈ O. It is applicable to w if u ⊆ w and xj �⊆ w for
1 ≤ j ≤ m. In the case of applicability, the application of such a rule would yield
the same result as the rule u → v.

A multiset rewriting system applies iteratively the rules on a starting multiset
and does a projection (over a terminal alphabet) to obtain the result. By defi-
nition multiset rewriting systems are not deterministic, which offers interesting
ways for their minimization.

In [21] several universal multiset rewriting systems are constructed exhibit-
ing trade-offs between the cardinality of the alphabet, the number of rules, the
total number of used inhibitors and the maximal size of the rule. Deterministic
strong and weak universal constructions with following parameters (in the above
order) are presented: (30, 34, 13, 3), (14, 31, 51, 8), (11, 31, 79, 11), (21, 25, 13, 5),
(67, 64, 8, 3), (58, 55, 8, 5). Recently in [22] the following parameters are
obtained for the non-deterministic case: (5, 877, 1022, 729), (5, 1024, 1316, 379),
(4, 668, 778, 555), (4, 780, 1002, 299).

4.2 Register Machines

Suppose that we distinguish a subset Q ⊆ O of symbols, which we call state sym-
bols, and we restrict the considered systems of multiset rewriting with inhibitors
to those where the set of projections of reachable configurations on the state
symbols is finite (i.e., the number of state symbols in reachable configurations
is bounded), while simultaneously requiring left side of every rule to contain at
least one state symbol. This model is called finite-state multiset rewriting with
inhibitors, and the elements of O \ Q are called registers.

A register machine can be viewed as a particular case of (finite-state) multiset
rewriting with inhibitors, where (at most) one state symbol is present in reach-
able configurations, and the rules have the following forms: p → aq, pa → q and
p → q′|¬a, where p, q, q′ ∈ Q and a ∈ O \ Q. These forms are called increment,
decrement and zero-test of register a, respectively. The last two instructions rep-
resent contrary applicability conditions (assuming p is present), so they are often
considered in pairs. Increment is commonly written as as p : (A(a), q), while a
pair of corresponding decrement and zero-test instruction is viewed as one con-
ditional decrement instruction, written as p : (S(a), q, q′). It is assumed that the
system has at least one instruction associated to every state (exactly one in the
deterministic case).

Register machines with the smallest number of instructions are published
by Korec [25], where he gives a construction for a strongly universal (for the
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class of unary functions) register machine having 22 instructions and using 8
registers and a weakly universal register machine having 20 instructions. Same
paper considers other type of machine instructions and gives corresponding small
universal constructions.

It is known that machines with two registers can be only weakly univer-
sal [7,43], while with 3 registers the strong universality can be achieved. The
article [22] mentions such constructions having 278 instructions (112 decrement
and 165 increment) for the case of the 2-register machine and 365 instructions
(147 decrement and 217 increment) for the case of the 3-register machine.

A related model, counter automata, is a generalization of register machines,
where multiple registers can be tested for zero, or even for non-zero, incremented
or decremented in one step (the original inspiration coming from non-writing
Turing machines with empty tapes with marked origin). This clearly can be
captured in the finite-state multiset rewriting model.

One can even consider generalized counter automata to allow register decre-
ments and increments of any register by more than one. This is a useful tool for
obtaining some small universal systems. In the case of register machines such a
generalization permits to have only 13 (decrement and add) instructions for the
strong universality, while in the case of counter automata this permits to obtain
a construction with 16 instructions and 4 states [12].

4.3 Maximally Parallel Multiset Rewriting

The application of rules in the case of the maximally parallel multiset rewriting
follows the maximality principle – a set of rules is maximally parallel if the
rules are all applicable in parallel and no other rule can be added to this set
maintaining this property.

A register machine viewed as a finite-state multiset rewriting system behaves
sequentially even under maximal parallelism, because (at most one) state symbol
is present in any configuration, and any rule contains a state symbol in its left
side. Hence, only zero-test has to be argumented. Using maximal parallelism, we
can (deterministically) simulate instruction p : (S(a), q, q′) by rules p → p1ta,
p1 → p2, taa → da, p2da → q, p2ta → q′. Fewer rules may be used in small
universal machines than by direct application of this simulation.

In [6] a maximally parallel multiset rewriting system with 23 rules is given.
The construction is based on the simulation of the universal register machine
U32 from [25] and takes profit of the parallelism to encode efficiently the repre-
sentation of states.

By grouping rules in several disjoint groups and by allowing at each step at
most one rule from each group to be applied, while still acting in a maximally
parallel way it is possible to construct universal systems having 80 context-free
rules arranged in 21 groups. If the application of rules from a group is performed
in a graph-controlled manner, then 61 context-free rules arranged in 8 groups
are sufficient for an universality construction [2].
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5 Models Based on Splicing

In this section we consider models based on an operation conceptually differ-
ent from (string) rewriting. The splicing operation was first considered by T.
Head [19,20] and its main difference with respect to the rewriting is being a
binary operation. Splicing considers some specified context in each of two strings
entering the operation and performs a crossover of the two strings at the context
location. Hence, the methods used for universality constructions are substan-
tially different as a parallel evolution of a set of strings (instead of a single
string) should be considered.

We consider the Păun definition of splicing operation, which is widely used
in the area. For more details on the other definitions of splicing as well as for
the biological motivation we refer to [24,38,49].

A splicing rule (over an alphabet V ) is a 4-tuple (u1, u2, u3, u4) where u1, u2,
u3, u4 ∈ V ∗. It is frequently written as u1#u2$u3#u4, {$,#} �∈ V . Two strings
x = x1u1u2x2 and y = y1u3u4y2 can enter a rule r = u1#u2$u3#u4 (we also say
that they can be spliced by r), yielding as a result two other strings w = x1u1u4y2
and z = y1u3u2x2. We write this as follows: (x, y) �r (w, z).

The pair σ = (V,R) where V is an alphabet and R is a finite set of splicing
rules is called a splicing scheme or an H scheme. For a splicing scheme σ = (V,R)
and for a language L ⊆ V ∗ we define the operation σ(L) as:

σ(L)={w, z ∈ V ∗ | ∃x, y ∈ L,∃r ∈ R : (x, y) �r (w, z)}.
The closure of a language under splicing with respect to σ is defined as:
σ0(L) = L, σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0, σ∗(L) = ∪i≥0σ

i(L).
We remark that in the above definition σi(L) is not equivalent to the iteration

of the σ operator. In subsection 5.2 we consider the iterative variant of σ. It is
known that σ∗ preserves the regularity of a language.

A Head-splicing-system [19,20], or H system, is a construct H = (σ,A), where
σ is a splicing scheme and A is a set of initial words, called axioms. The language
generated by an H is defined as L(H)=σ∗(A).

Since the language generated by any H system is regular, several models
based on splicing introducing additional control mechanisms were proposed. In
most of the cases this leads to the computational completeness.

Example. Consider the H system H = (σ,A), where σ = ({a, b, c}, {r}) with
r : c#a$a#b and A = {cab}. At the first step it is possible to apply cab to itself
using rule r: (cab, cab) �r (cb, caab). So σ1(A) = A∪{cb, caab} = {cb, cab, caab}.
At the next step 4 splicings are possible (cab with itself, caab with itself, cab
with caab and caab with cab) yielding σ2(A) = {caib | 0 ≤ i ≤ 4}. It is clear that
L(H) = {caib | i ≥ 0}. We remark that the iteration of σ on A in the classical
sense as defined in subsection 5.2 yields the language {cb} ∪ {ca2nb | n ≥ 0}.

Descriptional complexity measures. In the case of splicing based systems there
are several natural descriptional complexity measures that are considered: the
alphabet of the system, the number of splicing rules, the maximal diameter
(size) of splicing rules, the number of axioms and the number of distributed
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components in the case of a distributed model of splicing. We would like to
remark that the number of splicing rules and their size are the most interesting
parameters that permit to estimate the complexity of a splicing system.

Input and output. The original definition of splicing systems considers them
as language generating devices. So, in order to construct universal systems the
notions of input and output should be introduced. It is natural to consider that
the input(s) of a splicing-based model is encoded by a set of strings that are added
to the set of axioms (initial strings) of the system (eventually in some concrete
location in the case of distributed systems) before starting the computation.
In order to define the output of the system we will require that on any input
the system generates either a singleton or an empty language. A more relaxed
definition is also possible by requiring that the image of the generated language
with respect to some fixed recursive function is singleton or λ. In the first case
the word from the singleton language will be considered as the output of the
system, while in the second case we will consider that the corresponding function
is not defined for the given input. We remark that in the case of computationally
complete models it is not decidable if for a given input a splicing system will
produce an empty language. We also note that the definition of the output allows
non-deterministic computations to be considered, however we will restrict this
notion to the deterministic case.

Universality constructions idea. The small universal constructions known in the
area of splicing systems are based on the simulation of tag systems. There are
several other constructions using different ideas [1,11,13,14], but their com-
plexity parameters are several order larger. Basically, a unary coding of the
current configuration of a tag system is considered, so a configuration w is
represented as L11c(w)1R, where c(ai) = 0i1. The simulation of a produc-
tion ai → Pi, 2 ≤ i ≤ n is performed using the rotate-and-simulate method
used for many proofs in this area. This method works as follows. First, suf-
fixes c(Pj)c̄(aj), 2 ≤ j ≤ n are attached to the string producing several strings
L0i1c(akw

′)c(Pj)10jR. After that the number of symbols 0 at both ends is
decreased simultaneously. Hence, only the string for which j = i will remain
at the end (the other strings will be eliminated from further computation), pro-
ducing L1c(akw

′)1R. After that the symbol ak is removed (by removing cor-
responding 0’s) and a new round begins. The simulation stops when the first
symbol is a1. Technically, this transformation is performed using following set of
rules applied in correct sequences (which should be enforced by some additional
mechanism).

1 : ε#1R$Z ′#ε 2 : ε#0R$Z#R 3 : L10#ε$L1#Z

4 : L0#ε$L#Z 5 : L11#00$L#Z

The attachment of suffixes c(Pj)c̄(aj) is performed using rule 1. Rules 2 and
3 permit to perform the rotate-and-simulate method to check that correct suf-
fix was attached. Rule 4 erases the code of the second letter from the string
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and rule 5 cleans two consecutive 1’s at the beginning of the string allowing
to start a simulation of a new step. The corresponding rules require strings
{L1Z, ZR, Z ′R′, LZ} to be present in the axioms of the system.

The code of the tag system to simulate is given to the system as the set of
axioms {Z ′c(Pi)c̄(ai)R | ai → Pi ∈ P}. The input word w is also added to the
axioms in an encoded way as L11c(w)1R. The output of the system is retrieved
using a simple decoding function. We refer to [5,41] for more technical details.

5.1 Double Splicing

The double splicing operation is in some sense a counterpart of matrix grammars
for splicing systems. However, instead of sequences of prescribed rules the double
splicing operation is composed of two splicings and requires that the result of
the first splicing to be the input of the second one. More precisely, we define

(x, y) �r1,r2 (w, z) iff (x, y) �r1 (u, v) and (u, v) �r2 (w, z).

We remark that in most cases (and in particular for universality proofs) it is
possible to take a word y of special form that guarantees that r1 and r2 can be
used in this sequence only. A universal construction using only 5 splicing rules
is exhibited in [5].

5.2 (E)TVDH Systems

Below we consider the adaptation of the idea of time-varying grammars to the
area of splicing. We recall that time-varying grammars can be seen as graph-
controlled grammars where the corresponding control graph has the form of a
ring. In the splicing case the definition is slightly different as one allows using
words that are simultaneously obtained to perform a splicing at each step. More
precisely, for an H system H = (V, T,A,R) consider a partition of R in n (not
necessary disjoint) subsets: R = R1, . . . , Rn. We call each Ri a component of H
and n its degree. The language generated by H is defined as follows:

L0(H) = A

Li+1(H) = σk(Li(H)), where σk = (V,Rk), i = k (mod n)
L(H) = ∪i≥0Li(H) ∩ T ∗

In the literature there are also considered enhanced time-varying distributed
H (ETVDH) systems, which differ from TVDH by the fact that σ∗

k is used at
each iteration instead of σk.

In the case of TVDH systems of degree 1 the set of rules is applied to the
result of the previous application. This corresponds to the iteration of the splicing
operation:

σ̄∗(L) = ∪i≥0σ̄
i(L), where (σ̄i(L) = σ(σ(. . . σ︸ ︷︷ ︸

i

(L) . . . )).

We remark that the operation σ̄∗ is different from σ∗ as it keeps only the
resulting strings of each iteration available for the next iteration. This provides
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a powerful feature that permits to eliminate all strings that are not produced by
a splicing operation at the corresponding step. It is somehow surprising that this
modification suffices by itself to achieve the computational completeness [28,29].

Article [3] presents constructions for universal TVDH systems of degree 1
and 2 and having 17 and 15 splicing rules, respectively. Both constructions follow
the general idea presented above and the higher number of rules is due to the
implementation of the algorithm.

5.3 Test Tube Systems

Previously we considered models of splicing systems based on H systems. One of
the particularities of these models is that the system starts from a single initial
set of axioms and at each step the current set of words is replaced by a new one,
computed according to the control of the system. In this subsection we consider
splicing systems based on a different idea. Namely, instead of evolving a single
set of words, a fixed number of such sets (a vector) is evolved. This corresponds
to a distributed system containing some units that we call components. The
computation is then divided in two different steps: a computation step and a
communication step. During the computation step splicing rules are applied in
each component, independently from each other according to the underlying con-
trol. During the communication step the contents of components is redistributed
in the system according to some algorithm.

The model considered in this subsection is the splicing counterpart of the
parallel communicating grammar systems with communication by command and
in the literature it is also known under the name of splicing test tube systems. The
idea is to consider a group of H systems, called (splicing) tubes, as components,
use σ∗ operation for the computational step in each component and use input
permitting filters for the communication according to a communication graph.

So during the computation step, each component acts like an H system. At
the communication step the contents of each component is redistributed among
other components according to the communication graph and the permitting
regular filters. More precisely, if a string from component i belongs to Fj (the
filter of component j) and there is an edge (i, j) in the communication graph,
then at the next step this string will belong to component j. Strings that cannot
pass any input filter of a connected node remain in the component of their origin.
We remark a subtle point here: if a string can go to some other component(s)
then each of them will receive a copy of that string and the initial component
will not contain any copy of this string, except the case of a communication
graph with a self-loop at the corresponding node and positive filter check.

In [5] a construction of a universal test tube system having 8 rules distributed
in 3 components is given. Universal constructions with 2 tubes and different filter
restrictions are given in [3], but in this case 10 splicing rules are necessary.
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5.4 Splicing P Systems

In this subsection we consider a distributed system that applies the operation σ
in each component during the computation step and redistributes the contents
during the communication step based on the splicing rule that has been applied.
In some sense this corresponds to considering splicing rules that have two target
indicators – the numbers of components where the corresponding splicing results
shall be moved. With some reserve (because splicing is a binary operation) the
model can be considered as graph-controlled splicing. The language consists of
words over terminal alphabet collected in some designated node. The obtained
model, called splicing P systems, was introduced in [36] and more details can be
found in [37,39].

As in previous models the input is provided by adding strings to the axioms of
the system corresponding to the input and the encoding of the program, while the
output should be the unique string from the generated language. It is worth to
note that splicing P systems allow one of the smallest universal constructions for
the splicing area as well as for string-based universal devices. The construction
from [5] has 5 splicing rules, 6 axioms, 3 components, and alphabet of 7 symbols
and the diameter (3,2,2,1). The construction uses the algorithm presented above
to simulate tag systems and due to the nature of the control it is simple to ensure
that the rules are applied in correct sequences.

6 Conclusions

In this paper we gave an overview of several small universal constructions. Our
main goal was to present models that can serve as a basis for future universality
constructions. We made a nontraditional classification of computational models
in four groups and we believe that this point of view could be helpful as it
highlights the key concepts of each model that can help to choose new targets
for future work.

We remark that for each model we mostly discussed the number of rules, as
in our opinion this is the main descriptional complexity parameter. However,
there are other interesting parameters like the size of the alphabet, the number
of states etc. We refer to [15] for a discussion on the descriptional complexity
and the trade-offs between parameters. Many papers exhibit such trade-offs, but
a systematical study with respect to several models is still missing.
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LNCS, vol. 8614, pp. 186–197. Springer, Heidelberg (2014)

23. Ivanov, S., Rogozhin, Y., Verlan, S.: Small universal networks of evolutionary pro-
cessors. Fundamenta Informaticae (to appear, 2014)

24. Kari, L.: DNA computing: Arrival of biological mathematics. The Mathematical
Intelligencer 19(2), 9–22 (1997)

25. Korec, I.: Small universal register machines. Theoretical Computer Science 168(2),
267–301 (1996)

26. Malcev, A.I.: Algorithms and Recursive Functions. Wolters-Noordhoff Pub. Co.,
Groningen (1970)



Small Universal Devices 263

27. Margenstern, M.: Frontier between decidability and undecidability: a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

28. Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 1
generate all recursively enumerable languages. In: Ito, M., Păun, G., Yu, S., (eds.)
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Abstract. We survey how the advice complexity of online algorithms
can be used to obtain lower bounds on the performance of randomized
online algorithms. Online algorithms with advice may query an oracle
that knows the whole input from the start to solve some instance of an
online problem. This is done by reading a finite prefix of some infinite
binary advice tape, which is created by the oracle before the first piece
of input is processed. Similarly, a randomized online algorithm may use
a binary tape where every bit is chosen uniformly at random.

In this survey, we review a technique, similar to Yao’s principle, which
allows statements on the advice complexity of some given online problem
to translate to results on the power of randomization for this problem
in terms of lower bounds. We give some examples where this technique
works and how it is applied, and show its limitations and that it is tight
in a very general sense.

1 Introduction

In online computation, an adversary produces some hard input of an optimiza-
tion problem that is fed to an online algorithm, denoted by A, piece by piece
over a number of discrete time steps. In every such time step, A needs to pro-
duce a corresponding piece of output which cannot be changed afterwards. In
this paper, we focus on a class of problems where the objective is to minimize
some cost function which is associated with the given online problem.

Many real-world problems such as the paging problem or many routing and
scheduling problems are modeled this way; for instance, suppose you want to
assign jobs to a fixed number of resources, e. g., processors. Such a service is
offered to a large number of customers and processor time can be booked at
any given point in time. But this means that assignments should be made long
before all requests are known. Still, the objective is to minimize the waiting time
for, say, the customer that waits the longest. Such a situation is a typical online
scenario.

At first, we formally define the term online minimization problem, where the
input consists of requests that arrive in consecutive time steps and the output
is created piecewise as a sequence of answers to these requests.

c© Springer International Publishing Switzerland 2014
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Definition 1 (Online Minimization Problem). An online minimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I is a
sequence I = (x1, . . . , xn) of requests. Furthermore, a set of feasible outputs (or
solutions) is associated with every I; every output is a sequence O = (y1, . . . , yn)
of answers. The cost function assigns a positive real value cost(I,O) to every
input I and any feasible output O. For every input I, we call any feasible output
O for I that has smallest possible cost (i. e., that minimizes the cost function)
an optimal solution for I.

Classically, one searches for online algorithms that perform well in the sense
that they produce output which has a cost that is as small as possible compared
to the cost of an optimal solution. The study of such online algorithms is coined
“competitive analysis” [11]. Note that the optimal solution can usually not be com-
puted with full accuracy in an online manner. We therefore speak of an optimal
“offline” solution. In a recent model considered in this paper one asks an advanced
question that is beyond pure competitive analysis. In particular, we are interested
in the (amount of) information that is both needed and sufficient to outperform
purely deterministic or even randomized online algorithms. In a sense, we want
to know which information about the yet unknown parts of the input is crucial to
obtain a low competitive ratio or even an optimal solution. Let us first give a formal
framework to study online algorithms with advice. To this end, we use the standard
definition as first given in [9,26]. The intuitive idea is that, after the adversary cre-
ated an input for a given online problem, an oracle inspects this input and writes
binary information about it on a tape (the advice tape). Then, an online algorithm
starts processing the input as usual, but it may, with every request, read some part
of the tape (sequentially) to get additional information about the input. The mini-
mum length of the prefix that the algorithm needs to read while guaranteeing some
quality on every input, is then the advice complexity of this algorithm.

Definition 2 (Online Algorithm with Advice). Consider an input I of an
online minimization problem. An online algorithm A with advice computes the
output sequence Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi,
where φ is the content of the advice tape, i. e., an infinite binary sequence. A is
c-competitive with advice complexity b(n) if there exists a non-negative constant
α such that, for every n and for any input sequence I of length at most n, there
exists some advice string φ such that

cost(Aφ(I)) ≤ c · cost(Opt(I)) + α

and at most the first b(n) bits of φ have been accessed during the computation
of the solution Aφ(I). If the above inequality holds with α = 0, we call A strictly
c-competitive with advice complexity b(n). A is called optimal if it is strictly
1-competitive.

A first model of online computation with advice was introduced by
Dobrev et al. [18]. As this model was not precise enough to measure the num-
ber of advice bits needed, Hromkovič et al. proposed the general model used here,
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and discussed its relation to the general notion of the information content of a
problem [26]. The fruitfulness of this model was for the first time explored by
Böckenhauer et al. [9], where it was applied to paging, disjoint path allocation,
and job shop scheduling. At the same time, Emek et al. [20] proposed a similar
model and studied the k-server problem and metrical task systems. Since then,
new results on job shop scheduling [28], the k-server problem [8,23,32], and dis-
joint path allocation [2] were obtained. Additionally, many other online problems
were studied including buffer management [14], online set cover [29], string guess-
ing [7], graph exploration [17], online independent set [15], online knapsack [10],
online makespan scheduling [19,33], online bin packing [12,33], online Steiner tree
[1], list update [13] and online graph coloring [3,4,22,34]. Online algorithms using
both advice and randomization were investigated by Böckenhauer et al. [6]. Fur-
ther connections between computing online with advice and randomized online
computation where, e. g., observed by Komm and Královič [28]. Our main obser-
vation on the topic of this paper was first made by Böckenhauer et al. [8], it estab-
lishes a non-trivial relationship between randomized online algorithms and online
algorithms with advice for a given online minimization problem.

Note the resemblance between Definition 2 and the definition of the expected
competitive ratio of a randomized online algorithm, which we give in what follows
to fix our notation.

Definition 3. Randomized Online Algorithm] Consider an input I of an online
minimization problem. A randomized online algorithm R computes the output
sequence Rφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where
φ is the content of a random tape, i. e., an infinite binary sequence, where
every bit is chosen uniformly at random and independently of all the others.
By cost(Rφ(I)), we denote the random variable expressing the cost of the solu-
tion computed by R on I. R is c-competitive in expectation if there exists a
non-negative constant α such that, for every I,

E
[
cost(Rφ(I))

] ≤ c · cost(Opt(I)) + α,

where, as above, Opt is an optimal offline algorithm for the problem.

Throughout this paper, since φ is always clear from context, we omit it and
simply write, e. g., R instead of Rφ. We observe that the basic change is from
speaking of “one best solution” (i. e., there always is one binary sequence φ
that guarantees some success) to speaking of “all solutions on average” (i. e., in
expectation, we can guarantee some success).

Let us take another point of view which will come in handy later. We consider
a function b : N → N that measures the number of advice bits some randomized
online algorithm uses on inputs of size n, for any n ∈ N. For the ease of presen-
tation, we will assume that R uses exactly b(n) random bits on every input of
size n. For any fixed bit string on R’s random tape, the algorithm’s decisions are
fully determined by the input. As a result, we can think of R as a probability
distribution over a set of 2b(n) deterministic strategies. We denote this set by



A Technique to Obtain Hardness Results for Randomized Online Algorithms 267

Alg(R) = {A1, . . . , A2b(n)}. We further assume from now on that R picks a deter-
ministic strategy uniformly at random from Alg(R). We are now ready to present
the key theorem for proving lower bounds on the expected competitive ratio of
randomized online algorithms.

2 The Main Theorem

As already mentioned, we want to focus on the relationship between advice and
randomization. Before revisiting the main theorem [8], we make the following
two observations, which are immediate.

1. If there is a randomized online algorithm R for some online problem Π such
that R uses b random bits and achieves an expected competitive ratio of c,
then there also is an online algorithm with advice for Π that is c-competitive
and uses b advice bits.

2. Conversely, if there is provably no online algorithm with advice for Π that
is c-competitive while using b advice bits, then there also is no randomized
online algorithm using b random bits while being c-competitive in expecta-
tion.

If we follow our intuition, advice bits seem to be a lot more powerful than
random bits. After all, we compare a situation where we always pick a best
strategy for any instance, to a situation where we pick strategies with a fixed
distribution; in essence, we compare the best to the average. We therefore ask
whether there exists a scenario in which it is possible to save some bits if they
are supplied by an oracle and not a random source. In what follows, we give
a positive answer to this question. More specifically, we show that, if there is
some randomized online algorithm R for some online minimization problem Π,
then there also is some online algorithm with advice that is almost as good while
using a number of advice bits (and that is the interesting part) which does not
depend on the number of random bits R uses. However, the bound does depend
on the number of possible instances of Π of given length. The proof uses some
ideas that are similar to the proof of Yao’s theorem [35].

Theorem 1 (Böckenhauer et al. [8]). Let Π be an online minimization prob-
lem for which we have m(n) different inputs of length n. Moreover, suppose there
is a randomized online algorithm R for Π, which achieves an expected competitive
ratio of c. Then there is an online algorithm A with advice for Π, which achieves
a competitive ratio of (1 + ε)c, for any ε > 0, while using at most

�log n� + 2�log�log n�� + log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

advice bits.
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A1 A2 A3 . . .
I1 c1,1 c1,2 c1,3 . . .
I2 c2,1 c2,2 c2,3

I3 c3,1 c3,2 c3,3

...
...

. . .

Fig. 1. An example matrix M as used in the proof

Proof. We suppose that, for any input length n ∈ N, R uses b(n) random bits.
As observed above, this is equivalent to choosing uniformly at random a deter-
ministic strategy from a set Alg(R) = {A1, . . . , A2b(n)}. Since R is c-competitive
in expectation, there is a constant α such that for every instance I, we have

E[cost(R(I))] ≤ c · cost(Opt(I)) + α

or, equivalently,
E[cost(R(I))] − α

cost(Opt(I))
≤ c.

Now, for each deterministic strategy Aj and for each instance Ii of length n,
1 ≤ j ≤ 2b(n) and 1 ≤ i ≤ m(n), we set

ci,j := max
{

1,
cost(Aj(Ii)) − α

cost(Opt(Ii))

}
,

and we call ci,j the performance of Aj on Ii. Next, we construct an (m(n)×2b(n))-
matrix M that we fill with these entries as shown in Fig. 1. As a result, the entry
in the ith row and the jth column gives the performance of R on the input Ii

if R chooses the deterministic strategy Aj . The central idea of the proof is to
show that we are able to cleverly choose a small number of columns of M such
that the performances of the corresponding deterministic strategies are small for
many instances, and the sets of the chosen strategies together cover all input
instances. We collect these algorithms in a set S and A gets as advice the index
of the algorithm from S that should be used for the input at hand (and some
additional information we describe later).

One row i of M corresponds to exactly one input Ii. Thus, by the definition
of ci,j and the expected competitive ratio of R, for every i, 1 ≤ i ≤ m(n), we get

1
2b(n)

2b(n)∑
j=1

ci,j =
1

2b(n)

2b(n)∑
j=1

cost(Aj(Ii)) − α

cost(Opt(Ii))

=
1

2b(n)

∑2b(n)

j=1 cost(Aj(Ii)) − α

cost(Opt(Ii))

=
E[cost(R(Ii))] − α

cost(Opt(Ii))
≤ c
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or, equivalently,
2b(n)∑
j=1

ci,j ≤ c · 2b(n),

and for the sum of all entries in all cells of M, we get

m(n)∑
i=1

2b(n)∑
j=1

ci,j ≤
m(n)∑
i=1

c · 2b(n) ≤ c · 2b(n) · m(n).

Since there are 2b(n) columns in M, there is one column (deterministic strategy)
j′ such that

m(n)∑
i=1

ci,j′ ≤ c · m(n).

The online algorithm Aj′ is then included in S and it is used for every instance
Ii, for which ci,j′ ≤ (1+ε)c. Let s denote the number of these instances. In what
follows, we want to estimate how large s is, i. e., for how many instances A can use
Aj′ . Clearly, the performance of Aj′ is larger than (1+ ε)c on m(n)− s instances.

Summing up, this gives a total of (m(n) − s)(1 + ε)c for the corresponding
rows and we have

(m(n) − s)(1 + ε)c <

m(n)∑
i=1

ci,j′ .

From this, it follows that (m(n) − s)(1 + ε)c < m(n) · c and therefore s >
ε/(1 + ε) · m(n), which means we can use the deterministic strategy Aj′ for a
fraction of ε/(1 + ε) of the instances as we know that on these its performance
is not larger than (1 + ε)c.

After Aj′ is put into the set S, we delete the column j′ from M together
with all rows that correspond to inputs on which Aj′ achieves a sufficiently small
performance. There remain

(
1 − ε

1 + ε

)
m(n) =

(
1

1 + ε

)
m(n)

rows for which we need to find another algorithm from Alg(R). For every remain-
ing row, the deleted entry in column j′ was larger than c. It follows that, after
removing this column, the average over all entries of remaining rows is still not
larger than c. Therefore, we can repeat the aforementioned method with the
remaining (

1
1 + ε

)
m(n)

rows of M. This way, we find another deterministic online algorithm Aj′′ , which
has a sufficiently small performance on a fraction of ε/(1 + ε) of the remaining
instances.
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Now we compute how often we have to iterate this strategy at most until
we have found an algorithm for every input. This means that we want to find a
natural number r such that

(
1

1 + ε

)r

m(n) < 1.

We get
(

1
1 + ε

)r

<
1

m(n)
⇐⇒ (1 + ε)r > m(n) ⇐⇒ r > log1+ε(m(n)),

which means that we have to make at most
⌊

log(m(n))
log(1 + ε)

⌋
+ 1

iterations, i. e., we need that many deterministic algorithms from Alg(R). This
immediately gives an upper bound on the size of S.

Finally, we calculate the number of advice bits needed for this approach.

1. First, A needs to know the input length n, which can be encoded on the advice
tape using log n bits. However, this must be done in a self-delimiting fashion,
using, e. g., Elias encoding [21], summing up to a total of 2�log�log n�� +
�log n� advice bits at most.

2. Knowing n, A constructs M by simulating the randomized online algorithm
R on any possible input. Then, A constructs S and enumerates all algorithms
from S in, e. g., canonical order. After reading another

log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

advice bits, A can pick one algorithm from S, which is then simulated for
the input at hand.

It follows that the competitive ratio of A on any instance is at most (1+ ε)c and
A uses as much as advice as claimed by the theorem. 	


The contraposition of Theorem 1 is particularly interesting. Suppose we
can show that any online algorithm with advice needs an amount of advice
that is asymptotically larger than the value from the theorem statement to be
c-competitive. The it follows that no randomized online algorithm can be c-
competitive in expectation. We will apply this approach to L(2, 1)-coloring and
to the k-server problem in Section 4.

3 Limits of this Approach

As we will see in the next section, the above mentioned technique is widely appli-
cable. However, before giving examples, we want to point out some limitations
and drawbacks.
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First, note that the online algorithm A with advice does not run in polynomial
time (even if R is efficient) if m(n) is large with respect to the input length n,
because A needs to construct the whole matrix M. Clearly, M cannot be a part
of A as it depends on n, which, of course, is not known by A, but is part of the
advice.

Second, the online algorithm A is worse than the original randomized online
algorithm R, even if the difference is very small. A natural question is whether it
is possible to improve Theorem 1 such that A obtains the same competitive ratio
as R. Intriguingly, this is not possible, so we really need this small gap. Consider
the following online problem. The input I = (x1, . . . , xn) starts with a request
x1 = 0. All other requests are bits, i. e., xi ∈ {0, 1}, for 2 ≤ i ≤ n. Moreover, all
answers must be bits, i. e., yi ∈ {0, 1}, for 1 ≤ i ≤ n − 1. If yi = xi+1, for all i,
1 ≤ i ≤ n− 1, the total cost of the corresponding solution is 1, else it is 2. Thus,
an optimal algorithm pays 1 and every other solution pays 2. Obviously, a best
randomized online algorithm chooses every answer such that it is either 0 or 1
with a probability of 1/2 each. This algorithm uses n − 1 random bits and its
expected competitive ratio is not larger than

2n−1−1
2n−1 · 2 + 1

2n−1 · 1
1

= 2 − 1
2n−1

.

Conversely, every online algorithm with advice that uses less than n − 1 advice
bits is at most 2-competitive. It follows that there are problems such that any
online algorithm with advice needs as many advice bits as a randomized online
algorithm needs random bits, or it is worse off.

Third, in this paper as well as in [8], we only considered online minimization
problems. With a similar argument, however, it can be shown that an analogous
statement for online maximization problems is possible [16].

4 Applications

In this section, we show how to apply Theorem 1 both directly and indirectly,
thus creating both online algorithms with advice and lower bounds for random-
ized online algorithms for a selection of online problems.

4.1 Job Shop Scheduling

First, we study the online job shop scheduling problem with l machines and k
jobs that consist of l unit length tasks each, denoted by (k, l)-JSS. More precisely,
we are given k different jobs that need to use l different machines in some fixed
order. A machine can only process one task at a time. Since every job asks for
every machine exactly once, we can view a job as a permutation of the machine
indices. Thus, an example input for (4, 8)-JSS is

Job1 = (1, 2, 3, 4, 5, 6, 7, 8), Job2 = (3, 8, 4, 1, 2, 7, 6, 5),
Job3 = (7, 1, 5, 6, 8, 3, 4, 2), Job4 = (8, 2, 4, 5, 3, 1, 6, 7),
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which means that, e. g., the second job first needs the third machine, then the
eighth, and so on. An algorithm for (k, l)-JSS must assign the machines to the
jobs in the given order. In an online framework, these permutations arrive in
consecutive time steps such that the (i + 1)th machine index of a job is revealed
after the ith request is satisfied (i. e., assigned to a machine). In the example
above, all four machines ask for four different machines in the first time step.
Therefore, machine 1 can be assigned to Job1, machine 3 is assigned to Job2,
and so on. In time step 2, however, two jobs, namely Job1 and Job4, ask for the
same machine 2. In such a situation, an online algorithm needs to delay one of
the two. Obviously, an optimal choice depends on future time steps.

The advice complexity of (2, l)-JSS was studied before by Böckenhauer et
al. [9] and Komm and Královič [28]. Hromkovič et al. [27] constructed a ran-
domized online algorithm which achieves a competitive ratio of 1 + 2k/

√
l in

expectation. Now let us apply Theorem 1. There are (l!)k distinct instances of
(k, l)-JSS of length n = kl, i. e., k-tuples of permutations of length l each. Using
Stirling’s approximation [24], we therefore get

m(n) = (l!)k ≤
((

1 +
1

11l

)(
l

e

)l √
2lπ

)k

different inputs. Applying Theorem 1, it follows that, for any ε > 0, there is a
((1+2k/

√
l) ·(1+ε))-competitive online algorithm with advice that uses at most

�log n� + 2�log�log n�� + log
(⌊

log(m(n))
log(1 + ε)

⌋
+ 1

)

≤ 2�log kl� + log

(
dk log

((
l

e

)l √
2lπ

))

≤ 2�log kl� + log(d′kl log l)
≤ d′′ log(d′′′kl)
≤ d′′ log(kl) + d′′′

advice bits, for some constants d, d′, d′′, d′′′. Thus, the advice complexity grows
merely logarithmically in k and l. Note that, since the input length n is fully deter-
mined by these two parameters, the advice complexity can even be reduced further
by a constant factor since we do not need a self-delimiting encoding of n.

Theorem 2. There is a (1+2k/
√

l)-competitive online algorithm A with advice
for (k, l)-JSS which reads O(log kl) advice bits.

This is the first time, an upper bound of the general version of the problem
(i. e., for k different jobs) was studied in terms of advice complexity. So far,
the case for k = 2 was investigated by Böckenhauer et al. [9] and Komm and
Královič [28].
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4.2 L(2, 1)-Coloring

Another application of Theorem 1 is a version of graph coloring that arises in
the context of assigning frequencies to transmitters in a multihop radio network.
The difference between the frequencies that are used by the transmitters should
be anti-proportional to their proximity to avoid interference. A simple graph-
theoretic model of the frequency assignment problem has been introduced by
Griggs and Yeh [25]. Here, the transmitters are the vertices of a graph and the
frequencies are modeled by colors from a finite, ordered set, usually {0, 1, . . . , λ},
for some natural number λ. In the easiest case, two levels of proximity are con-
sidered, neighboring vertices have to be assigned colors with a distance of at
least 2 in the given order, and vertices at distance 2 in the graph still have to get
different colors. The resulting problem of finding a coloring minimizing the color
range λ is called L(2, 1)-coloring. The advice complexity of the online version of
the L(2, 1)-coloring problem was studied by Bianchi et al. [4]. Here, a graph is
given online, one vertex after another, and together with every vertex, exactly
those edges are uncovered that are adjacent to vertices that are already known.
If a vertex is revealed in some time step, an online algorithm must immediately
assign it a color.

Among other results, Bianchi et al. [4] showed that every online algorithm
with advice for L(2, 1)-coloring with a competitive ratio of 5/4 needs to read
at least 3.9402 · 10−10n advice bits, even if the online graph has a maximum
degree of 2, i. e., is a collection of paths and cycles. Although the constant fac-
tor in this linear lower bound is very small, the following lower bound on the
expected competitive ratio of any randomized online algorithm was proven using
Theorem 1.

Theorem 3 (Bianchi et al. [4]). For arbitrarily small δ > 0, every random-
ized algorithm for the online L(2, 1)-coloring problem on graphs with maximum
degree 2 has a worst-case expected competitive ratio of at least 5

4 (1 − δ) on suf-
ficiently large instances.

Proof sketch. By an easy counting argument, there are m(n) ≤ 2(n
2)n! online

graphs on n vertices. It is easy to see that there exists a threshold n0 on the
input length such that the bound from Theorem 1 with this value of m(n)
plugged in exceeds 3.9402 · 10−10n for all n ≥ n0 (see the original paper [4] for
the details of the calculation).

Since we already know that (even when restricting the considered online
graphs to paths), with this number of advice bits, no online algorithm with
advice can be better than 5/4, the result follows immediately by Theorem 1. 	


4.3 The k-Server Problem

The k-server problem is one of the most prominent online minimization problems.
In this setup, we are given a metric space and k so-called servers that can be
moved through this space. In every time step, a request is made that is given by
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some point. An answer is given by a server that is moved to this point, incurring
a cost that is given by the distance between the original position of the server
and the requested point.

Introduced in 1988 by Manasse et al. [31], the k-server problem is still not
fully understood. There are, so far, two conjectures about the best possible
deterministic and randomized online algorithms for the problem. Here, we want
to focus on the randomized k-server conjecture which claims that there is a
randomized online algorithm which is Θ(log k)-competitive in expectation. The
following theorem shows how our technique could possibly be used to disprove
the conjecture.

Theorem 4 (Böckenhauer et al. [8]). If every online algorithm with advice
for the k-server problem needs to use at least ω(log n) advice bits to be O(log k)-
competitive, the randomized k-server conjecture does not hold.

Proof. Let us only consider inputs for k-server such that the size of the metric
space is bounded from above by 2n, where n is the input length. As above, let
m(n) denote the number of inputs of length n. In every time step, a point is
requested, thus

m(n) = (2n)n
.

Consider a randomized online algorithm R that is O(log k)-competitive in expec-
tation on all of these instances. Then, there exists a constant c > 0 such that
R is (c · log k)-competitive. Let ε = 1. Following Theorem 1, there also is a
(2 · c · log k)-competitive online algorithm with advice, which uses at most

�log n� + 2�log�log n�� + log(log ((2n)n)� + 1) ∈ O(log n)

advice bits.
If we could prove that any online algorithm with advice needs asymptotically

more advice, this is a contradiction to the existence of R. 	

Note that, so far, the best known randomized online algorithm for k-server

for arbitrary metric spaces is the (2k − 1)-competitive algorithm of Koutsoupias
and Papadimitriou [30]. Considering the advice complexity, a lower bound is only
known for optimality (approximately n log k advice bits are necessary [8]). Fur-
thermore, Renault and Rosén [32] constructed a ��log k�/(b − 2)�-competitive
online algorithm with advice which reads b advice bits per request (this improves
a previous result by Böckenhauer et al. [8] by a factor of 2). To be O(log k)-
competitive, this algorithm thus needs a number of advice bits that is linear in n.
As shown in the proof of Theorem 4, if the randomized k-server conjecture holds,
there is an O(log k)-competitive online algorithm with advice that uses O(log n)
advice bits as long as the size of the metric space is at most 2n. Thus, there
remains an interesting exponential gap. A step towards proving the conjecture
was made by Bansal et al. who constructed a randomized online algorithm with
an expected competitive ratio of O((log l)3(log k)2 log log n) in expectation [5],
where l is the number of points of the underlying metric space. This algorithm
improves over the one by Koutsoupias and Papadimitriou if l ∈ o(2(2k)−(3+ε)

)
and its competitive ratio is polylogarithmic in k if l is polynomial in k.
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7. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The String Guessing Problem as a Method to Prove Lower Bounds on the Advice
Complexity. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp.
493–505. Springer, Heidelberg (2013)
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Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Hei-
delberg (2008)

19. Dohrau, J.: Online makespan scheduling with sublinear advice. Technical Report,
ETH Zurich (2013)

20. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online Computation with
Advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer,
Heidelberg (2009)

21. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194–203 (1975)
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Abstract. Various problems lead to the same class of functions from
integers to integers: functions having integral difference ratio, i.e. ver-
ifying f(a) − f(b) ≡ 0 (mod (a − b)) for all a > b. In this paper we
characterize this class of functions from Z to Z via their à la Newton
series expansions on a suitably chosen basis of polynomials (with ratio-
nal coefficients). We also exhibit an example of such a function which is
not polynomial but Bessel like.

Keywords: Number Theory · Theoretical Computer Science

1 Introduction

We deal with the following class of functions.

Definition 1. Let X ⊆ Z (where Z denotes the set of integers). A map f : X →
Z has integral difference ratio if

f(i) − f(j)
i − j

∈ Z for all distinct i, j ∈ X.

Observe the following simple properties about these maps.

Proposition 1. 1. The set of maps f : X → Z having integral difference ratio
is closed under addition and multiplication. In particular, it contains all polyno-
mials with integral coefficients.
2. The set of maps f : X → Z having integral difference ratio is closed under
composition.

Which non-polynomial maps have integral difference ratio? This is the question
we deal with. In our paper [2] we characterized the functions f : N → Z having
integral difference ratio in terms of their Newton expansions over the “binomial
polynomials”. In §2 we give a similar characterization for functions f : Z → Z

(Theorem 1). This is the main result of the paper, its proof runs through §3 to
§5.
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2 Integral Difference Ratio and Newton Series

Definition 2. The Z-Newtonian polynomials are defined as follows:

P0(x) = 1 , P2k(x) =
1

(2k)!

i=k∏
i=−k+1

(x − i) , P2k+1(x) =
1

(2k + 1)!

i=k∏
i=−k

(x − i)

Proposition 2. The Z-Newtonian polynomials define maps on Z which take
values in Z and satisfy the following equations for k, n ∈ N,

P2k+1(n) =

⎧
⎨
⎩

(
k + n

2k + 1

)
if n > k

0 if 0 ≤ n ≤ k

P2k(n) =

⎧
⎨
⎩

(
k + n − 1

2k

)
if n > k

0 if 0 ≤ n ≤ k

(1)

P2k+1(−n) = −P2k+1(n) P2k(−n) =

⎧
⎨
⎩

(
k + n

2k

)
if n ≥ k

0 if 0 ≤ n < k

(2)

Definition 3. A family (ϕn)n∈N of functions Z → Z is a Newton basis for maps
Z → Z if

1. For every x ∈ Z, the set {n ∈ N | ϕn(x) �= 0} is finite,
2. Every function f : Z → Z has a Newton expansion

∀x ∈ Z f(x) =
∑
n∈N

an ϕn(x) (3)

where (an)n∈N is a sequence in Z
N.

Proposition 3. The Z-Newtonian polynomials are a Newton basis for maps
Z → Z.

Proof. Conditions (1), (2) in Proposition 2 insure that equation (3) of Defini-
tion 3 reduces to

f(x) =
∑

n∈{0,...,2|x|+1}
an Pn(x) (4)

which involves a finite sum.
To prove the converse, look at the instances of equation (4):

f(0) = a0 f(1) = a0 + a1 f(2) = a0 + 2a1 + a2 + a3 . . .
f(−1) = a0 − a1 + a2 f(−2) = a0 − 2a1 + 3a2 − a3 + a4 . . .

In general, for k ≥ 1, Proposition 2 yields

f(2k) = L2k(a0, ..., a4k−2)+a4k−1

f(2k+1) = L2k+1(a0, ..., a4k)+a4k+1

f(−2k) = L−2k(a0, ..., a4k−1)+a4k

f(−2k − 1) = L−2k−1(a0, ..., a4k+1)+a4k+2
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where Ln(a0, ..., a2n−2) and L−n(a0, . . . , a2n−1) are linear combinations of the
ai’s with coefficients in Z. This shows that, given any f : Z → Z, there is a
unique sequence of coefficients (an)n∈N making equation (3) of Definition 3 true,
and all these coefficients are in Z. 	

Theorem 1. Let

∑
k∈N

akPk(x) be the Z-Newtonian expansion of a function
f : Z → Z. Then the following conditions are equivalent:

1. f has integral difference ratio,
2. lcm(k) divides ak for all k.

3 Unary lcm and Binomial Coefficients

Definition 4. For k ∈ N, k ≥ 1, lcm(k) is the least common multiple of all
positive integers less than or equal to k. By convention, lcm(0) = 1.

The unary least common multiple function lcm (cf. Definition 4) has recently
regained interest, cf. [3–5,8,10]. In this section, we prove three lemmas linking
the lcm function and binomial coefficients.

Lemma 1. ([2]) If 0 ≤ n − k < p ≤ n then p divides lcm(k)
(

n

k

)
.

Lemma 2. If p ≥ 0 then 2(p + k) divides lcm(2k)
(

p + 2k − 1
2k − 1

)
.

Proof. For x ≥ 1, let V al(x) denote the 2-valuation of x, i.e. the largest i such
that 2i divides x. The Lemma is proved through a series of claims. Throughout

the proof, B will denote
(

p + 2k − 1
2k − 1

)
.

Claim 1. The number p + k divides B lcm(2k − 1).

Proof. Let p′ = p + k, n′ = p + 2k − 1 and k′ = 2k − 1 and apply Lemma 1. 	

Claim 2. If k is a power of 2 then 2(p + k) divides B lcm(2k).

Proof. Observe that lcm(2k) = 2 lcm(2k − 1) if k is a power of 2 and apply
Claim 1. 	

Claim 3. The number 2Val(k)+1 divides lcm(2k).

Proof. Since 2Val(k) divides k it also divides lcm(k). To conclude, observe that
V al(2k) = V al(k) + 1. 	

Claim 4. The 2-valuation of B is the number of carries when adding 2k −1 and
p in base 2.

Proof. This is an instance of Kummer’s theorem (1852, cf. [6]) for base s = 2:

if s is prime and b ≤ a, the largest i such that si divides
(

a

b

)
is the number of

carries when adding b and a − b in base s. 	
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In the next claims we consider binary expansions with possibly non significant
zeros ahead to get some prescribed large enough length.
Claim 5. Let t ≥ 1 be the 2-valuation of (2k′ + 1) + (2p′ + 1), i.e. (2k′ + 1) +
(2p′ + 1) = 2t (2q + 1) for some q. For n large enough (e.g., 2n ≥ 2t (2q + 1)),
let kn . . . k11 and pn . . . p11 be the length n + 1 binary expansions of 2k′ + 1 and
2p′ + 1. Then ki + pi = 1 for 1 ≤ i ≤ t − 1 and pt = kt.

Proof. Let qn . . . qt+110 . . . 0 (with a tail of t zeros) be the length n + 1 binary
expansion of 2t (2q + 1). Consider the addition of 2k′ + 1 and 2p′ + 1 in base 2:

digit rank : r · · · t + 1 t t − 1 · · · 3 2 1 0

(2k′ + 1) : · · · · · · kt+1 kt kt−1 · · · k3 k2 k1 1
+ (2p′ + 1) : · · · · · · pt+1 pt pt−1 · · · p3 p2 p1 1

= 2t (2q + 1) : qr · · · qt+1 1 0 · · · 0 0 0 0

Observe that adding the digits k0 = 1 and p0 = 1 leads to q0 = 0 and creates
a carry. An easy induction on i = 1, . . . , t − 1 shows that, in order to get the
tail of t zeros in the sum, the incoming carry has to propagate from rank i to
rank i + 1 and equality ki + pi = 1 holds. Finally, since qt = 1 and there is an
incoming carry at rank t, we have pt = kt. 	

Claim 6. Let p, k have the same 2-valuation �, i.e. p = 2�(2p′ + 1) and k =
2�(2k′ + 1). Let t be the 2-valuation of (2k′ + 1) + (2p′ + 1). For n large enough
(say 2n ≥ p+2k−1), let pn · · · p11 be the length n+1 binary expansion of 2p′+1.

Let N be the number of 1’s in pt · · · p11. Then 2N divides B =
(

p + 2k − 1
2k − 1

)
.

Proof. Let kn · · · k11 be the length n + 1 binary expansion of 2k′ + 1. Applying
Claim 5 to 2k′ + 1 and 2p′ + 1 we see that ki + pi = 1 for 1 ≤ i ≤ t − 1 and
kt = pt. By Claim 4, to show that 2N divides B we reduce to prove that the
number of carries when adding p and 2k−1 is at least N . The binary expansions
of k = 2�(2k′ + 1), 2k − 1 and p = 2�(2p′ + 1) are as follows:

rank: . . . t + �+1 t + � t + �−1 . . . �+2 �+1 � �−1 . . . 0
k : . . . kt+1 kt kt−1 . . . k2 k1 1 0 . . . 0

2k−1 : . . . kt kt−1 kt−2 . . . k1 0 1 1 . . . 1
p : . . . pt+1 pt pt−1 . . . p2 p1 1 0 . . . 0

In the addition of 2k−1 and p the first carry occurs at rank �. Hence, the number
of carries in this addition is equal to the number of carries in the addition of the
integers obtained by deleting the � last digits, i.e. the numbers λ = 2−�

(
(2k −

1) − (2� − 1)
)

and 2p′ + 1. We thus reduce to show that there are at least N
carries in the addition of λ and 2p′ + 1. Their binary expansions are

rank: n+1 n . . . t+2 t+1 t t−1 . . . 3 2 1 0
λ : kn kn−1 . . . kt+1 kt kt−1 kt−2 . . . k2 k1 0 1

2p′+1 : . . . . . . . . . pt+2 pt+1 pt pt−1 . . . p3 p2 p1 1
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with ki = 1 − pi for i = 1, . . . , t − 1 and kt = pt. We prove by induction on the
rank i = 0, . . . , t that, in the addition of λ and 2p′ +1, for all 0 ≤ i ≤ t, if pi = 1
then there is a carry at rank i.
Case i = 0. Since the added digits at rank 0 are both equal to 1, there is a carry.
Case 1 ≤ i ≤ t and pi = 0. There is nothing to prove.
Case i = 1 and p1 = 1. The added digits at rank 1 are 0 and 1 (since p1 = 1).
Since there is an incoming carry (that from rank 0) a carry is created at rank 1.
Case 1 ≤ i ≤ t and pi = 1 and pi−1 = 0. Since i− 1 < t we have ki−1 + pi−1 = 1
hence ki−1 = 1. Thus, the added digits at rank i (namely ki−1 and pi) are both
equal to 1 hence there is a carry.
Case 1 ≤ i ≤ t and pi = 1 and pi−1 = 1. By the induction hypothesis, a carry
occurs at rank i − 1. Thus, at rank i there is an incoming carry (the one from
rank i − 1) and the digit pi is 1, hence (whatever be the digit of λ at rank i)
there is a carry at rank i.

Hence there are at least N carries in the addition of λ and 2p + 1. 	

Claim 7. Let p, k, �, t,N be as in Claim 6. Then 2�+t+1−N divides lcm(2k).

Proof. There are N ones in ptpt−1 · · · p11, hence there are at most N − 1 ones
and at least t + 1 − N zeros in pt−1 · · · p1. By Claim 5, kt−1 · · · k1 contains at
least t + 1 − N ones. Thus, the number of significant digits of kt−1 · · · k101 is at
least t + 3 − N . The binary expansion of 2k − 1 is kn · · · ktkt−1 · · · k101 followed
by � ones hence 2k − 1 has at least �+ t+3−N significant digits. Consequently,
2k−1 ≥ 2�+t+2−N and 2�+t+2−N divides lcm(2k−1) and, a fortiori, lcm(2k). 	

Recall that integers a, b are coprime if 1 is their unique positive common divisor,
i.e. gcd(a, b) = 1. The last claim is elementary number theory.
Claim 8. Let a, b, c be integers. If a, b are coprime and divide c, then ab also
divides c.

We can now proceed with the proof of Lemma 2. We argue by cases.
• Case V al(p) �= V al(k).

Let m = inf(V al(p), V al(k)). Exactly one of the two integers p 2−m and
k 2−m is odd so that p + k = 2m(2−mp + 2−mk) = 2m(2q + 1) for some q. Now,
- Since m ≤ V al(k), Claim 3 insures that 2m+1 divides lcm(2k).
- Claim 1 insures that p+k = 2m(2q+1) divides B lcm(2k−1). A fortiori (2q+1)
divides B lcm(2k).

As 2m+1 and (2q+1) are coprime, Claim 8 implies that 2(p+k) = 2m+1(2q+1)
divides B lcm(2k).
• Case V al(p) = V al(k) = �.

Then p + k = 2�(2k′ + 1) + 2�(2p′ + 1) = 2�+t(2q + 1) with t ≥ 1. There are
three subcases.
- Subcase k ≥ 2�+t. Then 2�+t+1 ≤ 2k, hence 2�+t+1 divides lcm(2k). Claim 1
insures that p + k = 2�+t(2q + 1) divides B lcm(2k − 1), A fortiori 2q + 1 divides
B lcm(2k). Finally, by Claim 8 we conclude that 2(p+k) = 2�+t+1(2q+1) divides
B lcm(2k).
- Subcase k is a power of 2 . Apply Claim 2.
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- Subcase k = 2�(2k′ + 1) < 2�+t for some k′ �= 0. Claims 6 and 7 insure that
2N divides B and 2�+t+1−N divides lcm(2k). Thus, 2�+t+1 divides B lcm(2k). By
Claim 1, p + k = 2�+t(2q + 1) divides B lcm(2k − 1). A fortiori (2q + 1) divides
B lcm(2k). Finally by Claim 8, 2(p + k) = 2�+t+1(2q + 1) divides B lcm(2k). 	


Lemma 3. If b ≥ k then n divides An
k,b = lcm(k)

((
b + n

k

)
−

(
b

k

))
.

Proof. We argue by double induction on k and b with the conditions

(Pk,b) ∀n ∈ N, n divides An
k,b , (Pk) ∀b ≥ k, ∀n ∈ N, n divides An

k,b .

Conditions (P0) and (P1) are trivial since An
0,b = 0 and An

1,b = n.
Suppose k ≥ 1 and (Pk) is true. To prove (Pk+1), we prove by induction on
b ≥ k + 1 that (Pk+1,b) holds.

In the base case b = k + 1, applying Pascal’s rule, we have

An
k+1,k+1 = lcm(k + 1)

((
k + 1 + n

k + 1

)

−
(
k + 1

k + 1

))

= lcm(k + 1)

((
k + n

k

)

+

(
k + n

k + 1

)

− 1

)

= lcm(k + 1)

((
k + n

k

)

−
(
k

k

))

+ lcm(k + 1)

(
k + n

k + 1

)

=
lcm(k + 1)

lcm(k)
An

k,k + lcm(k + 1)

(
k + n

k + 1

)

Since (Pk,k) holds (induction hypothesis on k), n divides An
k,k hence n divides

the first term. If n ≤ k + 1 then n divides lcm(k + 1) hence n also divides the
second term. If n > k + 1, applying Lemma 1 with n′ = k + n, p′ = n and
k′ = k + 1, we see that n = p′ divides the second term. Thus, in both cases n
divides An

k+1,k+1 and (Pk+1,k+1) holds.
Suppose now that (Pk+1,c) holds for k + 1 ≤ c ≤ b. We prove (Pk+1,b+1).

Using Pascal’s rule, we get

An
k+1,b+1 = lcm(k + 1)

((
b + 1 + n

k + 1

)
−

(
b + 1
k + 1

))

= lcm(k + 1)
((

b + n

k

)
+

(
b + n

k + 1

)
−

(
b

k

)
−

(
b

k + 1

))

= lcm(k + 1)
(((

b + n

k

)
−

(
b

k

))
+

((
b + n

k + 1

)
−

(
b

k + 1

)))

=
(

lcm(k + 1)
lcm(k)

An
k,b

)
+ An

k+1,b

Since (Pk,b) and (Pk+1,b) hold, n divides both terms of the above sum, hence n
divides An

k+1,b+1 and (Pk+1,b+1) holds. 	
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Lemma 4. Let

⎧
⎪⎪⎨
⎪⎪⎩

B(n, k, i) =
(

n + k − 1
2k

)
−

(
i + k

2k

)

C(n, k, i) =
(

n + k

2k + 1

)
+

(
i + k

2k + 1

) .

For all n ≥ 2, and 1 ≤ i ≤ n − 1, the following hold

n + i divides lcm(2k)B(n, k, i) for 1 ≤ k ≤ i (5)
n + i divides lcm(2k + 1)C(n, k, i) for 0 ≤ k ≤ i (6)

Proof. By induction on n ≥ 2. Base case: n = 2 clear as n−1 = 1 = i. Induction:
assuming that (5) and (6) hold for n, we first prove that (5) holds for n+1, and
we then prove that (6) holds for n + 1.
• Proof that (5) holds for n + 1.

Let 1 ≤ i ≤ n and 1 ≤ k ≤ i. Then, applying Pascal’s rule,

B(n + 1, k, i) =
(

n + k

2k

)
−

(
i + k

2k

)

=
[(

n + k − 1
2k

)
+

(
n + k − 1
2k − 1

)]
−

[(
i + k + 1

2k

)
−

(
i + k

2k − 1

)]

=
[(

n + k − 1
2k

)
−

(
i + 1 + k

2k

)]
+

[(
n + k − 1
2k − 1

)
+

(
(i + 1) + (k − 1)

2k − 1

)]

B(n + 1, k, i) = B(n, k, i + 1) + C(n, k − 1, i + 1) (7)

By the induction hypothesis, applied for n and i+1, provided that i+1 ≤ n−1,
i.e. i ≤ n − 2:
– (5) holds for n hence n + i + 1 divides lcm(2k)B(n, k, i)
– (6) holds for n hence n + i + 1 divides lcm(2k − 1)C(n, k − 1, i + 1)
Since lcm(2k −1) divides lcm(2k), we see that n+ i+1 divides lcm(2k)C(n, k −
1, i + 1) for i ≤ n − 2. Summing and using (7), we obtain that n + i + 1 divides
lcm(2k)B(n + 1, k, i) for i ≤ n − 2.
It remains to prove the same result for i = n − 1 and i = n.

For i = n, it is clear since B(n + 1, k, n) =
(

n + 1 + k − 1
2k

)
−

(
i + k

2k

)
= 0.

For i = n − 1, B(n + 1, k, n − 1) =
(

n + k

2k

)
−

(
n − 1 + k

2k

)
=

(
n − 1 + k

2k − 1

)

by Pascal’s rule. As k ≤ n, n−k ≥ 0 and we can apply Lemma 2 with p = n−k,

hence: 2n = 2(p + k) divides lcm(2k)
(

p + 2k − 1
2k − 1

)
= lcm(2k)

(
n − 1 + k

2k − 1

)
=

lcm(2k)B(n+1, k, n−1). To conclude, observe that n+1+i = n+1+n−1 = 2n.

• Proof that (6) holds for n + 1.
Assume that (5) and (6) hold for n. Let 1 ≤ i ≤ n, by Pascal’s rule
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C(n + 1, k, i) =
(

n + k + 1
2k + 1

)
+

(
i + k

2k + 1

)

=
[(

n + k

2k + 1

)
+

(
n + k

2k

)]
+

[(
i + 1 + k

2k + 1

)
−

(
i + k

2k

)]

=
[(

n + k

2k + 1

)
+

(
i + 1 + k

2k + 1

)]
+

[(
n + k

2k

)
−

(
i + k

2k

)]

C(n + 1, k, i) = C(n, k, i + 1) + B(n + 1, k, i) (8)

We know that (5) holds for n + 1. Thus, for 1 ≤ i ≤ n and 1 ≤ k ≤ i, n + 1 + i
divides lcm(2k)B(n + 1, k, i) hence also lcm(2k + 1)B(n + 1, k, i) . This also
trivially holds for k = 0 as B(n + 1, 0, i) = 0. By the induction hypothesis (6)
holds for n. Thus, n+(i+1) divides lcm(2k+1)C(n, k, i+1) for 1 ≤ i+1 ≤ n−1,
i.e. 0 ≤ i ≤ n − 2, and 0 ≤ k ≤ i + 1. Summing and using (8), we obtain that
n + i + 1 divides lcm(2k + 1)C(n + 1, k, i) for 1 ≤ i ≤ n − 2 and 0 ≤ k ≤ i.
It remains to prove the same result for i = n − 1 and i = n.

For i = n − 1, we have n + 1 + i = 2n and C(n + 1, k, n − 1) = 2
(

n + k

2k + 1

)
.

Lemma 1, applied with p′ = n, n′ = n + k and k′ = 2k + 1, shows that n divides
lcm(2k + 1)

(
n+k
2k+1

)
, hence 2n divides lcm(2k + 1)C(n + 1, k, n − 1).

For i = n we have n + 1 + i = 2n + 1 and

C(n + 1, k, n) =
(

n + k + 1
2k + 1

)
+

(
n + k

2k + 1

)

=
(n + k + 1)!

(2k + 1)! (n − k)!
+

(n + k)!
(2k + 1)! (n − k − 1)!

=
(n + k)!

(2k + 1)! (n − k − 1)!

(
n + k + 1

n − k
+ 1

)

=
(n + k)!

(2k)! (n − k)!
2n + 1
2k + 1

lcm(2k + 1)C(n + 1, k, n) =
lcm(2k + 1)

2k + 1
×

(
n + k

2k

)
× (2n + 1)

As the first two factors are integers 2n+1 divides lcm(2k +1)C(n+1, k, n). 	


4 Proof of Implication (1) ⇒ (2) in Theorem 1

In this subsection we assume that f : Z → Z has integral difference ratio and
that f(x) =

∑
k∈N

akPk(x) is its Z-Newtonian expansion. To prove that lcm(n)
divides an we have to prove that i divides an for all i ≤ n.

By induction on n ≥ 1, we prove the property
I(n): lcm(2n − 1) divides a2n−1 and lcm(2n) divides a2n.

The cases n = 1, 2 have just been done. The inductive step is split in four cases
corresponding to Lemmas 5 to 8. Assuming I(j) for all j < n, Lemmas 5, 6, 7
and 8 respectively deal with the four possible cases:
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Middle number n n divides a2n−1 and n divides a2n

Below the middle If 2 ≤ i < n then i divides a2n−1 and a2n.
Above the middle, case a2n−1 If 1 ≤ i ≤ n − 1 then n + i divides a2n−1

Above the middle, case a2n If 1 ≤ i ≤ n then n + i divides a2n

The following equations follow from Proposition 2 (equation (1)) and will be
used to prove the lemmas.

f(n) =
2n−1∑
j=0

ajPj(n) with

Pj(n) =

⎧
⎪⎪⎨
⎪⎪⎩

P2k(n) =
(

k + n − 1
2k

)
for j = 2k

P2k+1(n) =
(

k + n

2k + 1

)
for j = 2k + 1

⎫
⎪⎪⎬
⎪⎪⎭

=
(

n + �(j − 1)/2�
j

)
(9)

Lemma 5. If condition I(s) holds for all s < n then n divides a2n−1 and a2n.

Proof. 1. We first show that n divides 2n − 1. The case n ≤ 2 has been done
above. Suppose n ≥ 2. By the integral difference ratio property, n divides f(n)−
f(0). As Pj(0) = 0 for all j ≥ 1 we have f(0) = a0. Also, P2n−1(n) = 1. Thus,

f(n)− f(0) =
(∑2n−2

j=1 aj Pj(n)
)

+a2n−1 where the Pj(n) are given in Equation
(9). As 0 ≤ n + �(j − 1)/2� − j < n ≤ n + �(j − 1)/2�, Lemma 1 insures that n
divides lcm(j)Pj(n). Now, by the induction hypothesis I(s) holds for all s < n
and thus lcm(j) divides aj for j = 1, . . . , 2n−2. Therefore n divides all the terms
in the sum

∑2n−2
j=1 aj Pj(n). Hence n divides a2n−1.

2. Similarly, using equation (2) in Proposition 2, we get f(−n) =
∑2n

j=0 ajPj(−n).
An analogous use of Lemma 1 and the fact that n divides f(−n) − f(0) allows
to conclude that n divides a2n. 	

Lemma 6. If condition I(s) holds for all s < n then i divides a2n−1 and a2n

for all 2 ≤ i < n.

Proof. 1. Fix i such that 2 ≤ i < n. We first prove that i divides a2n−1. By the
integral difference ratio property, i divides f(n) − f(n − i). Equation (1) yields

f(n) − f(n − i) =
2n−1∑
j=0

ajPj(n) −
2n−2i−1∑

j=0

ajPj(n − i)

=

⎛
⎝

2n−2i−1∑
j=1

aj

(
Pj(n) − Pj(n − i)

)
⎞
⎠

+

⎛
⎝

i−1∑
j=2n−2i

ajPj(n)

⎞
⎠ +

⎛
⎝

2n−2∑
j=i

ajPj(n)

⎞
⎠ + a2n−1 (10)
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• Third sum. The induction hypothesis I(s), for s < n, imply that lcm(j) divides
aj j ≤ 2s ≤ 2n − 2: a fortiori, for i ≤ j ≤ 2n − 2, i divides aj : hence, i divides
ai, ai+1, . . . , a2n−2 and also all terms in the third sum.
• Second sum. Let n′ = n + �(j − 1)/2�, k′ = j, and p = i. For j ≤ i − 1
we have 0 ≤ n′ − k′ < p ≤ n′ hence Lemma 1 applies and insures that i

divides lcm(k′)
(

n′

k′

)
= lcm(j)

(
n + �(j − 1)/2�′

j

)
= lcm(j)Pj(n) (by equation

(9)). Again I(s), s < n, insure that lcm(j) divides aj for j < 2n, hence i a
fortiori divides all the terms ajPj(n) in the second sum.
• First sum. Its terms are of the form, for k < n − i,

a2k

[(
k + n − 1

2k

)
−

(
k + n − i − 1

2k

)]
or a2k+1

[(
k + n

2k + 1

)
−

(
k + n − i

2k + 1

)]
.

Thus the hypothesis of Lemma 3, namely 2k ≤ k+n−i−1 (resp. 2k+1 ≤ k+n−i)
hold for each term

(
Pj(n) − Pj(n − i)

)
, j < 2n − 2i of the first sum, implying

that i divides each term lcm(j)
(
Pj(n)−Pj(n− i)

)
. Since conditions I(s), s < n,

insure that lcm(j) divides aj for j ≤ 2s < 2n − 2, we see that i divides all terms
aj

(
Pj(n) − Pj(n − i)

)
in the first sum.

Since i divides the left member and all terms of the three sums in equation (10)
it must divide a2n−1.
2. The proof for a2n is similar using f(−n) − f(−n + i) and equation (2) of
Proposition 2. 	

Lemma 7. If condition I(s) holds for all s < n then n + i divides a2n−1 for all
1 ≤ i ≤ n − 1.

Proof. By the integral difference ratio property, n+i divides D = f(n)−f(−i) =∑2n−1
j=0 ajPj(n) − ∑2i

j=0 ajPj(−i). D can be split into four sums

D =

(
i−1∑
k=0

a2k+1 (P2k+1(n) − P2k+1(−i))

)
+

(
i∑

k=1

a2k (P2k(n) − P2k(−i))

)

+
( 2n−2∑

j=2i+1

ajPj(n)
)

+ a2n−1

Using equations (1), (2) and (9), we rewrite D as

D =
i−1∑
k=0

a2k+1

((
n + k

2k+1

)
+

(
i + k

2k+1

))
+

i∑
k=1

a2k

((
n + k−1

2k

)
−

(
i + k

2k

))

+

⎛
⎝

2n−2∑
j=2i+1

aj

(
n + �(j − 1)/2�

j

)⎞
⎠ + a2n−1

• First/second sum. Induction conditions I(s), for all s < n, insure that lcm(2k)
divides a2k and lcm(2k + 1) divides a2k+1 for k ≤ i < n; Moreover, as 1 ≤ i ≤
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n − 1, Lemma 4 shows that n + i divides lcm(2k + 1) (
(

n + k

2k + 1

)
+

(
i + k

2k + 1

)
)

and lcm(2k) (
(

n + k − 1
2k

)
−

(
i + k

2k

)
). Hence, n + i divides all terms in the first

and the second sum.
• Third sum. Let n′ = n+ �(j −1)/2�, k′ = j, and p = n+ i. Since i ≤ n−1, for
2i + 1 ≥ j ≤ 2n − 2 we have 0 ≤ n′ − k′ < p ≤ n′ hence we can apply Lemma 1
which insures that n+ i divides lcm(j)Pj(n); moreover, the induction conditions
I(j) hold for all j < n, hence lcm(j) divides aj for all j ≤ 2n − 2.Thus, n + i
divides all terms in the third sum.

Since it divides the left member and all terms in the above three sums, n + i
must divide a2n−1. 	

Lemma 8. If condition I(s) holds for all s < n then n + i divides a2n for all
1 ≤ i ≤ n.

Proof. By the integral difference ratio property, n + i divides f(−n) − f(i).
Equations (1) and (2) yield

f(−n) − f(i) =
∑2n

j=0 ajPj(−n) − ∑2i
j=0 ajPj(i)

=
(

i−1∑
k=0

a2k+1 (P2k+1(−n) − P2k+1(i))
)

+
(

i∑
k=1

a2k (P2k(−n) − P2k(i))
)

+

(
2n−1∑

j=2i+1

ajPj(−n)

)
+ a2n

• First sum. Since P2k+1 is odd, by equation (2) of Proposition 2 the first sum
is the opposite of the first sum in the proof of Lemma 7, hence it is divided by
n + i.
• Second sum. Equations (1), (2) insure that P2k(−n)−P2k(i) =

(
k+n
2k

)−(
k+i−1

2k

)
.

In case 2 ≤ i ≤ n we let n′ = n + 1 and i′ = i − 1. We have 1 ≤ i′ ≤ n′ − 1,
P2k(−n)−P2k(i) = P2k(n−1)−P2k(i) = P2k(n′)−P2k(i′ +1) and we can apply
Lemma 4. Exactly as in the proof of Lemma 7, we deduce that n + i = n′ + i′

divides each term of the second sum.
Consider now the case i = 1. The second sum reduces to one term:

a2(P2(−n) − P2(1)) = a2n(n + 1)/2.
As 2 divides a2, we see that n + 1 divides this term.
• Third sum. Let j = 2k or j = 2k + 1, and 2i + 1 ≤ j ≤ 2n − 1, equation (2)
shows that P2k+1(−n) = −(

k+n
2k+1

)
and P2k(−n) =

(
k+n
2k

)
. Let n′ = k+n, k′ = 2k,

and p = n + i, as i ≤ n and 2k ≤ 2n − 1 we have 0 ≤ n′ − k′ < p ≤ n′, hence
we can apply Lemma 1 which insures that n + i divides lcm(2k)P2k(−n). Then,
as I(j) hold for all j < n, lcm(2k) divides a2k for 2k < 2n and n + i divides
a2kP2k(−n). The case k′′ = 2k +1 is similar. Thus, n+ i divides all terms in the
third sum.

Since n + i divides the left member and all terms in the above three sums, it
must divide a2n. 	

Lemmas 5, 6, 7, 8 together with the base cases complete the proof of Theorem 1.
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5 Proof of Implication (2) ⇒ (1) in Theorem 1

We assume that the Z-Newton expansion
∑

n∈N
ak Pk(x) of f : Z → Z is such

that lcm(n) divides an for all n. We want to prove that f has integral difference
ratio. As for given i, j ∈ Z, f(i)−f(j) is a sum of finitely many anPn(i)−anPn(j),
it suffices to prove that each function x → lcm(n)Pn(x) has integral difference
ratio. Let j < i, i, j ∈ Z. To prove that i − j divides lcm(n)(Pn(i) − Pn(j)), we
argue by disjunction of cases on the parity of n and the signs of i, j, i.e. relative
to the positions of i, j with respect to the intervals ] − ∞,−k], [−k, k], [k,+∞[
for k = �n/2�. We rely on conditions 1, 2 in Proposition 2.

1. Case n = 2k and i, j ∈] − ∞,−k]. Then P2k(i) − P2k(j) =
(

k + |i|
2k

)
−

(
k + |j|

2k

)
and Lemma 3 applied with b = k + |i| ≥ 2k, n = |j| − |i| insures that

|j| − |i| = i − j divides lcm(2k)(P2k(j) − P2k(i)).
2. Case n = 2k and j ∈] − ∞,−k] and i ∈] − k, k]. Then P2k(i) − P2k(j) =

−
(

k + |j|
2k

)
. Let n′ = k + |j|, k′ = 2k and p′ = i− j = i+ |j|. Then 0 ≤ n′ −k′ <

p′ ≤ n′, and Lemma 1 insures that i − j divides lcm(k′)
(
n′

k′
)

= lcm(2k)(P2k(j) −
P2k(i)).
3. Case n = 2k and j ∈] − ∞,−k] and i ∈]k,+∞[. Then P2k(i) − P2k(j) =(

k + i − 1
2k

)
−

(
k + |j|

2k

)
.

– subcase |j| ≤ i − 1 Let n′ = i and i′ = |j|. As i′ ≤ n′ − 1 Lemma 4 (5)
applies and insures that n′ + i′ = i + |j| = i − j divides lcm(2k)B(n′, k, i′) =
lcm(2k)(P2k(i) − P2k(j)).
– subcase |j| ≥ i Let n′ = |j| + 1 and i′ = i − 1. Again by Lemma 4 (5),
n′ + i′ = i + |j| = i − j divides lcm(2k)B(n′, k, i′) = lcm(2k)(P2k(j) − P2k(i)).
4. Case n = 2k and i, j ∈] − k,−k]. Clear as P2k(i) = P2k(j) = 0.
5. Case n = 2k and j ∈] − k,−k] and i ∈]k,+∞[. Then P2k(i) − P2k(j) =(

k + i

2k

)
. Let n′ = k + i, k′ = 2k and p′ = i − j. We have 0 ≤ n′ − k′ < p′ ≤ n′,

hence by Lemma 1, p′ = i − j divides lcm(2k)
(
k+i
2k

)
.

6. Case n = 2k and i, j ∈]k,+∞[. Then P2k(i) − P2k(j) =
(

k + i − 1
2k

)
−

(
k + j − 1

2k

)
with 2k ≤ k + j − 1, we can thus conclude using Lemma 3.

7. Case n = 2k+1 and i, j ∈]−∞,−k[. Then P2k+1(i)−P2k+1(j) = −
(

k + |i|
2k + 1

)
+

(
k + |j|
2k + 1

)
: applying Lemma 3 with b = |i|, n = |j|−|i| we conclude that n = i−j

divides lcm(2k + 1)
(
P2k+1(i) − P2k+1(j)

)
.

8. Case n = 2k+1 and j ∈]−∞,−k[ and i ∈ [−k, k]. Then P2k+1(i)−P2k+1(j) =(
k + |j|
2k + 1

)
. We conclude as in case 2. above, with Lemma 1.
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9. Case n = 2k+1 and j ∈]−∞,−k[ and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =(
k + i

2k + 1

)
+

(
k + |j|
2k + 1

)
. – subcase |j| ≤ i − 1 : let n′ = i , i′ = |j| and apply

Lemma 4 (6).
– subcase i ≤ |j| − 1 : let n′ = |j| , i′ = i and apply Lemma 4 (6).

– subcase i = |j| : then P2k+1(i) − P2k+1(j) = 2
(

k + i

2k + 1

)
; Lemma 1, applied

with n′ = k + i, k′ = 2k +1 and p′ = i ( 0 ≤ n′ −k′ < p′ ≤ n′ hold), implies that
i divides lcm(2k + 1)

(
k+i
2k+1

)
, hence 2i = i − |j| divides lcm(2k + 1)

(
P2k+1(i) −

P2k+1(j)
)
.

10. Case n = 2k+1 and i, j ∈ [−k,−k]. Trivial since then P2k+1(i) = P2k+1(j) =
0.
11. Case n = 2k+1 and j ∈ [−k, k] and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =(

k + i

2k + 1

)
. Let n′ = k + i, k′ = 2k + 1, and p′ = i − j: as 0 ≤ n′ − k′ = i − k − 1,

as |j| ≤ k and i > k, i − k − 1 < p′ = i − j ≤ n′, the hypothesis of Lemma 1
hold and Lemma 1 yields i − j divides lcm(2k + 1)

(
P2k+1(i) − P2k+1(j)

)
.

12. Case n = 2k + 1 and i, j ∈]k,+∞[. Similar to Case 7: use Lemma 3 since

then P2k+1(i) − P2k+1(j) =
(

k + i

2k + 1

)
−

(
k + j

2k + 1

)
. 	


6 Non Polynomial Functions Having Integral Difference
Ratio

Let us mention a straightforward consequence of Theorem 1.

Corollary 1. There are non polynomial functions Z → Z having integral dif-
ference ratio.

Proof. In fact there are uncountably many such functions: let an be any non
null element of lcm(n)N. 	


We now explicit some non polynomial functions having integral difference
ratio. We first briefly recall such examples N → Z obtained in [2] and then
explicit functions Z → Z (Theorem 2).

Remark 1. Function �e x!� does not have integral difference ratio (cf. [2]). The
following functions N → Z have integral difference ratio (see [2]):

f : x →
{

1 if x = 0
�e x!� if x ∈ N \ {0} fh : x →

{ �sinh(1) x!� if x odd
�cosh(1) x!� if x even

It is easy to lift the integral difference ratio property from functions N → Z

to functions Z → Z.

Proposition 4. Suppose f : N → Z has integral difference ratio and let g : Z →
Z be such that g(x) = f(x2). Then g has integral difference ratio. In particular,
there is a function g : Z → Z having integral difference ratio and such that
g(x) ∈ {�e (x2)!�, �e (x2)!� − 1}.
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Proof. Since a2 − b2 = divides f(a2) − f(b2) = g(a) − g(b) so does a − b. 	

Here is an example of a non polynomial function Z → Z having integral

difference ratio and which is not relevant to Proposition 4.

Lemma 9. For all k, we have lcm(k) divides
(2k)!
k!

.

Proof. We have lcm(2k) =
∏

p prime pN(p) with N(p) = sup{i | pi ≤ 2k}. For
p prime, let M(p) be the largest integer divided by pN(p) and ≤ 2k. Then
2M(p) > 2k hence M(p) > k. In particular, M(p) hence pN(p) divides (2k)!/k!.
As a product of pairwise coprime integers, lcm(2k) =

∏
p prime pN(p) also divides

(2k)!/k!. 	

Theorem 2. The function defined on Z by

f(n) =

⎧
⎨
⎩

√
e

π
× Γ(1/2)

2 × 4n × n!
∫ ∞
1

e−t/2(t2 − 1)ndt for n ≥ 0

−f(|n| − 1) for n < 0

maps Z into Z and has integral difference ratio.

Proof. Let f : Z → Z have Z-Newton expansion f(x) =
∑

k∈N

(2k)!
k!

P2k(x), i.e.

a2k = (2k)!/k! and a2k+1 = 0. It is clearly nonpolynomial and, by Theorem 1,
it has integral difference ratio.

Using Grashteyn & I. M. Ryzhik Tables [7], page 2, formula 0.126, and page
917 formulas 8.432 1 & 3, we see that, for n ≥ 0 we have

f(n) =
n∑

k=0

2k!
k!

(n + k)(n + k−1) · · · (n − k+2)(n − k+1)
(2k)!

=
n∑

k=0

(n + k)!
k! (n − k)!

=
√

e

π
× Kn+ 1

2

(
1
2

)
=

√
e

π
× Γ( 12 )

2 × 4n × n!

∫ ∞

1

e− t
2 (t2 − 1)ndt

f(−n) =
n∑

k=0

2k!
k!

(−n + k)(−n + k−1) · · · (−n − k+2)(−n − k+1)
(2k)!

=
n∑

k=0

(−1)2k (n + k − 1) · · · (n − k)
k!

=
n∑

k=0

(n + k − 1)!
k! (n − k − 1)!

= f(n − 1)

where Kν(x) =
∫ ∞
0

e−x cosh t cosh(νt)dt is associated with the Bessel function of
the third kind. 	


7 Conclusion

We characterized the class of integral difference ratio functions from Z to Z via
their Newton series expansions on a basis of polynomials with rational coeffi-
cients: the Z-Newtonian polynomials. This enabled us to exhibit non polynomial



Integral Difference Ratio Functions on Integers 291

such functions. Integral difference ratio functions can be seen as the solution for
algebra Z of a general problem: which functions preserve a family of congruences
on a given structure? Functions preserving all congruences on an algebra have
been studied in universal algebra; it was known [9] that there exist such functions
from Z to Z which are polynomials with non-integer coefficients. Our contribu-
tion to the study of congruence preserving functions on Z is (i) to characterize
the congruence preserving functions from Z to Z as the integral difference ratio
functions and (ii) to give an example of a non polynomial Bessel like congruence
preserving function.
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Abstract. An extended conditional tabled Lindenmayer systems is an
ET0L systems where each table is associated with a regular set, the
so-called condition. A table can only be applied to a sentential form if
the form belongs to its associated regular set. We study the power of
conditional ET0L systems if the conditions are given by regular lan-
guages with a limited state or nonterminal complexity. We show that
conditions obtained by regular grammars with two nonterminals and
finite automata with three states are sufficient to generate all recursively
enumerable languages. Similar results are given for the generation of all
context-sensitive languages. Moreover, in the non-extended case, one gets
infinite hierarchies for both complexity measures.

1 Introduction

In the theory of formal languages one imposes very often conditions to perform
a step in the generation of words. By practical reasons – but also by theoretical
considerations – it is very useful that one can check the condition by an efficient
procedure. Thus one relates the condition to regular languages, for which the
membership problem can be decided in linear time. We mention here as examples
regularly controlled context-free grammars, conditional context-free grammars,
tree controlled context-free grammars, and contextual grammars with selection
languages (for details see [6], [15], and [14]).

In these cases the process of checking the condition given by a regular lan-
guage is now very simple and efficient, however, the increase of generative power
is considerable (for instance, for the first three devices, one has an increase from
context-free languages to recursively enumerable languages). Since on the one
hand practical requirements do not ask for arbitrary regular languages and on
the other hand theoretical studies – for instance proofs – show that only special
regular languages are used, it is very natural to study the devices with subregular
languages for the control. Investigations on the change of the generative power,
if subregular restrictions defined by combinatorial and algebraic properties are
done e. g. in [4] and [3] for conditional grammars, in [10] for tree controlled
grammars, and in [2], [5], and [13] for contextual grammars.

Furthermore, one can also restrict the regular languages by requiring that
they have bounded complexities. The most well-known complexity for regular
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 292–306, 2014.
DOI: 10.1007/978-3-319-13350-8 22
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languages is the state complexity which is given as the number of states of a
minimal deterministic automaton that accepts the given language. It is well-
known that, for any natural number n, there is a regular language with state
complexity n.

Other measures were defined for context-free languages but are also of interest
for regular languages. Examples are the nonterminal and production complexity
which were introduced by J. Gruska in [11] and [12]. Moreover, J. Gruska
also proved that, for any natural number n, there is a regular language with
nonterminal or production complexity n.

Therefore, the question arises which hierarchies are obtained if one restricts to
regular languages with limited state, nonterminal, and production complexities.
Results in this direction can be found in [1] for conditional grammars, in [9] for
tree controlled grammars, and in [5], and [13] for contextual grammars.

The topic of this paper are conditional tabled Lindenmayer systems which
were introduced in [16]. Here a table can only be applied to a sentential form
if the form belongs to a regular set, which is associated with the table and is
called its condition. In the extended case, such systems are very powerful; they
can generate all recursively enumerable languages. If one restricts to special
subregular families defined by combinatorial or algebraic properties, one gets
almost the same hierachy as for the subregular families in the non-extended
case, and e. g. further characterizations for the families of recursively enumerable
languages, context-sensitive languages, matrix languages, and ET0L languages
as shown in [7] and [8].

In this paper we study the power of conditional ET0L systems if the
conditions are given by regular languages with a limited state or nonterminal
complexity. We show that conditions obtained by regular grammars with two
nonterminals and finite automata with three states are sufficient to generate all
recursively enumerable languages. Similar results are given for the generation
of all context-sensitive languages. Moreover, in the non-extended case, one gets
infinite hierarchies for both complexity measures.

2 Preliminaries and Definitions

We assume that the reader is familiar with the basic concepts of the theory of
formal languages and automata. In this section we only recall some notations
and some definitions such that a reader can understand the results. We refer to
[15] and [6].

For an alphabet V , i. e, V is a finite non-empty set, the sets of all words and
of all non-empty words over V are denoted by V ∗ and V +, respectively. The
empty word is denoted by λ. For a word w ∈ V ∗ and a letter a ∈ V , |w| and |w|a
denote the length of w and the number of occurrences of a in w, respectively.

By L(CS) and L(RE) we denote the families of all context-sensitive and
recursively enumerable languages, respectively.
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Let A = (X,Z, z0, F, δ) be a deterministic finite automaton (with the set X
of input symbols, the set Z of states, the initial state z0, the set F of accepting
states, and the transition function δ). By T (A) we denote the language accepted
by A. We define the state complexity s(A) of A as the number of states of A,
i. e.,

s(A) = #(Z).

Let G = (N,T, P, S) be a grammar (with the set N of nonterminals, the set
T of terminals, the set P of rules or productions, and the start symbol S). We
say that G is regular, if all rules of P have the form A → wB or A → w with
A,B ∈ N and w ∈ T ∗.1 The nonterminal complexity n(G) of G is defined as the
number of its nonterminals2, i. e.,

v(G) = #(N).

We recall the notion of a matrix grammar.
A matrix grammar is a quintuple G = (N,T,M, S,Q) where

– N and T are disjunct alphabets of nonterminals and terminals,
– M = {m1,m2, . . . , mr} is a finite set of finite sequences mi of context-free

rules, i. e.,

mi = (Ai,1 → vi,1, Ai,2 → vi,2, . . . Ai,ri → vi,ri)

for 1 ≤ i ≤ r (the elements of M are called matrices),
– S is an element of N , and
– Q is a subset of the productions occurring in the matrices of M .

The application of a matrix mi is defined as a sequential application of the
rules of mi in the given order where a rule of Q can be ignored if its left-hand
side does not occur in the current sentential form, i.e., x =⇒mi

y holds iff there
are words wj , 1 ≤ j ≤ ri + 1 such that x = w1, y = wri+1 and, for 1 ≤ j ≤ ri,

wj = xjAi,jyj and wj+1 = xjvi,jyj (1)

or
wj = wj+1 and Ai,j does not occur in wj and Ai,j → vi.j ∈ Q. (2)

The language L(G) generated by G consists of all words z ∈ T+ such that
there is a derivation

S =⇒mi1
v1 =⇒mi2

v2 =⇒mi3
. . . =⇒mit

vt = z

for some t ≥ 1.
By L(MAT) we denote the families of languages generated by matrix gram-

mars. It is known that L(MAT) = L(RE).
We need the following normal form for matrix grammars.

1 Sometimes such grammars are called right-linear, and then, for regularity, it is
required that w ∈ T ∪ {λ}.

2 If regularity is defined by w ∈ T ∪ {λ}, then state complexity and nonterminal
complexity only differ by 1.
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Lemma 1. For any matrix grammar G, there is a matrix grammar G′ = (N ∪
U ∪{S}, T,M, S,Q) such that all matrices of M have one of the following forms

(S → XA), (A → w, X → Y ), (A → w, X → λ)

with X,Y ∈ U, A ∈ N, w ∈ (N ∪ T )∗, the rules in Q are of the form A → w
with A ∈ N and w ∈ (N ∪ T )∗, and L(G′) = L(G) holds.

Proof. We follow the proof of Lemma 1.2.3 in [6]. The only difference is that we
start with rules (S → XA) instead of rules (S → AX).

Except the initial sentential form S and the finally generated terminal word,
all intermediate sentential forms generated by a matrix G′ of Lemma 1 start
with a letter from U , and this letter is the only one from U in the word.

We now introduce central notion of this paper.

Definition 1. An extended conditional tabled Lindenmayer system without
interaction (ECT0L system, for short) is an (n + 3)-tuple

H = (V, T,P, w),

where
– V is an alphabet, T is a subset of V ,
– P is a finite set of pairs (P,R), where

– P is a finite set of rules a → v with a ∈ V and v ∈ V ∗ such that, for
any b ∈ V , there is a word vb with b → vb ∈ Pi, and

– R is a regular language over V , and
– w ∈ V +.
For x ∈ V + and y ∈ V ∗, we say that x derives y in H, written as x =⇒H y,

if and only if there is a pair (P,R) ∈ P such that
– x = a1a2 . . . at with ai ∈ V for 1 ≤ i ≤ t,
– y = y1y2 . . . yt,
– ai → yi ∈ P for 1 ≤ i ≤ t, and
– x ∈ R.
The language L(H) generated by H is defined as

L(H) = {z | z ∈ T ∗, w =⇒∗
H z}

where =⇒∗
H is the reflexive and transitive closure of =⇒H .

The sets P are called the tables of the system. By definition, in a ECT0L
system, a regular set R is associated with any table P , and P is only applicable
to a sentential form x, if x belongs to the associated language R. Therefore, R
is called the condition of P .

It is required that, for any (P,R) and any a ∈ V , there is rule a → va in
P . However, if we give an ECT0L system, we shall only mention the rules for
letters a, for which a rule a → va with va �= a exists in P , i. e., if we mention no
rule, then a → a is the only in P for a.
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Let H = (V, T, {(P1, R1), (P2, R2), . . . , (Pn, Rn)}, w) be an ECT0L system.
It is called a propagating (ECPT0L system, for short) if, for 1 ≤ i ≤ n and any
a ∈ V , Pi does not contain the rule a → λ. It is called a CT0L system if V = T .
Furthermore, it is called an ET0L system if, for 1 ≤ i ≤ n, Ri = V ∗ (i. e., any
table Pi can be apply at any moment). We can combine the restrictions; for
instance, we can have propagating T0L system or (PT0L systems, for short).

Let

G = { ECT0L, ECPT0L, ET0L, EPT0L, CT0L, CPT0L, T0L, PT0L }.

For X ∈ G, L(X) denotes the family of languages generated by X systems.
It is known that

L(EPT0L) = L(ET0L) ⊂ L(ECPT0L) = L(CS)
⊂ L(ECT0L) = L(MAT) = L(RE). (3)

Example 1. We consider the ECT0L system

H = (V, {a, b}, {(P1, R1), (P2, R2), (P3, R3), (P4, R4), (P5, R5)}, SD)

with

V = {S,A,B1, B2, C,D, a, b},

(P1, R1) = ({S → ASC}, V ∗{D}),
(P2, R2) = ({S → AC,D → λ}, V ∗{D}),
(P3, R3) = ({A → Ab,C → B1, C → B2}, V ∗{C}),
(P4, R4) = ({B1 → λ,B2 → C}, V ∗{B1}),
(P3, R3) = ({A → a}, V ∗{b}).

We start with SD, have to apply sometimes P1 and then once P2 (the only rules
where the words in the associated language end with D). This yields AnCm.
Now we have to apply P3 and get (Ab)nz where z is a word of length n over
{B1, B2}. If z ends with B2, then the derivation cannot be continued. If B1 is
the last letter of z, we can only apply P4 and obtain (Ab)nCr with r < n (since
we cancel at least the last letter of z). This process can be iterated, in each step
we add a letter b after each A, and cancel at least one C. Finally, we get (Abm)n

with m ≥ n (m gives the number of iterations, for which 1 ≤ m ≤ n holds).
Now, by the use of P5 we get (abm)n with n ≥ 1 and 1 ≤ m ≤ n. Thus

L(H) = {(abm)n | 1 ≤ m ≤ n}.

We note that it is well-known that L(H) cannot be generated by an ET0L
system.

For X ∈ G, by L(X, s, n) we denote the family of all languages which can be
generated by X systems H = (V, T, {(P1, R1), (P2, R2), . . . , (Pn, Rn)}, w), where
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Ri = T (Ai) for some deterministic finite automaton Ai = (V,Zi, z0i, Fi, δi) with
s(Ai) ≤ n.

For X ∈ G, by L(X, v, n) we denote the family of all languages which can be
generated by X systems H = (V, T, {(P1, R1), (P1, R1), . . . , (Pn, Rn)}, w), where
Ri = L(Gi) for some regular grammar Gi = (Ni, V,Qi, Si) with v(Gi) ≤ n.

Because a set V ∗{x} with x ∈ V can be accepted by the automaton

A = (V, {z0, z1}, z0, {z1}, δ)

with

δ(z0, x) = δ(z1, x) = z1 and δ(z0, a) = δ(z1, a) = z0 for a ∈ V \ {x}
and can be generated by the regular grammar

G = ({S}, V, {S → aS | a ∈ V } ∪ {S → x}, S),

we see that the language of Example 1 is contained in L(ECT0L, s, 2) and in
L(ECT0L, v, 1).

The following relations follow immediately from the definitions.

Lemma 2. i) For all X ∈ { ECT0L, CT0L, ECPT0L, CPT0L }, all k ∈ {s, v},
and all natural numbers n ≥ 1,

L(X, k, n) ⊆ L(X, k, n + 1).

The aim of this paper is a more detailed study of the hierarchies of Lemma 2.

3 Extended Conditional T0L Systems

We start with the investigation of ECT0L systems where the conditions are
defined by a bounded number of nonterminals. First, we show that conditions
which can be generated by regular grammars with two nonterminals are sufficient
to generate all recursively enumerable languages.

Lemma 3. L(RE) = L(ECT0L, v, 2).

Proof. By (3), it is sufficient to prove that any recursively enumerable language
L can be generated by an ECT0L system with conditions which can be accepted
by automata with at most two nonterminals.

Let L ∈ L(RE). Then there is a grammar G = (N,T, P, S) in Kuroda normal
form generating L, i. e., any rule of P has one of the following forms: A → B,
A → BC, AB → CD, A → a or A → λ with A,B,C,D ∈ N and a ∈ T .

Let N ′ = {A′ | A ∈ N} ∪ {A′′ | A ∈ N} such that N ′ ∩ (N ∪ T ) = ∅ and
V = N ∪N ′ ∪T . We now consider the ECT0L system H = (N ∪N ′ ∪T, T,P, S)
where P consist of the pairs constructed as follows:

(P1, R1) = ({A → A | A ∈ N} ∪ {A → A′ | A ∈ N} ∪ {A → A′′ | A ∈ N}, V ∗)



298 J. Dassow

(some symbols of N are replaced by a primed version),

(PA→w, RA→w) = ({A′ → w}, (N ∪ T )∗{A′}(N ∪ T )∗) for A → w ∈ P

(the only existing primed letter in the word is replaced by w, all other letters
are not changed)

(PAB→CD, RAB→CD) = ({A′ → C,B′′ → D}, (N ∪ T )∗{A′B′′}(N ∪ T )∗)
for AB → CD ∈ P

(if the word contains the subword A′B′′ and all its other letters belong to N
or T , then A′B′′ is replaced by CD).

If a sentential form contains at least two occurrences of letters of N ′ which
do not form a subword A′B′′, then we are not able to decrease the number of
occurrences of letters of N ′ (but we can increase it by using (P1, R1)), i. e., we
cannot terminate the derivation. Thus to a word in (N ∪ T )∗ we can only apply
(P1, R1) producing exactly one primed letter A′ or exactly two primed letters
which form a subword A′B′′ (otherwise we cannot terminate) and then we apply
some (PA→w, RA→w) or (PAB→CD, RAB→CD), respectively. We obtain a word
over (N ∪T )∗, again. It is easy to see that this simulates an application of A → w
or AB → CD in G. Obviously, any application of a rule in G can be simulated.
Therefore, L(H) = L(G).

Since R1, RA→w, and RAB→CD can be generated by regular grammars with
the production sets {S1 → aS1 | a ∈ V } ∪ {S1 → λ},
{S1 → aS1 | a ∈ N ∪ T} ∪ {S1 → A′S2} ∪ {S2 → aS2 | a ∈ N ∪ T} ∪ {S2 → λ},
{S1 → aS1 | a ∈ N ∪T}∪{S1 → A′B′′S2}∪{S2 → aS2 | a ∈ N ∪T}∪{S2 → λ},
respectively, where S1 and S2 are the nonterminals. Therefore, two nonterminals
are sufficient. �

Since the Kuroda normal form for context-sensitive grammars differs from
that for general phrase structure grammars only by omitting A → λ, we obtain
the following statement by repeating the proof.

Lemma 4. L(CS) = L(ECPT0L, v, 2). �

We now turn to ECT0L systems where the conditions are defined by a
bounded number of states.

We start with a simple lemma showing that conditional systems with con-
ditions which can be accepted by automata with only one state generate only
ET0L languages.

Lemma 5. L(ECT0L, s, 1) = L(ECPT0L, s, 1) = L(ET0L).

Proof. Let L ∈ L(ECT0L, s, 1). Then L is generated by a ECT0L system H
where all conditions can be accepted by automata with one state. Obviously, if
an automaton A has only one state, then T (A) = V ∗ or T (A) = ∅. Therefore,
H = (V, T, {(P1, V

∗), (P2, V
∗), . . . , (Pn, V ∗)}, w). Thus H is an ET0L system

and L(ECT0L, s, 1) ⊆ L(ET0L) follows.
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The converse inclusion follows by analogous arguments.
Moreover, we can repeat the proof to obtain L(ECPT0L, s, 1) = L(EPT0L).

Now the statement follows by L(ET0L) = L(EPT0L). �

We mention that such a statement does not hold for nonterminal complexity.
By the same arguments, we have L(ET0L) ⊆ L(ECT0L, v, 1) and L(EPT0L) ⊆
L(ECPT0L, v, 1), but the first inclusion is proper by Example 1.

We now show that conditions acceptable with four states are sufficient to
generate all context-sensitive languages in the propagating case.

Lemma 6. L(CS) = L(ECPT0L, s, 4).

Proof. We repeat again the proof of Lemma 3 (without rules A → λ). However,
for RAB→CD, we need an automaton with four states. More precisely, RAB→CD

is accepted by the finite automaton A = (V, {z0, z1, z2, z3}, z0, {z2}, δ) with

δ(z0, A′) = z1, δ(z0, x) = z0 for x ∈ N ∪ T, δ(z0, y) = z3 for y ∈ N ′ \ {A′},

δ(z1, B′′) = z2, δ(z1, x) = z3 for x ∈ V \ {B′′},

δ(z2, x) = z2 for x ∈ N ∪ T, δ(z2, y) = z3 for y ∈ N ′,
δ(z3, x) = z3 for x ∈ V.

By an analogous automaton one can show that RA→w can be accepted by an
automaton with three states, and obviously R1 can be accepted by an automaton
with one state. �

If erasing rules A → λ are allowed we can improve the result.

Lemma 7. L(RE) = L(ECT0L, s, 3).

Proof. By (3), it is sufficient to prove that any recursively enumerable language
L can be generated by an ECT0L system with conditions which can be accepted
by automata with at most three states.

Let L be a recursively enumerable language. By (3), there is a matrix gram-
mar G = (N ∪ U ∪ {S, F}, T,M, S,Q) in the normal form of Lemma 1 such that
L(G) = L.

Let N ′ = {A′ | A ∈ N} and V = N ∪ N ′ ∪ U ∪ {S}. We now construct the
ECT0L system H = (V, T,P, S) where the pairs of P are determined as follows:

({S → XA}, V ∗) for (S → XA) ∈ M

(in the first derivation step we do the same replacement as in G),

({A → A | A ∈ N} ∪ {A → A′ | A ∈ N}, V ∗),
({A′ → w,X → Y }, {X}(N ∪ T )∗{A′}(N ∪ T )∗) for (A → w,X → Y ) ∈ M

(first we replace some symbols of N by its primed version; we cannot decrease
the number of occurrences of letters of N ′ and thus not terminate, if at least two
symbols of N ′ are generated; if only one A′ occurs, we can replace it by w and the
only letter of X of U is replaced by Y , i. e., an application of (A → w,X → Y )
is simulated, where both rules are applied according (1)),
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({A → F,X → Y }, (N ∪U ∪T )∗) for (A → w,X → Y ) ∈ M , A → w ∈ Q

(we only change a letter of U , if A is not present in the word, which is a simulation
of an application of (A → w,X → Y ) where the first rule is used according to
(2) and the second rule according to (1); and we introduce F , if A is present,
and then we cannot replace F , i. e., we cannot terminate). By the explanations
given in brackets, it is clear that we simulate exactly the matrix applications
in G. Thus L(H) = L(G) = L follow.

Again, V ∗ can be accepted by an automaton with one state. The condition
(N ∪ U ∪ T )∗is accepted by A = (V, {z0, z1}, z0, {z0}, δ) with

δ(z0, x) = z0 for x ∈ N ∪U ∪T, δ(z0, y) = z1 for y ∈ N ′, δ(z1, v) = z1 for v ∈ V.

To handle ({A′ → w,X → Y }, {X}(N ∪ T )∗{A′}(N ∪ T )∗) we consider the
automaton

A′ = (V, {q0, q1, q2}, q0, {q2}, δ′)

with

δ(z0, B) = z1, δ(z0, x) = z0 for x ∈ V \ {B},

δ(z1, A′) = z2, δ(z1, x) = z1 for x ∈ N ∪ T, δ(z1, y) = z0 for y ∈ B ∪ N ′,
δ(z2, x) = z2 for x ∈ N ∪ T, δ(z2, y) = z0 for y ∈ B ∪ N ′.

Since any sentential form of G contains only one letter of U , this letter is its
first letter, and any sentential form of H only differs from those of G by priming
some letters, a sentential form of H is accepted by A′ if and only if it has the
form Xw1A

′w2 with X ∈ U , w1, w2 ∈ (N ∪ T )∗, and A′ ∈ N ′. (We note that
A′ accepts words which cannot occur as sentential forms and, thus, are not
of interest.) Because the conditions have to hold only for sentential forms, we
can use the pair ({A′ → w,X → Y }, T (A′)) instead of ({A′ → w,X → Y },
{X}(N ∪ T )∗{A′}(N ∪ T )∗) without changing the set of words generated by H.

Therefore three states are sufficient. �

We now summarize our result in the following statement.

Theorem 1. For any n ≥ 2, m ≥ 3 and k ≥ 4,

L(ET0L) ⊂ L(ECT0L, v, 1) ⊆ L(ECT0L, v, n) = L(RE),
L(ET0L) ⊆ L(ECPT0L, v, 1) ⊆ L(ECT0L, v, 2) = L(CS),
L(ET0L) = L(ECT0L, s, 1) ⊆ L(ECT0L, s, 2) ⊆ L(ECT0L, s,m) = L(RE),
L(ET0L) = L(ECPT0L, s, 1) ⊆ L(ECT0L, s, 2) ⊆ L(ECT0L, s, 3)

⊆ L(ECT0L, s, k) = L(CS).

It is open whether our bounds are optimal, i. e., we do not know whether
some of the inclusion given in Theorem 1 are strict.
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4 Non-Extended Conditional T0L Systems

We start with the estimation of number of states necessary for a special language.

Lemma 8. For n ≥ 4, let

Ln = {a3ccb3, dnccbn} ∪ {amxbm | m ≥ 3, x ∈ {acac, accb, cbac, cbcb}}.

i) For n ≥ 4, Ln ∈ L(CPT0L, s, n + 4).
ii) For any prime number p ≥ 5, Lp /∈ L(CT0L, s, p)

Proof. i) The language Ln is generated by the CPT0L system

Hn = ({a, b, c, d}, {a, b, c, d}, Pn, a3ccb3)

with

Pn = {({c → ac, c → cb}, {a}∗{cc}{b}∗), ({a → d}, {ancc}{b}∗).

Since {a}∗{cc}{b}∗ and {ancc}{b}∗ are accepted by the automata

A1 = ({a, b, c, d}, {z0, z1, z2, z3}, z0, {z2}, δ1)

with

δ1(z0, a) = z0, δ1(z0, c) = z1, δ1(z0, b) = δ1(z0, d) = z3,

δ1(z1, c) = z2, δ1(z1, a) = δ1(z1, b) = δ1(z1, d) = z3,

δ1(z2, b) = z2, δ1(z2, a) = z1, δ1(z2, c) = δ1(z2, d) = z3,

δ1(z3, x) = z3 for x ∈ {a, b, c, d}
and

A2 = ({a, b, c, d}, {z0, z1, . . . , zn+3}, z0, {zn+2}, δ2)

with

δ2(zi, a) = zi+1, δ2(zi, b) = δ2(zi, c) = δ2(zi, d) = zn+3 for 0 ≤ i ≤ n − 1,

δ2(zj , c) = zj+1, δ2(zj , a) = δ2(zj , b) = δ2(zj , d) = zn+3 for n ≤ j ≤ n + 1,

δ2(zn+2, b) = zn+2, δ2(zn+2, a) = δ2(zn+2, c) = δ2(zn+2, d) = zn+3,

δ2(zn+3, x) = zn+3 for x ∈ {a, b, c, d},

respectively, n + 4 states are sufficient, which proves Ln ∈ L(CPT0L, s, n + 4).
ii) We assume that there is a CT0L system H = ({a, b, c, d}, {a, b, c, d},P, w)

where, for all (P,R) in P, R is accepted by a finite automaton with at most p
states, which generates Lp. We first discuss possible derivations in H. Assume
that there is a derivation amxbm =⇒ anybn for some m ≥ 3, n ≥ 3, and x, y ∈
{acac, accb, cbac, cbcb} by the application of some table P with the associated
condition R (this means (P,R) ∈ P). Let a → va be a rule in P . Then va cannot
contain c. Otherwise, we can produce a word z with at least three occurrences
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of c (because m ≥ 3). Then z ∈ L(H) = Lp, but z /∈ Lp by the definition of Lp,
which is a contradiction. If va starts with b, we can derive a word in L(H) which
starts with b, which is impossible. If va contains a b and starts with a, then
we can generate in H a word with three occurrences of the subword ab which
is impossible, too. Hence we have va ∈ {a}∗. Analogously, we can prove that
vb ∈ {b}∗ for b → vb ∈ P . Thus the two occurrences of c in anybn are derived
from the two occurrences of c in amxbm. Hence c → vc ∈ P implies |vc|c = 1 (if
|vc|c = 0 or |vc|c ≥ 2, we can derive a word in L(H) which contains no c or at
least four cs which is impossible by L(H) = Lp). If va = λ, then the first c in
amxbm has to produce at least three occurrences of a. Applying this rule to both
occurrences of c we get a word with three occurrences of a between the two cs
which is impossible again. This gives va ∈ {a}+, and analogously, we also get
vb ∈ {b}+. Hence P is propagating.

Similarly, we can prove that a pair (P,R) which allows a derivation dpccbp =⇒
amybm has a propagating table P .

Thus w = a3ccb3 since it is the shortest word in Lp.
Hence dpccbp has to be generated from some word amxbm using some pair

(P,R). As above we get ua ∈ {d}+, ub ∈ {b}+, and |uc|c = 1 for any a → ua,
b → ub, c → uc ∈ P . If x ∈ {acac, cbac, cbcb} or vc contains a letter d and/or
a letter b, then we can derive a word with an occurrence of d or b between the
two occurrences of c and at least one occurrence of d (coming from an a), which
is impossible. Thus we get vc = c and x = cc. Now assume P contains two rules
a → dr and a → ds for a. Then r, s ≥ 1 by our above considerations. Let us
assume that amccbm =⇒ dpccbp is obtained by replacing the first a by dr, i. e.,
dpccbp = drdp−rccbp. We now use a → ds for the first a and do not change the
applied rule for all other letters. Then we get dsdp−rccbp which is not in Lp since
p+s−r �= p. This shows that there is only one rule for a and, similarly to prove,
there is only one rule for b. Let a → dr and b → bs be these two rules. Then
amccbm =⇒ (dr)mcc(bs)m. Because dpccbp is the only word in Lp containing d,
we get mr = ms = p. Because m ≥ 3 and p is a prime number, m = p and
r = s = 1. Therefore we get apccbp ∈ R.

Let A = ({a, b, c, d}, Z, z0, F, δ) be an automaton accepting R with at most
p states. Let

zi = δ(z0, ai) for 1 ≤ i ≤ p and qi = δ(z0, apccbi) for 0 ≤ i ≤ p.

Then there are indexes e, f, g, h ∈ {0, 1, 2, . . . , p} such that e < f , ze = zf and
g < h, qg = qh. Therefore δ(ze, af−e) = zf = ze and δ(zg, bh−g) = zh = zg. Now
it follows that

δ(z0, apccbp) = δ(z0, aeaf−eap−fccbgbh−gbp−h)
= δ(z0, ae(af−e)h−g+1ap−fccbg(bh−g)f−e+1bp−h)
= δ(z0, ap+(f−e)(h−g)ccbp+(f−e)(h−g)).

Hence ap+(f−e)(h−g)ccbp+(f−e)(h−g) is in R as well as in Lp. Thus we can apply P
to ap+(f−e)(h−g)ccbp+(f−e)(h−g) which results in dp+(f−e)(h−g)ccbp+(f−e)(h−g),
which is not in Lp.
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This contradiction shows that our assumption is false and Lp /∈ L(CT0L, s, p)
holds. �

From this lemma we get immediately the following statement.

Theorem 2. Let p1, p2, . . . , pn, . . . be an infinite sequence of prime numbers
such that pi+1 − pi ≥ 4 for i ≥ 1. Then

L(CT0L), s, pi + 4 ⊂ L(CT0L), s, pi+1 + 4

and
L(CPT0L), s, pi + 4 ⊂ L(CPT0L), s, pi+1 + 4.

By Theorem 2 we obtain an infinite hierarchy with respect to the state com-
plexity, but it remains open whether L(CPT0L), s, n ⊂ L(CPT0L), s, n + 1 for
n ≥ 1.

We now prove an analogous result for the nonterminal complexity.

Lemma 9. For n ≥ 2 and a letters x1, x2, . . . , xn, x′
1x

′
2, . . . , x

′
n, c, let

L′
n = {x3

1x
3
2 . . . x3

nccb3} ∪ {x3
1x

3
2 . . . x3

nxi1xi2 . . . xikxbk+3 |
k ≥ 0, x ∈ {cbcb} ∪

⋃
1≤i≤n

{xicxic, xiccb, cbxic}}

∪{{(x′
1)

3(x′
2)

3 . . . (x′
n)3(x′

1)
k1(x′

2)
k2 . . . (x′

n)knccb3+k1+k2+···+kn |
ki ≥ 3 for 1 ≤ i ≤ n}.

Then
i) L′

n ∈ L(CPT0L, v, n + 2).
ii) L′

n /∈ L(CT0L, v, n − 1)

Proof. i) Let V = {x1, x2, . . . , xn, x′
1x

′
2, . . . , x

′
n, c, b}. The CPT0L system

H ′
n = (V, V,P ′

n, x3
1x

3
2 . . . x3

nccb3)

with

P ′
n = {({c → xic, c → cb}, {x1, x2, . . . , xn}∗{cc}{b}∗) | 1 ≤ i ≤ n}),

({xi → x′
i | 1 ≤ i ≤ n},

{x3
1x

3
2 . . . x3

nxk1
1 xk2

2 . . . xkn
n cc | ki ≥ 3 for 1 ≤ i ≤ n}{b3}{b}∗)

generates L′
n.

Since the two conditions can be generated by the regular grammars

G1 = ({S,B}, V, {S → xiS | 1 ≤ i ≤ n} ∪ {S → ccB,B → bB,B → λ}, S)

and
G2 = ({S,A1, A2, . . . An, B}, V, P, S))
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with

P = {S → x3
1x

3
2 . . . x3

nA1} ∪ {Ai → xiAi, Ai → x3
iAi+1 | 1 ≤ i ≤ n − 1}

∪{An → xnAn, An → x3
nccB,B → bB,B → b3}.

Thus n + 2 nonterminals are sufficient, which proves L′
n ∈ L(CPT0L, v, n + 2).

ii) Let us assume that H = (V, V,P, w) is a CT0L system which generates
L′
n and all its conditions can be generated by regular grammars with at most

n − 1 nonterminals.
By similar arguments as used in the proof of Lemma 8 we can show that any

table which can be used is propagating. Thus w = x3
1x

3
2 . . . x3

nccb3. Therefore,
any word z = (x′

1)
3(x′

2)
3 . . . (x′

n)3(x′
1)

k1(x′
2)

k2 . . . (x′
n)knccb3+k1+k2+···+kn has to

be derived from some word z′ in L′
n which differs from z. Let us assume that

z′ = (x′
1)

3(x′
2)

3 . . . (x′
n)3(x′

1)
t1(x′

2)
t2 . . . (x′

n)tnccb3+t1+t2+···+tn =⇒ z

holds by some pair (P,R). Again, similar to the proof of Lemma 8, we can show
that

P = {c → c, b → b} ∪ {x′
i → x′

i | 1 ≤ i ≤ n}.

This contradicts z′ �= z. Therefore

z′ = x3
1x

3
2 . . . x3

nxt1
1 xt2

2 . . . xtn
n xb3+t1+t2+···+tn

with x = cc or x = cixcix or x = xiccb or x = cbxic for some i, 1 ≤ i ≤ n.
In the three latter cases, we can prove that xi → x′

i ∈ P for 1 ≤ i ≤ n and
b → b ∈ P , and we can produce a word q containing some primed letter and a
letter between the occurrences of c, which is not in L′

n = L(H). Therefore the
former case holds for z′ and we can show that

P = {c → c, b → b} ∪ {xi → x′
i | 1 ≤ i ≤ n}.

Now it follows that ti = ki for 1 ≤ i ≤ n.
Let R1, R2, . . . , Rn be the regular sets such that (P,Ri) ∈ P. Moreover, for

1 ≤ i ≤ n, let Gi = (Vi, V, Pi, Si) be a regular grammar which generates Ri with
at most n − 1 nonterminals. Let

r = max{|v| | A → v ∈ Pi, 1 ≤ i ≤ n}

and s ≥ 2r.
We consider the word u′ = (x′

1)
3(x′

2)
3 . . . (x′

n)3(x′
1)

s(x′
2)

s . . . (x′
n)sccb3+ns

which is generated from u = x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

nccb3+ns by some (P,Ri). Then
u ∈ R and it has a derivation

S =⇒∗ x3
1x

3
2 . . . x3

nxs1
1 A1

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s2
2 A2

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2x

s3
3 A3
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=⇒∗ . . .

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

n−1x
sn
n An

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

n−1x
s
nccbr1B1

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

n−1x
s
nccbr2B2

=⇒∗ . . .

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

n−1x
s
nccbrnBn

=⇒∗ x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xs

n−1x
s
nccb3+sn

with 1 ≤ si ≤ r for 1 ≤ i ≤ n and rj+1−rj > r for 1 ≤ j ≤ n−1. Since the Ri has
at most n−1 nonterminals, we get that there are indices e, f, g, h ∈ {1, 2, . . . , n}
such that e < f and Ae = Af and g < h and Bg = Bh. Thus there are derivations

Ae =⇒∗ xt
ex

s
e+1 . . . xs

f−1x
sf
f Af = xt

ex
s
e+1 . . . xs

f−1x
sf
f Ae, Bg =⇒∗ bt

′
Bh = bt

′
Bg

(4)
with t, t′ ≥ 1. Let t′′ = t+s(f −e−1)+sf . If we now perform the two derivations
(4) t′ + 1 and t′′ + 1 times, respectively, we obtain

x3
1x

3
2 . . . x3

nxs
1x

s
2 . . . xse

e (xt
ex

s
e+1 . . . xs

f−1x
sf
f )t

′
x
s−sf
f xs

f+1 . . . xs
n−1x

s
nccb3+sn+t′t′′

,

which is Ri as well as in L′
n. Thus we can apply R and get a word not in L′

n.
This contradiction shows that n − 1 nonterminals are not sufficient.

Theorem 3. Let n1, n2, . . . , nm, . . . be an infinite sequence of numbers such that
ni+1 − ni ≥ 3 for i ≥ 1. Then

L(CT0L), v, ni ⊂ L(CT0L), v, ni+1

and
L(CPT0L), v, ni ⊂ L(CPT0L), v, ni+1.

We mention that it is open whether L(CPT0L), v, n ⊂ L(CPT0L), v, n + 1
holds for n ≥ 1.

For nonterminal complexity, we get a strict increase of the power if we
increase the complexity by 3. In contrast, for state complexity, sometimes, an
increase by a large number is necessary to get a strict increase of the power.
Moreover, in the case of nonterminal complexity, we use alphabets with unlim-
ited number of letters, whereas for state complexity four letters were sufficient.
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Abstract. We study symmetries and duality between input and output
in the π-calculus. We show that in dualisable versions of π, including π and
fusions, duality breaks with the addition of ordinary input/output types.
We illustrate two proposals of calculi that overcome these problems. One
approach is based on a modification of fusion calculi in which the name
equivalences produced by fusions are replaced by name preorders, and
with a distinction between positive and negative occurrences of names.
The resulting calculus allows us to import subtype systems, and related
results, from the pi-calculus. The second approach consists in taking the
minimal symmetrical conservative extension of π with input/output types.

1 Introduction

Process calculi are algebraic models employed for understanding systems of pro-
cesses: linguistic constructs for concurrency, as well as techniqnes for reasonming
about the behaviour of processes. The π-calculus [15] (sometimes simply called π
below) is one of the most studied process calculi. In particular, it is the paradig-
matical name-passing calculus, that is, a calculus where names (a synonymous
for “channels”) may be passed around. Key aspects for the success of the π-
calculus are the minimality of its syntax — its grammar is made of a handful of
operators — and its expressiveness — it can model a variety of entities, such as
protocols for distributed systems, functions, objects, and so on.

It is common in mathematics to look for symmetries and dualities; dualities
may reveal underlying structure and lead to simpler theories. In turn, dualities
can be used to relate different mathematical entities. This paper is a summary
of work on the π-calculus aimed at studying symmetries and dualities in the
π-calculus, particularly those arising in connection with type systems.

In the π-calculus, computation, or reduction, is interaction. This is achieved
when an input and an output on the same name meet. If the name is a, then the
output, ac.P , emits a name c along a; in the matching input a(x).Q, name x is
bound: it is a placeholder for the object c that is received. The input prefix both
sequentialises a behaviour and binds a name. Correspondingly, in an interaction
two processes are synchronised and, simultaneously, a substitution is performed.
The π-calculus features another binder, the restriction operator. These operators,
together with parallel composition, are the main operators of the calculus.
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 307–322, 2014.
DOI: 10.1007/978-3-319-13350-8 23



308 D. Hirschkoff et al.

Reasoning about processes usually involves proving behavioural equivalences.
In the case of the π-calculus, there is a well-established theory of equivalences and
proof techniques. In some cases, it is necessary to work in a typed setting. Types
allow one to express constraints about the observations available to the context
when comparing two processes. Indeed, in practice the π-calculus is hardly ever
used untyped: a π programmer has always an intended discipline for the use of
names in mind; making such discipline explicit by means of types may allow one
to validate important behavioural properties which would otherwise fail.

For a simple example, consider a process P that implements two services,
for computing the factorial and the exponentiation (nn) of an integer. The two
services are accessible using channels a and b, that must be communicated to
clients of the services. We assume here only two clients, that receive the channels
via a1 and a2:

P
def= (νa, b) (a1〈a, b〉. a2〈a, b〉. (A | B)) (1)

We expect that outputs at a or b from the clients are eventually received and
processed by the appropriate service. But this is not necessarily the case: a malign
client can disrupt the expected protocol by simply offering an input at a or b and
then throwing away the values received, or forwarding the values to the wrong
service. These misbehaviours are ruled out by a capability type system imposing
that the clients only obtain the output capability on the names a and b when
receiving them from a1 and a2. The typing rules are straightforward, and mimick
those for the typing of references in imperative languages with subtyping. These
types, called capability types, or i/o-types, are one of the simplest and widely
used type disciplines in π.

In the π-calculus, the natural form of duality comes from the symmetry
between input and output. There are several variants of π where processes can
be ‘symmetrised’ by replacing inputs with outputs and vice versa. The π-calculus
with internal mobility, πI [13], is a subcalculus of π where only bound outputs
are allowed (a bound output, that we shall note a(x).P , is the emission of a pri-
vate name x on some channel a). In πI, duality can be expressed at an operational
level, by exchanging (bound) inputs and bound outputs: the dual of a(x).x(y). 0
is a(x).x(y). 0.

Other well-known variants of π with dualities are the calculi in the fusion fam-
ily [2,3,10]. In fusions, a construct for free input acts as the dual of the free output
construct of π, and the calculus has only one binder, restriction. Interaction on a
given channel has the effect of fusing (that is, identifying) names.

As for the π-calculus, however, the amazing expressiveness of the fusion cal-
culi makes desirable behavioural properties fail. The examples we introduced for
the π-calculus can be used. For instance, the problems of misbehaving clients of
the services (1) remain. Actually, in fusion calculi additional problems arise; for
example a client receiving the two channels a and b could fuse them. Now a and
b are indistinguishable, and an emission on one of them can reach any of the two
services (moreover, if a definition of a service is recursive, a recursive call could
be redirected towards the other service).
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The i/o-types, while being important for reasoning, bring in some inherent
asymmetry. Let us give some intuitions about why it is so. In i/o-types, types
are assigned to channels and express capabilities: a name of type oT can be used
only to emit values of type T , and similarly for the input capability (iT ). This
is expressed by the following typing rules for i/o-types in π:

Γ � a : iT Γ, x : T � P

Γ � a(x).P
Γ � a : oT Γ � b : T Γ � P

Γ � ab.P

The rule for input can be read as follows: process a(x).P is well-typed provided
(i) the typing environment, Γ , ensures that the input capability on a can be
derived, and (ii) the continuation of the input can be typed in an environment
where x is used according to T . The typing rule for output checks that (i) the
output capability on a is derivable, (ii) the emitted value, b, has the right type,
and (iii) the continuation P can be typed. As an example, a : i(iT ) � a(x).xt. 0
cannot be derived, because only the input capability is received on a, which
prevents xt. 0 from being typable.

I/o-types come with a notion of subtyping, that makes it possible to relate
type �T (which stands for both input and output capabilities) with input and
output capabilities (in particular, we have �T ≤ iT and �T ≤ oT ). We stress
an asymmetry between the constraints attached to the transmitted name in the
two rules above. Indeed, while in a reception we somehow enforce a “contract”
on the usage of the received name, in the rule for output this is not the case: we
can use subtyping in order to derive type, say, iU for b when typechecking the
output, while b’s type can be �U when typechecking the continuation P .

The main technical point that is discussed in this work is the conflict between
the asymmetry inherent to i/o-types and the symmetries we want to obtain via
duality. For example i/o-types can be adapted to πI, but duality cannot be
applied to the resulting typings. In fusion calculi, the conflict with the asymmetry
of i/o-types is even more dramatic. Indeed, subtyping in i/o-types is closely
related to substitution, since replacing a name with another makes sense only if
the latter has a more general type. Fusions are intuitively substitutions operating
in both directions, which leaves no room for subtyping. We explain in Section 3
the problems with symmetries, and why i/o-types cannot be extended easily to
fusions.

We discuss two ways to conciliate symmetries and types. The first approach
is based on a refinement of fusion calculi. Intuitively, the problems of fusion cal-
culi with types arise because at the heart of the operational semantics for fusion
calculi is an equivalence relation on names, generated through name fusions. In
contrast, subtyping and capability systems are based on a preorder relation (sub-
typing, set inclusion among subsets of capabilities). The equivalence on names
forces one to have an equivalence also on types, instead of a preorder.

The crux of the solution we propose is the replacement of the equivalence
on names by a preorder, and a distinction on occurrences of names, between
‘positive’ and ‘negative’. In the resulting single-binder calculus, πP (‘π with
Preorder’), reductions generate a preorder. The basic reduction rule is
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ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name preorder. Such
a process may redirect a prefix at b (which represents a ‘positive’ occurrence
of b) to become a prefix at a. In the processes written above, all visible occur-
rences of a and c (resp. b) are positive (resp. negative). We show that the i/o
(input/output) capability systems of the π-calculus can be reused in πP, follow-
ing a generalisation of the typing rules of the π-calculus that takes into account
the negative and positive occurrences of names. A better understanding of type
systems with subtyping in name-passing calculi is a by-product of this study. For
instance, the study suggests that it is essential for subtyping that substitutions
produced by communications (in πP, the substitutions pro-duced by arcs) only
affect the positive occurrences of names.

A property of certain fusion calculi (Fusion, Explicit Fusion) is a semantic
duality induced by the symmetry between input and output prefixes. In πP, the
syntax still allows us to swap inputs and outputs, but in general the original and
final processes have incomparable behaviours.

The second approach to conciliating dualities and types possibility is illus-
trated by formalising a calculus named π. This is an extension of π with con-
structs for free input and bound output (note that bound output is not seen as
a derived construct in π). In π, we rely on substitutions as the main mechanism
at work along interactions. To achieve this, we forbid interactions involving a
free input and a free output: the type system rules out processes that use both
kinds of prefixes on the same channel.

Calculus π contains π, and any π process that can be typed using i/o-types
can be typed in exactly the same way in π. Moreover, π contains a ‘dualised’
version of π: one can choose to use some channels in free input and bound output.
For such channels, the typing rules intuitively enforce a ‘contract’ on the usage
of the transmitted name on the side of the emitter (dually to the typing rules
presented above).

Further Related Work. Central to πP is the preorder on names, that breaks the
symmetry of name equivalence in fusion-like calculi. Another important ingredi-
ent for the theory of πP is the distinction between negative and positive occur-
rences of a name. In Update [11] and (asymmetric versions of) Chi [2], reductions
produce ordinary substitutions on names. In practice, however, substitutions are
not much different from fusions: a substitution {a/b} fuses a with b and makes a
the representative of the equivalence class. Still, substitutions are directed, and
in this sense Update and Chi look closer to πP than the other fusion calculi.
For instance Update and Chi, like πP, lack the duality property on computa-
tions. Update was refined to the Fusion calculus [10] because of difficulties in
the extension with polyadicity. Another major difference for Update and Chi
with respect to πP is that in the former calculi substitutions replace all occur-
rences of names, whereas πP takes into account the distinction between positive
and negative occurrences.
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The question of controlling the fusion of private names has been addressed
in [1], in the U-calculus. This calculus makes no distinction between input and
output, and relies on two forms of binding to achieve a better control of scope
extrusion, thus leading to a sensible behavioural theory that encompasses fusions
and π. It is unclear how capability types could be defined in this calculs, as it
does not have primitive constructs for input and output.

Structure of the Paper. Section 2 gives some background on calculi for mobile
processes. Section 3 shows that, in typed languages with fusions, it is impossi-
ble to have a non-trivial subtyping, assuming a few simple and standard typing
properties of name-passing calculi. Section 4 refines the fusion calculi by replac-
ing the equivalence relation on names generated through communication by a
preorder, yielding the calculus πP. Finally, Section 5 presents π, the extension
of the π-calculus with capability types that enjoys duality properties.

2 Background on Name-Passing Calculi

In this section we group terminology and notation that are common to all the
calculi discussed in the paper. For simplicity of presentation, all calculi in the
paper are finite. The addition of operators like replication for writing infinite
behaviours goes as expected. The results in the paper would not be affected.

We informally call name-passing the calculi in the π-calculus tradition, which
have the usual constructs of parallel composition and restriction, and in which
computation is interaction between input and output constructs. Names identify
the pairs of matching inputs/outputs, and the values transmitted may themselves
be names. Restriction is a binder for the names; in some cases the input may
be a binder too. Examples of these calculi are the π-calculus, the asynchronous
π-calculus, the Join calculus, the Distributed π-calculus, the Fusion calculus,
and so on. Binders support the usual alpha-conversion mechanism, and give rise
to the usual definitions of free and bound names.

To simplify the presentation, throughout the paper, in all statements (includ-
ing rules), we assume that the bound names of the entities in the statements are
different from each other and different from the free names (Barendregt conven-
tion on names). Similarly, we say that a name is fresh or fresh for a process, if
the name does not appear in the entities of the statements or in the process.

We use a, b, . . . to range over names. In a free input ab.P , bound input
a(b).P , free output ab.P , and bout output a(b), we call a the subject of the
prefix, and b the object. We sometimes abbreviate prefixes as a.P and a.P when
the object carried is not important. We omit trailing 0, for instance writing ab
in place of ab.0. We write P{a/b} for the result of applying the substitution of
b with a in P .

The semantics of the calculi studied in the paper are given in the reduction
style, by defining structural congruence and reduction relations. Structural con-
gruence, ≡, is defined as the usual congruence produced by the monoidal rules
for parallel composition and the rules for commuting and extruding restriction
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3 Typing and Subtyping with Fusions

Calculi Having Fusions. When restriction is the only binder (hence the prefixes
are not binding), we say that the calculus has a single binder. If in addition
interaction involves fusion between names, so that we have (=⇒ stands for an
arbitrary number of reduction steps, and in the right-hand side P , Q can be
omitted if they are 0)

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly, has fusions. (We
are not requiring that (2) is among the rules of the operational semantics of the
calculus, just that (2) holds. The shape of (2) has been chosen so to capture the
existing calculi; the presence of R allows us to capture also the Solos calculus.) All
single-binder calculi in the literature (Update [11], Chi [2], Fusion [10], Explicit
Fusion calculus [3], Solos [8]) have fusions. In Section 4 we will introduce a
single-binder calculus without fusions.

In all calculi in the paper, (reduction-closed) barbed congruence will be our
reference behavioural equivalence. Its definition only requires a reduction rela-
tion, −→, and a notion of barb on names, ↓a. Intuitively, a barb at a holds for
a process if that process can accept an offer of interaction at a from its environ-
ment. We write 
L for (strong) reduction-closed barbed congruence in a calculus
L. Informally, 
L is the largest relation that is context-closed, barb-preserving,
and reduction-closed. Its weak version, written �L, replaces the relation −→L
with its reflexive and transitive closure =⇒L, and the barbs ↓L

a with the weak
barbs ⇓L

a , where ⇓L
a is the composition of the relations =⇒L and ↓L

a (i.e., the
barb is visible after some internal actions).

We consider typed versions of languages with fusions. We show that in such
languages it is impossible to have a non-trivial subtyping, assuming a few simple
and standard typing properties of name-passing calculi.

We use T,U to range over types, and Γ to range over type environments, i.e.,
partial functions from names to types. We write dom(Γ ) for the set of names on
which Γ is defined. In name-passing calculi, a type system assigns a type to each
name. Typing judgements are of the form Γ � P (process P respects the type
assignments in Γ ), and Γ � a : T (name a can be assigned type T in Γ ).1 The
following are the standard typing rules for parallel composition and restriction:

Γ � P1 Γ � P2

Γ � P1 | P2

Γ, x : T � P

Γ � (νx : T ) P
(3)

The first rule says that any two processes typed in the same type environment
can be composed in parallel. The second rule handles name restriction.

1 We consider in this paper basic type systems and basic properties for them; more
sophisticated type systems exist where processes have a type too, e.g., behavioural
type systems.
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In name-passing calculi, the basic type construct is the channel (or connec-
tion) type � T . This is the type of a name that may carry, in an input or an
output, values of type T . Consequently, we also assume that the following rule
for prefixes ab.P and ab.P is admissible.

Γ (a) = � T Γ (b) = T Γ � P

Γ � α.P
α ∈ {ab, ab} (4)

(Prefixes may not have a continuation, in which case P would be missing from
the rule.) In the rule, the type of the subject and of the object of the prefix are
compatible. Again, these need not be the typing rules for prefixes; we are just
assuming that the rules are valid in the type system. The standard rule for prefix
would have, as hypotheses, Γ � a : � T and Γ � b : T . These imply, but are not
equivalent to, the hypotheses in (4), for instance in presence of subtyping.

Fundamental properties of type systems are:

– Subject Reduction (or Type Soundness): if Γ � P and P → P ′, then Γ � P ′;
– Weakening: if Γ � P and a is fresh, then Γ, a : T � P ;
– Strengthening: whenever Γ, a : T � P and a is fresh for P , then Γ � P ;
– Closure under injective substitutions: if Γ, a : T � P and b is fresh, then

Γ, b : T � P{b/a}.

Definition 1. A typed calculus with single binder is plain if it satisfies Subject
Reduction, Weakening, Strengthening, Closure under injective substitutions, and
the typing rules (3) and (4) are admissible.

If the type system admits subtyping, then another fundamental property is
narrowing, which authorises, in a typing environment, the specialisation of types:

– (Narrowing): if Γ, a : T � P and U ≤ T then also Γ, a : U � P .

When narrowing holds, we say that the calculus supports narrowing.
A typed calculus has trivial subtyping if, whenever T ≤ U , we have Γ, a : T �

P iff Γ, a : U � P . When this is not the case (i.e., there are T,U with T ≤ U , and
T,U are not interchangeable in all typing judgements) we say that the calculus
has meaningful subtyping.

Under the assumptions of Definition 1, a calculus with fusions may only have
trivial subtyping.

Theorem 1. A typed calculus with fusions that is plain and supports narrowing
has trivial subtyping.

In the proof, given in [5], we assume a meaningful subtyping and use it
to derive a contradiction from type soundness and the other hypotheses. An
additional theorem is presented in [5], showing that any form of narrowing, on
one prefix object, would force subtyping to be trivial.
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4 A Calculus with Name Preorders

4.1 Preorders, Positive and Negative Occurrences

We now refine the fusion calculi by replacing the equivalence relation on names
generated through communication by a preorder, yielding πP. As the preorder
on types given by subtyping allows promotions between related types, so the
preorder on names of πP allows promotions between related names. Precisely, if
a is below a name b in the preorder, then a prefix at a may be promoted to a
prefix at b and then interact with another prefix at b. Thus an input av.P may
interact with an output bw.Q; and, if also c is below b, then av.P may as well
interact with an output cz.R.

The ordering on names is introduced by means of the arc construct, a/b, that
declares the source b to be below the target a. The remaining operators are as
for fusion calculi.

P ::= 0 | P | P | ab.P | ab.P | νaP | a/b .

We explain the effect of reduction by means of contexts, rather than separate
rules for each operator. Contexts yield a more succinct presentation. An active
context is one in which the hole may reduce. Thus the only difference with respect
to ordinary contexts is that the hole may not occur underneath a prefix. We use
C to range over (ordinary) contexts, and E for active contexts.

The rules for reduction are as follows:

R-SCon :
P ≡ E[Q] Q −→ Q′ E[Q′] ≡ P ′

P −→ P ′

R-Inter : ab.P | ac.Q −→ P | Q | b/c

R-SubOut : a/b | bc.Q −→ a/b | ac.Q

R-SubInp : a/b | bc.Q −→ a/b | ac.Q

Rule R-Inter shows that communication generates an arc. Rules R-SubOut
and R-SubInp show that arcs only act on the subject of prefixes; moreover, they
only act on unguarded prefixes (i.e., prefixes that are not underneath another
prefix). The rules also show that arcs are persistent processes. Acting only on
prefix subjects, arcs can be thought of as particles that “redirect prefixes”: an arc
a/b redirects a prefix at b towards a higher name a. (Arcs remind us of special π-
calculus processes, called forwarders or wires [7], which under certain hypotheses
allow one to model substitutions; as for arcs, so the effect of forwarders is to
replace the subject of prefixes.)
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We write =⇒ for the reflexive and transitive closure of −→. Here are some
examples of reduction.

ac.ca.e.P | ad.de.a.Q
R-Inter −→ ca.e.P | de.a.Q | c/d

R-SubInp −→ ca.e.P | ce.a.Q | c/d
R-Inter −→ e.P | a.Q | c/d | a/e

R-SubInp −→ a.P | a.Q | c/d | a/e
R-Inter −→ P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same name. This may be
used to represent certain forms of choice, as in the following processes:

(νh, k) (bu. cu.u | bh.h.P | ck. k.Q)
=⇒ (νh, k) (u | h/u | k/u | h.P | k.Q) .

Both arcs may act on u, and are therefore in competition with each other.
The outcome of the competition determines which process between P and Q is
activated. For instance, reduction may continue as follows:

R-SubOut −→ (νh, k) (k | h/u | k/u | h.P | k.Q)
R-Inter −→ (νh, k) (h/u | k/u | h.P | Q) .

Definition 2 (Positive and negative occurrences). In an input ab.P and
an arc a/b, the name b has a negative occurrence. All other occurrences of names
in input, output and arcs are positive occurrences.

An occurrence in a restriction (νa) is neither negative nor positive, intuitively
because restriction acts only as a binder, and does not stand for an usage of the
name (in particular, it does not take part in a substitution).

Negative occurrences are particularly important, as by properly tuning them,
different usages of names may be obtained. For instance, a name with zero neg-
ative occurrence is a constant (i.e., it is a channel, and may not be substituted);
and a name that has a single negative occurrence is like a π-calculus name bound
by an input (see [5]).

4.2 Types

We now show that the i/o capability type system and its subtyping can be
transplanted from π to πP.

In the typing rules for i/o-types in the (monadic) π-calculus [12], two addi-
tional types are introduced: o T , the type of a name that can be used only in
output and that carries values of type T ; and i T , the type of a name that can
be used only in input and that carries values of type T . The subtyping rules stip-
ulate that i is covariant, o is contravariant, and � is invariant. The subsumption
rule injects subtyping in the typing rules. The most important typing rules are
those for input and output prefixes; for input we have:

T-InpBound :
Γ � a : i T Γ, b : T � P

Γ � a(b).P
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Table 1. The type system of πP

Types (1 is the unit type): T ::= i T | o T | � T | 1
Subtyping rules:

� T ≤ i T � T ≤ o T

S ≤ T

i S ≤ i T

S ≤ T

o T ≤ o S T ≤ T

S ≤ T T ≤ U

S ≤ U

Typing rules:

Tv-Name

Γ, a : T � a : T

Subsumption
Γ � a : S S ≤ T

Γ � a : T

T-Res
Γ, a : T � P

Γ � νaP

T-Par
Γ � P Γ � Q

Γ � P | Q

T-Nil

Γ � 0

T-Out
Γ � a : o T Γ � b : T Γ � P

Γ � ab.P

T-InpFree
Γ � a : i Γ (b) Γ � P

Γ � ab.P

T-Arc
Γ � a : Γ (b)

Γ � a/b

The type system for πP is presented in Table 1. With respect to the π-
calculus, only the rule for input needs an adjustment, as πP uses free, rather
than bound, input. The idea in rule T-InpFree of πP is however the same as
in rule T-InpBound of π: we look up the type of the object of the prefix, say
T , and we require i T as the type for the subject of the prefix. To understand
the typing of an arc a/b, recall that such an arc allows one to replace b with a.
Rule T-Arc essentially checks that a has at least as many capabilities as b, in
line with the intuition for subtyping in capability type systems.

Common to the premises of T-InpFree and T-Arc is the look-up of the
type of names that occur negatively (the source of an arc and the object of an
input prefix): the type that appears for b in the hypothesis is precisely the type
found in the conclusion (within the process or in Γ ). In contrast, the types for
positive occurrences may be different (e.g., because of subsumption Γ � a : i T
may hold even if Γ (a) = i T ).

We cannot type inputs like outputs: consider

T-InpFree2-Wrong :
Γ � a : i T Γ � b : T

Γ � ab

Rule T-InpFree2-Wrong would accept, for instance, an input ab in an envi-
ronment Γ where a : i i 1 and b : � 1. By subtyping and subsumption, we could
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then derive Γ � b : i 1 . In contrast, rule T-InpFree, following the input rule of
the π-calculus, makes sure that the object of the input does not have too many
capabilities with respect to what is expected in the type of the subject of the
input. This constraint is necessary for subject reduction. As a counterexample,
assuming rule T-InpFree2-Wrong, we would have a : � i 1, b : � 1, c : i 1 � P ,
for P

def= ab | ac | b. However, P −→ c/b | b −→ c/b | c, and the final derivative is
not typable under Γ (as Γ only authorises inputs at c).

In πP, the direction of the narrowing is determined by the negative or positive
occurrences of a name.

Theorem 2 (Polarised narrowing). Let T1, T2 be types such that T1 ≤ T2.

1. If a occurs only positively in P , then Γ, a : T2 � P implies Γ, a : T1 � P .
2. If a occurs only negatively in P , then Γ, a : T1 � P implies Γ, a : T2 � P .
3. If a occurs both positively and negatively in P , then it is in general unsound

to replace, in a typing Γ � P , the type of a in Γ with a subtype or supertype.

Theorem 2 (specialised to prefixes) does not contradict Theorem 1, because
in πP, reduction does not satisfy (2) (from Section 2). We have subject reduction:

Theorem 3. If Γ � P and P −→ P ′ then also Γ � P ′.

4.3 Other Results

Behavioural equivalences for πP and the fusion calculi, in the form of barbed
congruence, are considered in [5]. It is shown that the modification from fusion
calculi to πP also brings in behavioural differences. For instance, both in the π-
calculus and in πP, a process that creates a new name a has the guarantee that
a will remain different from all other known names, even if a is communicated
to other processes (only the creator of a can break this, by using a in negative
position). This is not true in fusion calculi, where the emission of a may produce
fusions between a and other names. To demonstrate the proximity with the π-
calculus we show that the embedding of the asynchronous π-calculus into πP
is fully abstract (full abstraction of the encoding of the π-calculus into fusion
calculi fails). We also exhibit an encoding of Explicit Fusions into πP, where
fusions become bi-directional arcs. Indeed πP is closer to the π-calculus than to
fusion calculi, not only in typing, but also behaviourally.

The reduction semantics for πP that we have presented ma considered eager,
in that arcs may freely act on prefixes. An alternative, by-need, semantics, is
possible, where arcs act on prefixes only when interactions occur. See [5] for a
comparison between the two semantics, as well as for further comparison with
semantics based on name fusion. The behavioural theory of πP, under by-need
semantics, is further studied in [6]. Two characterisations of barbed congruence,
using a labelled transition system and using equations, are presented. Also, see
[5] for examples concerning behavioural laws and expressiveness results for πP.
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5 π, a Symmetric π-Calculus

In this section, we present π, a π-calculus with i/o-types that enjoys duality
properties. We define the syntax and operational semantics for π processes in
Section 5.1, introduce types and barbed congruence in Section 5.2, establish
duality in Section 5.3. We finally discuss other results, and an application to the
encoding of functions, in Section 5.4.

5.1 Syntax and Operational Semantics

The syntax of π is as follows:

P ::= 0 | P | P | α.P | (νa)P α ::= ρb | ρ(x) a ::= a | a

π differs from the usual π-calculus by the presence of the free input ab and bound
output a(x) prefixes. Note that in π, the latter is not a notation for (νx)ax.P ,
but a primitive construct. These prefixes are the symmetric counterpart of ab
and a(x) respectively. Given ρ of the form a or a, n(ρ) is defined by

Reduction is defined by law R-SCon from Section 4.1, as well as the following
axioms, to allow communication involving two prefixes only if at least one of them
is bound :

ab.P | a(x).Q → P | Q[b/x] ab.P | a(x).Q → P | Q[b/x]

a(x).P | a(x).Q → (νx)(P | Q)

⇒ denotes the reflexive transitive closure of →. Note that the π process ab | ab
has no reduction; this process is ruled out by the type system presented below.

5.2 Types and Behavioural Equivalence

Types in π are a refinement of standard i/o-types: in addition to capabilities
(ranged over using c), we annotate types with sorts (s), that specify whether a
name can be used in free input (sort e) or in free output (r) — note that a name
cannot be used to build both kinds of free prefixes.

T ::= csT | 1 c ::= i | o | � s ::= e | r

If name a has type crT , we shall refer to a as a r-name, and similarly for e.
The subtyping relation is the smallest reflexive and transitive relation ≤

satisfying the rules of Figure 1. As in the π-calculus ir is covariant and or is
contravariant. Dually, ie is contravariant and oe is covariant. Note that sorts (e,
r) are not affected by subtyping.

The type system is given by the rules of Figure 2. We write Γ (a) for the
type associated to a in Γ . There is a dedicated typing rule for every kind of
prefix (free, ρb, or bound, ρ(x)), according to the sort of the involved name.
T↔ stands for T where we switch the toplevel capability: (csT )↔ = csT where
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�sT ≤ isT �sT ≤ osT

T1 ≤ T2

irT1 ≤ irT2

T1 ≤ T2

orT2 ≤ orT1

T1 ≤ T2

ieT2 ≤ ieT1

T1 ≤ T2

oeT1 ≤ oeT2

Fig. 1. Subtyping in π

Γ � a : irT Γ, x : T � P

Γ � a(x). P

Γ � a : ieT Γ, x : T ↔ � P

Γ � a(x). P

Γ � a : oeT Γ, x : T � P

Γ � a(x). P

Γ � a : orT Γ, x : T ↔ � P

Γ � a(x). P

Γ � a : ieT Γ � b : T Γ � P

Γ � ab. P

Γ � a : orT Γ � b : T Γ � P

Γ � ab. P

Γ, a : T � P

Γ � (νa)P

Γ � P Γ � Q

Γ � P | Q Γ � 0

Γ (a) ≤ T

Γ � a : T

Fig. 2. π: Typing rules

o = i, i = o, � = �. The typing rules for r-names impose a constraint on the
receiving side: all inputs on a r-channel should be bound. Note that a(x).P
and (νx)ax.P are not equivalent from the point of view of typing: typing a
bound output on a r-channel (a) imposes that the transmitted name (x) is used
according to the “dual constraint” w.r.t. what a’s type specifies: this is enforced
using T↔ (while names received on a are used according to T ). Symmetrical
considerations hold for e-names, that impose constraints on the emitting side.

Remark 1 (“Double contract”). We could adopt a more liberal typing for bound
outputs on r names, and use the rule

Γ � a : orT Γ, x : T ′ � P T ′ ≤ T

Γ � a(x).P

(and its counterpart for inputs on e-names). This would have the effect of typ-
ing a(x).P like (νx)ax.P . We instead chose to enforce what we call a “double
contract”: the same way a receiving process uses the bound name according to
the type specified in the channel that is used for reception, the continuation of a
bound output uses the emitted name according to T↔, the symmetrised version
of T . This corresponds to a useful programming idiom in π, where it is common
to create a name, transmit one capability on this name and use locally the other,
dual capability. This choice moreover simplifies reasoning about π.
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Observe that when a typable process reduces according to

a(x).P | a(x).Q → (νx)(P | Q) ,

if a has type, say, �r(osT ), then in the right hand side process, name x is given
type �sT , and the � capability is “split” into isT (used by P ) and osT (used by
Q). It would be the other way around if a’s sort were e.

Proposition 1 (Subject reduction). If Γ � P and P → Q then Γ � Q.

We now move to the definition of behavioural equivalence.

Definition 3 (Contexts). Contexts are processes with one occurrence of the
hole, written [−]. They are defined by the following grammar:

C ::= [−] | C | P | C | P | α.C | (νa)C .

Definition 4. Let Γ,Δ be typing environments. We say that Γ extends Δ if the
support of Δ is included in the support of Γ , and if Δ � x : T entails Γ � x : T
for all x. A context C is a (Γ/Δ)-context, written Γ/Δ � C, if C can be typed
in the environment Γ , the hole being well-typed in any context that extends Δ.

Definition 5 (Barbs). Given ρ ∈ {a, a}, where a is a name, we say that P
exhibits barb ρ, written P ρ, if P (νc1 . . . cn)(α.Q | R) where α ∈ {ρ(x), ρb} with
a ∈ {c1, . . . , cn}. We extend the definition to weak barbs: P ⇓ρ stands for P ⇒ ρ.

Definition 6 (Typed barbed congruence). Barbed bisimilarity is the largest
symmetric relation ≈̇ such that whenever P ≈̇ Q,

1. if P ρ then Q ⇓ρ, and
2. if P → P ′ then Q ⇒ ≈̇ P ′.

When Δ � P and Δ � Q, we say that P and Q are barbed congruent at Δ,
written Δ 	 P ∼=c Q, if for all (Γ/Δ)-context C, C[P ] ≈̇ C[Q].

5.3 Duality

Definition 7 (Dual of a process). The dual of a process P , written P , is
the process obtained by transforming prefixes as follows: ab = ab, ab = ab,
a(x) = a(x), a(x) = a(x), and applying dualisation homeomorphically to the
other constructs.

Lemma 1 (Duality for reduction). If P → Q then P → Q.

Dualising a type means swapping i/o capabilities and e/r sorts.

Definition 8 (Dual of a type). The dual of T , written T , is defined as follows:

csT = cs T with r = e, e = r, i = o, o = i .

We extend the definition to typing environments, and write Γ for the dual of Γ .
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Lemma 2 (Duality for typing). The type system enjoys the following duality
properties: If T1 ≤ T2 then T1 ≤ T2. Moreover, if Γ � P then Γ � P . Finally, if
Γ/Δ � C then Γ/Δ � C.

Most importantly, duality holds for typed barbed congruence. The result is
easy in the untyped case, since duality preserves reduction and dualises barbs.
On the other hand, we are not aware of the existence of another system having
this property in presence of i/o-types.

Theorem 4 (Duality for ∼=c). If Δ 	 P ∼=c Q then Δ 	 P ∼=c Q.

5.4 Further Results and Applications

It is shown in [4] that π can be related to π, by translating π into a variant of
the π-calculus with i/o-types in a a fully abstract way. This result shows that π
and π are rather close in terms of expressiveness.

As an application of π, its dualities, and its behavioural theory, the calculus
is used in [4] to relate two encodings of call-by-name λ-calculus. The first one is
the ordinary encoding by Milner [9], the second one, more recent, is by van Bakel
and Vigliotti [16]. The two encodings are syntactically quite different. Milner’s is
input-based, in that an abstraction interacts with its environment via an input.
In contrast, van Bakel and Vigliotti’s is output-based.

We exploit π (in fact the extension of π with delayed input) to prove that the
two encodings are the dual of one another. This is achieved by first embedding
the π-terms of the λ-encodings into π, and then applying behavioural laws of π.
The correctness of these transformations is justified using i/o-types (essentially
to express the conditions under which a link can be erased in favour of a substitu-
tion). As a consequence, correctness results for one encoding can be transferred
onto the other one. For instance, we derive that the equivalence induced on λ-
terms by Milner’s encoding (whereby two λ-terms are equal if their π-calculus
images are behaviourally equivalent) is the same as that induced by van Bakel
and Vigliotti’s encoding. And since for Milner’s encoding this equivalence coin-
cides with the Levy-Longo tree equality [14], the same holds for van Bakel and
Vigliotti’s encoding, a question that is not addressed in [16].
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Abstract. The article presents state of the art on learning languages in
the limit from full positive data and negative counterexamples to overex-
tending conjectures. In the main model, the learner can store in its long-
term memory all data seen so far. Variants of this model are considered
where the learner always gets least counterexamples, or counterexamples
bounded by the maximal size of positive data seen. All these variants are
also considered for the model, where the learner does not have long-term
memory, but can use the last conjecture. Capabilities, properties, and rela-
tionships between these models (and some other variations) are surveyed.
Also, a variant of the main model restricted to learning classes definable
by finite automata by learners definable by finite automata is considered.

1 Introduction

The paper surveys recent results on algorithmic learning languages from all cor-
rect words of the language (full positive data) and a finite number of negative
counterexamples. A popular formal model for study of learning languages from
full positive data was introduced by M. Gold in his seminal paper [Gol67]. In
this model, motivated largely by theories of language acquisition by children,
a learner gets access to growing segments of the target language (where words
appear in no particular order and can be repeated) and outputs a (potentially
infinite) sequence of grammars, settling eventually on a grammar correctly rep-
resenting the target language. In the sequel, we refer to this model as TxtEx,
where Txt stands for “text”, which is a complete positive data presentation,
and “Ex” stands for “explanatory learning”. The impact of this model on under-
standing of human language acquisition has been discussed in [Pin79], [WC80],
and [OSW86], among others. Another popular variant of this model, TxtBc,
where a learner eventually outputs only correct grammars of the target lan-
guage, but not necessarily the same grammar, was introduced by J. Barzdin
[Bār74] and J. Case and C. Smith [CS83] (“Bc” here stands for “behaviourally
correct”).
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On the other hand, some studies point out that children, when learning lan-
guages, do use some, limited, negative information (incorrect words/sentences)
about the target language ([DPS86], [BH70], [HPTS84]). The major question is
how access to some limited negative data can be formalized within the frame-
work of learning languages from primarily positive, potentially full, data. In
[Shi86], [BCJ95] and some other works, the authors considered a situation when
a learner, in addition to full positive data, has immediate access to a finite num-
ber of selected negative examples. This approach, while being interesting from
theoretical standpoint — as it gives opportunity to explore the impact of finite
negative data on the limits of learnability — does not really model a real process
of learning a language, whereby a learner receives negative data from time to
time, when the learning process progresses. In such a process, a learner would
typically receive negative datum in form of a “counterexample” to incorrectly
conjectured grammar/description of the target language (note that such incor-
rect conjecture, in some sense, “overextends” — hypothesizes something that
not only was not in the positive data seen so far, but is not in the target lan-
guage at all). Thus the learning process is an interaction between a learner and a
“teacher”: the learner offers its next conjecture, and the teacher returns a coun-
terexample if the conjecture overextends. Learning paradigm of this sort was
formalized by D. Angluin in her seminal paper [Ang88]. Specifically, D. Angluin
suggested to consider learning processes based on queries to a “teacher” (for-
mally, an oracle) of different kinds. In one type of queries, subset queries, a learner
can ask if a language M is a subset of a target language L, and if the answer is
negative, the oracle returns a counterexample that is in M , but not in L. In an
important variant of such queries, the learner asks if a current conjecture H is
a subset of L, thus addressing the aforementioned problem of “overextension”.
In [JK08] the authors combined this variant of Angluin’s learning via subset
queries and TxtEx into the model NCEx — the main model being reviewed
in this paper — whereby the learner receives full positive data and counterex-
amples to each conjecture that is not a subset of the target language (note that
if a learner is successful, the number of negative counterexamples is finite). In
the same paper [JK08], the authors introduced a variant of this model, NCBc,
combining the Angluin’ subset queries model and TxtBc.

Later, the authors suggested and studied few more variants of this model:
— in [JK07a] the learner is iterative [Wie76] (see also [LZ96]) — unlike gen-

eral NCEx-type learners, which, at any moment, have access to all the data
seen so far, an iterative learner, in order to produce a new conjecture, can only
use the current conjecture and next positive and negative (if any) data items;
this model, while strongly limiting long-term memory of a learner, still pre-
serves incremental character of learning in the limit; certain variants of iterative
learning proved to be quite useful in the context of applied machine learning
(for example, [LZ06] use the idea of iterative learning in the context of training
Support Vector Machines).

— in [JK12,JKS14] classes of languages to be learnt are automatic — that
is, each class is defined by a finite automaton — and the learners, while using
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access to full positive data and negative counterexamples to conjectures, are also
automatic.

In the basic NCEx model, it is assumed that the learner is provided arbitary
counterexamples. In addition to this model, [JK08], introduces two more vari-
ants: in one of them, LNCEx, the learner always gets the least counterexamples;
in another one, BNCEx, the learner always gets the counterexamples (if any)
which is bounded by the largest positive datum seen so far (the latter condition
is influenced by possible complexity constraints of the “teacher”). In the sequel,
we will refer to the counterexamples of the latter type as bounded.

The paper is a survey of theoretical studies of the model NCEx and its afore-
mentioned variants. We hope that this survey, presenting most salient results in
this field, will give robust advice to researches working in more practical areas
of algorithmic and machine learning, as well as to cognitive scientists.

2 Notation and Preliminaries

The set of natural numbers {0, 1, 2, . . .} is denoted by N . We let ∅, ⊆, ⊇, ⊂
and ⊃ denote emptyset, subset, superset, proper subset and proper superset
respectively. χA denotes the characteristic function of A, that is χA(x) = 1,
if x ∈ A and χA(x) = 0, if x �∈ A. For two sets A and B, A =n B means,
(A−B)∪(B−A) has at most n elements; A =∗ B means that (A−B)∪(B−A)
has at most finitely many elements. Maximum and minimum of a set S is denoted
by max(S) and min(S) respectively, where min(∅) = ∞ and max(∅) = 0.

We let E denote the class of all recursively enumerable (r.e.) sets. We let L,
with or without decorations, range over E and L, with or without decorations,
range over subsets of E .

L = {L0, L1, . . .} is said to be an indexed family of languages (with the
corresponding indexing L0, L1, . . .) if the question x ∈ Li is uniformly decidable
(i.e., there exists a recursive function f such that f(i, x) = χLi

(x)).

2.1 Concepts from Language Learning Theory

In the introduction we considered models of learning from texts (positive data
only). In the sequel, we will also consider learning from informants (both full
positive and full negative data, see [Gol67]).

A text T is a mapping from N to N ∪ {#} (see [Gol67]). Intuitively, a text
is an infinite sequence of elements from N , with #’s denoting pauses in the
presentation of data. For a text T , T (i) thus denotes the (i + 1)-th element
of the sequence. We let T , with or without decorations, range over texts. For
a text T , we let T [n] denote the initial finite portion T (0)T (1) . . . T (n − 1) of
the text T . Let content(T ) = range(T ) − {#}. A text T is for a language L iff
content(T ) = L.

An informant I is a mapping from N to (N × {0, 1}) ∪ {#} such that for
no x both (x, 0) and (x, 1) are in the range of I (see [Gol67]). Let content(I) =
range(I) − {#}. I is an informant for L iff content(I) = {(x, χL(x)) : x ∈ N}.
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Intuitively, informants give both all positive and all negative data for the lan-
guage being learned. For an informant I, we let I[n] denote the initial finite
portion I(0)I(1) . . . I(n − 1) of the text I. We let σ and τ range over initial
finite sequences of texts and informants. We define content(σ) analogously. Λ
denotes the empty finite sequence. SEQ (respectively, SEG) denotes the set
of all finite initial sequences of texts (respectively, informants). The length of a
finite sequence σ is denoted by |σ|. σ�τ denotes the concatenation of sequences
σ and τ . For ease of notation, we denote the concatenation of sequence σ with a
sequence containing just one element x by σ�x. If it is clear from context, then
we often denote σ�τ by just στ .

Intuitively, a learner receives as input a text (informant) for a language, one
element of the text at a time. As it receives more and more data, it updates
its memory and conjecture about what the input language might be. Thus, the
learner can be considered as an algorithmic mapping from previous memory and
current datum to a new memory and a hypothesis. This hypothesis of the learner
is interpreted in some hypothesis space (Hi)i∈J . We will always assume (without
explicitly stating it) that the hypothesis space is recursively enumerable, that is,
{(i, x) : x ∈ Hi} is recursively enumerable. In some cases hypothesis spaces are
more restricted. At any moment, the (finite) content of the (long-term) memory
of the learner is from some set Δ. More formally a learner is defined as follows.

Definition 1. (Based on [Gol67]) Suppose (Hi)i∈J is a hypothesis space, and
Δ is a set of possible memory contents (or simply memories).

(a) A learning machine or learner from texts is an algorithmic mapping from
Δ × (N ∪ {#}) to Δ × (J ∪ {?}).
A learner has an initial memory mem0 ∈ Δ and initial hypothesis hyp0 ∈
J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Below, σ ∈ SEQ and x ∈ N ∪ {#}. Extend the definition of M to
finite sequences by inductively defining
M(Λ) = (mem0, hyp0);
M(σ�x) = M(mem, x), where M(σ) = (mem, hyp), for some hyp ∈ J ∪{?}.

(c) M converges on a text T to a hypothesis β (written: M(T )↓hyp = β) iff there
exists a t such that,
(i) M(T [t]) ∈ (N ∪ {?}) × {β}, and
(ii) for all t′ ≥ t, M(T [t]) ∈ (N ∪ {?}) × {β, ?}.

One can similarly define learning machines (learners) from informants. We let
M, with or without decorations, range over learning machines.

M(σ) = (mem, hyp) in the definition above indicates that, after having seen
the input σ, the memory and hypothesis of the learner M are mem and hyp
respectively. The convergence of a learner on a text T to a hypothesis is thus its
final conjecture (if any) on the input text T . If this conjecture is for the input
language L = content(T ), then one can consider the learner to have learnt the
language (from the text T ). This is basically the notion of TxtEx learning first
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considered by Gold [Gol67] (see Definition 2. below). There have been several
variations of this model considered in the literature, and we define some of them
in the definitions below.

Definition 2. (Based on [Gol67,CL82]) Suppose H = (Hi)i∈N is a hypothesis
space. Suppose a ∈ N ∪ {∗}.

(a) We say that M TxtExa-learns the language L (using hypothesis space H)
from a text T iff M(T )↓hyp = β such that Hβ =a L.

(b) We say that M TxtExa-learns a language L (using hypothesis space H)
iff M TxtExa-learns L from all texts for the language L (using hypothesis
space H).

(c) We say that M TxtExa-learns L (using hypothesis space H) iff M TxtExa-
learns all languages in L (using hypothesis space H).

(d) TxtExa = {L : (∃M)[M TxtExa-learns L using some hypothesis space]}.

Definition 3. (Based on [CL82]) Suppose H = (Hi)i∈N is a hypothesis space.
Suppose a ∈ N ∪ {∗}.

(a) We say that M TxtBca-learns the language L (using hypothesis space H)
from a text T iff for some n, (i) M(T [n]) = (mem, β) such that Hβ =a L
and (ii) for all m ≥ n, if M(T [m]) = (mem, β), where β �=?, then Hβ =a L.

(b) We say that M TxtBca-learns a language L (using hypothesis space H)
iff M TxtBca-learns L from all texts for the language L (using hypothesis
space H).

(c) We say that M TxtBca-learns L (using hypothesis space H) iff M TxtBca-
learns all languages in L (using hypothesis space H).

(d) TxtBca = {L : (∃M)[M TxtBca-learns L using some hypothesis space]}.

One can similarly define InfExa and InfBca, where instead of text T as
input one considers informant I as input to the learner. Note that for both the
above criterion of learning, the learner needs to be defined on all initial segments
of the text to be able to learn it.

Definition 4. [Wie76,LZ96] A learner M is said to be an iterative learner if
its hypothesis depends only on its last conjecture and current input. That is, (i)
if its initial memory mem0 and hypothesis hyp0 are same, and (ii) for all σ, if
M(σ) = (mem, hyp), then mem = hyp.

TxtIta and InfIta-criterion are TxtExa and InfExa-criteria where the
learners are restricted to be iterative.

Note that, although it is not stated explicitly, an It-type learner might store
some input data in its conjecture (thus serving as a limited long-term memory).
However, the amount of stored data cannot grow indefinitely, as the learner must
stabilize to one (right) conjecture.

When the error allowed, a is 0, then we often drop it from the superscript of
the learning criterion, that is, for example, we write TxtEx instead of TxtEx0.
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3 Learning with Negative Counterexamples

We now consider learning using negative counterexamples. In this model, the
learner in addition to getting a text for the target language L, also gets negative
counterexamples (if any) to its conjectures. That is, if the previous hypothesis
of the learner is hyp, then in addition to getting a datum x, the learner also
gets a datum y, where y = #, if Hhyp ⊆ L, and y ∈ L − Hhyp, otherwise. By
constraining the kind of counterexample given, different variations of the model
were considered by [JK04],[JK08].

Definition 5. (Based on [JK08]) Suppose Δ is the set of allowed memories,
and (Hi)i∈J is a hypothesis space.

(a) A learner learning using negative counterexamples examples is a mapping
from Δ × (N ∪ {#}) × (N ∪ {#}) to Δ × (J ∪ {?}).
A learner has an initial memory mem0 ∈ Δ, and initial hypothesis hyp0 ∈
J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Below, σ, τ are sequences over N ∪ {#} with |σ| = |τ |, and x, y ∈
N ∪ {#}. Extend the definition of M to sequences as follows.
M(Λ,Λ) = (mem0, hyp0);
M(σ�x, τ�y) = M(mem, x, y), where M(σ, τ) = (mem, hyp), for some hyp ∈
J ∪ {?}.

(c) M converges on text T with negative counterexample text T ′ to a hypothesis
β (written: M(T, T ′)↓hyp = β) iff there exists a t such that
(i) M(T [t], T ′[t]) ∈ Δ × {β}, and
(ii) for all t′ ≥ t, M(T [t], T ′[t]) ∈ Δ × {β, ?}.

M(σ, τ) = (mem, hyp) in the definition above means that the memory and
the hypothesis of the learner M, after having seen the sequence σ and the cor-
responding negative counterexample sequence τ , is mem and hyp, respectively.

NC in the name of the criteria defined below means “from negative coun-
terexample”. BNC denotes “bounded negative counterexample” and LNC
denotes “least negative counterexample.”

Definition 6. (Based on [JK08]) Suppose H = (Hi)i∈J is a hypothesis
space, and Δ is the set of allowed memory.

For ease of notation in the text below, let H? = ∅.

(a) (i) T ′ is called a counterexample text for a learner M (with initial memory
and hypothesis being mem0 and hyp0 respectively) on an input text T
for a language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),
if Hhyp ⊆ L, then T ′(n) = #, and
if Hhyp �⊆ L, then T ′(n) ∈ Hhyp − L.

(ii) T ′ is a least-counterexample text for M on an input text T for a language
L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),
if Hhyp ⊆ L, then T ′(n) = #, and
if Hhyp �⊆ L, then T ′(n) = min(Hhyp − L).
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(iii) T ′ is a bounded counterexample text for M on an input text T for a
language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),
if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} ⊆ L, then T ′(n) = #, and
if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} �⊆ L, then T ′(n) ∈ Hhyp ∩
{x ∈ Σ∗ : x ≤ max(content(T [n]))} − L.
(Intuitively, in bounded counterexample text, we bound the counterex-
ample given by the largest positive datum seen so far. Thus, if the least
counterexample exceeds this bound, then no counterexample is given —
that is the corresponding value given in the counterexample text is #.)

(b) M NCEx-learns a language L (using hypothesis space H) iff for all texts T
for L, for all counterexample texts T ′ for M on input text T , M(T, T ′)↓hyp =
β such that Hβ = L.

(c) We say that M NCEx-learns L (using a hypothesis space H) if it NCEx-
learns all languages in L (using the hypothesis space H).

(d) NCEx = {L : (∃M)[M NCEx-learns L using some hypothesis space ]}.
Learning criteria LNCEx and BNCEx for learning from least counterex-
amples or bounded counterexamples can be defined similarly.

4 NCEx and NCBc Models

The results in this section are from [JK08].
It is well known (a folklore, see [LZ94] ) that all indexed classes can be learned

from full positive and negative data (informants). As it turns out, in fact, just
a finite number of negative counterexamples is necessary if full positive data is
available.

Theorem 7. Suppose L is an indexed family. Then L ∈ NCEx.

It is also well known that some indexed classes are not TxtEx-learnable (see
[Gol67]), thus, to learn any indexed class, a finite amount of negative data is
necessary.

Still, NCEx-learners (and even NCBc-learners) are not as powerful as learn-
ers from informants (despite the fact that any NCEx-learner can test member-
ship problem for any element w — making {w} its conjecture and querying the
oracle).

Theorem 8. (a) NCEx ⊆ InfEx;
(b) InfEx − NCEx∗ �= ∅ and InfEx − NCBc �= ∅.

Moreover, some Bc-style learnable classes (without negative data) cannot be
NCEx-learned.

Theorem 9. TxtBc − NCEx∗ �= ∅.
Yet, while being more powerful than NCEx-learners, NCBc-style learners

(without errors in the almost all correct conjectures) are not as powerful as the
learners having access to full positive and full negative data.
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Theorem 10. (a) NCBc ⊆ InfBc;
(b) InfEx − NCBc �= ∅.

Note that, as it follows from Theorem 9., NCEx∗-learners, even making an
arbitrary finite number of errors in the final correct conjecture, cannot learn
some classes of recursively enumerable languages. On the other hand, it turns
out that NCBc1-learners, making just one error in almost all conjectures, reach
the ultimate learning power — such a learner can learn every class of recursively
enumerable languages!

Theorem 11. E ∈ NCBc1.

The proof of the above theorem is very interesting. A NCBc1-learner is,
naturally, allowed to ask a subset query W ⊆ L, where W is any recursively
enumerable language and L is the target language. However, the learner sug-
gested in the proof needs answers to completely different type of subset queries:
for any arbitrary initial segment of the input T [n] and some r.e. set W ⊆ L,
whether content(T [n]) �⊆ W . As W might not be the target language, the learner
cannot expect the oracle to answer such queries directly. However, the learner
finds a way to encode this problem into a current conjecture and then query if
the current conjecture is a subset of the target language. In order to do this, the
learner (potentially) makes one deliberate error in its conjecture!

Now NCEx is compared with LNCEx and BNCEx. Similarly, NCBc is
compared with LNCBc and BNCBc. LNCEx-learners using least negative
counterexamples are shown to have no advantage over NCEx-learners. Same
is true for the Bc-style learning. Note here that for LNCBca, with a ≥ 1,
LNCBca = NCBca follows from E ∈ NCBca.

Theorem 12. Suppose a ∈ N ∪ {∗}. Then, NCExa = LNCExa and
NCBc = LNCBc.

Yet BNCEx-learners using counterexamples of bounded size turn out to be
weaker than NCEx-learners.

Theorem 13. (a) For any a ∈ N ∪ {∗}, BNCExa ⊂ NCExa;
(b) NCEx − BNCBc∗ �= ∅.

Yet when learning just infinite classes of languages is considered, BNCEx
model turns out to be as powerful as NCEx. The same is true for BNCBc and
NCBc-learners (when no errors in almost all conjectures are allowed).

Theorem 14. Suppose L consists of only infinite languages. Then
(a) L ∈ NCExa iff L ∈ BNCExa;
(b) L ∈ NCBc iff L ∈ BNCBc.

As a corollary to Theorem 13., we can conclude that BNCBc-learners are
weaker than NCBc-learners and, though NCBc1-learners can learn any class of
r.e. languages, BNCBc-style learners cannot do this, even if an arbitrary finite
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number of errors is allowed in almost all conjectures (moreover, such learners are
shown to be unable to learn even all indexed classes of languages). Yet, based
on the ideas similar to the ones in the proof of Theorem 11., it has been shown
that there is a BNCBc1-learner that can learn all infinite r.e. languages.

According to Theorem 8., NCEx are weaker than learners from full positive
and full negative data in terms of what classes they can learn. However, inter-
estingly, for some NCEx-learnable classes, NCEx-learners can provide huge
complexity advantage over the learners using full positive and full negative data.
This advantage can be achieved when the number of mind changes is used as the
complexity measure. It can be shown that, in some cases, one can learn a class
in NCEx model using only n mind changes, whereas learning with informants
requires exponentially many mind changes. In a variation of the NCEx model,
where least negative counterexamples are given, one can even show that there
are classes which are learnable using just 1 mind change, whereas learning with
informants requires unbounded number of mind changes! In general, whereas sev-
eral variations of negative counterexample types do not change learning power
of the NCEx model, there is often complexity (mind change) advantage which
may result from a particular variation.

5 Learning with a Limited Number of Bounded
Counterexamples

In [JK07b], several variants of BNCEx model are explored that allow only
uniformly bounded number of bounded negative counterexamples. Specifically,

— in the model BNCnEx, a learner makes a subset query for every new
conjecture until n negative counterexamples have been received (still the learner
can change its mind if new positive data have been received)

— in the model BGNCnEx, a learner is allowed to make subset queries (not
necessarily for every conjecture) until n counterexamples have been received.

For both above variants of BNCEx, the versions where an oracle returns
the least counterexamples have also been considered. Notation for each of these
model is obtained by adding the prefix L — for example, LBNCnEx. Also, for all
these models, restrictive variants, where a learner does not get a counterexample
— just the answer “no” if the tested conjecture is incorrect and a bounded
counterexample exists — have been considered; such models are denoted by
adding Res as the prefix for the names of all three models in question. All these
concepts are also considered for the Bc-style of learning.

The paper [JK07b] is devoted to a study of relationships between all these
models and how they are related to the similar models when counterexamples are
of arbitrary size (specifically, the variants NCnEx and GNCnEx corresponding
to the above BNCnEx and BGNCnEx are considered). Some related results
are also proved in [JK06] and some proofs in [JK07b] are based on the proofs in
[JK06]. The results of this section are from the above papers.

The first problem studied in [JK07b] is the following: under which circum-
stances, more limited learners of the above types can simulate more capable
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learners. The major result is that BNCEx-type and BNCBc-type learners get-
ting up to n least bounded counterexamples can be simulated by the learners
of the same type and getting up to 2n − 1 just answers “yes” if a bounded
counterexample exists and “no”, otherwise.

For a ∈ N ∪ {∗}, let I ∈ {Exa,Bca}.

Theorem 15. For all n ∈ N,n ≥ 1,
(a) LBNCnI ⊆ ResBNC2n−1I.
(b) LBGNCnI ⊆ ResBGNC2n−1I.

The bound 2n − 1 turns out to be tight for the Ex∗ and Bcm types of
learnability in the strongest possible way: it is shown that BNC-learners using
n least short counterexamples cannot be simulated by BGNC-learners using
2n − 2 (arbitrary short) counterexamples.

Theorem 16. Suppose n ∈ N and n ≥ 1.
(a) LBNCnEx − BGNC2n−2Bcm �= ∅.
(b) LBNCnEx − BGNC2n−2Ex∗ �= ∅.
The bound 2n−1 on the number of negative answers turns out to be tight also

for Bc and Ex∗ types of learnability when ResBNC-learners try to simulate
BNCn-learners. It is shown in the strongest possible way: there are BNCnEx-
learners that cannot be simulated by ResBNC2n−2Bcm or ResBNC2n−2Ex∗-
learners.

Theorem 17. Suppose n ∈ N and n ≥ 1.
BNCnEx − (ResBNC2n−2Bcm ∪ ResBNC2n−2Ex∗) �= ∅.
Interestingly, if one considers behaviorally correct learners that are allowed

to make any finite number of errors in almost all correct conjectures, then n
short (even least) counterexamples can be always substituted by just n ‘no’
answers. (For the general model NC, the lower bound 2n − 1 for the simulation
by Res-type learners still holds even for Bc∗-learnability, as shown in [JK06]).

Theorem 18. For all n ∈ N , LBGNCnBc∗ ⊆ ResBNCnBc∗.

Another issue addressed in [JK07b] is how short counterexamples fair against
arbitrary or least counterexamples (this includes also the cases when just
answers ‘no’ are returned instead of counterexamples). As it was established
in [JK06], one answer ‘no’ used by an NCEx-learner can sometimes do more
than unbounded number of least (short) counterexamples used by Bc∗-learners.

Theorem 19. [JK06] ResNC1Ex − LBGNCBc∗ �= ∅.
Whereas, it would, perhaps, be natural to expect the above result, the next

result, showing that one short counterexample can sometimes give a learner more
than any bounded number of least counterexamples, may be perceived as surpris-
ing. However, note that a LNC-learner does always get least counterexamples
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if the conjecture overextends, and a BNC learner gets just a counterexample if
there exists one below the maximal positive datum seen so far. On the surface,
a BNC-learner seems to be at disadvantage, as it is likely to get less (nega-
tive) data. In fact, this disadvantage is salient if the number of allowed negative
counterexamples is not limited: it is shown in [JK06] that, for a ∈ N ∪ {∗}, for
I ∈ {Exa,Bca}, LBNCI ⊂ ResNCI. However, when the number of allowed
counterexamples is uniformly bounded, there is a charge for every counterexam-
ple used. Consequently, a BNC-learner is not being charged for (unnecessary)
negative data, if it does not receive it! As a result, the possibility of getting
negative data which are ≤ largest positive datum seen in the input so far can
be turned to an advantage — in terms of cost of learning, which is exploited in
the proof the following result.

Theorem 20. For all n ∈ N , ResBNC1Ex − LGNCnBc∗ �= ∅.
Some results in [JK07b] compare learnability from full positive data and a

limited number of bounded counterexamples with learnability from full positive
data and a limited number of other types of queries (as defined in [Ang88]).

6 Iterative Learning Using Negative Counterexamples

The paper [JK07a] introduces an iterative variant of learning from full positive
data and negative counterexamples discussed above — the NCIt-model. The
results of this section are mainly from the above paper. As for the general NCEx
and NCBc models, the variants LNCIt and BNCIt are defined to denote
learning using least counterexamples and, respectively, the bounded ones. As in
the case of NCEx, least counterexamples are shown to have no advantage over
the arbitrary ones.

Theorem 21. For all a ∈ N ∪ {∗}, LNCIta = NCIta.

On the other hand, contrary to the immediate intuition, “short” counterex-
amples sometimes can provide advantage over the arbitrary ones! The proof of
the following result exploits the fact that sometimes actually absence of bounded
counterexamples can help in a situation when arbitrary counterexamples are use-
less! Note that if a bounded counterexample is available to a learner, then an
arbitrary counterexample is trivially available, and NCEx-learners can easily
utilize this circumstance to simulate any BNCEx-learner — however, this is
not the case with NCIt-learners: the fact that NCIt-learners are not able to
memorize all data seen so far becomes of crucial importance.

Theorem 22. BNCIt − NCIt∗ �= ∅.
General capabilities of NCIt and BNCIt are compared with capabilities

of some other popular learning models. First, it is shown that the Ex-style
learners, being capable of storing in their memory all positive data seen so far,
can sometimes learn more than any NCIt or BNCIt-learner.
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Theorem 23. (a) TxtEx − NCIt∗ �= ∅;
(b) TxtEx − BNCIt∗ �= ∅.

Still, perhaps, also not surprisingly, some classes of languages in NCIt (even
in BNCIt) cannot be learned from full positive data without negative coun-
terexamples to conjectures, even if a learner always has access to full positive
data seen so far (Ex or Bc-style). However, NCIt and BNCIt-learners can
sometimes learn classes that are not learnable iteratively even from full positive
and full negative data! — negative counterexamples, obtained when necessary to
the learner, may provide more learning power than full negative data, appearing
on the input when it might not be of use for the learner.

Theorem 24. (BNCIt ∩ NCIt) − InfIt∗ �= ∅.

In fact, NCIt is a proper superset of InfIt.

Theorem 25. InfIt ⊂ NCIt.

Another important result is that all indexed classes are NCIt-learnable. This
result contrasts the well-known fact (established yet by Gold in [Gol67]) that
not all indexed classes are in TxtEx — that is, when all positive data are stored
in the memory, but no negative data is available.

Theorem 26. Every indexed class of languages is in NCIt.

Interestingly, whereas all indexed classes are NCIt-learnable, not every
indexed class is NCIt-learnable class-preservingly ([ZL95]) — that is, when con-
jectures can be only from the numbering defining the target class. As it is shown
in [JK11] all indexed classes are NCIt-learnable class-preservingly if a learner
has access to additional information of certain types.

In [JK11], the extensions of NCIt model — using additional information of
the following four different types — have been introduced and studied:

(a) when memorizing up to n input data seen so far is allowed;
(b) when up to n feedback membership queries (testing if an item belongs to

the input seen so far) are allowed;
(c) when the number of the elements seen so far is memorized by the learner;
(d) when the maximum element seen so far is memorized by the learner.
(In the context of learning languages just from full positive data, the first

two types of additional information for iterative learners were introduced and
studied in [LZ96], and then reformulated and thoroughly studied and discussed
in [CJLZ99]). It turned out that if the additional information of the types (c)
or (d) is available to a NCIt-learner, then every indexed class can be learned
class-preservingly. It has been also established how these four types of additional
information influence capabilities of NCIt-learners, how they fair against each
other, and how memorizing n+1 input data items and n+1 feedback membership
queries fair over memorizing n input data items and n feedback membership
queries, respectively.
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7 Automatic NCEx-Learning

The automatic learnability model for learning from full positive data was intro-
duced, motivated, and explored in [JLS10,JLS12]. For automatic learnability,
one requires the input/output behaviour of the learner to be recognizable by a
finite automata. Thus, the languages are considered to be sets of strings over
some alphabet, and the memory and conjectures are also strings over some alpha-
bet. By input/output behaviour to be recognizable by finite automata we mean
that if the input and output of the learner is given in parallel (one character at
a time, with the characters # used to pad the shorter input/output if any), then
the automaton accepts it iff the learner on the input produces the corresponding
output. (Due to space limitations, we present this model rather informally; the
formal details can be found in [JLS12] and also in [JKS14]). The classes of lan-
guages learnable by automatic learners are automatic themselves: specifically, a
family of target languages is defined by a regular index set, and the membership
problem in these languages is regular in the sense that one finite automaton rec-
ognizes a combination (so-called “convolution”) of an index and a word if and
only if the word is in the language defined by the index.

The automatic analogue of NCEx has been introduced and studied first in
[JK12]. We refer to this model as AutoNCEx. Similarly, we will refer to the
automatic analogue of NCIt-model as AutoNCIt. The results of this section
are from the full version of the above mentioned paper [JKS14].

The paper [JLS12] exhibits some examples of automatic classes of languages
learnable from full positive data, however, as it has been established in [JLS12],
not every automatic class is learnable from full positive data. A natural ques-
tion is what additional information is needed to learn every automatic class.
The following result gives the answer: a finite number of counterexamples to
overextending conjectures. Moreover, the learner may be iterative.

Theorem 27. Every automatic class is in AutoNCIt.

On the other hand, interestingly, conjectures of the learners exhibited in the
proof of the above theorem might not always be consistent with the input seen
so far, and it is an open question if such consistency may be achieved. Yet, it
has been shown that such consistency can be achieved if AutoNCIt-learners
always receive the least negative counterexamples. On the other hand, as it
follows from a result in [JK08], there are automatic classes that cannot be learned
even by non-automatic BNCEx-learners. Still, with this bound on the size of
counterexamples, AutoNCEx-learners with memory limited by the size of the
longest positive input datum seen so far can learn automatic classes consisting
only of infinite languages. Similar result holds for AutoNCIt-learners.

It is also shown that some automatic classes cannot be AutoNCEx-learned
using bounded negative counterexamples with memory limited by the size of the
current hypothesis (and, thus, when only the last hypothesis can be stored in the
memory), but can be automatically learned with memory limited by the size of
the longest positive datum seen so far even without negative counterexamples.
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Abstract. Recall that the notion of a one-sided random context gram-
mar is based upon a finite set of context-free rules, each of which may be
extended by finitely many permitting and forbidding nonterminal sym-
bols. The set of all these rules is divided into two sets—the set of left
random context rules and the set of right random context rules. When
applying a left random context rule, the grammar checks the existence
and absence of its permitting and forbidding symbols, respectively, in the
prefix to the left of the rewritten nonterminal. Analogically, when apply-
ing a right random context rule, it checks the existence and absence of
its permitting and forbidding symbols, respectively, only in the suffix to
the right of the rewritten nonterminal.

This paper gives a survey of the established results concerning one-
sided random context grammars. These results concern their generative
power, normal forms, size reduction, and conceptual modifications, which
represent both restricted and generalized versions of their standard con-
cepts. Perhaps most importantly and surprisingly, the paper points out
that propagating versions of one-sided random context grammars charac-
terize the family of context-sensitive languages, and with erasing rules,
they characterize the family of recursively enumerable languages; as a
result, they are stronger than ordinary random context grammars. Many
open problem areas are suggested.

Keywords: Formal language theory · Regulated rewriting · Random
context grammars · One-sided random context grammars · Generative
power · Normal forms · Reduction · Leftmost derivations · Generalized
versions · Survey

1 Introduction

The present paper deals with regulated grammars referred to as random con-
text grammars (see Section 1.1 in [2]). In essence, these grammars regulate the
language generation process so they require the presence of some prescribed sym-
bols and, simultaneously, the absence of some others in the rewritten sentential
forms. More precisely, random context grammars are based upon context-free
rules, each of which may be extended by finitely many permitting and forbidding
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nonterminal symbols. A rule like this can rewrite the current sentential form
provided that all its permitting symbols occur in the sentential form while all
its forbidding symbols do not.

As a matter of fact, this paper concerns one-sided random context grammars
(see [7]) as slightly modified versions of ordinary random context grammars.
That is, while random context grammars verify the presence and absence of
symbols in sentential forms in their entirety, one-sided random context gram-
mars perform this verification only in their prefixes or suffixes. More precisely,
in every one-sided random context grammar, the set of rules is divided into
the set of left random context rules and the set of right random context rules.
When applying a left random context rule, the grammar checks the existence
and absence of its permitting and forbidding symbols, respectively, only in the
prefix to the left of the rewritten nonterminal. Similarly, when applying a right
random context rule, it checks the existence and absence of its permitting and
forbidding symbols, respectively, only in the suffix to the right of the rewritten
nonterminal. Otherwise, it works just like any random context grammar.

The present paper gives a survey of the crucially important results concerning
one-sided random context grammars. It points out that propagating versions of
one-sided random context grammars characterize the family of context-sensitive
languages, and with erasing rules, they characterize the family of recursively enu-
merable languages. Therefore, they are stronger than random context grammars,
and this result comes as a surprise because one-sided random context grammars
actually verify the presence and absence of symbols only in parts of sentential
forms, not in their entirety. The paper also gives an overview concerning normal
forms and reduction of these grammars.

In addition, the paper considers several restricted versions of these gram-
mars. Specifically, it shows that one-sided permitting grammars, which have only
permitting rules, are more powerful than context-free grammars; on the other
hand, they are no more powerful than propagating scattered context grammars
(see [4]). One-sided forbidding grammars, which have only forbidding rules, are
equivalent to selective substitution grammars (see [5,15]), and left forbidding
grammars, which have only left forbidding rules, are only as powerful as context-
free grammars.

Apart from restricted versions of one-sided random context grammars, the
paper also makes remarks on their generalized versions. In fact, the paper even
suggests introducing one-sided versions of completely different formal models
than random context grammars. Finally, it formulates many open problem areas
related to one-sided random context grammars.

This paper is organized as follows. Section 2 gives all the necessary notation
and terminology to follow the rest of the paper. Then, Section 3 defines one-sided
random context grammars and their variants, and illustrates these definitions
by examples. After that, Section 4 gives an overview of the established results
concerning these grammars, including many references. Section 5 closes the paper
by mentioning several open problems.



340 A. Meduna and P. Zemek

2 Preliminaries

In this paper, we assume that the reader is familiar with formal language theory
(see [17]). For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the
power set of Q. For an alphabet (finite nonempty set) V , V ∗ represents the free
monoid generated by V under the operation of concatenation. The unit of V ∗ is
denoted by ε. For x ∈ V ∗, |x| denotes the length of x and alph(x) denotes the
set of symbols occurring in x.

A random context grammar (see Section 1.1 in [2]) is a quadruple, G = (N , T ,
P , S), where N and T are two disjoint alphabets of nonterminals and terminals,
respectively, S ∈ N is the start symbol, and P ⊆ N×(N∪T )∗×2N ×2N is a finite
relation, called the set of rules. Set V = N ∪ T . Each rule (A, x, U,W ) ∈ P is
written as (A → x, U , W ) throughout this paper. The direct derivation relation
over V ∗, symbolically denoted by ⇒G, is defined as follows: if u, v ∈ V ∗, (A → x,
U , W ) ∈ P , U ⊆ alph(uAv), and W ∩ alph(uAv) = ∅, then uAv ⇒G uxv. U
is called the permitting context and W is called the forbidding context. Let ⇒∗

G

denote the reflexive-transitive closure of ⇒G. The language of G is denoted
by L(G) and defined as L(G) = {w ∈ T ∗ | S ⇒∗

G w}.
Let G = (N , T , P , S) be a random context grammar. Rules of the form

(A → ε, U , W ) are called erasing rules. If (A → x, U , W ) ∈ P implies that
|x| ≥ 1, then G is a propagating random context grammar. If (A → x, U , W ) ∈ P
implies that W = ∅, then G is a permitting grammar. If (A → x, U , W ) ∈ P
implies that U = ∅, then G is a forbidding grammar. By analogy with propagating
random context grammars, we define a propagating permitting grammar and a
propagating forbidding grammar, respectively.

Denotation of Language Families

Throughout the rest of this paper, the language families under discussion are
denoted in the following way. RC, P, and F denote the language families
generated by random context grammars, permitting grammars, and forbidding
grammars, respectively. The notation with the upper index −ε stands for the
corresponding propagating family. For example, RC−ε denotes the family of
languages generated by propagating random context grammars. CF, CS, and
RE denote the families of context-free languages, context-sensitive languages,
and recursively enumerable languages, respectively. SC−ε, S, and S−ε denote the
language families generated by propagating scattered context languages (see [4]),
selective substitution grammars (see [5,15]), and propagating selective substitu-
tion grammars—that is, selective substitution grammars without erasing rules—,
respectively.

3 Definitions and Examples

Next, we formally define one-sided random context grammars and their variants.
In addition, we illustrate them by examples.
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Definition 1. A one-sided random context grammar is a quintuple

G =
(
N,T, PL, PR, S

)

where N and T are two disjoint alphabets, S ∈ N , and

PL, PR ⊆ N × (
N ∪ T

)∗ × 2N × 2N

are two finite relations. Set V = N ∪ T . The components V , N , T , PL, PR, and
S are called the total alphabet, the alphabet of nonterminals, the alphabet of
terminals, the set of left random context rules, the set of right random context
rules, and the start symbol, respectively. Each (A, x, U,W ) ∈ PL ∪ PR is written
as

(A → x,U,W )

throughout this paper. For (A → x, U , W ) ∈ PL, U and W are called the
left permitting context and the left forbidding context, respectively. For (A → x,
U , W ) ∈ PR, U and W are called the right permitting context and the right
forbidding context, respectively. 
�

When applying a left random context rule, the grammar checks the existence
and absence of its permitting and forbidding symbols, respectively, only in the
prefix to the left of the rewritten nonterminal in the current sentential form.
Analogously, when applying a right random context rule, it checks the existence
and absence of its permitting and forbidding symbols, respectively, only in the
suffix to the right of the rewritten nonterminal. The following definition states
this formally.

Definition 2. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The direct derivation relation over V ∗ is denoted by ⇒G and defined
as follows. Let u, v ∈ V ∗ and (A → x, U , W ) ∈ PL ∪ PR. Then,

uAv ⇒G uxv

if and only if

(A → x,U,W ) ∈ PL, U ⊆ alph(u), and W ∩ alph(u) = ∅
or

(A → x,U,W ) ∈ PR, U ⊆ alph(v), and W ∩ alph(v) = ∅
Let ⇒∗

G denote the reflexive-transitive closure of ⇒G. 
�
The language generated by a one-sided random context grammar is defined

as usual—that is, it consists of strings over the terminal alphabet that can be
generated from the start symbol.

Definition 3. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. The language of G is denoted by L(G) and defined as

L
(
G

)
=

{
w ∈ T ∗ | S ⇒∗

G w
} 
�
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Next, we define several special variants of one-sided random context
grammars.

Definition 4. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. Rules of the form (A → ε, U , W ) are called erasing rules. If (A → x,
U , W ) ∈ PL ∪PR implies that |x| ≥ 1, then G is a propagating one-sided random
context grammar. If (A → x, U , W ) ∈ PL ∪ PR implies that W = ∅, then G is a
one-sided permitting grammar. If (A → x, U , W ) ∈ PL ∪PR implies that U = ∅,
then G is a one-sided forbidding grammar. By analogy with propagating one-
sided random context grammars, we define a propagating one-sided permitting
grammar and a propagating one-sided forbidding grammar, respectively. 
�
Definition 5. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. If PR = ∅, then G is a left random context grammar. By analogy
with one-sided permitting and forbidding grammars, we define a left permitting
grammar (see [1]) and a left forbidding grammar (see [3]), respectively. Their
propagating versions are defined analogously as well. 
�

Next, we illustrate the above definitions by three examples.

Example 1. Consider the one-sided random context grammar

G =
({S,A,B, Ā, B̄}, {a, b, c}, PL, PR, S

)

where PL contains the following four rules

(S → AB, ∅, ∅)
(B → bB̄c, {Ā}, ∅)

(B̄ → B, {A}, ∅)
(B → ε, ∅, {A, Ā})

and PR contains the following three rules

(A → aĀ, {B}, ∅) (Ā → A, {B̄}, ∅) (A → ε, {B}, ∅)

It is rather easy to see that every derivation that generates a nonempty string
of L(G) is of the form

S ⇒G AB
⇒G aĀB
⇒G aĀbB̄c
⇒G aAbB̄c
⇒G aAbBc
⇒∗

G anAbnBcn

⇒G anbnBcn

⇒G anbncn

where n ≥ 1. The empty string is generated by

S ⇒G AB ⇒G B ⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {anbncn | n ≥ 0}. 
�
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Example 2. Consider K = {anbmcm | 1 ≤ m ≤ n}. This non-context-free lan-
guage is generated by the one-sided permitting grammar

G =
({S,A,B,X, Y }, {a, b, c}, PL, ∅, S

)

with PL containing the following seven rules

(S → AX, ∅, ∅) (A → a, ∅, ∅)
(A → aB, ∅, ∅)
(B → A, ∅, ∅)

(X → bc, ∅, ∅)
(X → bY c, {B}, ∅)
(Y → X, {A}, ∅)

Notice that G is, in fact, a propagating left permitting grammar. Observe that
(X → bY c, {B}, ∅) is applicable if B, produced by (A → aB, ∅, ∅), occurs to the
left of X in the current sentential form. Similarly, (Y → X, {A}, ∅) is applicable
if A, produced by (B → A, ∅, ∅), occurs to the left of Y in the current sentential
form. Consequently, we see that every derivation that generates w ∈ L(G) is of
the form1

S ⇒G AX
⇒∗

G auAX
⇒G au+1BX
⇒G au+1BbY c
⇒G au+1AbY c
⇒∗

G au+1+vAbY c
⇒G au+1+vAbXc
...

⇒∗
G an−1Abm−1Xcm−1

⇒G abm−1Xcm−1

⇒G anbmcm = w

where u, v ≥ 0, 1 ≤ m ≤ n. Hence, L(G) = K. 
�
Example 3. Consider the one-sided forbidding grammar

G =
({S,A,B,A′, B′, Ā, B̄}, {a, b, c}, PL, PR, S

)

where PL contains the following five rules

(S → AB, ∅, ∅) (B → bB′c, ∅, {A, Ā})
(B → B̄, ∅, {A,A′})

(B′ → B, ∅, {A′})
(B̄ → ε, ∅, {Ā})

and PR contains the following four rules

1 Notice that after X is rewritten to bc by (X → bc, ∅, ∅), more as can be generated
by (A → aB, ∅, ∅). However, observe that this does not affect the generated language.
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(A → aA′, ∅, {B′})
(A → Ā, ∅, {B′})

(A′ → A, ∅, {B})
(Ā → ε, ∅, {B})

Notice that G is, in fact, a one-sided forbidding grammar, and that every
derivation that generates a nonempty string of L(G) is of the form

S ⇒G AB
⇒G aA′B
⇒G aA′bB′c
⇒G aAbB′c
⇒G aAbBc
⇒∗

G anAbnBcn

⇒G anĀbnBcn

⇒G anĀbnB̄cn

⇒G anbnB̄cn

⇒G anbncn

where n ≥ 1. The empty string is generated by

S ⇒G AB ⇒G ĀB ⇒G ĀB̄ ⇒G B̄ ⇒G ε

Based on the previous observations, we see that G generates the non-context-free
language {anbncn | n ≥ 0}. 
�

Denotation of Language Families

Throughout the rest of this paper, the language families under discussion are
denoted in the following way. ORC, OP, and OF denote the language fam-
ilies generated by one-sided random context grammars, one-sided permitting
grammars, and one-sided forbidding grammars, respectively. LRC, LP, and LF
denote the language families generated by left random context grammars, left
permitting grammars, and left forbidding grammars, respectively.

The notation with the upper index −ε stands for the corresponding propa-
gating family. For example, ORC−ε denotes the family of languages generated
by propagating one-sided random context grammars.

4 Results

In this section, we give an overview of the established results concerning one-
sided random context grammars. More details can be found in the cited papers
and in Chapter 6 of [14].

Generative Power

First, we investigate the generative power of one-sided random context gram-
mars. In [7], it is proved that one-sided random context grammars characterize
the family of recursively enumerable languages, and that their propagating ver-
sions characterize the family of context-sensitive languages.
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Theorem 1 (see Theorem 2 in [7]). ORC = RE 
�
Theorem 2 (see Theorem 1 in [7]). ORC−ε = CS 
�

Since RC−ε ⊂ CS and RC = RE (see [2]), we have that one-sided random
context grammars are equally powerful as random context grammars, while prop-
agating one-sided random context grammars are more powerful than propagating
random context grammars.

Theorem 3 (see Corollary 3 in [7]). RC−ε ⊂ ORC−ε ⊂ RC = ORC 
�
The power of one-sided forbidding grammars is investigated in [9]. In there,

it is proved that they have the same power as selective substitution grammars
(see [5,15]).

Theorem 4 (see Theorem 3.7 in [9]). OF = S 
�
Theorem 5 (see Theorem 3.8 in [9]). OF−ε = S−ε 
�

It is not known whether one-sided forbidding grammars or selective substi-
tution grammars characterize the family of recursively enumerable languages.
Also, it is not known whether these grammars without erasing rules characterize
the family of context-sensitive languages.

Moreover, [9] proves the following two results concerning the generative power
of one-sided forbidding grammars, where the set of left random context rules
coincides with the set of right random context rules.

Theorem 6 (see Theorem 3.11 in [9]). A language K is context-free if
and only if there is a one-sided forbidding grammar, G = (N , T , PL, PR, S),
satisfying K = L(G) and PL = PR. 
�
Theorem 7 (see Corollary 3.12 in [9]). Let G = (N , T , PL, PR, S) be a
one-sided forbidding grammar satisfying PL = PR. Then, there is a propagating
one-sided forbidding grammar H such that L(H) = L(G) − {ε}. 
�

One-sided forbidding grammars are at least as powerful as forbidding gram-
mars. This is stated in the next two theorems.

Theorem 8 (see Theorem 5 in [7]). F ⊆ OF 
�
Theorem 9 (see Corollary 1 in [7]). F−ε ⊆ OF−ε 
�

In terms of left forbidding grammars and their power, [3] proves that they
are no more powerful than context-free grammars.

Theorem 10 (see Theorem 1 in [3]). LF−ε = LF = CF 
�
From Theorems 9 and 10 above and from the fact that CF ⊂ F−ε (see [2]),

we obtain the following corollary, which relates the language families generated
by left forbidding grammars, one-sided forbidding grammars, and forbidding
grammars.
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Corollary 1. LF−ε = LF ⊂ F−ε ⊆ OF−ε ⊆ OF 
�
Finally, the following two theorems relate the language families generated

by propagating one-sided permitting grammars and propagating left permitting
grammars to other families of languages.

Theorem 11 (see Theorem 7 in [7]). CF ⊂ OP−ε ⊆ SC−ε ⊆ CS =
ORC−ε 
�
Theorem 12 (see Corollary 2 in [7]). CF ⊂ LP−ε ⊆ SC−ε ⊆ CS =
ORC−ε 
�

Recall that it is not known whether propagating scattered context gram-
mars characterize the family of context-sensitive languages—that is, whether
the inclusion SC−ε ⊆ CS above is, in fact, an identity (see [6]).

Normal Forms

Formal language theory has always struggled to turn grammars into normal
forms, in which grammatical rules satisfy some prescribed properties or for-
mat because they are easier to handle from a theoretical as well as practical
standpoint. Concerning context-free grammars, there exist two famous normal
forms—the Chomsky and Greibach normal forms. In the former, every gram-
matical rule has on its right-hand side either a terminal or two nonterminals. In
the latter, every grammatical rule has on its right-hand side a terminal followed
by zero or more nonterminals. Similarly, there exist normal forms for general
grammars, such as the Kuroda, Penttonen, and Geffert normal forms. In this
section, we present four normal forms for one-sided random context grammars.

In the first normal form, the set of left random context rules coincides with
the set of right random context rules.

Theorem 13 (see Theorems 3 and 4 in [7]). Let G = (N , T , PL, PR, S) be
a one-sided random context grammar. Then, there is a one-sided random context
grammar, H = (N ′, T , P ′

L, P ′
R, S), such that L(H) = L(G) and P ′

L = P ′
R.

Furthermore, if G is propagating, so is H. 
�
The second normal form represents a dual normal form to that in Theo-

rem 13. Indeed, every one-sided random context grammar can be turned into
an equivalent one-sided random context grammar with the sets of left and right
random context rules being disjoint.

Theorem 14 (see Theorem 4 in [18]). Let G = (N , T , PL, PR, S) be a
one-sided random context grammar. Then, there is a one-sided random context
grammar, H = (N ′, T , P ′

L, P ′
R, S), such that L(H) = L(G) and P ′

L ∩ P ′
R = ∅.

Furthermore, if G is propagating, so is H. 
�
The third normal form represents an analogy of the well-known Chomsky nor-

mal form for context-free grammars. However, since one-sided random context
grammars with erasing rules are more powerful than their propagating versions,
we allow the presence of erasing rules in the transformed grammar.
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Theorem 15 (see Theorem 2 in [18]). Let G = (N , T , PL, PR, S)
be a one-sided random context grammar. Then, there is a one-sided random
context grammar, H = (N ′, T , P ′

L, P ′
R, S), such that L(H) = L(G) and

(A → x,U,W ) ∈ P ′
L ∪ P ′

R implies that x ∈ N ′N ′ ∪ T ∪ {ε}. Furthermore, if
G is propagating, so is H. 
�

In the fourth normal form, every rule has its permitting or forbidding context
empty.

Theorem 16 (see Theorem 3 in [18]). Let G = (N , T , PL, PR, S)
be a one-sided random context grammar. Then, there is a one-sided random
context grammar, H = (N ′, T , P ′

L, P ′
R, S), such that L(H) = L(G) and

(A → x,U,W ) ∈ P ′
L ∪ P ′

R implies that U = ∅ or W = ∅. Furthermore, if G
is propagating, so is H. 
�

Reduction

Recall that one-sided random context grammars characterize the family of recur-
sively enumerable languages (see Theorem 1). Of course, it is more than natural
to ask whether the family of recursively enumerable languages is characterized
by one-sided random context grammars with a limited number of nonterminals
or rules. The present section gives an affirmative answer to this question.

The next theorem states that ten nonterminals suffice to generate any recur-
sively enumerable language by a one-sided random context grammar.

Theorem 17 (see Theorem 1 in [8]). For every recursively enumerable lan-
guage K, there exists a one-sided random context grammar, H = (N , T , PL,
PR, S), such that L(H) = K and card(N) = 10. 
�

The number of nonterminals can be also limited in terms of one-sided random
context grammars satisfying the normal form from Theorem 13.

Theorem 18 (see Corollary 1 in [8]). For every recursively enumerable
language K, there exists a one-sided random context grammar, H = (N , T , PL,
PR, S), such that L(H) = K, PL = PR, and card(N) = 13. 
�

To approach the reduction of the number of nonterminals in a finer way, in [8],
the notion of a right random context nonterminal is introduced. It is defined as
a nonterminal that appears on the left-hand side of a right random context rule.
That paper has demonstrated how to convert any one-sided random context
grammar to an equivalent one-sided random context grammar with two right
random context nonterminals. This result has been proved also for propagating
one-sided random context grammars.

Let us first define the above-mentioned measure formally.

Definition 6. Let G = (N , T , PL, PR, S) be a one-sided random context
grammar. If (A → x, U , W ) ∈ PR, then A is a right random context nonterminal.
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The number of right random context nonterminals of G is denoted by nrrcn(G)
and defined as

nrrcn(G) = card
({A | (A → x,U,W ) ∈ PR}) 
�

The next two theorems state that two right random context nonterminals
suffice to keep the power of one-sided random context grammars unchanged.

Theorem 19 (see Theorem 2 in [8]). For every recursively enumerable lan-
guage K, there is a one-sided random context grammar H such that L(H) = K
and nrrcn(H) = 2. 
�
Theorem 20 (see Theorem 4 in [8]). For every context-sensitive language J ,
there is a propagating one-sided random context grammar H such that L(H) = J
and nrrcn(H) = 2. 
�

By analogy with Definition 6, we may define a left random context nonter-
minal and their number in one-sided random context grammars. Then, in [8], it
is shown that Theorems 19 and 20 can be reformulated in terms of left random
context nonterminals and their number. That paper also proves that we may
limit both the total number of right and left random context nonterminals at
the same time.

Finally, apart from reducing the overall number of nonterminals and right
random context nonterminals, a reduction of the number of right random context
rules has been investigated in [13]. Recall that a right random context rule is a
rule that checks the presence and absence of symbols to the right of the rewritten
nonterminal (see Definition 1).

Theorem 21 (see Theorem 1 in [13]). For every recursively enumerable
language K, there exists a one-sided random context grammar, H = (N , T , PL,
PR, S), such that L(H) = K and card(PR) = 2. 
�

That is, we know that two right random context rules suffice to keep the
generative power of one-sided random context grammars unchanged.

The next theorem says that it is possible to simultaneously reduce both the
number of nonterminals and the number of right random context rules.

Theorem 22 (see Corollary 1 in [13]). For every recursively enumer-
able language K, there exists a one-sided random context grammar, H = (N ,
T , PL, PR, S), such that L(H) = K, card(N) = 13, nrrcn(H) = 2, and
card(PR) = 2. 
�

Other Topics of Investigation

We conclude this section by briefly mentioning other topics related to one-sided
random context grammars that have been investigated.
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Leftmost Derivations. By analogy with the three well-known types of leftmost
derivations in regulated grammars (see [2]), three types of leftmost derivation
restrictions placed upon one-sided random context grammars have been defined
and studied in [10]. In the type-1 derivation restriction, during every derivation
step, the leftmost occurrence of a nonterminal has to be rewritten. In the type-
2 derivation restriction, during every derivation step, the leftmost occurrence
of a nonterminal which can be rewritten has to be rewritten. In the type-3
derivation restriction, during every derivation step, a rule is chosen, and the
leftmost occurrence of its left-hand side is rewritten. In [10], the following three
results are demonstrated.

(I) One-sided random context grammars with type-1 leftmost derivations char-
acterize the family of context-free languages.

(II) One-sided random context grammars with type-2 and type-3 leftmost
derivations characterize the family of recursively enumerable languages.

(III) Propagating one-sided random context grammars with type-2 and type-3
leftmost derivations characterize the family of context-sensitive languages.

Generalized One-Sided Random Context Grammars. We may gener-
alize the concept of one-sided context from symbols to strings. Obviously, as
one-sided random context grammars already characterize the family of recur-
sively languages, such a generalization cannot increase their strength. However,
a generalization likes this makes sense in terms of variants of one-sided ran-
dom context grammars. In [11], one-sided forbidding grammars that can forbid
strings instead of single symbols are studied, and it has been proved that they
are computationally complete, even if all strings are formed by at most two
symbols.

One-Sided Versions of Other Formal Models. One-sided random context
grammars are based upon context-free grammars. It is only natural to consider
other types of grammars and equip them with one-sided random context. Some
preliminary results in this direction have been achieved in [12], where ET0L
grammars (see [16]) and their variants enhanced with left random context are
studied.

5 Open Problems

In this concluding section, we mention several open problems concerning one-
sided random context grammars and their variants. Some of them are mentioned
in [19].

(I) What is the generative power of left random context grammars? What
is the role of erasing rules in this left variant? That is, are left random
context grammars more powerful than propagating left random context
grammars?
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(II) What is the generative power of one-sided forbidding grammars? We only
know that they are equally powerful as selective substitution grammars
(see Theorems 4 and 5). Thus, by establishing the generative power of
one-sided forbidding grammars, we would establish the power of selective
substitution grammars, too.

(III) By Theorem 17, ten nonterminals suffice to generate any recursively enu-
merable language by a one-sided random context grammar. Is this limit
optimal? In other words, can Theorem 17 be improved?

(IV) Recall that propagating one-sided random context grammars characterize
the family of context-sensitive languages (see Theorem 2). Can we also
limit the overall number of nonterminals in terms of this propagating ver-
sion like in Theorem 17?

(V) What is the generative power of one-sided forbidding grammars and one-
sided permitting grammars? Moreover, what is the power of left permitting
grammars? Recall that every propagating scattered context grammar can
be turned to an equivalent context-sensitive grammar (see Theorem 3.21
in [6]), but it is a longstanding open problem whether these two kinds of
grammars are actually equivalent—the PSC = CS problem. If in the future
one proves that propagating one-sided permitting grammars and propa-
gating one-sided random context grammars are equivalent, then so are
propagating scattered context grammars and context-sensitive grammars
(see Theorem 11), so the PSC = CS problem would be solved.

(VI) By Theorem 19, any recursively enumerable language is generated by a
one-sided random context grammar having no more than two right ran-
dom context nonterminals. Does this result hold with one or even zero
right random context nonterminals? Notice that by proving that no right
random context nonterminals are needed, we would establish the genera-
tive power of left random context grammars.

(VII) By Theorem 21, any recursively enumerable language is generated by a
one-sided random context grammar having no more than two right random
context rules. Does this result hold with one or even zero right random
context rules? Again, notice that by proving that no right random context
rules are needed, we would establish the generative power of left random
context grammars.
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Abstract. Reversible computing is a paradigm of computation closely
related to physical reversibility. In this survey/tutorial paper, we discuss
topics on reversible logic elements with memory (RLEM), which are used
to build reversible computing machines. It is known that any reversible
sequential machine (RSM) can be constructed systematically and simply
from a rotary element (RE), a typical 2-state RLEM. It is also known
that “all” non-degenerate 2-state RLEMs except only four are universal.
Thus, RSMs can be built by any one of universal RLEMs. However, so
far, no concise construction method has been given except the method
of using RE. Here, we show a new simple method of composing RSMs
from 2-state RLEMs of ID numbers 4-31 and 3-7.

1 Introduction

A reversible computing system is a one such that every computational config-
uration has at most one predecessor, and thus its evolution is described by a
one-to-one mapping. Though its definition is rather simple, it has a close rela-
tion to physical reversibility. It is also noted that reversible computing can be
regarded as a special subcase of quantum computing, since evolution of a quan-
tum system is expressed by a unitary operator (the reference [4] by Gruska is a
good introductory book on quantum computing).

So far, various kinds of reversible computing models have been proposed
and investigated. There are several levels of models ranging from a microscopic
one to a macroscopic one. In the bottom level, i.e., in the most microscopic
level, there is a physically reversible model like the billiard ball model (BBM) of
computing [3]. In the next level, there exist reversible logic elements, from which
reversible logic circuits are built, such as Fredkin gate [3], Toffoli gate [18,19],
and reversible logic elements with memory [7]. In the still higher level, there
are reversible logic circuits that can be used as building modules for reversible
computers. In the top level, there are models of reversible computers such as
reversible Turing machines [1], reversible cellular automata [17], and others.

Although reversible computing systems have only classical states rather than
quantum states, they still have several interesting features. First, in spite of the
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strong constraint of reversibility, even very simple reversible systems have com-
putational universality (see e.g. [9] for the survey). Second, reversible computing
systems can be often constructed in a method that is very different from the ones
found in the traditional design techniques of computing systems. Thus, they will
give new insights and ideas for future computing.

In this survey/tutorial paper, we focus on the topics of reversible logic ele-
ments with memory (RLEM) and circuits composed of them. In the conventional
design theory of logic circuits, logic gates (i.e., elements without memory) are
used as primitives for composing logic circuits (but in the study of asynchronous
circuits, logic elements with memory are sometimes used [2,5]). On the other
hand, in the case of reversible computing, RLEMs are also known to be useful.
The main reason is that if we use an appropriate RLEM, we can construct var-
ious kinds of reversible computing models, e.g., reversible Turing machines and
reversible sequential machines, very simply [7,8,10].

Here, we investigate 2-state RLEMs, i.e., RLEMs with 1-bit memory. In
Section 2, we give definitions and classifications of 2-state RLEMs. In Section 3,
we explain how reversible sequential machines (RSMs) can be constructed sys-
tematically from a rotary element (RE), a typical 2-state RLEM [8]. In Section 4,
we show the result that “all” non-degenerate 2-state RLEMs except only four are
universal [16]. Thus, RSMs can be built by any one of universal RLEMs. How-
ever, so far, no concise construction method has been given except the method
of using RE. In Section 5, we give a new simple method of composing RSMs
from 2-state RLEMs of ID numbers 4-31 and 3-7.

2 Reversible Logic Element with Memory (RLEM)

A sequential machine (SM) of Mealy type is a finite automaton with an output
as well as an input. A reversible logic element with memory (RLEM) is nothing
but a reversible sequential machine.

Definition 1. A sequential machine (SM) is defined by M = (Q,Σ,Γ, δ), where
Q is a finite set of internal states, Σ and Γ are finite sets of input and output
symbols, and δ : Q × Σ → Q × Γ is a move function. If δ is injective, M is
called a reversible sequential machine (RSM). More specifically, M is called a
|Q|-state |Γ|-symbol RSM, for convenience. Note that |Σ| ≤ |Γ| must hold, if M
is reversible. A reversible logic element with memory (RLEM) is an RSM such
that |Σ| = |Γ|, and it is also called a |Q|-state |Γ|-symbol RLEM.

The move function δ of an SM M determines the next state of M and the output
symbol from the present state and the input symbol. Hence, if the present state
is p, the input symbol is ai, and δ(p, ai) = (q, sj), then the next state is q and
the output is sj as shown in Fig. 1 (a). To use an SM as a logic element for
composing a logic circuit, we interpret the SM as a machine having “decoded”
input and output ports as in Fig. 1 (b). Namely, for each input symbol, there
is a unique input port, to which a signal (or particle) can be given. Likewise,
for each output symbol, there is a unique output port, from which a signal can
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Fig. 1. (a) A sequential machine M = (Q, {a1, . . . , am}, {s1. . . . , sn}, δ) such that
δ(p, ai) = (q, sj), and (b) an interpretation of a sequential machine as a system having
decoded input ports and output ports

appear. When making a logic circuit using such SMs, we assume the following:
each output port of an SM can be connected to only one input port of another
(maybe the same) SM. Thus, fan-out of an output is not allowed.

Hereafter, we investigate only 2-state RLEMs. We first give two examples
of 2-state 4-symbol RLEMs with ID numbers 4-31 and 4-289 (the numbering
method will be explained later). They are M4-31 = ({0, 1}, {a, b, c, d}, {s, t, u, v},
δ4-31) and M4-289 = ({0, 1}, {a, b, c, d}, {s, t, u, v}, δ4-289). The move functions
δ4-31 and δ4-289 are given in Table 1. For example, δ4-31(0, d) = (1, s). It is easy
to verify that δ4-31 and δ4-289 are injective. In the following, we denote the move
functions of 2-state RLEMs by a pictorial notation as shown in Fig. 2 instead of
tables as in Table 1. Each of two states is represented by a rectangle having input
ports and output ports. The relation between input and output is indicated by
solid and dotted lines. We assume a signal is given to at most one input port at
a time. If a signal is given to some input port, it travels along the line connected
to the port. In the case that a signal goes through a dotted line, the state does
not change (Fig. 3 (a)). On the other hand, if it goes through a solid line, the
state changes to the other (Fig. 3 (b)).

Table 1. The move functions δ4-31 and δ4-289 of the 2-state RLEMs 4-31 and 4-289

Input
Present state a b c d

State 0 0 s 0 t 0 u 1 s
State 1 1 t 0 v 1 v 1 u

Input
Present state a b c d

State 0 0 s 0 t 1 s 1 t
State 1 0 u 0 v 1 v 1 u

δ4-31 of RLEM 4-31 δ4-289 of RLEM 4-289

2-state RLEMs are classified as follows. Since the move function δ of a 2-state
k-symbol RLEM M = ({0, 1},Σ,Γ, δ) is identified by a permutation of {0, 1}×Γ,
the total number of 2-state k-symbol RLEMs is (2k)!. They are numbered from
0 to (2k)! − 1 in the lexicographic order of permutations [13]. To indicate it is
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Fig. 3. Examples of operations of the 2-state RLEM 4-31. (a) If a particle passes a
dotted line, then the state remains to be the same. (b) If a particle passes a solid line,
then the state changes to the other.

a k-symbol RLEM, the prefix “k-” is attached to its serial number like RLEM
4-31. Two RLEMs are said to be equivalent if one can be obtained by renaming
the states and/or the input/output symbols of the other. It has been shown that
the numbers of equivalence classes of 2-state 2-, 3-, and 4-symbol RLEMs are
8, 24, and 82, respectively [13]. Fig. 4 shows all representative RLEMs in the
equivalence classes of 2- and 3-symbol RLEMs. The representatives are chosen
so that it has the smallest number in the class.

Among RLEMs, there are degenerate ones, each of which is either equivalent
to simple connecting wires (e.g., RLEM 3-3), or equivalent to an RLEM with
fewer symbols (e.g., RLEM 3-6). Its precise definition is in [12]. In Fig. 4, they
are indicated by “eq. to wires” or “eq. to 2-n”. Thus, non-degenerate k-symbol
RLEMs are the main concern of the study. It is known that the numbers of
non-degenerate 2- 3- and 4-symbol RLEMs are 4, 14, and 55, respectively.

A rotary element (RE) [7] is a 2-state 4-symbol RLEM defined by MRE =
({H,V}, {n, e, s, w}, {n′, e′, s′, w′}, δRE), where δRE is given in Table 2. RE is
equivalent to RLEM 4-289, since the latter is obtained by the following renaming
of states and input/output symbols: H �→ 0, V �→ 1, n �→ c, s �→ d, e �→ a,w �→
b, n′ �→ u, s′ �→ v, e′ �→ t, w′ �→ s. Its behavior can be very easily understood,

Table 2. The move function δRE of rotary element (RE)

Input
Present state n e s w

H V w′ H w′ V e′ H e′

V V s′ H n′ V n′ H s′
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of 24 equivalence classes of 720 3-symbol RLEMs (bottom). The indications “eq. to
wires” and “eq. to 2-n” mean it is equivalent to connecting wires, and it is equivalent
to RLEM 2-n, respectively. Thus they are degenerate ones.
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since it has the following interpretation on its operation. RE is depicted by
a box that contains a rotatable bar inside (Fig. 5). Two states of an RE are
distinguished by the direction of the bar corresponding to states H and V. There
are four input lines and four output lines corresponding to the sets of input
symbols {n, e, s, w} and output symbols {n′, e′, s′, w′}. The rotatable bar is used
to control the move direction of an input signal (or particle). When no particle
exists, nothing happens on the RE. If a particle comes from the direction parallel
to the rotatable bar, then it goes out from the output line of the opposite side
without affecting the direction of the bar (Fig. 5 (a)). If a particle comes from
the direction orthogonal to the bar, then it makes a right turn, and rotates the
bar by 90 degrees (Fig. 5 (b)). In the next section we use RE for composing
circuits that simulate RSMs.

We now give a short remark how RLEMs are related to reversible physical
systems. The billiard ball model (BBM) proposed by Fredkin and Toffoli [3] is an
idealized model of Newtonian mechanics in which reversible logic gates can be
embedded. In [9,11], it is shown that RE can be directly and simply simulated
in BBM without using reversible logic gates. It is also proved that any m-state
k-symbol RLEM can be realized in BBM in a systematic way if k ≤ 4 [15].

3 Constructing Reversible Machines by RE

In [8] it is shown that there is a systematic method of composing an RE circuit
that simulates a given RSM. Here, we explain it by an example. Assume an RSM
M0 = ({q1, q2, q3}, {a1, a2, a3}, {s1, s2, s3}, δ0) is given, where δ0 is described in
Table 3. Then, we first prepare three columns of REs each of which consists of
four REs, and connect them as shown in Fig. 6 (a). This is a “framework circuit”
that can be used for any 3-state 3-symbol RSM. More generally, for an m-state
n-symbol RSM, we prepare m columns of REs each of which consists of n + 1
REs. Here, the j-th column corresponds to the state qj of M0 (j ∈ {1, 2, 3}). If
M0’s state is qj , then the bottom RE of the j-th column is set to state H. All
other REs are set to V. In Fig. 6, it is in the state q2. The REs of the i-th row
corresponds to the input symbol ai as well as the output symbol si (i ∈ {1, 2, 3}).
If a particle is given to an input port e.g. a1 of Fig. 6 (a), then after setting the
bottom RE of the second column to state V, the particle finally comes out from
the port “q2a1”. Namely, the crossing point of the second column and the first
row is found. Then, since δ0(q2, a1) = (q3, s2), the bottom RE of the third column

Table 3. The move function δ0 of an example of an RSM M0

Input
Present state a1 a2 a3

q1 q2s2 q3s1 q1s2

q2 q3s2 q2s1 q1s3

q3 q3s3 q2s3 q1s1
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Fig. 6. (a) The framework circuit for implementing a 3-state 3-symbol RSM, and (b)
the RSM M0 realized by RE. Here, M0 is in the state q2 since the bottom RE of the
second column is in state H.
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should be set to state H, and the particle must go out from the output port s2.
This can be done by giving a particle to the line “q3s2”. Hence, each line “qjai”
in Fig. 6 (a) is connected to the line “qj′si′”, if δ0(qj , ai) = (qj′si′). Connecting
all such lines appropriately according to δ0 in Table 3, we finally obtain the
circuit in Fig. 6 (b) that simulates M0.

We can also see that any reversible Turing machine (RTM) is constructed
only of REs. An RTM is a machine having backward deterministic property
(see [1,9] for its definition), and it is known that for any irreversible TM,
there is an RTM that simulates the former and leaves no garbage informa-
tion when it halts [1]. In [7,10], a design method of a finite state control
and a memory cell of an RTM is given. Fig. 7 is a circuit that simulates an
example of an RTM Tparity that accepts the language {12n|n = 0, 1, . . .} [10].
The move function of Tparity is specified by the following set of quintuples:
{[q0, 0, 1, R, q1], [q1, 0, 1, L, qacc], [q1, 1, 0, R, q2], [q2, 0, 1, L, qrej], [q2, 1, 0, R, q1]}. If
we give a particle to the input port “Begin,” then it starts to com-
pute. Finally, the particle comes out from the output port “Accept” or
“Reject” depending on the input. Detailed descriptions of this circuit is given
in [10,11].
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Fig. 7. A circuit made of RE that simulates an RTM Tparity that accepts {12n| n =
0, 1, . . .}. An example of its whole computing process is shown in 4406 figures in [10].

4 Universality of 2-State RLEMs

As we have seen in Section 3, RE is “universal” in the sense that any RSM can be
simulated by a circuit made only of REs. Since there are infinitely many kinds of
RLEMs, it is important to know which 2-state RLEMs are universal, and which
are not. Surprisingly, every non-degenerate 2-state RLEMs except only four are
universal [12]. In the following, we explain its outline.
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Definition 2. An RLEM is called universal if any RSM is realized by a circuit
composed only of copies of the RLEM.

Theorem 1. [8] RE (or equivalently RLEM 4-289) is universal.

The following lemmas are on universality of RLEMs other than RE.

Lemma 1. [6,12] RE can be simulated by a circuit composed of RLEM 3-10.

Lemma 2. [6] RLEM 3-10 can be simulated by a circuit composed of RLEMs
2-3 and 2-4.

Lemma 3. [12] RLEMs 2-3 and 2-4 can be simulated by any one of 14 non-
degenerate 3-symbol RLEMs.

�
� �

��

�

��

�

n n′

e
e′

s′ s

w′
w :

�
�

�
�

�
�

�
�

�
�

�
�

��� �
�

�
��� �

�
�

�

� �

�
�

� �

�
�

� �

�
�

� �

�

� � ��

� �� �

� �� �

n e s w

s′ w′ n′ e′

�
� �

��

�

��

�

n n′

e
e′

s′ s

w′
w :

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��� �

�
�

���

�

� �

�
�

� �

�
�

� �

�
�

� �

�

� � ��

� �� �

� �� �

n e s w

s′ w′ n′ e′

Fig. 8. A circuit composed of RLEM 3-10 that simulates RE

a

b
c �

�
�

�
�

�

3-10
�
�
�

State 0

:
s

t
u

2-4

���

2-3
��

�
�

�

�

�

a

b
c

s

t
u

a

b
c �

�
�

���

3-10
�
�
�

State 1

:
s

t
u

���

2-4

2-3
��

�
�

�

�

�

a

b
c

s

t
u

Fig. 9. A circuit composed of RLEMs 2-3 and 2-4 that simulates RLEM 3-10



How Can We Construct Reversible Machines out of RLEM 361

2-3 2-4

a

b �

�

���� �

�

s
t

a

b �

� �

�

s
t

a

b �

� �

�

s
t

a

b �

�����

�

�

s
t

State 0 State 1 State 0 State 1

3-7 a

b �

�

�

�
�

�
�

�

�

s

t
a

b �

�

�
�

�
�

�

�

�

s

t

a

b �

�

�

�
�

�
�

�

�

s
t

a

b �

�

�
�

�
�

�

�

�

s
t

3-9 a

b �

�

�

�
�

�
�

�

�

s
t

a

b �

�

�

�

�

s
t �

�
�

�
��

�

�

�

�

�

�

a

b

s
t ��

�

�

�

�

�

�

a

b

s
t

3-10
a

b �

�

�

�
�

�
�

�

�

s

t

a

b �

�

�

����

�

�

s

t
a

b �

�

�

�
�

�
�

�

�

s
t

a

b �

�

�

����

�

�

s
t

3-18
�

�
�

�

�

�

�

�

�

�

�

�

a

b

s
t �

�
�

�

�
�

�
�

�

�

�

�

�

�

�

�

a

b

s
t

a

b �

�

�

�

�

s
t

a

b �

�

�
�

�
�

�

�

�

s
t

3-23
a

b �

�

� �

�

s
t

a

b �

�

� �

�

s
t

a

b
�

�

� �

�

s

t

a

b
�

�

� �

�

s

t

3-60
a

b
�

�

�

����

����

�

�

s

t

a

b
�

�

���������

�

�

s

t

a

b �

�

�

����

����

�

�

s
t

a

b �

�

���������

�

�

s
t

3-61 a

b �

�

�

����

���� �

�

s
t

a

b �

�

����� �

�

s
t

a

b �

�

�

����

����

�

�

s
t

a

b �

�

�����

�

�

s
t

3-63
a

b
�

�

�

����

����

�

�

s
t

a

b
�

�

�
�

�
�

�����

�

�

s
t

a

b �

�

�

����

����

�

�

s

t

a

b �

�

�
�

�
�

�����

�

�

s

t

3-64
a

b
�

�

�

����

����

�

�

s

t

a

b
�

�

� �

�

s

t

a

b �

�

�

����

����

�

�

s
t

a

b �

�

� �

�

s
t

3-65
a

b
�

�

�

����

����

�

�

s

t

a

b
�

�

�

��������

�

�

s

t

����

���� ��������

�

�

�

�

�� �

�

a

b

s

t �������� ����

����

�

�

�

�

�� �

�

a

b

s

t

3-90
a

b
�

�

� �

�

s

t

a

b
�

�

���������

�

�

s

t

a

b
�

�

� �

�

s
t

a

b
�

�

���������

�

�

s
t

3-91
����

����

�

�

�

�

�

�

�

�

a

b

s
t �

�

�

�

�

�

�

�

a

b

s
t a

b
�

�

� �

�

s
t

a

b
�

�

�����

�

�

s
t

3-451
a

b
�

�

�

�

�

s
t

a

b
�

�

�

�������� �

�

s
t

a

b �

�

� �

�

s

t
a

b �

�

�

��������

�

�

s

t

3-453
�

�

� �

�

�

�

�

�

� �

a

b

s

t

���������
�

�
� ���������

�
�

� ���������
�

�
�

�

�

� �

�

�

�

�

�

� �

a

b

s

t

���������
�

�
�

�

�

� �

�

�

�

�

�

� �

a

b

s

t

���������
�

�
� ���������

�
�

�
�

�

� �

�

�

�

�

�

� �

a

b

s

t

Fig. 10. Circuits composed of each of 14 non-degenerate 3-symbol RLEMs that simu-
late RLEMs 2-3 and 2-4
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Lemmas 1–3 are proved by giving circuits composed of given RLEMs that sim-
ulate the target RLEMs. Lemma 1 was first proved in [6] by a circuit made of
20 copies of RLEM 3-10 that simulates RE. Later, a simpler circuit in Fig. 8
was given in [12]. Lemma 2 is proved by a circuit in Fig. 9 made of RLEMs 2-3
and 2-4 that simulates RLEM 3-10 [6]. Finally, Lemma 3 is proved by 28 circuits
shown in Fig. 10 composed of each of 14 non-degenerate 3-symbol RLEMS that
simulate RLEMs 2-3 and 2-4. By Lemmas 1–3, we obtain the next lemma.

Lemma 4. [12] Every non-degenerate 2-state 3-symbol RLEM is universal.

A relation between k-symbol RLEMs and (k − 1)-symbol RLEMs is shown
in the following lemma.

Lemma 5. [12] Let Mk be an arbitrary non-degenerate k-symbol RLEM (k > 2).
Then, there exists a non-degenerate (k − 1)-symbol RLEM Mk−1 that can be
simulated by Mk.

The key idea of the proof of Lemma 5 is as follows. When a k-symbol RLEM
is given, we choose one output line and one input line, and connect them to
make a feedback loop. By this, we obtain a (k − 1)-symbol RLEM. If we make
an appropriate feedback loop, we can get a non-degenerate 3-symbol RLEM.
But, if we make an inappropriate feedback, then the resulting 3-symbol RLEM
is a degenerate one. In [12], it is proved that for a given non-degenerate k-symbol
RLEM (k > 2), we can always find a feedback loop by which a non-degenerate
(k − 1)-symbol RLEM can be obtained.

By Lemmas 4 and 5 we have the next theorem stating that all non-degenerate
2-state RLEMs except only four 2-state 2-symbol RLEMs are universal. Note
that universal RLEMs can simulate each other.

Theorem 2. [12] Every non-degenerate 2-state k-symbol RLEM is universal if
k > 2.

On the other hand, among four non-degenerate 2-state 2-symbol RLEMs,
three of them have been shown to be non-universal.

Lemma 6. [16] RLEM 2-2 can simulate neither RLEM 2-3, 2-4, nor 2-17.

Lemma 7. [16] RLEM 2-3 can simulate neither RLEM 2-4, nor 2-17, and
RLEM 2-4 can simulate neither RLEM 2-3, nor 2-17.

By Lemmas 6 and 7, we have the following theorem.

Theorem 3. [16] RLEMs 2-2, 2-3, and 2-4 are non-universal.

We can see, from the following lemma, RLEM 2-2 is the weakest one among
non-degenerate 2-state RLEMs.

Lemma 8. [16] RLEM 2-2 can be simulated by any one of RLEMs 2-3, 2-4,
and 2-17.

Fig. 11 summarizes the above results. It is an open problem whether RLEM
2-17 is universal or not. On the other hand, it is shown that any combination of
two among RLEMs 2-3, 2-4, and 2-17 is universal [6,16].
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Fig. 11. A hierarchy among non-degenerate 2-state RLEMs. Here, A → B (A �→ B,
respectively) indicates that A can (cannot) be simulated by B.

5 Constructing RSMs by RLEMs 4-31 and 3-7

By Lemmas 1–3 and 5, we can construct RSMs by any universal RLEM in a
systematic way. For example, if we want to construct an RSM M0 in Section 3
by RLEM 3-7, it can be done as follows. First, make RLEMs 2-3 and 2-4 as the
circuit of RLEM 3-7 shown in the first row of Fig. 10. Next, make RLEM 3-10 as
in Fig. 9. Then, compose a circuit out of RLEM 3-7 that simulates RE according
to Fig. 8. This circuit consists of 16 copies of RLEM 3-7. Finally, replace each
RE in Fig. 6 (b) by this circuit. We thus obtain a circuit composed of RLEM
3-7 that simulates the RSM M0. However, the above method is not good with
respect to the number of RLEMs, since there is a simpler circuit consisting only
four (instead of 16) copies of RLEM 3-7 that simulates RE (Fig. 12).
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Fig. 12. A circuit composed of four copies of RLEM 3-7 that simulates RE
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Fig. 13. (a) A framework circuit for implementing a 3-state 3-symbol RSM, and (b)
the RSM M0 realized by RLEM 4-31. Here, M0 is in the state q2 since all the RLEMs
in the second column are in state 1.
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Here, we give a new method of constructing RSMs concisely by RLEM 4-31,
and then by RLEM 3-7. We take again the example of the RSM M0 whose move
function δ0 is given in Table 3. As in Section 3, we first prepare a “framework
circuit” consisting of three rows and three columns of RLEM 4-31 as shown in
Fig. 13 (a). Generally, for an m-state n-symbol RSM, we prepare an n×m array
of RLEM 4-31. As in the case of Fig. 6 (a), the j-th column corresponds to the
state qj of M0 (j ∈ {1, 2, 3}). If M0’s state is qj , then all the RLEMs of the j-th
column is set to state 1. All other RLEMs are set to state 0. In Fig. 13, it is in
the state q2. The RLEMs of the i-th row corresponds to the input symbol ai as
well as the output symbol si (i ∈ {1, 2, 3}). If a particle is given to an input port
e.g. a1 of Fig. 13 (a), then after setting the all RLEMs of the second column to
state 0, the particle finally comes out from the port “q2a1”. Hence, the crossing
point of the second column and the first row is found, though the port “q2a1” is
shifted downward by one row cyclically. Since δ0(q2, a1) = (q3, s2), the RLEMs
of the third column should be set to state 1, and the particle must go out from
the output port s2. This can be performed by giving a particle to the line “q3s2”.
Again, the port “q3s2” is shifted downward by one row. Connecting all such lines
appropriately according to δ0 in Table 3, we finally obtain the circuit composed
of RLEM 4-31 shown in Fig. 13 (b) that simulates M0.

Next, we consider a problem of constructing RSMs by RLEM 3-7. It is easily
done, since RLEM 4-31 is implemented by a circuit consisting only two copies
of RLEM 3-7 as shown in Fig. 14. By this method, an m-state n-symbol RSM
can be constructed using 2mn copies of RLEM 3-7.
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Fig. 14. A circuit composed of two copies of RLEM 3-7 that simulates RLEM 4-31

6 Concluding Remarks

In this paper, we discussed universality of RLEMs, in particular, how RSMs are
implemented by circuits made of universal RLEMs. We proposed a new method
of realizing RSMs concisely by RLEMs 4-31 and 3-7. If we use RLEM 4-31 (or
3-7, respectively), an m-state n-symbol RSM can be realized by a circuit con-
sisting of mn (or 2mn) copies of it. As for reversible Turing machines, a compact
realization method by RLEM 4-31 is given in [14]. Finding other construction
methods by simpler (i.e., 3- or 2-symbol) RLEMs is left for the future study.



366 K. Morita and T. Ogiro

References

1. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)
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Abstract. The concept of approximation has intensively been studied,
developed and applied not only in computer science, but also in math-
ematics and engineering disciplines. The never ending requirement for
low power consumption led to making approximate circuits and computer
systems even in the areas in which only accurately working solutions have
traditionally been accepted. Approximate circuits are the circuits relax-
ing the requirement on the functional equivalence between the specifica-
tion and implementation in order to reduce the area on a chip, delay or
energy consumption. Approximate computing machines further exploit
and apply this idea at all system levels. This paper introduces the field
of approximate computing and shows how evolutionary design methods
can automate the design process of approximate computing systems, in
particular, approximate logic circuits.

1 Introduction

The notion of approximation is well established in computer science, mathematics
and engineering [1]. However, the reasons for approximations can be different.

In computer science, approximation algorithms are algorithms used to find
approximate solutions to NP-hard optimization problems. As it is intractable to
find an optimal solution, the goal is to find polynomial-time exact algorithms and
guarantee provable solution quality in provable run-time bounds. An interesting
discovery is that, in spite of the isomorphism between NP-complete problems,
good approximation algorithms can be surprisingly different for particular prob-
lem classes. A detailed overview of the theory of approximation algorithms can
be found in [2].

One of the classic utilizations of the concept of approximation is approximate
string matching. Finding strings that match a pattern approximately rather than
exactly is crucial for spell checking, bioinformatics, spam filtering and other
applications.

In bio-inspired artificial intelligence, models of computation, such as artificial
neural networks, have been developed which inherently exploit the concept of
approximation. For example, a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate continuous functions [3].

In mathematics, it is investigated how certain (usually complex) functions
can be approximated by means of basic functions that are inexpensive or suitable
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 367–378, 2014.
DOI: 10.1007/978-3-319-13350-8 27
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according to a given purpose. In order to do so, traditional approaches (such as
Taylor series or Newton’s method) utilize only elementary operations: addition,
subtraction and multiplication. But multiplication can still be very expensive. As
a hardware multiplier is a relatively complex and slow component, multiplierless
methods have been discovered in computer engineering to inexpensively and
quickly approximate mathematical functions. The most prominent example is
the CORDIC algorithm (COordinate Rotation DIgital Computer), developed
by Jack E. Volder, which is capable of calculating hyperbolic and trigonometric
functions using addition, subtraction, bit shift and table lookup [4]. We will see
later that even the adders are approximated in modern computing devices.

All approaches to approximations suppose that an error measure is defined in
order to quantify how far a given approximation is from an optimal (or known)
solution. The aforementioned example dealing with hardware resources shows
that the error measure is not the only measure in engineering applications. For
example, speed of processing and area on a chip are fundamental measures used
for hardware components. Moreover, if a sequence of successive approximations
can be constructed, the rate of convergence and stability are other important
measures of the approximation method.

It can be seen that the concept of approximation is thus relevant for both
algorithms as well as solutions produced by algorithms. One has to carefully
distinguish algorithms (i.e. problem solving mechanisms, such as the quicksort)
from solutions to particular problems (e.g. a sorted sequence of integers), because
an algorithm can often be a solution produced by another algorithm (e.g. in
genetic programming).

In the recent five years, we could observe a lot of work around approxima-
tions in a different context, mainly in a connection with energy consumption.
A new research direction – approximate computing – has been established to
investigate how computer systems can be made better – more energy efficient,
faster, and less complex – by relaxing the requirement that they are exactly
correct. Approximate computing exploits the fact that the requirement of per-
fect functional behavior (i.e. accuracy) can be relaxed because some applications
are inherently error resilient [5]. The errors are not recognizable because human
perception capabilities are limited (e.g. in multimedia applications), no golden
solution is available for validation of results (e.g. in data mining applications),
or users are willing to accept some inaccuracies (e.g. when battery of a mobile
phone is almost depleted, but at least a basic functionality is still requested).
Therefore, the accuracy can be used as a design metric, traded for area on a
chip, delay, throughput, or power consumption.

In approximate computing systems, approximations can be introduced at all
design levels, starting from the circuit via the architecture and operating system
to programming language. Taking approximate computing closer to mainstream
adoption requires a deeper understanding of inherent application resilience across a
broader range of applications, which has partially been investigated, e.g. in [6]. As a
manualre-designoffullyfunctional(exact)systemsisnotanefficientdesignmethod,
several automated approaches have been proposed to particular problem classes.
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The goal of this paper is to introduce the nascent field of approximate com-
puting and show how evolutionary design methods can automate the design
process of approximate computing systems, in particular, approximate digital
circuits. Note that no support for the design of approximate circuits is available
in common circuit design and optimization tools [7,8]. Because of the nature of
approximate circuits (in fact, partially working circuits are sought) and principles
of evolutionary circuit design (evolutionary-based improving of partially working
circuits), evolutionary computing seems to be a promising design method.

The rest of the paper is organized as follows. Section 2 briefly surveys the field
of approximate computing and approximate circuit design. In Section 3, evolu-
tionary computing is introduced as a method for approximate circuit design.
Section 4 specifically deals with a multi-objective approach to approximate cir-
cuit design. Concluding remarks are given in Section 5.

2 Approximate Computing

In the introduction, we have shown that approximate computing is a much wider
concept than approximation algorithms and numerical approximation. It deals
with new approaches to circuits, components, microarchitectures, operating sys-
tems, programming languages, compilers and their interactions.

Approximate computing should not also be confused with stochastic comput-
ing and probabilistic computing [5,9]. In stochastic computing, values are repre-
sented by streams of random bits. On the other hand, probabilistic computing
utilizes random behavior of circuit elements under presence of thermal noise.

The number of papers dealing with approximate computing is rapidly increas-
ing and the field is now very active. Approximate solutions have been applied at
various levels of computer systems, including:

– elementary circuits (e.g. adders [10], multipliers [11]);
– high-level processing blocks (e.g. image compression [11], discrete cosine

transform, finite and infinite impulse response filters [12]);
– computer architecture (approximate pipelines in microprocessors [13]);
– general purpose approximate computing machines [14];
– programming languages [15].

Considering the energy efficiency as the main driving factor for introducing
inaccurate solutions, approximate computing is thus primarily relevant to phys-
ical design of circuits and development of software. In the case of software, a key
challenge is how to isolate parts of the program that must be precise from those
that can be approximated so that a program execution is correct even if quality
of the output degrades [15].

Approximate computing is definitely a promising way in computer engineer-
ing as small imperfections in functionality can be tolerated in many domains and
obtained benefits (especially in terms of power consumption) are impressive. At
the same time, future fabrication technologies operating with atomic-scale ele-
ments will inherently lead to imperfectly working circuits and thus majority of
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circuits will have to be considered as approximate circuits. However, there is not
still a well-established methodology for automated construction of approximate
systems and circuits which could provide a good trade-off among key parame-
ters. A recent comprehensive survey [16] clearly states in its “Implications for
Circuits and Architectures” section that

Much research needs to be done to functionally or parametrically under-
design large general class of circuits automatically. Mechanisms to pass
application intent to physical implementation flow (especially to logic
synthesis in case of functional underdesign) need to be developed.

2.1 Approximate Circuits

Before a digital circuit is implemented using gates and transistors, it is initially
represented at the logic level. There is a huge number of possibilities to map
the logic behavior onto available gates. In past decades, various optimization
techniques were proposed to find the most suitable mapping according to a
preselected metric, typically reflecting the area on a chip, power consumption
and delay [7,8]. The circuits which are intentionally designed in such a way
that the specification is not met in terms of functionality and some savings are
expected in terms of energy, performance or area are called approximate circuits.

Power consumption reduction methods have been developed for decades [17].
However, new technology-level optimizations such as downsizing of gates (i.e.
creating smaller than normally sized gates to reduce power consumption, in
exchange for increased delay) on critical paths and voltage over-scaling (i.e.
using deliberately lower power supply voltage for which the circuit is known to
occasionally produce erroneous outputs) enabled additional power savings.

Another technique which is, to some extent, technology-independent is func-
tional approximation. An accurate computing circuit is modified so that it does
not fully implement the logic behavior given by the specification. A natural
way is eliminating the least significant bits in the case of arithmetic circuits.
However, this technique leads to insignificant area (and so power consumption)
savings for some key circuits such as multipliers. Hence more drastic changes
have to be introduced into the circuit structure.

The problem of circuit approximation can be formulated as a multiobjective
optimization problem: Let C be a combinational circuit (a feed-forward network
composed of elementary logic gates) implementing a multiple-output logic func-
tion {0, 1}m → {0, 1}n which satisfies the specification S (given by, e.g., truth
table, algebraic expressions, netlist etc.), where m and n is the number of inputs
and outputs. The goal is to generate a circuit C

′
, implementing S with errors

never exceeding predefined threshold error values εi according to a set of chosen
error (constraint) functions Ei and minimizing a set of objective functions Fj .

The role of fabrication technology has to be emphasized in this task. The
relation between the area and power consumption can be highly non-linear. A
simple assumption that a small circuit will have low power consumption does not
always apply. As circuit power consumption in static and dynamic mode depends
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on a particular technology, detailed simulations of power consumption have to
always be performed for the chosen technology in order to get trustworthy results
from the circuit approximation process.

2.2 Systematic Design Methods

The design of approximate circuits is typically based on manual modifications
of fully functional circuits [11]. Only a few research groups have worked on an
automated approach for approximate circuit synthesis.

The Systematic methodology for Automatic Logic Synthesis of Approximate
circuits (SALSA) starts with a description of the exact version of the circuit and
an error constraint that specifies the type and amount of error that the imple-
mentation can exhibit [12]. The methodology introduces the so-called Q-function
which takes the outputs from both the original circuit and approximate circuit
and decides if the quality constraints are satisfied. The Q-function outputs a sin-
gle Boolean value. The SALSA algorithm attempts to modify the approximate
circuit with the goal of keeping the output of the Q-function unchanged. The
execution times of SALSA (on a server with an AMD Opteron 6176, 2.29 GHz
processor) ranged from 4 minutes to 2.5 hours for circuits such as multipliers,
filters and discrete cosine transform blocks [12].

Another systematic approach, Substitute-And-SIMplIfy (SASIMI), tries to
identify signal pairs in the circuit that exhibit the same value with a high proba-
bility, and substitutes one for the other [18]. These substitutions introduce func-
tional approximations. Unused logic can be eliminated from the circuit which
results in area and power savings.

In both cases, the design process is controlled by a predefined acceptable
error, and hence we call the approaches error-oriented.

3 Evolutionary Approach to Approximate Circuits

The evolutionary circuit design, which has been developed in the framework
of modern bio-inspired artificial intelligence, is the use of bio-inspired search
algorithms for automated synthesis and optimization of circuit designs. The
method has been utilized for digital as well as analogue circuits [19].

3.1 Evolutionary Circuit Design

Electronic circuits encoded as strings of symbols are constructed and optimized
by the evolutionary algorithm (EA) in order to obtain a circuit implementation
satisfying the specification. In order to evaluate a candidate circuit, a reconfig-
urable circuit (or its simulator if evolution is performed using a circuit simulator)
is reconfigured using a new configuration created on the basis of the chromosome
content. The configured device is then evaluated and its behavior is compared
with the desired behavior. The fitness score is calculated which reflects to what
extent the candidate circuit satisfies the specification.
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Among various branches of EAs,multiobjectiveEAs (MOEA) have been recog-
nized as a very valuable method in systems design as they naturally provide a set
of candidate solutions showing various trade-offs among conflicting design objec-
tives. The circuit design problem is thus transformed into the search problem.

The main reason why evolutionary circuit design has been studied and devel-
oped is its ability to (i) provide novel designs hardly reachable by means of
conventional methods; (ii) deliver good solutions for problems where the specifi-
cation is inherently incomplete and any golden solution does not exist; and (iii)
achieve adaptation/fault tolerance directly at the hardware level. John Koza,
the influential proponent of genetic programming, surveyed dozens of human-
competitive designs produced by EA [20].

The main challenge is to overcome the scalability issues emerging in
real-world applications of evolutionary circuit design, which primarily means
developing EA-based methods capable of evolving complex circuits. Another
disadvantage is that EA-based methods do not guarantee obtaining a solution
with a predefined quality.

3.2 Cartesian Genetic Programming

Cartesian genetic programming (CGP) is one of the most suitable and popular
methods for evolutionary circuit design [21].

A candidate circuit is modeled by means of a directed acyclic graph whose
nodes (gates) are organized in c columns and r rows. The circuit utilizes m
primary inputs and n primary outputs. Primary inputs and processing node
outputs are labeled 0, 1, . . . ,m − 1 and m,m + 1, . . . , m + c · r − 1, respectively.
Each node input can be connected either to the output of a node placed in
previous l columns or to one of the primary circuit inputs, where l is one of
CGP parameters. Figure 1 shows the CGP grid of nodes.

A candidate solution consisting of two-input nodes is represented in the chro-
mosome by r ·c triplets (x1, x2, ψ) determining for each processing node its func-
tion ψ (ψ ∈ Γ), and addresses of nodes x1 and x2 which its inputs are connected
to. The last part of the chromosome contains n integers specifying either the
nodes where the primary outputs are connected to or logic constants (’0’ and
’1’) which can directly be connected to the primary output. While the chromo-
some size is constant for a given product r · c, the phenotype size is variable and
measured as the number of used nodes (gates).

The initial population of CGP is created either randomly or by means of
existing circuits. Calculating the fitness value is a two-phase process. Firstly, the
circuit functionality is determined, e.g. by computing responses for all possible
assignments to the inputs. After reaching a satisfactory accuracy in the course
of evolution or when CGP is seeded by fully functional designs, the second phase
is initiated in which the circuit size (or other objectives) can be optimized. CGP
employs a (1 + λ) evolution strategy whose pseudo-code is given in Algorithm 1.
This search method is based on a point mutation operator which modifies h
randomly selected genes (integers) of the parent circuit. The role of mutation is



On Evolutionary Approximation of Logic Circuits 373

Fig. 1. An array of r · c 2-input nodes used in CGP. The number of inputs and outputs
is m and n.

Algorithm 1. CGP
Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

P ← randomly generate parent p and its λ offspring;1

EvaluatePopulation(P );2

while 〈terminating condition not satisfied〉 do3

α ← highest-scored-individual(P );4

if fitness(α) ≥ fitness(p) then5

p ← α;6

P ← create λ offspring of p using mutation;7

EvaluatePopulation(P );8

return p, fitness(p);9

substantial because even a single modified gene (integer) can significantly change
the phenotype.

3.3 Evolution of Approximate Circuits

The CGP-based design methods were introduced for the design of approximate
circuits because it was expected that they can provide much better solutions (i.e.
approximate circuits) for a larger class of circuits and multiple conflicting objec-
tives than existing design methods. We will briefly introduce our previous work,
in which we proposed two approaches to the evolutionary design of approximate
circuits by means of CGP.

In paper [22], we exploited the facts that power consumption is often highly
correlated with occupied resources and the evolutionary design is capable of
constructing partially working solutions even if sufficient resources (required for
finding a fully functional solution) are not available. Let z be the (minimum)
number of gates required for obtaining an accurate function. CGP is employed
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to minimize the error providing that only z − 1 gates are available. The process
can be repeated for z − 2, z − 3 etc. gates. The user thus obtains a set of
approximate combinational circuits, each of which typically exhibits different
trade-off between the functionality and the number of gates. This approach can
be considered as an area-oriented method because the user can control the used
area (and so power consumption) more comfortably than by means of the error-
oriented methods.

In paper [23], we proposed a complementary design approach. The user is
supposed to define a required error level emax (e.g. the average error magni-
tude). CGP, which is seeded by a conventional fully functional implementation,
is utilized to modify the seed in order to obtain a circuit with predefined emax.
After obtaining that circuit, CGP can minimize the mean error, the number of
gates or other criteria providing that emax is left unchanged.

Because the utilized power estimation algorithm is very time consuming, it
has not been included into the fitness function directly. Power consumption was
calculated at the end of evolution for the best evolved approximate circuits. In
both cases we demonstrated that for the cost of runtime the proposed methods
provide better trade-offs for elementary arithmetic circuits (such as adders and
multipliers) than conventional methods. The error-oriented approach tends to
be less computationally demanding.

4 Multiobjective Approximate Circuit Evolution

Both aforementioned approaches are the single-objective optimization methods.
In this section, we will demonstrate how truly multiobjective evolutionary opti-
mization algorithms can be employed to approximate circuits design.

4.1 Multiobjective Optimization

Multiobjective evolutionary algorithms are utilized if multiple conflicting
objective functions are formulated. Contrasted to the single-objective EAs, they
internally sort individuals according to the dominance relation, build archives
of so-called non-dominating solutions, and ensure population diversity to avoid
converging to a single solution. In order to compare two solutions, the domi-
nance relation is defined as follows: Solution x dominates another solution y if
two conditions are satisfied:

1. The solution x is no worse than y in all objectives.
2. The solution x is strictly better than y in at least one objective.

In the set of solutions P , the non-dominated subset of solutions P ′ contains
those solutions that are not dominated by any member of P . The non-dominated
subset of all possible solutions is called the Pareto-optimal set. The ultimate goal
of a multiobjective optimization is to find all Pareto-optimal solutions in a single
run of MOEA.
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Instead of evolving for every possible number of gates or error (as we have
seen in Section 3.3), various trade-offs can be obtained in a single run of a
suitable MOEA. Hence we combined CGP encoding with a typical multiobjective
evolutionary algorithm NSGA-II [24]. The proposed MOEA will be seeded by a
fully functional circuit. The goal is to simultaneously minimize the error and the
number of gates, providing that solutions showing the error higher than Emax

are infeasible.

4.2 Case Study

The proposed MOEA is evaluated in the task of a 4-bit multiplier approximation.
The conventional 4-bit multiplier considered in this study consists of 59 gates and
calculates an 8-bit product from two unsigned 4-bit operands. The error criterion
is a mean absolute error between the produced outputs and correct outputs for
all possible assignments to the inputs (28 vectors). The CGP parameters are
initialized as follows: r = 1, c = 59, l = c, λ = 4, h = 5%, Emax = 5000. The set
of available gates is Γ = {NOT, AND, OR, XOR, NAND, NOR, XNOR}. The
evolutionary algorithm operates with a 50 member population and stops when
gmax = 32 · 106 generations are spent. This corresponds with a four hour run on
an Intel Xeon processor running at 3 GHz. The setting of these values is based
on our previous experiments.

Fig. 2 shows all the trade-offs obtained from 100 independent runs of the
proposed MOEA. It can be seen that several solutions have been discovered for

Fig. 2. Trade-offs between the number of gates and error for the 4-bit approximate
multiplier (59 gates corresponds to the perfect functionality).
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every possible number of gates. A single run led to 16.97 different solutions on
average. A detailed analysis of the best evolved approximate circuits revealed
that a circuit containing k gates can exhibit a higher error than a circuit contain-
ing k − 1 gates (see, e.g., the error for 24 and 25 gates). It is, however, assumed
that a smaller error is obtained if more gates are allowed in the circuit. Hence
the current version and setting of the method seems to be inefficient. On the
other hand, the method is capable of producing many useful trade-offs much
faster than multiple runs of single-objective EAs from [22,23].

5 Conclusions

The field of approximate computing in general and approximate circuits in par-
ticular is in an early stage of development. Only a few systematic design method-
ologies have been proposed for the approximate circuit design so far. Despite the
interesting preliminary results obtained by EAs, it is a well-known problem that
EAs utilize very time consuming algorithms, the scalability of resulting solutions
is limited and the whole process is too non-deterministic for the community of
“conventional” designers. On the other hand, even conventional approaches have
to employ heuristics and time-consuming procedures in order to approximate cir-
cuit designs.

In the context of approximate circuit design methodologies, the future
research should mainly deal with the following issues:

– More efficient and accurate multiobjective EAs, employing more scalable
circuit representations and efficient genetic operators should be introduced
specifically for the task of approximation.

– Discovering time-efficient algorithms for checking to what extent a complex
approximate circuit corresponds with the exact specification is a challenging
task. Current approaches based on testing circuit’s responses for all possible
combinations of inputs are not scalable. The desired algorithm must be fast,
because it will be called to evaluate millions of candidate circuits produced
by MOEA.

– NP-hard problems vary greatly in their approximability. Key circuit classes
(such as adders, multipliers and other arithmetic circuits) should be analyzed
with respect to their approximability under various error measures and con-
straints. Complexity measures of approximate Boolean functions, similar to
those used for conventional Boolean functions [25], should be developed and
exploited.

– Instead of heuristic methods (such as EAs), a more rigorous concept, similar
to approximation algorithms in computer science, should be developed to
guarantee a provable solution quality in provable run-time bounds.

– Resulting approximate circuit design methods should be integrated to stan-
dard circuit design and optimization tools.

– Automated methodologies allowing designers to identify those system’s com-
ponents that can be replaced by their approximate counterparts should be
developed.
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All these issues have to be seen in the context of hardware, because very good
circuit approximations obtained for a given fabrication technology can become
useless when another fabrication technology is considered.

Approximate computing is a promising emerging paradigm which is quite
important for future low power and resources-efficient computers. However, a
lot of work has to be done in order to be widely accepted.
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Abstract. With the ongoing trend to parallelize computations for scal-
ability, better performance, and reliability, distributed dataflow mod-
els are attracting interest at all design levels, ranging from processor
architectures to local- and wide-area computing clusters in the cloud.
Data-driven computation has also been an important paradigm in sen-
sor networks and embedded systems, which have evolved into a larger
research effort on networked cyber-physical systems (NCPS), that can
sense and affect their environment. Fractionated cyber-physical systems
(FCPS) are an interesting subclass of NCPS where the redundancy and
diversity of many unreliable and potentially heterogeneous networked
components is exploited to improve scalability, reliability, and verifiabil-
ity of the overall system. In this paper we present the theory of a new dis-
tributed computing model for such systems as a first step toward a model-
based design methodology for FCPS. To uniformly capture dataflow,
controlflow, and workflow, we use a subclass of Petri nets as an intuitive
high-level model, which is translated into a weaker model — namely, a
new variant of Petri nets that does not make any atomicity assumptions
but instead uses a partial order to ensure eventual consistency. In the
full version of this paper, we briefly discuss an application to unmanned
aerial vehicle (UAV) swarms, which has been implemented on top of
a prototype of our theory for both simulation models and real world
deployments.

Dedication

The first author is dedicating this paper to Jozef Gruska, who in his role as
visiting professor was his early advisor during his studies at the University of
Hamburg. One topic was Carl Adam Petri’s theory of concurrency, which has
influcenced this paper to a great degree, although in an unexpected direction.
This paper explores a world in which atomic non-deterministic choices do not
exist or are too expensive to implement with high reliability. The motivating
application domain are loosely coupled distributed systems, such as wireless
networks of mobile cyber-physical devices, which can be regarded as the new
computing resources of our time. Interestingly, observable non-determinism is
also a challenge in quantum computing, a potential computing resource of the
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future, due to the associated and often undesirable collapse of the quantum state.
Hence, potential applications of our model in this domain would be worthwhile
to explore, but they are beyond the scope of this paper.

1 Introduction

Dataflow models have a long history in computer science as witnessed by the
large body of literature on dataflow graphs, Kahn networks, stream processing
languages, and Petri nets. Dataflow models come in many flavors. Some use
graphical representations, while others are presented as formal systems, such as
linear logic [14] or rewriting logic [25]. Such models have been used not only to
describe software and hardware designs but also workflow in various domains
from manufacturing to government, where the individual tasks of a workflow
are not computational but may entail interaction with the physical world or the
social/organizational context. Dataflow models make explicit the information
flow and hence the causal structure of computations, which is only implicitly
represented in traditional algorithms. Explicitly representing the structure of a
distributed computation is a form of partial reflection that enables the runtime
system to make better decisions on how to map computation to the available
resources. Another attractive feature of dataflow/workflow models is that they
are declarative, in the sense that data objects, functions, and causal dependencies
can be specified, e.g., in the form of a Petri net, and at the same time they can
be operational, i.e., executable.

Distributed dataflow approaches are gaining popularity, most recently
because of their potential to exploit the parallelism offered by modern many-
core architectures (stream processing) and cloud computing. Google’s MapRe-
duce framework [7] can be seen as an execution engine for distributed dataflow
graphs of a certain two-level shape. Programming languages for the distributed
execution of larger classes of dataflow graphs are being developed, as for instance
CIEL [28]. Stream processing frameworks such as OpenCL [1] can express data-
parallel programs in terms of kernel functions that can be efficiently mapped
to many-core architectures such as modern graphical processing units (GPUs).
Thanks to their capability to separate timing and functionality, dataflow mod-
els enable scalability and are also becoming increasingly popular in hardware
design as witnessed by approaches such as BlueSpec [2], which is influenced by
Petri nets and rewriting-based approaches, and is becoming a real competitor
for VHSIC hardware description language (VHDL) and Verilog. Data-oriented
approaches have also traditionally been used in sensor networks with in-network
processing (mostly asynchronous) and model-based design of embedded systems
(mostly synchronous), which have become part of a larger research effort on
sensor/actor networks [10] or networked cyber-physical systems (NCPS). There
is also a parallel trend to make general-purpose networking architectures more
data oriented and aware of the semantics of the data, as witnessed by recent
efforts such as disruption-tolerant networking [11], declarative networking [24],
and content-based networking [16,21].
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The real potential of distributed dataflow models for programming or model-
based design has not been reached yet, because existing dataflow engines are
implemented as classical distributed algorithms that can operate successfully
only in very constrained and cooperative environments. Although some tradi-
tional fault tolerance can be offered by dataflow engines, operating under high
failure rates, with highly unreliable connectivity, or even in the context of node
mobility is still a major challenge arising in many real-world large-scale dis-
tributed systems or systems operating in hostile/uncontrollable environments.
The objective of this paper is to develop a dataflow model for fractionated soft-
ware and hardware systems. Such systems are motivated by the strong trend
toward a truly distributed world in which potentially unreliable and resource-
constrained devices and powerful computing resources coexist without assuming
continuous network connectivity, and where a large number of such components
need to be operating as an ensemble to produce sufficient performance and reli-
ability.

Background

1.1 Fractionated Cyber-Physical Systems

NCPS are distributed systems consisting of heterogeneous software and hard-
ware components that can sense and affect the environment. Typically, the envi-
ronment plays an important role and can have many dimensions. For instance,
manufacturing systems, process control systems, automobiles, aircraft, satellites,
and robots are classical examples of NCPS, but also systems that support social
interaction or collaborative activities with humans in the loop. The notion of
fractionated software is inspired by hardware fractionation in DARPA’s F6 space
program [5] and has been proposed in [37] as a new basis to improve reliability
and verifiability of systems and for future systems built on fundamentally unre-
liable components. Fractionated cyber-physical systems (FCPS) can be seen as
a class of NCPS in which the operation of the system is fully distributed without
tying a function to a particular piece of hardware, which can also be regarded as
an extreme form of virtualization. Hardware is highly redundant so that func-
tions can be performed even in the presence of continuous failures without the
need for global coordination. FCPS should operate in a meaningful way even if
network communication is extremely unreliable and network partitioning may
occur. FCPS also need to provide scalability in the sense that the amount of hard-
ware/software elements (so-called fracments) can be adjusted, without requiring
changes in the application. Many classical distributed algorithms that may be
sufficient for NCPS are not suitable for FCPS, because they make strong assump-
tions about the network — e.g., have bounded delays, use nonscalable primitives
such as transactions, or introduce temporary bottlenecks, e.g., synchronization
or leader election phases. Aspects of FCPS can be found in sensor networks,
ensembles or swarms of vehicles, or biological systems, more generally systems
of a large number of unreliable components that are beyond the reach of classical
distributed algorithms.
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1.2 Partially Ordered Knowledge Sharing

The partially ordered knowledge sharing model for loosely coupled distributed
computing was introduced in [18], which presents a prototypical implementation
of what we call the cyber-application framework, a software framework for NCPS.
A logical version of this model was studied in [19,34] and a particular instance
was used for disruption-tolerant networking [36].

In a nutshell, this model postulates an NCPS with a finite set of so-called
cyber-nodes that provide computing resources, can have volatile and/or persis-
tent storage, and are all equipped with networking capabilities. Cyber-nodes can
have additional devices such as sensors and actuators, through which they can
observe and control their environment, but only to a limited degree (including
possibly their own physical state, e.g., their orientation/position). Cyber-nodes
can be fixed or mobile, and for the general model no assumption is made about
the computing or storage resources or about the network and the communication
capabilities or opportunities that it provides. Hence, this model covers a broad
range of heterogeneous technologies (e.g., wireless/wired, unicast/broadcast) and
potentially challenging environment conditions, where networking characteristics
can range from high-quality persistent connectivity to intermittent/episodic con-
nectivity. The cyber-physical system is open in the sense that new nodes can join
and leave the network at any time. Permanent or temporary communication or
node failures are admitted by this model.

As a step toward semantic networking [29], partially ordered knowledge shar-
ing allows the network to be aware of the application semantics (in this paper,
the semantics of our workflow model), and hence a real-world distributed imple-
mentation of our model has a well-defined behavior under network partitioning
and network merging, and can tolerate unbounded network delays and node
mobility. Due to the transactionless nature of our model, disconnections do not
have to be announced or predicted as in distributed tuple space models such
as [27]. Thanks to in-network caching, delay- and disruption-tolerant communi-
cation scenarios — e.g., highly unreliable wireless networks, short windows of
opportunity, and message ferrying — can be supported. There is no need for
continuous clock synchronization, as long as logical time [23] is respected.

Applications are event-driven; that is, they can post and respond to local
events. For coordination, knowledge can be posted into the network by a seman-
tic broadcast that can be implemented by many different protocols, ranging from
physical broadcast to gossip-style protocols. Knowledge can also be cached in
the network by intermediate nodes and at the endpoints. To partially capture
the semantics of knowledge for the purpose of distributed knowledge sharing, we
assume an application-specific strict partial order ≺ on units of knowledge that
we refer to as replacement order, with the intuition that k ≺ k′ means that k′

replaces/overwrites k, and hence if k has not been delivered yet to the applica-
tion, the knowledge-sharing model may discard it without delivering it, if k′ has
already been received.
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1.3 Petri Nets

Petri nets are the prototypical model for dataflow that has inspired many other
formalisms. Here, we use nets with individual tokens, specifically colored nets,
as a common specification of dataflow, controlflow, and workflow. We begin with
some basic notation and Petri net terminology.

A finite multiset over a set S is a function m from S to N such that its support
S(m) = {s ∈ S | m(s) > 0} is finite. We denote by MS(S) the set of finite
multisets over S. We write ∅S for the empty multiset over S and 〈e1, . . . , en〉S

for the multiset containing the listed elements (we usually omit S if it is clear
from the context), and, overloading some set operators, we use the standard
definitions of multiset membership ∈, inclusion ⊆, union +, and difference −.

A net N consists of a finite set of places PN , a finite set of transitions TN
disjoint from PN , and a flow relation FN ⊆ (PN × TN ) ∪ (TN × PN ) such that
the preset •t and the postset t• are nonempty for each t ∈ TN , where the preset
•x and postset x• of x ∈ P ∪ T are defined as {y | y FN x} and {y | x FN y},
respectively. A net is pure iff x• ∩ •x = ∅ for all x ∈ P ∪ T .

Whenever we use nonpure nets, we interpret symmetric pairs of the flow
relation to represent what is usually called test or read arcs, rather then self-
loops, which have a different concurrency and refinement semantics.

Let N be a net. A (black) token is simply defined by a place p ∈ PN . A
marking is a multiset of tokens. An occurrence is defined by a transition t ∈ TN .
The sets of tokens, markings, and occurrences of N are denoted by KN , MN and
ON , respectively. The semantics of a net N is given by the labeled transition
system that has MN as its set of states, ON as its set of labels, and a transition
relation −→ given by the occurrence transition relation −→o ⊆ MN ×ON ×MN
defined by m1

t−→o m2 iff there is a marking m such that m1 = m + •t and
m2 = m + t•. Writing the occurrence rule in the way given above makes it
evident that the occurrence of a transition t replaces its preset by its postset,
whereas the remainder of the marking, here denoted by m, is not involved in this
process. We say that a transition t is enabled at a marking m iff m

t−→o m′ for
some marking m′. We also define a binary transition relation −→ ⊆ MN ×MN
by m1 −→ m2 iff m1

l−→o m2 for some label l, its transitive closure +−→, and
its reflexive and transitive closure ∗−→. We say that m2 is reachable from m1 iff
m1

∗−→ m2. We write R(N ,m) to denote the set of markings reachable from m.
An execution of a net N is a finite sequence π = m0, l0,m1, l1, . . . , ln,mn+1, or

an infinite sequence π = m0, l0,m1, l1, . . . of markings mi and labels li such that
mi

li−→o mi+1 for all indices i, i + 1 of π. Typically, a net N is specified together
with an initial marking m0, giving rise to a net system (N ,m0), in which case
executions of (N ,m0) are the subset of executions of N starting with m0.

Let (N ,m0) be a net system. We say that (N ,m0) is safe iff for each marking
m ∈ R(N ,m0) we have m(p) ≤ 1 for all p ∈ PN . Furthermore, (N ,m0) is live
iff for each marking m ∈ R(N ,m0) and each transition t′ ∈ TN there exists
m′ with m

∗−→o m′ such that t′ is enabled at m′. Safety and liveness imply
boundedness and deadlock freedom, respectively [9].
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Abstract workflows of many different kinds [32,39] are often modeled using
free-choice nets [4,9], which exhibit the property that conflicts are localized
and structurally defined. A free-choice (FC) net N is a net1 such that for all
transitions t, t′ ∈ TN with •t ∩ •t′ �= ∅, we have •t = •t′ = {p} for some p ∈ PN .

Motivated by our application, we will only consider safe and live free-choice
(SLFC) net systems (i.e. nets sytems with an underlying FC net) in this paper.
In our proofs, we frequently exploit their well-understood structural properties
that can be most intuitively captured by reduction or synthesis rules [9].

Colored nets [17] are nets with places, transitions, and arcs inscribed with addi-
tional information given by functions C and W . The color set C(p) of a place p is
the set of possible objects p can carry. The color set C(t) of a transition t can be
seen as a set of bindings (also called modes) under which t may occur. We use a spe-
cialization of colored nets, where the arc inscription W defines individual objects
(“colored” tokens) that are transported by an arc when the associated transition
occurs. In fact, this object may depend on the binding under which the transition
occurs, which is why W (p, t) and W (t, p) take the form of functions in the defini-
tion below. In a graphical representation, W is represented by variables or terms
on the arcs, and the color set of a transition is implicitly defined by all the possible
bindings of all its local variables, which can be restricted by an optional condition.

A colored net N consists of (1) a net NN ; (2) a set of color sets CSN ; (3)
a color function CN : PN ∪ TN → CSN ; and (4) an arc inscription WN on
FN such that WN (p, t) : CN (t) → CN (p) and WN (t, p) : CN (t) → CN (p).
WN is extended to a function on (PN × TN ) ∪ (TN × PN ) in such a way that
(p, t) /∈ FN implies WN (p, t)(b) = ∅, and (t, p) /∈ FN implies WN (t, p)(b) = ∅ for
each b ∈ CN (t). A colored net N is pure iff the underlying net NN is pure.

The semantics of colored nets can be reduced to that of ordinary nets by
a flattening operation [35], but we give a direct definition for the purpose of
this paper. Let N be a colored net. A token is of the form (p, d) where p ∈
PN and d ∈ C(p), also called a data object for p. A marking is a multiset of
tokens. An occurrence is of the form (t, b) where t ∈ TN and b ∈ C(t), also
called a binding for t. The sets of tokens, markings, and occurrences of N are
denoted by KN , MN , and ON , respectively. Given a marking m we define the
projection on p ∈ PN , written p(m), by p(m)(p, d) = m(p, d) and p(m)(p′, d′) = 0
if p′ �= p. Given an occurrence (t, b) we define the multisets •(t, b) and (t, b)• by
•(t, b)(p, d) = W (p, t)(b)(d) and (t, b)•(p, d) = W (t, p)(b)(d). The semantics of
a colored net N is given by the labeled transition system that has MN as its
set of states, ON as its set of labels and a transition relation −→ given by the

occurrence transition relation −→o ⊆ MN × ON × MN defined by m1
(t,b)−→o m2

iff there is a marking m such that m1 = m + •(t, b) and m2 = m + (t, b)•. We
say that a transition t is enabled under a binding b or equivalently that the

occurrence (t, b) is enabled at a marking m iff m
(t,b)−→o m′ for some marking m′.

Typically, a colored net N is specified together with an initial marking m0, giving
1 To simplify the treatment we do not consider the slightly more general class of

extended free-choice nets in this paper.
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rise to a colored net system (N ,m0). The binary transition relation, reachable
markings, and executions are defined as for nets and net systems, respectively.

Given a colored net system (N ,m0), we define the flow abstraction (N̂ , m̂0)
as the net system consisting of the underlying net N̂ of (N ,m0) and a marking
m̂0 of N̂ that is defined as η(m0) where η : MN → MN̂ lifts η : KN → KN̂
to multisets, which maps each token (p, d) in N to a (black) token p in N̂ ,
abstracting from the data. A corresponding function η : ON → ON̂ maps each
occurrence (t, b) in N to an occurrence t in N̂ , abstracting from the binding.
From our definitions, it is obvious that η preserves the semantics — i.e., every

m
o−→o m′ implies η(m)

η(o)−→o η(m′), but the converse does not typically hold.

2 Toward a Truly Distributed Workflow Model for
Fractionated Systems

We introduce two Petri-net-based models, a high-level workflow model, and an
implementation-level model, and establish a formal correspondence. We begin
with the latter, but we first enrich colored nets with a notion of timestamps that
will enable the mapping between these models.

A colored net system (N ,m0) maintains timestamps iff there is a function
ts : K∪O → R such that the following timestamp conditions hold: (1) ts(p, d) =
0 for all (p, d) ∈ m0 and (2) for each occurrence (t, b) ∈ O we have ts(p′, d′) =
ts(t, b) > ts(p, d) for each (p, d) ∈ •(t, b) and (p′, d′) ∈ (t, b)•. Since we are
interested in fully distributed executions of nets, we cannot assume the existence
of a global clock. Instead, we are using the weaker logical time [23].

For colored nets that maintain timestamps we canonically restrict the sets
of tokens KN so that ts(k) = ts(k′) implies k = k′ for all k, k′ ∈ KN , and
similarly we restrict the set of occurrences ON so that ts(o) = ts(o′) implies
o = o′ for all o, o′ ∈ ON . Furthermore, we canonically restrict the occurrence
transition relation −→o ⊆ MN × ON × MN so that m

o−→o m′ ∗−→o m′′

and ts(o) = ts(o′) implies that o′ is not enabled at m′′, which in particular
entails that the timestamps of occurrences on each execution are distinct. Such
requirements of distinct timestamps are satisfied in practice with arbitrary high
probability if the timestamp precision is sufficiently high.

Lemma 1. Given a colored net system (N ,m0) there is an equivalent colored net
system (N̄ , m̄0) that maintains timestamps in the sense that there are functions
φ : MN̄ → MN and φ : ON̄ → ON such that for all m̄ ∈ R(N̄ , m̄0) we have (1)

m̄
ō−→o m̄′ implies φ(m̄)

φ(ō)−→o φ(m̄′), and (2) φ(m̄) = m and m
o−→o m′ implies

m̄
ō−→o m̄′ for some ō and m̄′ with φ(ō) = o and φ(m̄′) = m′.

A colored net N is monotonic iff (p, t) ∈ FN implies (t, p) ∈ FN for all
p ∈ PN and t ∈ TN and W (p, t) = W (t, p) for all (p, t) ∈ FN . Given a pure
colored net N we define the monotonic closure N̄ as the colored net that is
identical to N except that FN̄ = FN ∪ {(t, p) | (p, t) ∈ FN }, WN̄ is identical to
WN on FN , and WN̄ (t, p)(b) = WN (p, t)(b) for all (p, t) ∈ FN .
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Clearly, monotonic nets have monotonic executions where the markings can
only grow, because tokens cannot be removed by transition occurrences. Different
from Petri nets with test or read arcs, monotonic nets require that the preset of
a transition is exclusively accessed through read arcs. The only way to eliminate
tokens is by means of an ordering, which leads to the next definition.

A partially ordered net (N ,≺N ) consists of a colored net NN and a strict
partial order ≺N ⊆ KN × KN called the replacement order. The occurrence
semantics of (N ,≺N ) extends the occurrence semantics of N by an additional

replacement transition relation −→r ⊆ MN ×KN ×MN defined by m1
(p,d)−→r m2

iff (p, d) ∈ m1, (p′, d′) ∈ m1, (p, d) ≺ (p′, d′), and m2 = m1 − 〈(p, d)〉. In this
case, we also write m1 −→r m2. A partially ordered net system (N ,≺N ,m0)
is a partially ordered net (N ,≺N ) with an initial marking m0 ∈ MN . The
semantics of a partially ordered net (N ,≺N ) and a partially ordered net system
(N ,≺N ,m0) is defined as for colored nets or net systems but using an extended
transition relation −→, which is the union of the occurrence transition relation
−→o and the replacement transition relation −→r.

Partially ordered net systems with an underlying monotonic net will serve as
our implementation-level model, which allows inconsistencies to enable efficient
distributed execution as long as they can be resolved when needed. Hence, our
approach can be best characterized as optimistic, in contrast to a pessimistic
approach, which would block progress to make sure that inconsistencies can
never arise. Our high-level workflow model is introduced next.

A multiround workflow system (N ,m0) is a colored net system with an initial
place p0 and an initial data object d0 ∈ C(p0), giving rise to an initial marking
m0 = 〈(p0, d0)〉, such that the following conditions are satisfied. (1) The flow
abstraction of (N ,m0) is a pure SLFC net system. (2) For each marking m ∈
R(N ,m0) we have |m| = 1 whenever m(p0) �= ∅. (3) There exists a function
r : K → N such that r(p0, d0) = 0 and (3a) for each occurrence (t, b) ∈ O
and for all (p, d), (p′, d′) ∈ •(t, b) we have r(p′, d′) = r(p, d) and (3b) for all
(p, d) ∈ •(t, b), (p′, d′) ∈ (t, b)• we have r(p′, d′) = r(p, d) + 1 if p′ = p0 and
r(p′, d′) = r(p, d) otherwise.

From this definition it follows that 〈p0〉 is a home marking in the flow abstrac-
tion, meaning that it is reachable from any reachable marking [9]. If should be
noted that although the flow abstraction is live, it is only an overapproximation
of the behavior of (N ,m0), which due to conditional transitions (as expressed
by valid bindings) may terminate (possibly after a number of rounds).

To explicitly track causality and define an appropriate replacement order-
ing, we enrich each token in our workflow system with some local provenance
information.

A multiround workflow system (N ,m0) maintains provenance iff it maintains
timestamps and there is a function h : K → 2K∪O such that the following
provenance conditions hold: (1) h(p0, d) = ∅ for d ∈ C(p0) and (2) for each
occurrence (t, b) ∈ O and (p′, d′) ∈ (t, b)• with p′ �= p0 we have h(p′, d′) =⋃{h(p, d) | (p, d) ∈ •(t, b)} ∪ {(t, b)} ∪ {(p′, d′)}.
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We note that provenance is represented by the past causality cone within
each round and gives rise to a causal order on tokens defined by set-theoretic
inclusion. Our multiround scheme together with Condition (1) ensures that the
accumulated provenance information remains bounded, which is essential for any
implementation.

Lemma 2. Given a multiround workflow system (N ,m0) there is an equivalent
colored net system (N̄ , m̄0) that maintains provenance in the sense that there are
functions φ : MN̄ → MN and φ : ON̄ → ON such that for all m̄ ∈ R(N̄ , m̄0) we

have (1) m̄
ō−→o m̄′ implies φ(m̄)

φ(ō)−→o φ(m̄′), and (2) φ(m̄) = m and m
o−→o m′

implies m̄
ō−→o m̄′ for some ō and m̄′ with φ(ō) = o and φ(m̄′) = m′.

Utilizing the embedded provenance information we can define a replacement
ordering that has two purposes and hence two components. First, the system
should move forward in time by making sure that more recent tokens replace
obsolete tokens (causal replacement). Second, inconsistencies — e.g., violations
of mutual exclusion — must be eventually resolved (conflict replacement).

Given a multiround workflow system (N ,m0) that maintains provenance
we define a causal replacement relation ≺li ⊆ K × K, where K = K(N ,m0)
is defined as the union of the support of all reachable markings R(N ,m0), as
follows: k ≺li k′ iff r(k) < r(k′), or k ∈ h(k′) and r(k) = r(k′). We also define a
conflict replacement relation ≺al ⊆ K×K as follows: k ≺al k′ iff r(k) = r(k′) and
(1) p(k) = p(k′) = p0 and ts(k) > ts(k′) or (2) there exists a timestamp-minimal
pair (o, o′) of occurrences o ∈ h(k) and o′ ∈ h(k′) such that •o ∩ •o′ �= ∅ and
ts(o) > ts(o′). Here, a pair of occurrences is timestamp-minimal in a set of pairs
if ts(o, o′) is minimal, where the timestamp ts(o, o′) of a pair (o, o′) is defined as
min(ts(o), ts(o′)). The full replacement relation ≺N is defined as ≺li ∪ ≺al.

The overall coherence of our previous definitions — namely, that ≺ results
in a strict partial order — is essential and hence established in the subsequent
theorem.

Theorem 1 (Well-Formedness). A monotonic multi-round workflow system
(N ,m0) that maintains provenance together with ≺N forms a partially ordered
net system (N ,≺N ,m0).

For the reminder of this section, we assume a multiround workflow system
(N ,m0) that maintains provenance and the partially ordered net system (N̄ ,≺N̄
,m0) where N̄ is the monotonic closure of N . Note that MN̄ = MN and
ON̄ = ON . For better readability, we use a few conventions. The notation •x
and x• will always refer to N . If not otherwise noted, transition relations will
refer to N , except in the case where they are used with variables like m̄ and m̄′,
in which case they refer to N̄ .

As a first observation stated in the following theorem, a causality cone does
not contain inconsistencies, and hence conflicts are never visible in provenance
of individual tokens (and hence this set is preserved).

Theorem 2. K(N ,m0) = K(N̄ ,m0).
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In the following, we use ψ(m) to denote the submarking given by the max-
imal elements of m w.r.t. ≺. This gives rise to an induced equivalence relation
≡ defined by m ≡ m′ iff ψ(m) = ψ(m′). The following theorems use ψ to state
equivalence modulo replacement between our high-level model, the multiround
workflow system, and the implementation-level model, given by a monotonic
partially ordered net system. By using the function ψ we can state eventual
consistency results for the global state, in the sense that when all knowledge
would be accumulated by some observer, the replacement ordering will ensure
consistency of the observation. Of course, the goal of using this ordering at run-
time is to ensure local consistency after each step while the system is running, so
that inconsistencies are unlikely to propagate and computational and networking
resources are not wasted.

Completeness as formulated in the following theorem means that our imple-
mentation-level model can capture each step of our workflow.

Theorem 3 (Completeness). Let m̄ ∈ R(N̄ ,≺N̄ ,m0). Then ψ(m̄) = m and
m

o−→o m′ (in N ) implies m̄
o−→o m̄′ (in N̄ ) for some m̄′ with ψ(m̄′) = m′.

The following result shows that the implementation-level model is sound.
Each of its steps corresponds to a step in the workflow, possibly after rolling
back (i.e., eliminating) some redundant occurrences.

Theorem 4 (Soundness). Let m̄ ∈ R(N̄ ,≺N̄ ,m0). Then we have (1) m̄
o−→o

m̄′ (in N̄ ) implies ψ(m̄) ∗←−o ◦ o−→o ψ(m̄′) (in N ) or ψ(m̄) = ψ(m̄′), and (2)
m̄ −→r m̄′ (in N̄ ) implies ψ(m̄) = ψ(m̄′).

Theorems 4 and 3 can be composed with Lemma 2 to see that every mul-
tiround workflow system can be equipped with provenance information and by
taking the monotonic closure executed in a distributed fashion while preserv-
ing the behavior of the original workflow specification. Usually, the workflow
specification already uses a notion of time, but by an additional composition
with Lemma 1 it is also possible to first add timestamps if the original workflow
specification is untimed.

The following theorem is a concise summary of our results in terms of reach-
able markings:

Theorem 5. ψ(R(N̄ ,≺N̄ ,m0)) = R(N ,m0).

We have implemented a distributed execution engine on top of our NCPS
framework [18] that allows the user to specify the multiround workflow system
and synthesizes a partially ordered net system under the hood. It also allows the
specification of the timing distributions of transitions to allow for randomized
delays that reduce the likelihood of conflicts (in fact, it is traded against speed).

Redundancy and diversity as they occur in biological systems are key features
of fractionated systems. For example, randomized scheduling of transition occur-
rences allows us to reduce the likelihood of inconsistencies without coordination
overhead by exploiting relative timing. Hence, asynchronous distributed opera-
tion, which is often considered as a challenge, is turned into an advantage. FCPS
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can be designed with a suitable degree of redundancy, but we cannot generally
assume that each logical function can be executed by any hardware/device, at
any node/location, or by any agent/person. Hence, some transitions may have
additional constraints that could be captured as part of their conditions.

Given that a higher-level model is automatically mapped into a lower-level
model that can be directly implemented, our approach is a first step toward
model-based design for fractionated systems. The high-level workflow model has
a well-defined semantics and can be analyzed or verified using many existing Petri
net tools or through a mapping into other formalisms such as rewriting logic [35],
which is implemented in the Maude system. In this way, it is possible to perform
structural analysis, reachability and deadlock analysis, and more generally model
checking of temporal logic properties at a high level of abstraction.

3 Related Work

The adequate modeling of distributed systems, ranging from information pro-
cessing systems to workflow in organizations and most notably physical pro-
cesses, has always been a primary concern for C. A. Petri. One thread of his
research was to axiomatize certain classes of Petri nets [30] and to study their
causal structure [22], because not all instances correspond to physical phenom-
ena or adequate models of reality, or might simply not be implementable. To
lift the level of abstraction, various kinds of high-level nets have been proposed,
including colored nets [17] and algebraic nets [31], which can be seen as compact
notations for classical Petri nets. Because of their expressiveness, the proper use
of Petri nets for the modeling of distributed algorithms remains an important
concern; see, e.g., [31]. In addition, various extensions have been studied, which
cannot be directly reduced to the classical Petri net model by means of homo-
morphisms. For instance, the need to model shared resources and nondestructive
access — e.g., for applications in delay-tolerant designs (e.g., asynchronous cir-
cuits) — has led to the study of Petri nets with test/read arcs (e.g., [40]), which
have also been studied under the name contextual nets in [26]. Petri nets and
such extensions are also closely related to linear logic and rewriting logic (e.g.,
[15,35]). Not surprisingly, Petri nets with read arcs have been found to be impor-
tant in the modeling of biological systems [38], which are real-world examples
of highly distributed and fractionated systems. Monotonic and partially ordered
net systems, as introduced in this paper, can be seen as a very fundamental
attempt to tame the expressiveness of Petri nets. They can only use read arcs
to access tokens and allow tokens to be replaced by means of a partial order.
The key idea is to give up the concept of a resource as an atomic object with
the rationale that a fully distributed (in fact, fractionated) implementation must
always be possible for a large well-defined class of models.

Petri nets have been used to support the model-based design of embed-
ded software (see, e.g., [32] for an approach utilizing free-choice nets to model
dataflow). Furthermore, various approaches to the distributed execution of Petri
nets have been developed including [3,6,12,20] but all of them use a more or less
fine-grained partitioning of the net, in contrast to our fractionated approach that
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relies on an inherently distributed model that does not require any partitioning.
In FCPS, each computing resource can (in the absence of other constraints)
execute any transition in an opportunistic and optimistic fashion.

Undirected causality, concurrency, and conflict relations were studied by
C.A. Petri in various unpublished lectures as symmetric relational structures
(X, li, co, al), and the consistent orientation of causality was investigated in [22].
The conflict relation has also been studied in the context of event structures
[41], which are partial orders equipped with a symmetric conflict relation. In
this paper, we combine causality and conflict relations into a single consistent
ordering by embedding provenance information (also referred to as lineage) in
each token to capture its causality cone. Enriching systems with provenance can
be seen as a form of distributed reflection, because it allows runtime awareness
about the computational process, which in our case is exploited to resolve incon-
sistencies in a fractionated implementation. Systems for maintaining distributed
provenance for other purposes are emerging [8], and the early work [13] uses a
bounded tree structure as a representation, similar to our causality cones.

4 Conclusion and Future Work

The trend toward model-based design has been a primary driver for executable
models, but most work is currently concerned with synchronous systems or sys-
tems that can be viewed as such by means of a suitable transformation. This
paper investigates the other end of the spectrum — namely, loosely coupled
asynchronous systems, and a possible direction for model-based design of frac-
tionated software and more generally FCPS. The idea is that the correct and
timely functioning of the system becomes a statistical property if sufficiently
many networked resources are available to overcome failures and other deficien-
cies in the environment.

We introduced a subclass of nets that can be executed in a fully fractionated
fashion by means of a partially ordered net model that, unlike traditional mod-
els, does not rely on the atomicity of tokens and a corresponding transactional
semantics. All proofs, some additional results, and our application to the dis-
tributed control of UAV swarms can be found in the full version of this paper [33].
The most interesting research question is how far can this class be generalized
while maintaining these key results. We conjecture that the multiround structure
and the free-choice assumptions can be relaxed. It might be possible to cover an
even-larger class by relaxing the key theorems. It is also clear that only a subclass
of fractionated systems based on the partially ordered knowledge-sharing model
can be captured in a Petri net style model, which makes the generalization of
our ideas to other well-known formalisms, such as classical logics, linear logic,
term rewriting, or process algebra, a natural long-term goal. A purely logical
approach to distributed control for a different class of NCPS in [19,34] can be
an alternative. Studying the precise relationship and possible integration of these
approaches would be another interesting direction.

Our framework already supports different forms of probabilistic analysis,
which can be applied to fractionated systems before system deployment. To
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improve verifiability of systems, more work is needed on the theoretical side
to develop new runtime verification methods such as those proposed in [37],
because fractionated systems are typically incrementally deployed, are highly
reconfigurable, and operate in a broad range of different environments.

On the practical side, a more efficient implementation and a quantitative eval-
uation of performance are important next steps. To test our theory in an experi-
mental real-world deployment with distributed-control applications such as those
described in the appendix, we are currently building an NCPS testbed consisting
of micro-UAVs. Specifically, we are extending inexpensive quadricopters (Parrot
AR.Drones) running an on-board Linux system (running low-level flight control
software) with additional hardware and sensing capabilities, such as an addi-
tional on-board computer (Gumstix), a WiFi module, a digital compass, and a
GPS module. The additional on-board computer will enable us to run high-level
flight control software and the cyber-application framework with networking and
workflow execution capabilities.

Already there are many other applications that could benefit from frac-
tionated software, fractionated hardware, or more generally FCPS at a coarse-
grained level. Two particular areas of interest are robotic teams that operate in
microfactories and scientific satellite missions involving a large number of inex-
pensive pico-satellites (e.g., CubeSats), which can act as distributed sensors in
space. In the longer-term future, there might be potential to apply these ideas at
a more fine-grained level. Since today’s hardware designs are essentially networks
of subsystems (e.g., many-core architectures), it would be natural to ask if by
utilizing sufficient redundancy and diversity, a form of fractionated software can
perform useful computations on high-density chips that contain so many highly
unreliable components that failure becomes a normal part of every computation.
In this case, we would like to have a clear high-level specification of the compu-
tation (e.g., a workflow describing a multistage processing pipeline with many
branches), but the mapping and binding to the actual hardware must happen
at runtime without the need for explicit global coordination.

An open source prototype is available as part of our multi-platform cyber-
application framework at http://ncps.csl.sri.com.
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35. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting Logic as a Unifying Frame-
work for Petri Nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.)
APN 2001. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001)

36. Stehr, M.O., Talcott, C.: Planning and learning algorithms for routing in
disruption-tolerant networks. In: IEEE Military Communications Conf. (2008)

37. Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio,
A.: Fractionated software for networked cyber-physical systems: research directions
and long-term vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Mod-
eling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 110–143.
Springer, Heidelberg (2011)

38. Talcott, C., Dill, D.L.: Multiple representations of biological processes. Trans, Com-
putational Systems Biology (2006)

39. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
of Circuits, Systems, and Computers 8(1), 21–66 (1998)

40. Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with
read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 501–516. Springer, Heidelberg (1998)

41. Winskel, G.: Event structures. In: Advances in Petri Nets 1986, Part II on Petri
nets: Applications and Relationships to Other Models of Concurrency, pp. 325–392.
Springer (1987)

http://ncps.csl.sri.com/papers/cpsflows.pdf


On the Limit of Some Algorithmic Approach
to Circuit Lower Bounds

Osamu Watanabe(B)

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Tokyo 152-8552, Japan

watanabe@is.titech.ac.jp

Abstract. We propose a framework — generic algorithm framework —
for studying the limit of a certain algorithmic approach for showing cir-
cuit lower bounds. We show some illustrative examples for explaining the
motivation/justification of our framework while leaving one key techni-
cal and very challenging problem open. We hope that this framework
is useful for investigating the limit of algorithmic approaches to define
computationally hard problems.

1 Introduction

This is a paper on some question that I have been considering from time to
time since I published a paper [KW98]. It is about some important topic in
computational complexity theory, which is also important in general, I believe,
to understand the nature of computation. Unfortunately, though, the question
is not in the area of quantum computing nor parallel/distributed computing.
Furthermore, as we will see, I realized that solving this question leads to the res-
olution of the P �= NP conjecture! But we may consider this as some new insight
for the P �= NP conjecture, and a person like Prof. Gruska with challenging mind
would appreciate such very challenging open questions. I hope that this paper
is yet suitable for this celebrated book.

Now let me start the introduction as if I had solved the question ;-)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Showing a nonlinear circuit lower bound is one of the fundamental tasks in com-
putational complexity theory; it is also important in general for understanding
the nature of computation. Clearly, one can define a problem that is not solved
by, say, square-size circuit (or more precisely, by a family of n2-size circuits). An
important task is to show such a problem from those that we would like to solve.
For example, we want to know whether the 3SAT problem, one of the standard
NP-complete problems, has no square-size circuit, or more generally, we ask
whether there exists any NP problem with no square-size circuit. One possible
approach for showing such an NP problem is to design some NP-algorithm that
defines a problem that is “hard” and that has no square-size circuit. Here we
discuss the limit of some type of algorithmic approach.

Based on the idea of Shannon, one can show the existence of hard problem
that has no square-size circuits. This is a proof of the existence of hard problem.
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 394–405, 2014.
DOI: 10.1007/978-3-319-13350-8 29
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By “algorithmic approach” we mean here a way to define such a hard problem
by giving some algorithm specifying it. Since Shannon’s argument is not specific
to the model of computation, we intuitively assume that such an algorithm
does not need to use any property that is specific to the standard computation
model. For example, consider the standard circuit model where we are allowed
to use only ∧- ∨-, and ¬-gates. Then we cannot compute x ⊕ y by using less
than three ∧- or ∨-gates. We would not need to use properties of this type for
implementing Shannon’s argument algorithmically (if it is indeed possible). Here
we introduce the notion of “generic algorithm” in order to discuss this intuition
formally, and show the limit of an algorithmic approach of this type by showing
the impossibility of designing a generic, say, NP-algorithm to define a problem
with no square-size circuit.

Relativization [Betal75] is a framework for discussing whether a proof for
showing some property of computation uses properties of computation that are
not so specific to our usual/standard model of computation. Our generic algo-
rithm is regarded as one type of relativized computation model. In fact, it is
easy to show that any proof showing a circuit lower bound by giving a generic
algorithm is relativizable. But its converse is not true. That is, there may be
some relativizable proof for a circuit lower bound that does not seem to be
achieved by any generic algorithm. Here we claim that Kannan’s famous proof
for a non-fixed-poly-size circuit lower bound is one of its typical examples.

In his seminal paper [Kan82] Ravi Kannan proved1 the existence of a problem
in Σp

2∩Πp
2 that does not have n2-size circuits. Some years later, Köbler-Watanabe

pointed out [KW98] that the learning technique of Bshouty et al. [Betal96] can
be used to improve the Kannan’s result, showing such a hard problem in ZPPNP,
which has been improved further to S2 by [Cai01]. These techniques are relativiz-
able2. But we show that it is in a sense stronger than the algorithmic approach
by proving (well, not yet proved though) that it is impossible to define any generic
algorithm that gives the same result. We hope that this reveals the importance
of the argument of Kannan, which may be useful for proving some other lower
bounds.

Preliminaries

We use standard notions and notation in the computational complexity the-
ory except for using somewhat simpler notions for circuit complexity explained
below. By a “problem” we mean a recognition problem of a given set L ⊆ {0, 1}∗;
that is, the task for a given input x ∈ {0, 1}∗ is to determine whether it belongs
to L or not. Throughout this paper we assume that a circuit is a device com-
puting one bit output when some bit data is given to each of its input gates. As
1 In fact, his argument shows that, for any d > 0, there exists a problem in Σp

2 ∩ Πp
2

that has no family of nd-size circuits. But here for the simplicity, we use n2 as our
target circuit size lower bound.

2 And it has been shown, unfortunately, that one cannot improve this upper bound to,
e.g, PNP by any relativizable proof technique; see, e.g., an excellent extended survey
of Arronson [Aar06] for this and related results.



396 O. Watanabe et al.

usual, we consider this computation as a function mapping a binary string of
{0, 1}n to {0, 1}, where n is the number of input gates of the circuit. A circuit
family C = {cn}n≥1 is regarded as a computation device recognizing some set
L of strings if for each n ≥ 1, and for any x ∈ {0, 1}n, cn(x) = 1 if and only if
x ∈ L. We fix some standard way to encode circuits as binary strings of {0, 1}∗,
and we identify a circuit and its encoding, which is usually denoted by using
symbol c. By the size of a circuit c (denoted as |c|) we simply mean the length
of this binary string encoding c. The standard circuit size that is measured by
the number of gates would be smaller than our circuit size; but since the differ-
ence is within some fixed polynomial, we will ignore this difference for the sake
of simplicity. We may assume that |c| is larger than the number n of c’s input
gates. For any complexity bound s(n), we say that a set L has s(n)-size circuits
if it is recognized by a family C = {cn}n≥1 such that |cn| = s(n) holds for all
sufficiently large3 n. Now w.r.t. this complexity measure, we define complexity
class SIZE[s(n)] by

SIZE[s(n)] = {L |L has s(n)-size circuits }.

We use PSIZE to denote ∪d>0SIZE[nd], a class of problems with polynomial-size
circuits.

We assume some circuit evaluator/interpreter Intm,n, an algorithm that takes
a circuit c (encoded in {0, 1}m) and an input x (in {0, 1}n) and outputs c(x),
the output value of c on x. We may assume that Intm,n runs in O(m) steps.
For simplicity, we assume that Intm,n(c, x) is defined for all c ∈ {0, 1}m and
x ∈ {0, 1}n; that is, every string in {0, 1}m is regarded as a code of some circuit
for {0, 1}n.

We use the standard (length-wise) lexicographic order on {0, 1}∗, which will
be denoted by ≤lex. For our discussion, we sometimes express a set of strings
as a characteristic sequence. For any L ⊆ {0, 1}∗, let χL denote its charac-
teristic sequence, that is, an infinite 0, 1-sequence whose each ith bit indicates
the membership of lexicographically the ith string of {0, 1}∗ in L. For each
string x ∈ {0, 1}∗, the ith bit of χL corresponding to x will be sometimes
called the xth bit of χL. By χL[x] (and respectively, by χL[x : y]) we denote
the xth bit of χL (resp., the subsequence of χL from its xth to yth bits). For
example, by χL[0n : 1n], we mean the subsequence of χL corresponding to L=n

(def= L ∩ {0, 1}n).
In our discussion we will often consider, e.g., a Σp

2-algorithm, a Δp
3-algorithm,

etc. These are defined in terms of a polynomial-time deterministic/nondeter-
ministic Turing machine using some lower-level algorithm as a subroutine. For
example, a Δp

3-algorithm is a polynomial-time deterministic Turing machine
that uses some Σp

2-algorithm as a subroutine, where this Σp
2-algorithm is a

polynomial-time nondeterministic Turing machine using some polynomial-time
nondeterministic Turing machine as a subroutine. We will use a symbol D to
3 For simplifying our discussion, we measure the size of circuit exactly. On the other

hand, we allow to have some exceptions for small n.
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denote algorithms for decision problems, and for such an algorithm D, we denote
by L(D) the set of strings accepted by D.

2 A Typical Example

In [Kan82] Kannan proved the existence of a problem L in Σp
2 ∩ Πp

2 that does
not have nd-size circuits for any given constant d > 0. This is a typical example
for our discussion.

Theorem 1. (Kannan [Kan82]) For any constant d > 0, there exists a set in
Σp

2 ∩Πp
2 that does not have nd-size circuits; that is, we have Σp

2 ∩Πp
2 �⊆ SIZE[nd].

For our later explanation we give a proof outline of this theorem. Here, and
in the following discussion, just for simplicity, we will fix our target hardness to
n2- circuit-size; that is, our goal is to show a set (in a target complexity class)
that does not have a family of n2-size circuits. Hence, for the theorem, we show
the relation Σp

2 ∩ Πp
2 �⊆ SIZE[n2].

Proof. First we point out that one can construct a set L0 in Σp
4 (in fact, in Δp

3)
that is not in SIZE[n2] as stated in Lemma 1 below. Then for any standard NP-
complete set, say, SAT, consider two cases depending on the circuit complexity of
SAT. First consider the case where SAT has no polynomial-size circuits, that is,
SAT �∈ PSIZE. In this case, SAT itself is the desired set satisfying the theorem.

Next consider the case where SAT has some polynomial-size circuits. In this
case we can use the famous theorem of Karp and Lipton [KL82] proving that
the polynomial-time hierarchy PH def= ∪k≥1Σ

p
k collapses to Σp

2 ∩ Πp
2 from the

assumption that SAT ∈ PSIZE. Then clearly the above constructed set L0 is in
Σp

2 ∩ Πp
2 ; hence, L0 is our desired set. �

This proof has an interesting structure. It considers two cases depending on
the circuit complexity of SAT, and two different sets are used for each case as
a witness for Σp

2 ∩ Πp
2 �⊂ SIZE[n2]. That is, we used some additional knowledge

(namely, the circuit complexity of SAT) in order to give an algorithm specifying
a computationally hard problem such as L0. Is such an additional knowledge
necessary? Can we give an algorithmic way to define a hard problem in Σp

2 ∩Πp
2?

Here is the current upper bound where some algorithmic way is possible. (Though
this theorem and its proof have been known as a folklore, we state it here for
the sake of completeness and for our later explanation.)

Theorem 2. For any constant d > 0, we have some Σp
2-algorithm Dd such that

L(Dd) �∈ SIZE[nd].

The statement itself is immediate from Theorem 1 because the class Σp
2 has

a complete set and Σp
2 ∩ Πp

2 ⊆ Σp
2 ; hence, from Theorem 1, we have, e.g., Σp

2 �⊆
SIZE[n2], and then any Σp

2-algorithm recognizing any complete set in Σp
2 satisfies

the theorem. But here we give a direct way to design a Σp
2-algorithm recognizing

a hard set not in SIZE[n2]. We begin with the construction of L0 used in the
previous proof; see, e.g., [CW04] for this construction.
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Lemma 1. There is a Δp
3-algorithm recognizing L0 �∈ SIZE[n2].

Proof. Consider any n ≥ 1 and define L=n
0 . We define it in terms of its charac-

teristic subsequence χL0 [0
n : 1n] ∈ {0, 1}2n .

Let m = n2. Recall that each circuit with n input gates of size m is encoded
by a binary string of length m (exactly). Hence, there are at most 2m circuits of
this type. Thus, there must be some sequence in {0, 1}m+102

n−(m+1) that is not
consistent with any circuit of size ≤ m as a characteristic subsequence for the
domain {0, 1}n. We define χL0 [0

n : 1n] by the lexicographically the smallest one
among all such sequences. In order to identify it computationally, we introduce
some tools. First we define a predicate that checks whether a given circuit c
(encoded in {0, 1}≤m) is consistent with a given ω ∈ {0, 1}m+1, a “nontrivial
prefix” of sequences in {0, 1}m+102

n−(m+1).

consm,n(c, ω) ⇔ [ ∀i, 1 ≤ i ≤ m + 1 [ Int(c, zi) = ω[i] ]
]
,

where zi is the ith string in {0, 1}n by the lexicographic order. Note that the
predicate is O(m2)-time computable, which is polynomial-time in n. We then
define Hn and PreHn by

Hn =
{

ω ∈ {0, 1}m+1
∣∣ ∀c : |c| = m [¬consn,m(c, ω) ]

}
,

PreHn =
{

α ∈ {0, 1}∗ ∣∣ α is a prefix of some ω ∈ Hn

}
.

Then it is easy to see that ∪n≥1Hn is in coNP and that ∪n≥1PreHn is in Σp
2 .

Furthermore, the lexicographically the smallest one in Hn, that is, the nontrivial
prefix of χL0 [0

n : 1n], is computable in polynomial-time by using PreHn as an
oracle. Therefore, we have some Δp

3-algorithm that for a given x ∈ {0, 1}∗ (where
we may assume that x is one of the first m+1 strings of {0, 1}n for some n ≥ 1),
first computes the nontrivial prefix of χL0 [0

n : 1n], and then determines whether
x ∈ L0 by using this prefix. �

By using the predicate cons defined above, we introduce a predicate preC
and an algorithm AC that will be used in the following discussion. Let n be any
input length, and here again we use m = n2 for our target circuit size bound.
For any sequence ω ∈ {0, 1}m+1 and any c′, |c′| ≤ m, define preCn by

preCn((ω, c′)) ⇐⇒ ∃c : |c| = m [ consn,m(c, ω) ∧ c′ is a prefix of c ].

Here we assume some appropriate encoding for (ω, c′) in {0, 1}∗ so that |(ω, c′)| =
2m − 1 holds for all ω ∈ {0, 1}m+1 and c′ ∈ {0, 1}≤m. Precisely speaking, preCn

takes such encoding of (ω, c′) as an input. Note that ω has no n2-size circuit
(i.e., ω ∈ Hn) if and only if ¬preCn((ω, λ)) holds for the empty string λ. It
is also easy to show a polynomial-time algorithm that computes some n2-size
circuit c (if it exists) for a given ω by using preCn as a subroutine. We denote
it as AC. More specifically, by A

preCn

C (ω) we mean the output of the algorithm
computed on ω by using preCn as a subroutine; that is, A

preCn

C (ω) is some n2-
size circuit c of ω (if it exists). We assume that A

preCn

C (ω) = λ if ω has no n2-size
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circuit. We may generalize this notation to write, e.g., Af
C(ω) for denoting the

output of the algorithm by using a function f on {0, 1}2m−1 as a subroutine.
We also introduce a set PreC corresponding to preC. For any n, define PreCn

= {(ω, c′)|preC((ω, c′))}. Let PreC = ∪n≥1PreCn. Clearly PreC ∈ NP.

Proof of Theorem 2. We first give a rough structure of our desired hard set
L1 �∈ SIZE[n2]. For each n ≥ 1 such n = 2(n′)2 for some n′, L=n

1 is defined by

L=n
1 = 1PreCn′ ∪ (L′

0)
=n,

where (L′
0)

=n is either the empty set or L=n
0 , depending the hardness of PreCn.

Note that we may assume that (L′
0)

=n ⊆ 0{0, 1}n−1 because L=n
0 is defined by

only lexicographically the first m + 1 strings of {0, 1}n.
We give a Σp

2-algorithm D1 for L1 with which the L′
0 part is defined precisely.

Consider and fix any n such that n = 2(n′)2 holds for some n′, and we explain the
execution of D1 on inputs of length n. Let m = n2. First for any input x = 1x′

for some x′ ∈ {0, 1}n−1, D1 accepts x iff x′ ∈ PreCn′ ; clearly, this computation
is implemented as some Σp

2-algorithm.
Next consider any x ∈ 0{0, 1}n−1; in particular, we assume that x is one of

lexicographically the first m + 1 strings of {0, 1}n. We would like to accept x iff
x ∈ L=n

0 . On the other hand, we only know that L0 ∈ Δp
3 . Here we (tentatively)

assume that 1PreCn has a square-size circuit c∗ (and we can somehow obtain this
circuit); that is, we have some circuit that computes the predicate preCn. Recall
that the input string length of 1PreCn is 2m; hence, “square-size”means (2m)2-
size. With such a circuit we can recognize Hn in polynomial-time since ω ∈ Hn

iff ¬preCn((ω, λ)). Thus, by using this circuit, we can define a Δp
2-algorithm for

L=n
0 . We implement this idea as a two level quantified formula.

For a given circuit c for {0, 1}n, let fomg(c) denote c(z1)c(z2) · · · c(zm+1),
where z1, . . . , zm+1 are lexicographically the first m + 1 strings of {0, 1}n. Now
consider the following formula.

∃c∗ : |c∗| = (2m)2, ∃ω∗ : |ω∗| = m + 1
∀c : |c| = n2, ∀ω : |ω| = m + 1 ∧ ω < ω∗

(1) consm,n(Ac′
∗

C (fomg(c)), fomg(c)),
(2) ¬c∗(1(ω∗, λ)),
(3) c∗(1(ω, λ)), and
(4) ω∗[x] = 1 (i.e., the xth bit of ω∗ is 1).

We guess a circuit c∗ for 1PreCn of size (2m)2; since it is for deciding 1(ω, c′) ∈
1PreCn, we define a subroutine c′

∗ computing preCn by using c∗. The correctness
of c∗ is checked by (1); that is, c∗ is regarded correct if c′

∗ can be used as a
subroutine of AC to produce some n2-size circuit for any set that is indeed
defined by some n2-size circuit c. Assuming that c∗ passes the check (1) w.r.t.
all c, we determine the smallest partial characteristic sequence ω∗ of length m+1
defining a set ⊆ {0, 1}n with no n2-size circuit. First by (2), we check whether
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the set defined by ω∗ has no n2-size circuit. Then by (3), we confirm that all
smaller partial characteristic sequence ω has n2-sice circuits. Then finally we
determine whether a given input x should be accepted or not by using the xth
bit of the obtained partial characteristic sequence w∗. Our algorithm D1 test
whether x ∈ L1 following this formula; it is easy to see that this execution can
be implemented as a Σp

2-algorithm.
We show that L1 = L(M) indeed is not in SIZE[n2]. This clearly holds if

PreC �∈ SIZE[n2]. Suppose then PreC ∈ SIZE[n2]; that is, preCn has (2m − 1)2-
size circuit for all sufficiently large n. Then for sufficiently large n such that
n = 2(n′)2 for some n′, D on input x ∈ 0{0, 1}n−1 nondeterministically finds
such a circuit c∗ for 1PreCn to accepts x if and only if x ∈ L0. Therefore, we
have L(D1) �∈ SIZE[n2]. �

3 Our Framework

We introduce a framework for investigating a certain algorithmic approach for
defining computationally hard problems. Here we explain the framework focusing
on our target task, i.e., to define a hard problem that cannot be solved by square-
size circuits.

Our framework is natural; we abstract “circuit interpreter” and use it as a
“black box.” A (generalized) circuit interpreter is nothing but a family of total
functions {Im,n}m,n≥1, where each Im,n is a mapping from {0, 1}m × {0, 1}n

to {0, 1} and its value Im,n(c, x) is regarded as the output of circuit c (with n
input gates) encoded in {0, 1}m on input x ∈ {0, 1}n. Again we consider only
{In2,n}n≥1 for the case m = n2; since In2,n is total, any c ∈ {0, 1}n2

can be
regarded as a circuit for {0, 1}n. We say that a set L has a (family of) n2-size
circuits w.r.t. I if there exists {cn}n≥1 such that for almost all n ≥ 1, we have
(i) |cn| = n2, and (ii) ∀x ∈ {0, 1}n [ x ∈ L ⇔ cn(x) = 1 (i.e., In2,n(cn, x) = 1) ].
Then we define SIZE(I)[n2] by a family of sets with n2-size circuits w.r.t. I.

Now we define the notion of “generic algorithm” for defining hard problems
with no square-size circuit. For any complexity class C, consider C-algorithms,
algorithms corresponding to the class C; for example, Σp

2-algorithms for the class
Σp

2 . We extend such algorithms by allowing them to use a given circuit inter-
preter {In2,n}n≥1 as a black box; that is, algorithms can use interpreter func-
tions as subroutines and they can get the value of I(n′)2,n′(c′, x′) for any n′,
c′ ∈ {0, 1}(n′)2 , and x′ ∈ {0, 1}n′

during their computation by calling I(n′)2,n′ on
(c′, x′). In this paper we assume4 that the cost of one call of I(n′)2,n′ is n′. Intu-
itively, we require that the algorithm achieves some task and/or satisfies some
property w.r.t. any interpreter I. We call such an algorithm a generic algorithm
in this paper. A generic algorithm of type C is called a C(·)-algorithm.
4 Precisely speaking, we would have to assume that the cost is c0(n

′)2 for some con-
stant c0, which corresponds to the standard circuit interpreter. But since we are
discussing within the polynomial-time range, this difference does not seem so critical.
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For any generic algorithm A and for any circuit interpreter I we use A(I)

to denote the instantiated algorithm A that uses I as a circuit interpreter. For
example, for a given circuit interpreter I∗, by A(I∗)(x) we mean the execution of
A on input x using I∗. Also for any generic algorithm D for a decision problem,
by L(D(I∗)) we mean the set of strings accepted by the computation of D using
the interpreter I∗.

As a corollary to the proof of Lemma 1, we can show the following generic
algorithm.

Theorem 3. (Corollary to the proof of Lemma 1) There is a generic Δp,(·)
3 -

algorithm D satisfying

∀∞n
[
L(D(I))=n has no n2-size circuit

]
(1)

for any circuit interpreter I. (Here by “∀∞n”, we mean “all sufficiently large
n.”)

On the other hand, we conjecture that this type of hardness cannot be shown
by any generic Σp,(·)

2 -algorithm.

Conjecture 1. There is no generic Σp,(·)
2 -algorithm D that satisfies (1) for any

circuit interpreter I.

We have not had a proof for this conjecture yet. Nevertheless, we explain
some possible proof outline so that we can see what is the technical key for
completing this proof outline.

Consider any generic Σp,(·)
2 -algorithm D for a decision problem. Fix any suf-

ficiently large n, and let � = nd be a polynomial time bound for D, and let
m = n2. Let L = 2(m+1)�, M = 2m+n, and N = 2n. Our task is to define
I = {I(n′)2,n′}n′≥1 appropriately so that L(D(I))=n has some m-size circuit.
That is, we have some c0 ∈ {0, 1}m such that

∀x ∈ {0, 1}n
[
x ∈ L(D(I))=n ⇔ I(c0, x) = 1

]
(2)

holds. In other words, we need to define the values I(n′)2,n′(c′, x′) appropriately
to guarantee the existence of such c0. Without losing generality, we may fix
I(n′)2,n′(c′, x′) = 0 for all n′ �= n and focus on the values of Im,n(c, x) for all
c ∈ {0, 1}m and x ∈ {0, 1}n.

Consider any x ∈ {0, 1}n and the execution of D(I) on x. Since D is a Σp,(·)
2 -

algorithm that halts in � steps on x, we can express its computation by

D(I) accepts x ⇔ ∃u : |u| = �, ∀v : |v| = �
[
A(I)(x, u, v) = 1

]

⇔ ∃u : |u| = �, ∀v : |v| = �, ∀w = ((c1, x1, b1), . . . , (c�, x�, b�))

¬
⎡
⎣ A′(x, u, v, w) = 0 ∧

∧
1≤i≤�

Im,n(ci, xi) = bi

⎤
⎦ .
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Here A is some polynomial-time deterministic generic algorithm; we may assume
that A(x, u, v) calls Im,n exactly � times. For any w = ((c1, x1, b1), . . . , (c�, x�, b�)),
A′(x, u, v, w) simulates A by assuming that the first call of Im,n in the execution
of A(x, u, v) is (c1, x1) by which A gets b1 as an answer from Im,n, and so on
for all (c2, x2, b2), . . . , (c�, x�, b�). Here we explain the case when A′ yields 0 (i.e.,
reject). A′ first confirms w is correct in the sense that A in fact calls Im,n with
(c1, x1), . . . , (c�, x�) assuming that b1, . . . , b� are the answers from Im,n. Then it
yields output 0 if and only if this correctness of w is confirmed and A yields 0 by
this simulation. It is clear that the computation of x ∈ L(D(I)) is characterized
in this way. We note here that the number of nondet. branches corresponding to
“∃u” and “∀v,∀w” is respectively 2� and 2�+m� = 2(m+1)�; we will simply use
L = 2(m+1)� to bound both numbers.

Note that this last expression can be regarded as a depth three Boolean
formula Fx over M = 2m+n Boolean variables Xc′,x′ , for c′ ∈ {0, 1}m and
x′ ∈ {0, 1}n, where each Xc′,x′ corresponds to the value of Im,n(c′, x′). That
is, for any assignment a ∈ {0, 1}M , we have Fx(a) = 1 if and only if the above
expression holds by using the interpreter Im,n such that Im,n(c′, x′) = ac′,x′ , i.e.,
the value of a on the corresponding Boolean variable Xc′,x′ for each c′ and x′.
Furthermore, Fx has the following structure: it has one ∨-gate with ≤ L fan-in
as a top gate, at most L ∧-gates with ≤ L fan-in as the 2nd level gates, and at
most L2 ∨-gates with ≤ � fan-in as the 3rd level (bottom) gates. We have such
a Boolean formula Fx for each x ∈ {0, 1}n.

Now as our working hypothesis, suppose that we can fix all the values of
such Boolean formulas by some partial assignment that fixes the values of only
limited number of Boolean variables. More precisely, we consider the following
assumption.

Working Assumption. For a given size parameter n, let � = nd for some
constant d > 0 and let m = n2. Let L = 2(m+1)�, M = 2m+n, and N =
2n. Consider any set of N depth three formulas {F1, . . . , FN} over a set of M
Boolean variables such that each Fi consists of an ∨-gate with ≤ L fan-in as a
top gate, at most L ∧-gates with ≤ L fan-in as the 2nd level gates, and at most
L2 ∨-gates with ≤ � fan-in as the 3rd level (bottom) gates. Then there exists a
partial assignment α to Boolean variables that determines the value of all Fi’s
by fixing the values of less than 2m variables.

For defined N formulas {Fx}x∈{0,1}n , let us assume that there exists some
partial assignment α by assigning less than 2m variables. Fix values Im,n(c′, x′)
according to α for pairs of (c′, x′) corresponding to the variables that are assigned
values by α. Then there should be some c0 ∈ {0, 1}m for which the value of
Im,n(c0, x′) is not fixed for all x′ ∈ {0, 1}n by α. Because otherwise (that is,
if for any c′, the value of Im,n(c′, x′) is fixed at some x′), α fixes at least 2m

values, contradicting the condition of α. We then simply define the values of
Im,n(c0, x) so that Im,n(c0, x) = Fx(α) holds, which means that c0 can be used
as a circuit recognizing L(D(I))=n. That is, we have some I such that L(D(I))=n

has a n2-size circuit. This is the proof outline that we propose for Conjecture 1.
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Unfortunately, we have not yet obtained the proof for the Working Assump-
tion; in fact, it may be the case that this does not hold (see also the discussion
of Concluding Remarks). On the other hand, for formulas with a slightly simpler
structure, we can show the existence of “short” partial assignment. For example,
the following proposition shows the existence of such a “short” partial assign-
ment if the bottom fan-in is restricted to 1. That is, when F1, . . . , FN are depth
two formulas.

Proposition 1. For a given size parameter n, let � = nd for some constant
d > 0 and let m = n2. Let L = 2(m+1)�, M = 2m+n, and N = 2n. Consider any
set of N depth two formulas {F1, . . . , FN} over a set of M Boolean variables
such that each Fi consists of an ∨-gate with ≤ L fan-in as a top gate, and at
most L ∧-gates with ≤ L fan-in as the 2nd level gates. Then there exists a partial
assignment α to Boolean variables that determines the value of all Fi’s by fixing
the values of less than 2m/N variables.

Proof. Consider (initially) a set S of ∧-gates at the 2nd level of F1, . . . , FN ,
and let NS denote the number of elements of S. Note that NS ≤ N0

def= NL =
2n+(m+1)�. We say a gate in S is fat if it consists of more than M2−3n−1 literals.
Consider here a process of assigning a value to a variable (at each step) to falsify
(and hence remove from S) such fat gates until no fat gate exists or the value of
all Fi’s are fixed. During the process, if some formula Fi has a non-fat ∧-gate,
then we fix assignment to all its literals so that the gate is evaluated true, which
determines Fi = 1 (and allows us to remove all its ∧-gates from S). Note that
the total number of variables that are assigned a value in this way is at most
N · M2−3n−1 = 2m+n2−2n−1 (= 2m/2N).

Consider the situation that all ∧-gates in S are fat. Then there must be some
literal that appears more than NS ·2−3n−1 times. Thus, by fixing the value of such
a literal as 0 we can falsify at least (1−2−3n−1)NS gates of S. Thus, assignments
of this type are made at most 23n+1 loge N0 ≤ 23n+1(n + (m + 1)�) log2 e times,
which is much less than 2m/2N . Therefore, altogether the process stops fixing
all values of F1, . . . , FN by assigning at most 2m/N variables. �

Note that the proof of Theorem 2 should work for our generic algorithm
framework. That is, the Σp

2-algorithm D1 can be modified to D
(·)
1 that runs with

a given circuit interpreter I to define a hard set w.r.t. I. Does it contradict to
the above proof outline for Conjecture 1? In the above proof outline, we tried
to define Im,n so that L(D(I))=n indeed has a n2-size circuit for any Σp,(·)

2 -
algorithm D. This does not contradict to the algorithm D1. In fact, since any
L(D(I))=n has a n2-size circuit, 1PreCn′ (⊆ {0, 1}n) has a n2-size circuit for n′

such that n = 2(n′)2; hence, D
(I)
1 should define L(D(I)

1 )=n′
that has no (n′)2-size

circuit. That is, our choice of Im,n indeed leads to the existence of a hard set at
length n′. If we wanted to guarantee that any D including D1 defines a set with
(n′)-size circuit on {0, 1}n′

, we should have to define Im,n (= I(2(n′)2)2,2(n′)2)
appropriately so that 1PreCn′ does not have a (2(n′)2)2-size circuit w.r.t. Im,n.
In summary, while we conjecture that the a.e.-hardness cannot be achieve by any
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Σp,(·)
2 -algorithm, the i.e.-hardness is in fact shown as a corollary to the proof of

Theorem 2.

Theorem 4. (Corollary to the proof of Theorem 2) There is a generic Σp,(·)
2 -

algorithm D1 such that L(D(I)
1 ) �∈ SIZE(I)[n2] for any circuit interpreter I =

{In2,n}n≥1.

Aaronson [Aar06] introduced a notion of “black box” learning algorithm, an
algorithm that finds a relatively small circuit (for a target function f) by asking
queries on the values of f . We can use this algorithm for our generic algorithm.
Then from the following result, we can see that it is extremely difficult to resolve
Conjecture 1 because it implies P �= NP!

Theorem 5. (Theorem 11 of [Aar06])
If P = NP, then there exists a black box Δp

2-algorithm (more precisely, PNP
|| -

algorithm) solving the black box learning problem, which implies that there is a
Δp,(·)

2 -algorithm achieving (1) for any circuit interpreter I.

Now we look back the proof of Kannan. The key point for obtaining a hard
problem in Σp

2 ∩Πp
2 is to consider two cases depending on the condition whether

SAT has polynomial-size circuits or not. In our argument above, the set PreC
has the same role as SAT. In this case, we consider more specifically whether
PreC is in SIZE(I) or not. If not, we can simply use PreC, that is, an NP(I)-
algorithm recognizing PreC w.r.t. I. On the other hand, if PreC has some square-
size circuits, then we use the Σp,(I)

2 -algorithm that we designed for recognizing
L′
0. Since we assume that PreC has square-size circuits, L′

0 is indeed L0 and
this algorithm is also used to rejecting a string not in L0. That is, this is a
Σp,(I)

2 ∩ Πp,(I)
2 -algorithm for L0. It seems that using two different algorithms is

essential unless we have some algorithmic way to distinguish two cases. This
leads us to the following conjecture.

Conjecture 2. There is no generic Σp,(·)
2 ∩Πp,(·)

2 -algorithm D such that L(D(I)) �∈
SIZE(I)[n2] holds for any circuit interpreter I = {In2,n}n≥1. (Cf. There is a rela-
tivizable proof showing that SIZE(I)[n2] �⊂ Σp,(I)

2 ∩Πp,(I)
2 for any circuit interpreter

I = {In2,n}n≥1.)

Here again we can show that the same relation to the P �= NP conjecture;
solving this conjecture implies P �= NP.

4 Concluding Remarks

We propose some framework for discussing the limit of a certain algorithmic
approach to prove a nonlinear circuit size lower bound for classes below Σp

2 .
We explain a way to show some limit by using some working assumption. On
the other hand, it is shown that the solution of the conjecture implies P �= NP.
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Then one would feel fishy about the working assumption proposed above. It may
be possible this working assumption could be too strong to hold. But it should
be noted here that this assumption is for deriving one of the simplest way to
encode Σp,(·)

2 -computations on {0, 1}n so that they are decodable by some n2-
size circuit. Certainly there are many other ways to achieve this; see, e.g., the
one used in [CW04]. And I believe that one can think of some very sophisticated
coding in future, solving the P �= NP conjecture at the same time! Note that
designing such a coding method leads to the fundamental lower bound result.
This may be an interesting view point.
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1 Faculty of Informatics, Vienna University of Technology,
Favoritenstr. 9, 1040 Vienna, Austria

rudi@emcc.at
2 Institute of Mathematics of the Romanian Academy,

PO Box 1-764, 014700 Bucharest, Romania
curteadelaarges@gmail.com

Abstract. After a quick introduction to the area of membrane com-
puting (a branch of natural computing), recalling the basic notions of
cell-like and spiking neural P systems, we introduce the concept of
anti-matter in membrane computing. First we consider spiking neural
P systems with anti-spikes, and then we show the power of anti-matter
in cell-like P systems. As expected, the use of anti-matter objects and
especially of matter/anti-matter annihilation rules, turns out to be rather
powerful: computational completeness of P systems with anti-matter is
obtained immediately, even without using catalysts. Finally, some open
problems are formulated, too.

1 Introduction

First we give a brief introduction to membrane computing, a branch of natural
computing having widely developed during the more than fifteen years since
its initiation, see [19]. In some details we present a specific class of membrane
systems (usually called P systems) with motivation coming from the way neurons
interact, the spiking neural (in short, SN) P systems. In particular, we discuss
SN P systems with anti-spikes, and then we generalize this idea, considering
P systems of any type with anti-objects: for an object a, we say that ā is an
anti-object if an annihilation rule aā → λ is assumed to exist in all membranes,
which may either be an explicit rule or else act in an implicit way by removing
a pair a, ā in zero time. These annihilation rules turn out to be rather powerful,
as somehow expected if, for example, we look at the λ-rules as the only non-
context-free rules in the Geffert normal forms, e.g., see [22].

2 Elements of Membrane Computing

Membrane computing is a branch of natural computing, aiming to abstract com-
puting models from the structure and the functioning of living cells. The models
obtained in that way are called P systems. Single cells (leading to cell-like P sys-
tems) as well as communities of cells, like tissues or organs (leading to tissue-like
P systems), or neural cells (the associated models are called spiking neural P
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 409–420, 2014.
DOI: 10.1007/978-3-319-13350-8 30
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systems; these are one of the main topics in the present survey paper) have been
considered in the literature. Basically, a P system consists of an arrangement of
membranes (arranged in a hierarchical manner in the cell-like case and placed
in the nodes of an arbitrary graph in the tissue-like case), which determine com-
partments where multisets of objects are placed, together with evolution rules
inspired from biochemistry. Using these rules, the objects evolve, and these evo-
lutions of objects are considered as computations. A result is associated with
certain computations, hence, a computing device is obtained (working in the
generative, the accepting, or the computing mode).

This very general framework lead to a large number of specific classes of P
systems. Details can be found, for example, in [20] and [21]; recent information
is available at the membrane computing website [27].

As objects in a P system we may use multisets of symbols from a given (finite)
alphabet, strings, or more complex structures, such as graphs or d-dimensional
arrays. In the case of spiking neural P systems, only multisets over a single object
– the spike, an electrical impulse used by neurons to communicate with each other
– are used. The rules used in a P system are of various types: multiset rewrit-
ing rules (similar to chemical reactions), string processing rules, specific rules for
handling spikes, or rules directly inspired from biology, such as symport/antiport
rules (for moving coupled symbol objects through membranes, corresponding to
the functioning of selective protein channels in biology), or rules for handling
membranes (dividing or creating membranes, exocytosis, endocytosis, etc.). The
rules can be used sequentially or in parallel; the basic strategy in membrane com-
puting is to use the rules in the maximally parallel way (in each step, a maximal
multiset of rules is used in each compartment, in the multiset inclusion sense: no
rule can be added to a chosen multiset of rules such that the resulting multiset
of rules would still be applicable). Most of the investigations carried out in the
literature concern synchronized P systems, but also non-synchronized systems
were considered. In what concerns the ways to associate a result to a computa-
tion, there also are several possibilities: usually, only halting computations are
considered to be successful (those computations which reach a configuration of
the system where no rule can be applied any more). When dealing with multisets
(which is also the case when dealing with SN P systems), the natural result of a
computation is a number, but also strings can be associated in various ways.

The computing power of these devices is rather large: Turing computability
can be obtained by many classes of P systems. In the cases when an exponential
working space can be created during the computation in polynomial time, then,
by a time-space trade-off, polynomial, often even linear, solutions to computa-
tionally hard problems (typically, NP-complete problems, but sometimes even
PSPACE-problems) can be obtained.

Power and efficiency are computer science issues. Membrane computing
proved to be rather attractive as a modeling framework, too. The reader can
consult [3] and [4] in this respect. The most numerous and advanced applica-
tions are those in biology and biomedicine, but there are also well-investigated
applications in approximate optimization, computer graphics, robot control, etc.
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In this paper, we formally introduce only the basic model of membrane com-
puting, the cell-like P systems with symbol objects (which will also be considered
in Section 5 below). Hierarchical membrane structures (which can be described
by a tree) are represented by strings of labeled matching parentheses, and the
multisets over an alphabet V are represented by strings over V ; a string and
all its permutations represent the same multiset. For an alphabet V , by V ∗

we denote the set of all strings over V , including the empty string. The length
of x ∈ V ∗ is denoted by |x|; the empty string, of length zero, is denoted by λ.
Basic knowledge in formal language theory as well as some familiarity with basic
elements of membrane computing is assumed in what follows.

A cell-like P system, of degree m, with catalysts, is a construct

Π = (O,C, μ,w1, . . . , wm, R1, . . . , Rm, iin, iout)

where O is the alphabet of objects, C ⊂ O is the set of catalysts, μ is the mem-
brane structure (with m membranes), w1, . . . , wm are strings over O representing
multisets of objects present in the m regions of μ at the beginning of a computa-
tion, R1, . . . , Rm are finite sets of evolution rules associated with the regions of
μ, and iin and iout are the labels of the input and output regions, respectively;
if the input or output is taken from the environment, this is indicated by taking
the label 0 for iin or iout, respectively.

The evolution rules are multiset rewriting rules of the form u → v, where u
is a non-empty multiset over O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and
tari ∈ {here, out, in}, i.e., the objects bi in v have associated a target indication
tari. Using such a rule means “consuming” the objects of u and “producing”
the objects from b1, . . . , bk of v, where the target indication here means that
the objects remain in the same region where the rule is applied, out means that
they are sent out of the respective membrane (in this way, objects can also be
sent to the environment, when the rule is applied in the skin region), and in
means that they are sent to one of the immediately inner membranes, chosen in
a non-deterministic way; in general, the target indication here is omitted.

A rule u → v with |u| = 1 is said to be non-cooperative. A rule of the form
ca → cv, where c ∈ C, a ∈ O \ C, and the objects in v are from O \ C, too,
is called catalytic; C is the set of catalysts, objects which are not changed by
evolution rules. Arbitrary rules are called cooperative.

If the system is used in the generative mode, then iin is omitted, and if the
system is used in the accepting mode, then iout is omitted. The number m of
membranes in μ is called the degree of Π.

In the generative case, the set of numbers computed by Π (in the maximally
parallel non-deterministic mode) is denoted by N(Π). The family of all sets
N(Π) computed by systems Π of degree at most m ≥ 1 and using rules of form
α is denoted by NOPm(α); if there is no bound on the degree of the systems,
then the subscript m is replaced by ∗. According to the previous classification,
α ∈ {ncoo, cat, coo}, with the obvious meaning.

It is known that NOP1(coo) = NOP1(cat2) = NRE, where cat2 indicates
the fact that only two catalysts are used with catalytic rules together with non-
cooperative rules, and NRE is the family of recursively enumerable (Turing
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computable) sets of natural numbers. In turn, NOP∗(ncoo) = NREG, where
NREG is the family of length sets of regular languages (i.e., the family of semi-
linear sets of natural numbers).

3 Spiking Neural P Systems

Spiking neural P systems, see [8], have a completely different architecture and
functioning, as they are not based on the standard eukaryotic cell, but on brain
biology. Here we only consider the neurons cooperating by means of spikes,
electrical impulses of identical forms, moving along axons. Spiking neurons are
also investigated in the current neural computing area (e.g., see [11]). We do not
define SN P systems in a formal way, instead we only describe such a system
and then also introduce anti-spikes, and we will give a simple example.

In short, an SN P system consists of a set of neurons (represented by mem-
branes) placed in the nodes of a directed graph (the arcs are called synapses)
and containing spikes, denoted by copies of the symbol a. Thus, the architec-
ture is that of a tissue-like P system, with only one kind of objects present in
the cells. The objects evolve by means of spiking rules, which are of the form
(E/ac → a; d), where E is a regular expression over a and c, d are natural num-
bers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that
ak ∈ L(E), k ≥ c, can consume c spikes and produce one spike, after a delay of
d steps. This spike is sent to all neurons to which a synapse exists outgoing from
the neuron where the rule was applied. There also are forgetting rules, of the
form as → λ, with the meaning that s ≥ 1 spikes are removed, provided that the
neuron contains exactly s spikes. The system works in a synchronized manner,
i.e., in each time unit, every neuron which can use a rule should do that, but the
work of the system is sequential in each neuron: only (at most) one rule is used
in each neuron. One of the neurons is considered to be the output one, and its
spikes are also sent to the environment. The moments of time when a spike is
emitted by the output neuron are marked with 1, the other moments are marked
with 0. This binary sequence is called the spike train of the system; it might be
infinite if the computation does not stop.

The result of a computation is encoded in the distance between the first two
spikes sent to the environment by the (output neuron of the) system. Other ways
to associate a result with a computation were considered, for instance, the total
number of spikes emitted by the output neuron during a halting computation, or
else the number of spikes contained in the output neuron at the end of a halting
computation; the spike train itself can be taken as the result of the computation,
and in this way the system generates a binary sequence (a finite string, if the
computation halts).

There are several classes of SN P systems, using various combinations of
ingredients – rules of restricted forms, for example, without a delay (i.e., with
all rules E/ac → a; d having d = 0, a case when the rules are written in the
simplified form E/ac → a), without forgetting rules, or extended rules, e.g.,
producing more than one spike, as well as asynchronous SN P systems (no clock
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is considered, any neuron may use a rule or not), with exhaustive use of rules
(when enabled, a rule is used as many times as made possible by the spikes
present in a neuron), with certain further conditions imposed on the halting
configuration, with the same sets of rules in each neuron (the system then is
called homogeneous), containing further biological ingredients, such as astrocytes,
with inhibitory synapses, etc. For most SN P systems with unbounded neurons
(arbitrarily many spikes can be found in each of them), characterizations of
Turing computable sets of natural numbers are obtained. When the neurons are
bounded, usually characterizations of the family NREG are obtained. SN P
systems can also be used in the accepting and in the computing modes.

4 SN P Systems with Anti-Spikes

A natural feature added to an SN P system is that of anti-spikes, proposed in
[17] and then investigated in a series of papers. For the reader’s convenience, the
bibliography below contains many titles of papers dealing with this subject, yet
not all of them are explicitly referred to in the present suvey paper.

The main point of the new notion is to interpret the “anti-spikes” as “anti-
matter”, hence to assume that when a piece of matter meets the corresponding
piece of anti-matter, they will annihilate each other. This corresponds to the
existence of rules of the form aā → λ, which are used immediately when a and
ā are present in the same neuron.

Thus, in an SN P system with anti-spikes, the spiking rules and the forgetting
rules are of the forms E/bc → b′c and bc → λ where E is a regular expression
over a or over ā, while b, b′ ∈ {a, ā} and c ≥ 1. If L(E) = bc, then we write the
first rule as bc → b′. As usual, a delay can be added to the spiking rules, too.

Note that we have four categories of rules, identified by (b, b′) ∈
{(a, a), (a, ā), (ā, a), (ā, ā)}. Of course, it is of interest to restrict the type of
rules, and this is the case in most papers found in the literature.

The rules are used as usual in SN P systems, with the additional fact that
a and ā “cannot stay together”, they instantaneously annihilate each other: if
in a neuron there are either objects a or objects ā, and further objects of either
type (maybe both) arrive from other neurons, such that we end with ar and ās

inside, then immediately the rule of the form aā → λ is applied in the maximal
manner, so that either the multiset of spikes ar−s – if r ≥ s – or of anti-spikes
ās−r – if s ≥ r – remains.

In the definition from [17], the mutual annihilation of spikes and anti-spikes
takes no time, so that the neurons always contain either only spikes or only
anti-spikes. That is why, for instance, the regular expressions of the spiking
rules are defined either over a or over ā, but not over both symbols. Moreover,
annihilation has priority over spiking and forgetting rules. Later, also the case
when the annihilation takes one time unit was considered, with explicitely using
the rule aā → λ, eventually even without priority over other rules.

The computations and the results of computations are defined in the same
way as for usual SN P systems. In most investigations, the restriction was
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considered that the output neuron produces only spikes, not also anti-spikes.
The anti-spikes are sometimes used to encode, in a natural way, negative num-
bers.

By N2(Π) we denote the set of numbers generated by an SN P system (with
anti-spikes) as the distance between the first two spikes sent to the environment
by the output neuron, and by N2SaNPm the families of all sets N2(Π), computed
by SN P systems with anti-spikes and at most m ≥ 1 neurons. When the number
of neurons is not bounded, we replace the subscript m by ∗.

We illustrate the previous definition by an example recalled from [17]; it is,
in fact, part of the proof showing computational completeness of SN P systems
with anti-spikes (i.e., N2SaNP∗ = NRE), namely, the module which simulates
a SUB-instruction of a register machine. We present the module in the graphical
form, a usual way of presentation in membrane computing: neurons are given
as ovals containing spiking and forgetting rules, and in addition indicating the
initial spikes and anti-spikes; the synapses are represented by arrows linking the
neurons.

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
	

�
�

�
�

�
�

�
�



�

�


�
�

�
�

�
�

�
�

�
�

�
�

�
���

�
���

����
��

�
��

�
�
�
��	

����������









�

�
�
�
��

���������

�
�

���

� �

li a → a

l
(1)
i

a → a
l
(2)
i

a → ā
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a → a
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(4)
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a → a
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i

a → λ

a2 → a

a3 → λ

l
(6)
i

a → λ

a2 → λ

a3 → a

lj lk

Fig. 1. Module SUB, simulating li : (SUB(r), lj , lk)

Figure 1 shows the module associated with an instruction li : (SUB(r), lj , lk).
The module is activated when neuron σli receives a spike. Initially, no neuron
contains any spike, except for the neuron σl0 associated with l0, the initial label
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of the register machine; each label has such an associated neuron, and also each
register r has associated a neuron σr. Neuron σli sends a spike to neurons σ

l
(1)
i

and σ
l
(2)
i

. In the next step, neuron σ
l
(2)
i

sends an anti-spike to neuron σr, which
corresponds to register r; at the same time, σ

l
(1)
i

sends a spike to the neurons
σ
l
(3)
i

and σ
l
(4)
i

. If register r is non-empty, that is, neuron σr contains at least
one a, then ā removes one occurrence of a, which corresponds to subtracting
one from register r, and no rule is applied in σr. This means that σ

l
(5)
i

and σ
l
(6)
i

receive only two spikes, from σ
l
(3)
i

and σ
l
(4)
i

, hence, σlj is activated, whereas σlk

is not activated. If register r is empty, then the rule ā → a is used in σr, hence,
σ
l
(5)
i

and σ
l
(6)
i

receive three spikes, and this leads to the activation of σlk , which
is the correct continuation in this case.

The reader is referred to [17] for further details concerning the functioning
of this module, and in general, for the proof of the universality of SN P systems
with anti-spikes.

We cannot present all the developments concerning SN P systems with anti-
spikes; most of the titles of the related articles listed at the end of the paper are
self-explanatory. We only mention an important research direction in membrane
computing in general and in the SN P systems area in particular, reminding
the “old times” of investigations in formal language theory (see a survey in [7])
concerning the descriptional complexity of grammars and languages: considering
size parameters for P systems. Because most of the classes of P systems are
universal, for those classes the basic question is to find the smallest number of
membranes in order to get the equivalence with Turing machines. For subuni-
versal classes, an important question of interest is whether or not the number of
membranes induces an infinite hierarchy.

These questions are of interest for SN P systems, too, with or without anti-
spikes. Further questions appear, resembling those mentioned in [7]: How many
rules per neuron are needed? How many different types of neurons are needed?
Can rules of a specific type be avoided?

Another question of interest is to find universal systems for a given class of
devices with a small descriptional complexity; like in the case of universal Turing
machines, we search for fixed P systems which can simulate any P system from
a given class, as soon as the code of a particular system is introduced as an
input to the universal one. For SN P systems, the “race” was started in [18],
with several subsequent papers succeeding to decrease the complexity of the
universal systems constructed there.

According to our knowledge, for SN P systems with anti-spikes the best
results currently available are those from [24]: a universal system is constructed,
for the case of computing functions, having 75 neurons and 125 rules, with 6
types of neurons and 8 types of rules. A related result is reported in [12], where
a similar system is described, containing 91 neurons, each of them containing
only one rule, of one of the simple forms a → a and a → ā. This once again
proves the power of annihilation rules.
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5 P Systems with Anti-Matter

The idea of considering “anti-matter” objects and their corresponding
matter/anti-matter annihilation rules can be extended to all types of P systems.
We briefly discuss it here for cell-like P systems.

Formally, a cell-like P system (of degree m, with catalysts) with anti-matter
is a construct

Π = (O,AO, C, μ, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where all the components are as in a usual P system and AO is a set of symbols
ā, for a ∈ O \ C (obviously, we do not allow the catalysts to have anti-objects).
In each compartment of μ we assume the matter/anti-matter annihilation rules
aā → λ to be present, for all ā ∈ AO. As in SN P systems we might assume
that these rules are used “automatically”, in zero time, as soon as they can be
applied. Yet in the following we assume the annihilation rules to be used as
other rules, yet eventually with weak priority (e.g., see [2]) over all other rules,
i.e., other rules then also may be applied if objects cannot be bound by some
annihilation rule any more. In both cases, the rules in the sets Ri, 1 ≤ i ≤ m, of
the form u → v have to obey to the condition that neither u nor v may contain
both the symbol a and its anti-matter object ā for any ā ∈ AO.

The functioning of such a system is as usual in membrane computing, keeping
in mind that the annihilation rules have to be added to all sets of rules Ri,
1 ≤ i ≤ m. By NOaPm(ncoo, pri) we denote the family of sets of numbers
generated by P systems with at most m membranes, using anti-objects, with
non-cooperative rules. The parameter pri indicates the use of annihilation rules
with priority over the other rules; it is omitted if we do not use this implicit
priority. If in addition to non-cooperative rules we also allow catalytic rules and
at most k catalysts, ncoo is replaced by catk in these notations.

Although the annihilation rules are expected to add a lot of computational
power, it is still surprising that together with giving the annihilation rules pri-
ority over all other rules, non-cooperative rules are already sufficient to obtain
computational completeness, whereas without this priority condition, in addition
we need catalytic rules with one catalyst; in both cases rather simple proofs can
be obtained, whereas without these matter/anti-matter annihilation rules, non-
cooperative rules together with catalytic rules with two catalysts are needed, see
the rather complex proof given in [5].

Theorem 1. NOaP1(ncoo, pri) = NRE.

Proof. Let M = (3,H, l0, lh, I) (number of registers, labels of instructions, initial
label, halt label, set if instructions) be a register machine with three registers;
register 1 is the output register containing the result at the end of a successful
computation, it is never decremented; registers 2 and 3 are empty at the begin
and at the end of a successful computation. We now construct the (generating,
hence, we omit iin) P system with anti-matter

Π = (O,AO, [ ]1, l0, R1, 1)
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with only one membrane and the following components:

O = {l, l′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below.
The contents of register r is represented by the number of copies of the

object ar, r ∈ {1, 2, 3}, in the system. The P system starts with the object l0
representing the initial label of M .

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we take the rules

li → ljar and
li → lkar,

which obviously simulate the given ADD-instruction.
For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we consider the three

rules
li → lj ār,
li → l′iār,
l′i → #lk.

We also add the rules ār → #̄, r ∈ {2, 3}, the annihilation rules arār → λ and
##̄ → λ, as well as the trap rules # → ## and #̄ → ##.

When simulating a SUB-instruction li : (SUB(r), lj , lk), we have to make
a non-deterministic choice between the decrement case and the zero-test. The
decrement case of the SUB-instruction li : (SUB(r), lj , lk) is simulated by the rule
li → lj ār and the subsequent application of the annihilation rule arār → λ. If
this rule is not applicable, i.e., if register r is empty, the rule ār → #̄ will be
applied instead, which in absence of its counterpart # immediately evolves to
## and thus leads to an infinite computation.

The zero-test is initiated with the rule li → l′iār. If register r is empty, then
ār cannot be annihilated and therefore evolves to #̄, which then annihilates
the symbol # generated by the rule l′i → #lk; if register r is not empty, ār is
annihilated by some copy of ar, hence, the trap symbol # generated by the rule
l′i → #lk does not find its anti-matter #̄ and therefore evolves to ##, thus
leading to an infinite computation. Here we find the crucial situation where we
need the constraint that annihilation rules have priority over all other rules, i.e.,
ār → #̄ cannot be applied if the annihilation rule arār → λ can be applied.

The rule lh → λ is applied at the end of a successful simulation of the instruc-
tions of the register machine M , and the computation halts if no trap symbol #
is present; the number of symbols a1 in the skin membrane then represents the
result of this halting computation. In conclusion, we obtain N(M) = N(Π). 	


Returning to descriptional complexity issues, it is worth noting that the P
system constructed in the preceding proof has only one membrane and only three
matter/anti-matter annihilation rules.

If we look for small universal systems, we may start with the universal reg-
ister machine U32 from [9], with 8 registers which are decremented during the
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computations, and apply the construction given in the preceding proof, thus
needing 8 + 1 matter/anti-matter annihilation rules. An optimized P system
with matter/anti-matter annihilation rules having priority over all other rules
can be found in [1].

Without this priority of the annihilation rules, the construction is not work-
ing, hence, a characterization of the class NOaP1(ncoo) remains as an open
problem. Yet in addition using catalytic rules with one catalyst again allows us
to obtain computational completeness:

Theorem 2. NOaP1(cat1) = NRE.

Proof. We again consider a register machine M = (3,H, l0, lh, I) as in the pre-
vious proof, and construct the (generating) catalytic P system

Π = (O,AO, [ ]1, {c}, cl0, R1, 0)

with only one membrane (containing the single catalyst c) and the following
components:

O = {l, l′, l′′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#, d},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below. The output symbols a1 now
are sent to the environment, in order not to have to count the catalyst in the
skin membrane; for that purpose, we simply use the rule a1 → (a1, out).

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we again take the
rules

li → ljar and
li → lkar.

For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we now consider the
following four rules:

li → lj ār,
li → l′′i dār,
l′′i → l′i,
l′i → #lk.

We also add the annihilation rules arār → λ and ##̄ → λ, the trap rules
# → ## and #̄ → ##, d → ##, as well as the catalytic rules cd → c and
cār → c#̄, r ∈ {2, 3}.

The decrement case of the SUB-instruction li : (SUB(r), lj , lk) is simulated
as in the previous proof, by using the rule li → lj ār and then applying the
annihilation rule arār → λ. If this rule is not applicable, i.e., if register r is empty,
the rule ār → #̄ will be applied instead, which in absence of its counterpart #
immediately evolves to ## and thus leads to an infinite computation.

The zero-test now is initiated with the rule li → l′′i dār thus introducing the
(dummy) symbol d which keeps the catalyst busy for one step, where the catalytic
rule cd → c has to be applied in order to avoid the application of the trap rule
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d → ##. If register r is empty, then ār cannot be annihilated and therefore evolves
to #̄ in the third step by the application of the catalytic rule cār → c#̄, which
symbol #̄ then annihilates the symbol # generated by the rule l′i → #lk in the
same step; if register r is not empty, ār is annihilated by some copy of ar already
in the first step, hence, the trap symbol # generated by the rule l′i → #lk does
not find its anti-matter #̄ and therefore evolves to ##, thus leading to an infinite
computation. Altough the annihilation rule arār → λ now does not have priority
over the catalytic rule cār → c#̄, maximal parallelism enforces arār → λ to be
applied, if possible, already in the first step instead of cār → c#̄, as in a successful
derivation the catalyst c first has to eliminate the dummy symbol d.

The rule lh → λ is applied at the end of a successful simulation of the
instructions of the register machine M , and the computation halts if no trap
symbol # is present; the number of symbols a1 sent out to the environment
during the computation represents the result of this halting computation. In
sum, we obtain N(M) = N(Π). 	


6 Concluding Remarks

In this paper we have briefly recalled some basic ideas of membrane computing,
and especially have given some information about spiking neural P systems,
including spiking neural P systems with anti-spikes. We have also extended this
idea of anti-objects (“anti-matter”) to cell-like P systems with symbol objects,
which can be proved to be computationally complete when the annihilation
rules are applied with having priority over the remaining non-cooperative rules;
without this priority, in addition catalytic rules with a single catalyst are needed
to obtain computational completeness.

Several problems are still open in this area of P systems with anti-matter.
Some of them have been formulated in this paper; the interested reader can find
many more in the literature, for instance, in [6].

Acknowledgments. Thanks are due to an anonymous referee for a careful reading
of the paper.
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Abstract. Amorphous computers are systems that derive their compu-
tational capability from the operation of vast numbers of simple, identi-
cal, randomly distributed and locally communicating units. The wireless
communication ability and the memory capacity of the computational
units is severely restricted due to their minimal size. Moreover, the units
originally have no identifiers and can only use simple asynchronous com-
munication protocols that cannot guarantee a reliable message deliv-
ery. In this work we concentrate on a so-called robust flying amorphous
computer whose units are in a constant motion. The units are mod-
elled by miniature RAMs communicating via radio. For this model we
design a distributed probabilistic communication protocol and an algo-
rithm enabling a simulation of a RAM in finite time. Our model is robust
in the sense that if one or several computational units fail the computer
will autonomously restart and reconfigure itself in order to initiate the
computation anew. The underlying algorithms make use of a number of
original ideas having no counterpart in the classical theory of distributed
computing.

1 Introduction

Amorphous computing systems are a relatively recent phenomenon. Apart from
the sci-fi literature where various forms of such systems have been envisaged in
diverse futuristic scenarios (cf. an interstellar intelligent mobile cloud in [2], or
a mentally controlled flying dust serving as an extension of human senses and
as an interface to a very distant offspring of today’s Internet in [8]), amorphous
computing systems as a subject of scientific research emerged by the end of the
1990s. For an overview of the respective developments, cf. [13], [15].

The common issue in all visions and research projects was the fact that all
of them considered a vast amount of very simple autonomous devices. These
devices were randomly placed in a target area — there was no regular topology
assumed as, e.g., in the case of cellular automata. Another joint idea was that,
using local communication, the respective devices should self–organize in order
to perform a coordinated action none of the elements alone was able to realize.

This research was partially supported by RVO:67985807 and the GA ČR grant No.
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The prevailing focus of research mentioned above was on engineering or tech-
nological aspects of amorphous computing systems, almost completely ignoring
theoretical questions related to computational power and efficiency of such sys-
tems. Obviously, without knowing their theoretical limits, one cannot have a
complete picture of the potential abilities and limitations of such systems. This
was the starting point of the project of the present authors devoted to stud-
ies of theoretical issues in amorphous computing initiated in 2004. Since that
time various models of amorphous systems have been investigated, roughly in
the order of their increased generality (cf. [9], [10], [11], [12], [13], [14], [15]). In
all cases computational universality of the underlying systems has been proved.
This points to the versatility of such systems in various computational or robotic
applications.

The present paper makes a further step towards more general and computa-
tionally more efficient amorphous systems: we will consider amorphous systems
with randomly moving mobile processors communicating via a radio. The proces-
sors take a form of miniature finite-memory RAMs. The transition from systems
with a static communication pattern to systems with an unpredictably chang-
ing communication pattern brings a number of new problems that have been
encountered formerly neither in the classical theory of distributed systems nor
in the previous models of amorphous systems. Namely, the situation is further
complicated by a continuously changing communication topology in which new
communication paths keep emerging while the old ones keep vanishing unpre-
dictably. Moreover, some processors may become temporarily unaccessible. This
may lead to problems with data consistency maintenance over the entire system
at times when the nodes become again accessible. These changes call for novel
approaches in the design of communicating protocol resulting in unusual time
complexity estimation of the simulation algorithm: without additional assump-
tions on the nature of processor movements one cannot come with a better than
a finite upper bound on the time complexity of this algorithm.

In its class of minimalist amorphous systems communicating over radio, our
model of a flying amorphous computer presents the first model for which the
computational universality in the efficient sense has been proven.

In our previous papers we have always assumed ideal conditions when all
nodes are always available and faultless during a computation, in this paper we
will specifically focus on the question how can an amorphous computer be made
more robust, resilient to the events that can cause loss or damage of some of its
nodes.

The structure of the paper is as follows. In Section 2 the definition of the fly-
ing amorphous computer is given along with the scenario of its use. In Section 3
we sketch the main ideas of simulation of a RAM computer under simplify-
ing assumptions that will enable a clear exposition of the main design ideas.
In Section 4 we give the details of a so-called setup phase in which the amor-
phous computer is preprocessed in order to be able to perform a simulation.
In Section 5 the communication protocol is described enabling a probabilistic
communication among the nearest processors. The additional features necessary
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for obtaining required robustness are described in Section 6. Finally, conclusions
are in Section 7.

A preliminary short version of this paper dealing only with the case of
faultless processors appeared in [6]. A full, extended version of this paper has
appeared as a technical report in [7].

2 Flying Amorphous Computer

Definition 1. A flying amorphous computer is a septuple C = [N,A, P, r, s, T, v].
The model has the following properties:

General properties:
(i) The computer consists of N nodes (or processors); there is one distin-

guished node called the base node.
(ii) Each node is modelled as a point in a square target area A. The initial

positions of nodes in A are determined by a process P assigning a random initial
position independently to each node.

Node properties:
(iii) Each node is a RAM with a fixed number of memory registers of size s

bits; initially, all registers contain zeros. There is a predefined subset of so-called
input and output registers used in message transmission among a node’s neigh-
bors. There also is a single register providing an s-bit random number between
0 and 1 upon request.

(iv) In each node there is a control unit operating over all registers. The
control unit operates according to a fixed program.

(v) The nodes are not synchronized but they operate at nearly the same clock
rate. An operation taking time t on the fastest node takes at most (1 + εt)t on
the slowest node, for a fixed εt > 0.

Movement:
(vi) Initially, a non-zero random direction vector u is assigned to each node.

Thereafter, each node moves with a constant speed v in the direction of its vector
u. A node does not know and cannot influence its direction vector.

(vii) If a node is about to leave the target area A, then on the boundary of A
its direction vector is mirrored as a billiard ball bounced off a wall.

Communication properties:
(viii) Each node is equipped with a radio transceiver by which it communicates

with other nodes via a shared channel up to the distance r (called communication
radius); all nodes at distance r are called the neighbors of the node at hand.

(ix) Transmission of each message takes time T .
(x) A node receives message m if and only if exactly one of its neighbors sends

m during transmission time T. While sending, a node cannot receive a message.
If two or more neighbors of a node are simultaneously sending a message, a
collision occurs and the node receives no message.

(xi) A node cannot detect a collision, the radio receiver cannot distinguish
the case when multiple neighbors send messages from the case when no neighbor
sends a message.



424 L. Petr̊u and J. Wiedermann

The target area of a squared shape has been chosen for simplicity of the
definition and of simulations.

The communication properties of a node are among the weakest possible
and are enforced by requirements of the maximal technological simplicity of the
underlying receiver.

3 Simulation

In order to solve a computational task a flying amorphous computer operates
according to the following scenario in which we assume the existence of an exter-
nal operator. The scenario consists of three subsequent phases.

First, the operator deploys the nodes in the target area and powers on the
computer so that the nodes start moving and operating.

In the second phase, the operator performs a setup of the computer. During
the setup addresses are assigned to all nodes that are unique with high probabil-
ity and the input data of the computational task are loaded into the computer.

In the final phase, after the setup is finished, the computer’s own computation
can start. At that time, the operator may disconnect from the computer and the
computer carries out the computation autonomously. From time to time, the
operator may reconnect to check the outcome of the computation.

The universality of our model will be proved by showing that it can simulate
any computation of a bounded RAM machine. We will be using the standard
model of a unit cost RAM, cf. [1] with registers of roughly the same size s as the
registers of our flying computer (cf. Theorem 1). The program, the input and
the output data are also stored in these registers.

For the sake of clarity of our exposition, we first sketch the main steps of the
simulation algorithm postponing the details how the previous two phases of the
computational scenario are implemented. The simplifying assumptions are: first,
we will suppose that uniques addresses have been assigned to all nodes in the
setup phase and second, there is a broadcast algorithm guaranteeing a message
delivery between two concrete nodes in a finite time.

In order to start a simulation of a RAM with M registers we will require that
the simulating flying amorphous computer also has at least M registers loaded
with the same initial data as the RAM. This will happen in the setup phase to
be described in Section 4.

Definition 2. We say that a flying amorphous computer A is set up with respect
to a RAM R with initial data i1, i2, . . . , iM in its registers if A contains at least
M nodes with unique addresses in the range 1 to M and if the j-th node of A
contains the same data ij as the register j in R does, for j = 1, 2, . . . ,M.

The nodes of a flying amorphous computer communicate using broadcast
from one node to its neighbors within their communication radius thus forming
a multi-hop communication network. A broadcast operation is started at one
node and delivers the message, possibly using many hops, to all nodes in a
connected communication component. However, as the nodes are moving, not



A Robust Universal Flying Amorphous Computer 425

all nodes may be reachable (not even through several intermediary nodes due to
the fact that they moved away too far) from the originating node at times when
needed. In order to exclude such an improbable situation we will assume that
this situation can never occur for an infinitely long time, that is, the nodes are
moving in such a way that it will never happen that two nodes remain forever
in different connected components of the underlying communication graph.

Definition 3. Let A be a flying amorphous computer, B a broadcasting protocol,
and n1, n2 two nodes of A. Assume that in A message m is being repeatedly
broadcast from node n1. We say that flying amorphous computer A with protocol
B is lively flying if after a finite amount of broadcast attempts message m is
eventually delivered to n2.

Note that in a lively flying computer the similar process of message delivery
from n1 to n2 works also in the reverse direction, from n2 to n1. This can be
used for a message delivery acknowledging.

We are ready to show how the simulation proceeds.

Theorem 1. Let R be a RAM with M registers of size b, M + 1 ≤ N. Let
I = i1, i2, . . . iM be the input data in R’s registers. Let C be a computation on
R taking time T1 on input data I. Let A be a lively flying amorphous computer
with broadcasting protocol B and register size s = O(log2 M + log2 N + b) bits.
Let the nodes of A except of the base node have memory capacity of at least
O(log2 M + log2 N + b) bits. Let A be set up with initial configuration I. Then
A can simulate computation C in a finite time.

Proof sketch: The amorphous computer will simulate the computation of R by
simulating the individual instructions one after the other. During the simulation,
the base node controls the computation and plays the role of the control unit of
R. The values of registers of R are stored in other nodes of A : the j-th register
is stored in the j-th node of A.

For simulating an instruction the base node must be able to perform two
kinds of operations. First, it must be able to simulate reading from and writing
to memory registers what it does by communicating with the other nodes using
broadcasts. Second, it has to simulate arithmetic operations, branching, and
choosing of the next instruction to be processed. These operations are encoded
in the internal fixed program of the base node. Each register to which a new
value is written must send an acknowledgment to the base node.

Obviously, a broadcast to some node may fail due to a temporary inacces-
sibility of that node. If, within a certain a priori given time interval, the base
node does not receive an acknowledgement from the target node, the broad-
cast is repeated until an acknowledgement is received. Thanks to the amorphous
computer being lively flying, at most a finite number of retries is required. It
follows that one instruction can be simulated in finite time and, therefore, any
finite computation can be simulated in finite time, too.

Further details of the simulation process and its complexity analysis are
described in the extended version of this paper in [7]. �
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4 Setup

Now we describe how the amorphous computer should be formed initially in
order to be able to perform a simulation described in the previous section.

The setup has two phases: address assignment and input data loading.

Address assignment. The purpose of the address assignment process is to allo-
cate unique addresses to the nodes of amorphous computer which are initially
indistinguishable, all having zeroed memory. This process is controlled by the
base node using the following program (on the left side):

for a = 1 to M | procedure PickSingleNode()
PickSingleNode() | broadcast(Initialize, 0)
AssignAddress(a, h) | for i = 1 to h

| broadcast(RandomGroup, i)
| broadcast(WhichGroup?)
| g = receive()
I broadcast(Choose, g)

To pick a single node, the base node makes use of the algorithm on the
right side of the previous picture. In this algorithm, procedure broadcast()
represents a call of the broadcast protocol of the flying amorphous computer,
which is described in the next section. In general, a broadcast can fail, but for
the moment let us assume that the broadcast messages are always successfully
delivered to all nodes. Namely, under this assumption it is easier to describe
procedure PickSingleNode which makes use of the well-known method of prob-
abilistic halving the set of candidates until a single one remains. The general case
counting on the possibility of broadcast procedure failure is substantially more
complicated since it must also handle the cases of temporary inaccessibility of
some nodes and the problems of data consistency maintenance after the return
of such nodes. This more involved case will be described later.

Procedure PickSingleNode initializes the nodes via the Initialize mes-
sage. After receiving this message, all nodes not yet having an allocated address
participate in the node selection procedure. In this procedure, the base node
performs h of so-called splitting rounds. During each round, all nodes receiving
RandomGroup message (for the time being, forget about the second parameter
which starts to be important in the case of failed broadcasts to be described
later) randomly choose number 0 or 1 assigning themselves in this way to either
of the two groups, 0 or 1. Then, all such nodes broadcast the number g of the
group they selected. From the received answers the base node randomly picks
one group number and reports it back to all nodes. In the forthcoming round
participate only nodes that are in the selected group. It is expected that by each
such split the number of candidate nodes is roughly halved. If value of h is suf-
ficiently high this algorithm selects exactly one node with high probability. The
procedure AssignAddress(a, h) then assigns address a to a node that went
through all of h rounds.
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Theorem 2. Let there be N nodes participating in the PickSingleNode() algo-
rithm. The probability of selecting more than one node after h splitting rounds
is at most N/2h.

Proof. Consider the cardinality of the set of nodes after the last splitting round.
After each round for each node the probability that another node remained in the
same group is 1/2. The probability that after h rounds a node still participates
in the algorithm is 1/2h; therefore for all N nodes the probability that the
cardinality of the remaining set is greater than 1 is at most N/2h. �

Now we return to a rather peculiar general case in which broadcasts in the
address assignment phase can fail.

Recall that our goal—selection of exactly one node with high probability—is
now complicated by the fact that there is no guarantee that a message sent to
a certain subset of nodes will always reach all its members. However, for the
correctness of the PickSingleNode algorithm it has been necessary that a single
node is picked from among the nodes that have passed all splitting rounds.

For instance, if a node participating in a splitting round would not receive
the RandomGroup message, then answering the subsequent WhichGroup? message
that the node might later obtain would spoil the correctness of the entire algo-
rithm. Namely, such a node could only provide an old value of g, not the current
one. Thus, should a node miss a message, which is important for the correctness
of selection process and which is addressed also to that node, the node must no
longer participate in the algorithm.

In order to enable for a node to detect whether it has missed some round we
make use of parameter i in RandomGroup message that was not important in the
previous faultless communication case. This parameter stores the number of the
current splitting round. A node is allowed to participate in round i + 1 if and
only if the node has already passed successfully round i, i.e., if and only if it had
first received message (RandomGroup,i) followed by (Choose,g), with g being
the same as was the number of the node’s chosen splitting group. In order to
implement this idea it is enough for each node to remember the number of the
last round in which it has participated. Then, upon receiving a (RandomGroup,i)
message a node can discover whether it has missed the previous message (i.e.,
the previous round) or not.

Upon detecting a missed message, the node at hand acts as if it was in the
group that was not chosen, i.e., it stops participating in the next rounds of the
splitting algorithm. This puts us on the safe side as far as the probability of
selecting more than one node is concerned.

However, a premature termination of a node’s further participation in the
selection process could in an extreme case lead to a situation when all nodes stop
participating eventually. In such a case we end up with an empty set from which
no node can be selected. In order to recognize this situation we introduce a mech-
anism of message acknowledgements. After performing a step in a computation,
a node expected to perform such a step sends an acknowledging OK message back
to the base node. The base node proceeds to the next step if and only if it hears
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at least one acknowledgement. Otherwise it repeats the current step. Technically,
instead of performing, for example, a simple broadcast(RandomGroup,i), the
base node makes use of the following code (on the left side):

repeat | repeat
broadcast(RandomGroup,i) | broadcast(Write, a, x)
m = receive() | m = receive()

until m not empty | until m not empty

With these changes, the probability of selecting exactly one node holds as in
Theorem 2.

Input data loading. After the addresses were assigned to nodes but before starting
the RAM simulation the input data must be stored into the respective nodes.
The base node stores data x to a node with address a using the algorithm from
the right side of the previous picture. Upon receiving the respective message, a
node with address a stores x in its memory and responds with the OK message.

5 Communication

As mentioned in Section 2, from technological reasons the communication capa-
bilities of the individual nodes are as simple as possible. This, however, compli-
cates the communication issues. For instance, when a node transmits a message,
it cannot determine if there are none, one, or several other nodes around which
might hear its message. Neither can a node determine if the sent message was
successfully received by an other node. In order to transmit a message from one
node to other nodes with high probability even under these restrictive conditions
the nodes must obey a communication protocol that coordinates the actions of
the nodes.

The nodes communicate using broadcasting and each message reaches all
other nodes using a so-called flooding which works as follows. A message orig-
inates in one node and is subsequently transmitted to (potentially) all other
nodes of the computer. The algorithm is relatively simple. The first node sends
a message which is received by the node’s immediate neighbors. These neighbors
again send the message so that their neighbors receive it, etc. Note that when-
ever several nodes share a common neighbor, they should not send the message
simultaneously since in such a case the message could not be delivered due to the
collisions (cf. item x and xi in Definition 1). In order to minimize the probability
of collisions each node sends its message randomly with a fixed probability p and
repeatedly during a certain time slot.

The key idea here is that the processors should broadcast a message spo-
radically in order to prevent message delivery (i.e., broadcast) conflicts, and
repeatedly in order to maximize the likelihood of a successful delivery. The anal-
ysis of such a protocol reveals that the above mentioned probability p of sending
should depend inversely on the expected number of a node’s neighbors at that
time and should be repeated more times in order to handle the case of more
processors in a node’s neighborhood (cf. [11]).
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The resulting protocol used by the nodes (the base node included) is described
by the following code.

procedure broadcast(m,k)
while k <= B

if random() < p then
send(m,k+1)
wait(2T)

k := k+2

In the above procedure, calling send(m,k+1) causes one-shot sending of both
message m and parameter k+1 from the node at hand. Parameter k of broadcast
procedure keeps track of how many time slots have elapsed, in multiples of T,
until the current moment. For the node where the message originates the starting
value of k is 0. For other nodes, the current value of k is derived from the
corresponding value in the lastly received message. The value of k is incremented
by 2 on each time slot. Hencefore, all nodes stop broadcasting when k reaches
the value of B which is a global constant known in advance to all nodes of the
whole flying amorphous computer. Termination of broadcasting will happen at
about the same time; small variations due to different clock speeds are possible.

In fact, the value of B influences how far from the originating node the
message will spread. With too small a value, the message will not reach the nodes
that are far away from the originating node; with too large a value, the excessive
message sending after all nodes have already received the message just wastes
time and energy.

We assume that the external operator is able to choose a reasonable value
of constant B. This value should take into account the number of nodes and
their density in the target area. Asymptotically, the value rises as O(

√
N). In

other words, it rises as the distance between the opposite corners of the target
area if measured in units of r (the communication radius). The operator can find
a reasonable value either by using a computer simulation of the system or by
trying out several values on the actual flying amorphous computer.

Theorem 3. Let all nodes of an amorphous computer be in a quiet state (i.e.
not sending anything). Let X be a node that starts broadcasting a message using
procedure broadcast at time t. Then, at time t+BT (1+εT ) all nodes are again
in a quiet state.

Proof. The first node runs procedure broadcast with parameter k initially equal
to 0. Each time through the loop the node waits for time 2T and the value of k
is increased by 2. So, at most after time BT (1 + εT ) the node stops re-sending
the message at hand. Transmitting a message takes time T . Therefore, whenever
a neighbor node receives a message, value k +1 corresponds to the running time
of the procedure up to now, and hence also this node ends transmitting after
at most (B − k − 1)(1 + εT ) time steps. By induction, all nodes terminate their
sending activities in time BT (1 + εT ). �
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Note that in order to start a new broadcast it is necessary for all nodes
to wait until the current broadcast ends. Namely, should a broadcast of two
different messages have started simultaneously, then we cannot be sure which of
the two messages would be delivered first. Therefore, the end of a current call
to broadcast must be known to all nodes.

In order to guarantee the condition of non-concurrent broadcasts after the
base node has started broadcasting a message, all other nodes must wait for time
BεT to be sure that in total time B(1 + εT ) has passed. Only thereafter a node
can broadcast another message.

6 Making the Simulation Robust

In practice we can expect that amorphous computers will be deployed outdoors
under unfriendly conditions. Clearly, under such a circumstance some nodes of
the computer could be destroyed or moved out of reach of other nodes. In such
a situation the model just described would not work correctly Therefore we will
introduce an improved model which is more robust to accidental damage or
removal of nodes.

We will consider two types of damages that can happen. The first type occurs
when a node is destroyed or moved away from other nodes and stays forever
inaccessible. The second type happens when a node is away for a long time but
eventually returns back to the vicinity of other nodes. We would like our model
to work under both types of errors.

We expect that during a computation accidental damages only occur with
vanishing probability. Nevertheless, if a limited scope damage occurs affecting
but a few nodes the robust computer must be able to restart and finish its
computation, albeit with some time overhead.

In order to make our amorphous computer robust we must store additional
data in its nodes and modify its communication protocol accordingly. Moreover,
for restarting the computer a new protocol will be used.

The previous model of amorphous computer made use of such a number of
nodes that was sufficient for accommodating the contents of all RAM registers.
In order for a robust computer to cope with the fact that some of its nodes could
be damaged we will need extra nodes. These spare nodes will be ready to replace
the previously damaged nodes. We will also have to back-up the initial data (in
another nodes) so that a computation can be restarted even in the case when
the original input data are lost.

To that end we will make use of four types of nodes. Bellow we list for each
type the data contained in a node of that type:

Memory nodes: they keep the data during a computation. They contain the
address of the respective RAM register, data stored in the RAM register,
version number and leader version number (the latter two parameters will
be described in the sequel).
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Base node: this is a single node that controls the computation. It contains a
pointer to the address of the current instruction, an accumulator, version
number and a leader version number.

Spare nodes which can substitute any damaged node. They contain merely a
leader version number plus empty space needed for storing information in
the nodes to be replaced.

Backup nodes keeping copies of the RAM registers containing the initial data.

The first three types of nodes containing the leader version numbers are called
potential leaders. The leader version numbers are unique and in the initializa-
tion phase are assigned once for all times to all nodes except of backup nodes.
Each of these nodes may become the base node in case when a computation
is restarted (see the subsequent explanation). The version number is the leader
version number of the current base node.

Each backup node will keep its function permanently for the whole exis-
tence of the amorphous computer. Other nodes can switch their type during the
lifetime of the amorphous computer.

The overall structure of the operation of a robust amorphous computer will be
the same as in the previous non-robust model. First, we perform the initialization
step, then the computation, and finally we obtain the result and halt. That is
in the case when no error occurs. On the other hand, if there was an error, the
computation is stopped, the computer is reorganized and the computation is
restarted from its very beginning, this time hopefully running till the very end.

Initialization
At the beginning, all nodes start as spare nodes with their memory zeroed.

Then an external operator connects to the computer. First, the operator
starts preparing the data redundancy. Backup nodes are allocated exploiting
the address assignment protocol. This protocol assigns addresses 1 to M to M
different spare nodes that will then become backup nodes. The input data are
stored into these nodes. Then the operator again assigns addresses 1 to M and
sets another set of M nodes. This is repeated so that finally there are u different
nodes for each address mirroring the same data. The purpose of this is to store
the input data in several copies so that the input data can be retrieved even if
some of the respective nodes get damaged during a computation.

Next, using the address assignment protocol, the operator assigns to each of
the remaining spare nodes a different leader version number (starting from 1).
Finally, the operator sends a message to a node with leader version number 1
instructing it to start the computation. This node becomes the current base
node.

Computation
Generally, the computation runs in a similar way as in the previous non-robust
model, with a few exceptions. We describe the differences in a communication
protocol and the new protocols for starting and restarting a computation.

Adjustments to the communication protocol
When the base node tries to read data from some memory node and the
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reading fails several times (i.e., no acknowledgments are received) it may mean
that the target node is damaged or inaccessible. Therefore, a limit on the number
of reading attempts to a node must be set (and similarly for writing attempts).
This limit should not be too small, because sometimes the communication with
a node may fail due to random network conditions. Such conditions can only
be temporary, possibly improving in a short time. A good strategy is to set this
limit to a much larger value than is the average time of a temporary communi-
cation network disconnection. Such a value will depend on various properties of
the amorphous computer (like number of nodes, average number of neighbors,
movement speed) and can be determined in a simulation of the underlying model
under corresponding conditions.

Let’s assume we have chosen this limit to be �. When the base node has made
� unsuccessful attempts to read data from a node, it will stop operation of all
available nodes. This is because nothing else can be done since the computer does
not have all the necessary data to complete the current computation. Similarly,
if it is the base node that is damaged or removed, the computation will have
also to be terminated since without the base node no other node can start any
communication by itself. The necessity of restarting a computation is detected
by the following mechanism.

All potential leaders monitor each sending activity in the amorphous com-
puter. If time of length 2�BT (corresponding to � broadcasts) has elapsed since
a node lastly had heard any message or a message from the base node, , this
particular node deduces that the amorphous computer cannot continue in its cur-
rent setting any longer and needs to be restarted. To that end the node starts
sending message (leader v), where v is the node’s leader version number. The
semantics of this message is “the computation lead by the current base node has
possibly failed and I am proposing myself to become a new base node with version
number v”. By this, the new leader selection process starts.

Leader election
It is necessary that exactly one leader (acting as the base node in the near future)
is selected (with high probability). For this a simple protocol is used whose idea
is to choose from among all potential leaders the one with the lowest version
number. Such a unique leader always exists thanks to the fact that all of them
possess different version numbers.

Therefore, while sending (leader v) message all potential leaders also listen
messages sent by other potential leaders. If a potential leader receives a message
from another leader with a lower leader version number, this leader stops propos-
ing itself as a leader and stops sending its message while a node with the lower
number keeps on sending its message. All other nodes that are not potential
leaders forward the message as in normal broadcasting procedure and also these
nodes stop sending the old message when they receive a message with a lower
leader version number.

This leader announcing process proceeds for time 2�BT. After that time
there is a very small probability that more than one node assumes its being a
leader. Thus, after time 2�BT the last remaining active potential leader node



A Robust Universal Flying Amorphous Computer 433

makes itself the new leader and starts working according to the steps described
below. Note that with a high probability this is a node with the lowest version
number from among all “living” nodes. This node will also set internal flag in its
memory recording that it is not a potential leader for any later leader selection.
This is because a node can become a leader only once since otherwise, when a
leader with a lower version number would be selected in some future restart,
“forgotten” nodes with the same version number might participate again in the
current computation and lead it astray.

Computation start/restart
The leader first discards all the memory nodes remaining from a previous com-
putation. It does so by broadcasting a message (discard) to all nodes. Note
that it is not guaranteed that all memory nodes will receive this message, but
at least a large part of them will. The memory nodes that receive the discard
message change their type to spare node.

Then, the leader has to select new nodes that will act as memory nodes for the
new computation. The leader uses the address assignment algorithm, assigning
addresses 1 to N to N different spare nodes. Each spare node after receiving an
address changes its type to memory node. The address has two components—a
version number and an actual address. The version number is the unique leader
version number and the leader will broadcast it as a part of all its messages.

Next, the leader copies initial data to the first M memory nodes from the
backup nodes (we assume M ≤ N). It does it by first sending (read,backup:a)
message to read contents of memory with address a from a backup node. If at
least one backup node for that address is available, the read will be successfull.
The leader than sends (write,v:a,x) message (where v is the version number
component of the address) to assign the value x to memory node with address a.

Finally, the leader becomes the base node. The new base node runs the
computation in a standard way. If no error occurs the computation finishes by
executing the HALT instruction.

Note that it is necessary to send in each message the version number because
it is possible that some memory node from some past computation has not
received the inactivating message. Such a node must not participate in a later
computation. This is achieved thanks to the fact that nodes only respond to
messages having the same version as the node’s own address.

Theorem 4. If there are enough backup nodes to recover the initial configura-
tion and there are enough spare nodes for running the computation and from this
time on no node is damaged then the computer eventually finishes its computa-
tion successfully.

Robustness Analysis
The computation of the amorphous computer is influenced by randomly occuring
damaging events. As a result the number of restarts that happen during the
computation is a random variable. A computation can either finish successfully
with some probability or fail. This leads to a geometric distribution for the
number of restarts.
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Theorem 5. Let T1 be the average time needed by the amorphous computer to
finish a computation in case that no damaging event occurs. Let pe be the proba-
bility that a damaging event occurs within time T1. Assume the damaging events
are independent. The expected number of restarts of the amorphous computer is
1/(1 − pe) − 1.

Proof sketch: The number of restarts follows a geometric distribution (number
of unsuccessful trials before the first success) with success rate 1 − pe. �

This shows that the amorphous computer can finish only if the probability
of failures is low, which is exactly the case in which we wanted the computer
to work. Obviously, in case of permanently occurring damages this model of
amorphous computer would never finish its computation.

Now let’s look at how well the backup nodes can survive the damaging events.

Theorem 6. Let the backup nodes of an amorphous computer contain M
addresses, each in u copies. Let each node be damaged during time T1 with prob-
ability pd. The probability that for address a after time hT1 the input data cannot
be recovered is p1 = (1−(1−pd)h)u. The probability that data from some address
cannot be recovered is 1 − (1 − p1)M .

Proof sketch: After time hT1 the probability that a node is not damaged is
pnode = (1 − pd)h. The probability that a complete set of u nodes is damaged is
p1 = (1−pnode)u. Of the M sets the probability that none of them is completely
damaged is (1−p1)M . The complement, i.e. the probability that at least one set
is completely damaged, is 1 − (1 − p1)M . �

7 Conclusion

A unique property of every amorphous computer is that its nodes are all struc-
turally identical. Therefore, in case when some nodes are damaged or become
inaccessible other nodes can take over the function of the damaged ones. This
enables the whole computer to carry out a computation robustly in a possibly
harsh working environment. We have shown how to implement these features —
mainly how to store data redundantly in the backup nodes and how to perform a
reset of the computer after a vital node was damaged. As a result, we have shown
a computational universality and robustness of our model of flying amorphous
computer.

An unusual feature of our simulation algorithm is its time complexity estima-
tion in terms of finite time. This is due to the unpredictability of the communica-
tion paths formation. Interestingly, real computer simulations have revealed that
within a flying amorphous computer a message is delivered to all nodes quite
efficiently, in a wide range of velocities of node movements and parameters of
the broadcast algorithm [4]. The simulations have also confirmed intuition that
there is a tradeoff between the amount of nodes’ mixing in a flying amorphous
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computer and the frequency of message repetition sendings in the broadcast
protocol.

More research is needed in order to better understand and exploit the respec-
tive phenomena. In particular, a more efficient algorithm for recovering from a
failed computation might exist. Our results present but the first steps in this
direction.
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Abstract. In reaction systems introduced by Ehrenfeucht and Rozen-
berg the number of resources is essential when various questions con-
cerning generative capacity are investigated. While almost all functions
from the set of subsets of a finite set S into itself can be defined by
unrestricted reaction systems, only a specific subclass of such functions
is defined by minimal reaction systems. In this paper we show that also
minimal reaction systems suffice for defining all such functions, provided
repetitive use is allowed. Specifically, everything generated by an arbi-
trary reaction system is generated by a minimal one in three steps. In
this way also some functions not at all definable by reaction systems
can be generated by minimal reaction systems. All subsets of S, in any
prechosen order, appear in the sequence of a minimal reaction system.

Keywords: Reaction system · Reactant · Inhibitor · Universality of
minimal resources · Subset function · Sequence

1 Introduction

Reaction systems introduced by Ehrenfeucht and Rozenberg, [4], constitute an
interesting new model of computation. While originally motivated by applica-
tions to certain biochemical reactions, reaction systems have turned out to be
suitable in many other, very diverse, setups. The reference [1] gives some idea
of the various possibilities. However, the very active research in this area opens
frequently new vistas. We refer to [5] for quite new developments.

Apart from various applications, reaction systems as such have been objected
to many theoretical studies, [2,3,6,10–14]. The arising problems are mathemat-
ically very interesting, since the model is simple and clean. Additional interest
is provided by the fact that reaction systems constitute a tool for investigating
subset functions, that is, functions mapping the set 2S of subsets of a finite set
S into 2S . Composition theory of subset functions is not understood in the same
sense as that of functions from S to S, see for instance [8,9].

A reaction system consists of a finite number of reactions. Each reaction is
characterized by its set of reactants, each of which has to be present for the
reaction to take place, by its set of inhibitors, none of which is allowed to be
c© Springer International Publishing Switzerland 2014
C.S. Calude et al. (Eds.): Gruska Festschrift, LNCS 8808, pp. 436–446, 2014.
DOI: 10.1007/978-3-319-13350-8 32
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present, and by its set of products, each of which will be present after a successful
reaction. Thus, a single reaction is based on facilitation and inhibition.

Everything happens within a fixed finite background set S. The sets of reac-
tants, inhibitors and products, R, I and P , are nonempty subsets of S, the
sets R and I being disjoint. A reaction system A consists of finitely many such
triples (R, I, P ), called reactions. The application of A to a subset T of S (to be
explained in detail below) produces another subset T ′ of S and, thus, we have a
subset function, that is, a function from subsets of S to subsets of S. Iterating
the function we get a sequence of subsets of S. As a result, we have a new kind
of mechanism for generating functions and sequences over a finite set.

We already emphasized that the model of reaction systems is suitable in a
large variety of different setups, and the possibilities are by far not exhausted.
Since this paper deals exclusively with the mathematical properties of the basic
model, we do not go further into this more general aspect of reaction systems.

A brief outline of the contents of the paper follows. The paper is largely self-
contained. The next two sections provide the necessary background by giving
the formal definitions of the notions needed, as well as reviewing some earlier
work, in particular work concerning the limitations of minimal reaction systems.
Section 4 presents a method of enhancing minimal reaction systems beyond these
limitations. Using this method, any subset function definable by any reaction
system can be defined by a minimal one. In Section 5 the results are extended
further to concern all subset functions, also ones not at all definable by reaction
systems. A case study is also presented. Applications to sequences and cycles
are discussed in Section 6. The final section presents a summary and possible
research topics.

2 Reaction Systems and Functions Defined

We will now give the formal definitions of the basic notions. We begin with the
central notion of a reaction system, as well as related operational notions.

Definition 1. A reaction over the finite background set S is a triple

ρ = (R, I, P ),

where R, I and P are nonempty subsets of S such that R and I do not intersect.
The three sets are referred as reactants, inhibitors and products, respectively. A
reaction system AS over the base set S is a finite nonempty set

AS = {ρi| 1 ≤ i ≤ k},

of reactions over S.

No specific assumptions are made about the set P . In particular, it may
or may not contain elements of R ∪ I. In this paper S will always denote the
background set. We usually denote its elements by natural numbers or small
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letters from the beginning of the English alphabet.The cardinality of a finite set
X is denoted by �X. The empty set is denoted by ∅.

We will omit the index S from AS whenever S is understood. We now come
to the central definitions dealing with functions defined by reaction systems.

Definition 2. Consider a reaction ρ = (R, I, P ) over S and a subset T of S.
The set T is enabled (with respect to ρ), in symbols enρ(T ), if R ⊆ T and
I ∩ T = ∅. If T is (resp. is not) enabled, then we define the result by

resρ(T ) = P (resp. = ∅).

For a reaction system A = {ρj | 1 ≤ j ≤ k}, we define the result by

resA(T ) =
k⋃

j=1

resρj
(T ).

The result is also called the function defined by the reaction system and denoted
FA.

Thus, the range and domain of the function FA are subsets of 2S . Informally,
the term “subset function” is used for such functions.

There are some minor terminological differences in the literature. Rather
than subset functions, the reference [3] considers functions from S into S. Special
attention to the function value ∅ is paid in the reference [11].

As an example, let A be a reaction system over the background set {1, 2, 3},
consisting of the three reactions

ρ1 = ({1, 2}, {3}, {1, 3}), ρ2 = ({2}, {3}, {2}), ρ3 = ({1}, {2}, {1, 3}).

Consider T = {1, 2}. Then enρ1(T ) and enρ2(T ), whereas enρ3(T ) does not
hold. Consequently,

resρ3(T ) = ∅, resρ1(T ) = {1, 3}, resρ2(T ) = {2}, resA(T ) = {1, 2, 3}.

Definition 2 exhibits an important feature of reaction systems. Whenever an
element is in a set, it is considered to be there always when needed. Thus, the
element 2 of T is not “consumed” in the application of the reaction ρ1 but is also
available for ρ2 when resA(T ) is computed. In this sense there is no “conflict”
between ρ1 and ρ2. This feature makes reaction systems different from many
other models of computation.

The function FA defined by the reaction system A satisfies

FA{1} = {1, 3}, FA{2} = {2}, FA{1, 2} = {1, 2, 3},

FA{1, 3} = {1, 3}, FA{3} = FA{2, 3} = ∅.
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3 Resources in Reaction Systems. Sequences

Elements in the set R ∪ I are referred to as resources. Reaction systems are
classified according to the maximal cardinalities of the sets of reactants and
inhibitors, and also according to the cardinality of the set of resources.

Definition 3. A reaction system A is a (k, l) system if the conditions �(R) ≤ k
and �(I) ≤ l are satisfied for every reaction (R, I, P ) in A. A reaction system is
minimal (resp. almost minimal if in every reaction the cardinality of the set of
resources equals 2 (resp. is at most 3).

Thus, minimal reaction systems are always (1, 1) systems, whereas almost
minimal reaction systems can be either (2, 1) or (1, 2) systems. Almost minimal
reaction systems will not be considered in this paper.

For any A and T , the result resA(T ) is always a unique subset T ′ of S. If
resA(T ) = T ′, we use the notation

T ⇒A T ′,

or simply T ⇒ T ′ if A is understood. If

resA(Ti) = Ti+1, 0 ≤ i ≤ m − 1,

we write
T0 ⇒ T1 ⇒ . . . ⇒ Tm

and call T0, T1, . . . , Tm the sequence of length m generated (or defined) by the
reaction system A. Sometimes the sets Ti are referred to as states and the
sequence itself as a state sequence.

Since resA(T ) is uniquely determined by T , and since there are only 2�S

subsets of S, one of the following two alternatives always occurs, for large enough
m, for sequences

T0 ⇒ T1 ⇒ . . . ⇒ Tm.

1. Tm = ∅. Then we say that the sequence is a terminating sequence of length
m. In this case enρ(Tm−1) holds for no reaction ρ in A.

2. Tm = Tm1 , for some m1 < m. In this case we say that the sequence has (or
ends with) a cycle of length m − m1.

While sequences of arbitrary length can be generated by unrestricted reaction
systems, there are several results concerning long sequences and cycles generated
by minimal reaction systems, [3,11–13]. For instance, consider the minimal reac-
tion system with the background set S = {1, 2, 3} and reactions

({1}, {2}, {3}), ({1}, {3}, {1}), ({2}, {3}, {1}),
({2}, {1}, {2}), ({3}, {1}, {2}), ({3}, {2}, {3}).

We obtain the cycle

{1} ⇒ {1, 3} ⇒ {3} ⇒ {2, 3} ⇒ {2} ⇒ {1, 2} ⇒ {1}
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of maximal length 2�S − 2.
We conclude this section with a characterization due to [2] of functions defin-

able by minimal reaction systems. The characterization is based on the following
definition.

Definition 4. A function f is

– union-subadditive if f(X ∪ Y ) ⊆ f(X) ∪ f(Y ),
– intersection-subadditive if f(X ∩ Y ) ⊆ f(X) ∪ f(Y ),
– for all subsets X and Y of S.

We are now ready to state the characterization result given in [2].

Theorem 1. A function FA defined by a reaction system A is definable by a
(1, 1) reaction system if and only if FA is both union-subadditive and intersection-
subadditive.

The characterization given in Theorem 1 is exhaustive. However, since the
two conditions needed seem rather hard to test computationally, it is not clear
whether Theorem 1 simplifies the problem of deciding whether or not a given
reaction system is equivalent to a minimal one. (Two reaction systems are termed
equivalent if they define the same function.) The equivalence problem is clearly
decidable but no simple algorithm for it is known.

4 Universality of Minimal Reaction Systems

We will now prove that, in spite of the restrictions due to Theorem 1, the value
of the function defined by an arbitrary reaction system can be obtained as the
third step in the sequence of a minimal reaction system. This shows that minimal
reaction systems are, in fact, very powerful.

We want to connect this study with the study of subset functions. Thus, we
consider subsets of a given background set S. Various cases arise, depending on
whether all subsets, all nonempty subsets, or all proper nonempty subsets are
taken into account. We will use the notations.

Z = 2S , Z1 = 2S − {∅}, Z2 = 2S − {S, ∅}.

(Since we are dealing with a fixed background set S, we use the simple notation
Z rather than Z(S).) The cardinalities of the three sets Z,Z1, Z2 are 2�(S), 2�(S)−
1, 2�(S) − 2, respectively.

Observe that the domain of the function defined by a reaction system can
never include S or ∅. Otherwise, everything can be obtained. The following
theorem is a reformulation of a result in [10].

Theorem 2. Let G be a mapping of Z2 into Z. Then there is a reaction system
AG such that, for all x ∈ Z2,

FAG
(x) = G(x).
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Proof. The reactions in the reaction system AG (with the background set S)
are:

(x, S − x,G(x)), x ∈ Z2,

where x ∈ Z2 is arbitrary satisfying the condition G(x) 	= ∅. (If G(x) = ∅, we
cannot include the corresponding reaction since, by definition, the product set
in a reaction is always nonempty.) Each reaction is enabled only for x, so the
theorem follows. The conclusion holds also if G(x) = ∅, since in this case no
reaction is enabled for x. �

We are now ready to establish the main result. The idea is to extend the
background set and define the reactions in such a way that every third state in
the generated sequence, starting with a subset of the original background set
S, contains only elements of S, whereas the other states contain no elements
of S. The idea of using the names of the reactions as elements of the extended
background set is due to [6]. Another nice idea is to use the names of the subsets
of S, [7].

Theorem 3. For any reaction system A (over the background set S), there is
a minimal reaction system AM (with a background set containing S) such that,
for all x ∈ Z2

FA(x) = F 3
AM

(x).

Thus, the function value FA(x) appears as the third step in the sequence of AM

starting with x.

Proof. Assume that the reactions in the given reaction system A are

ρi = (Ri, Ii, Pi), 1 ≤ i ≤ k.

Define S = {a|a ∈ S}. (Thus, we consider “barred versions” of the elements
in S.) The background set of AM is defined to be

S ∪ S ∪ {ρ1, . . . , ρk} ∪ {B, $, E}.

Consider now an arbitrary a ∈ S. Then all of the following are reactions in
AM .

1. ({a}, {$}, {a,B}).
2. Let ρa

i1
, . . . , ρa

im(a)
be all the reactions in A such that a ∈ Rit

, for every
t, 1 ≤ t ≤ m(a). If m(a) ≥ 1, we include in AM the reaction

({B}, {a}, {ρa
i1 , . . . , ρ

a
im(a)

}).

(If m(a) = 0, no reaction results from this point.)
3. Let ρa

j1
, . . . , ρa

jn(a)
be all the reactions in A such that a ∈ Ijt

, for every
t, 1 ≤ t ≤ n(a). If n(a) ≥ 1, we include in AM the reaction

({a}, {$}, {ρa
j1 , . . . , ρ

a
jn(a)

}).

(If n(a) = 0, no reaction results from this point.)
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4. ({B}, {$}, {E}).
5. ({E}, {ρi}, {Pi}), 1 ≤ i ≤ k.

Clearly, AM is a minimal reaction system. Consider a sequence of AM begin-
ning with x ∈ Z2. Only the reactions in point 1 are enabled. Consequently, the
barred versions of the elements in x, as well as the element B constitute the first
step in the sequence. Then reactions in points 2 and 3 produce the (names of
the) reactions that are not enabled for x in A. Besides, the element E is always
produced by the reaction in point 4. Thus, the second step of the sequence con-
sists of E and the names of the reactions not enabled for x in A. This means
that exactly the names of the reactions enabled in A for x miss the second step
and, consequently, the reactions in point 5 produce the result FA(x) to the third
step. This holds true also in case FA(x) = ∅. �

Theorems 2 and 3 yield immediately the following result.

Corollary 1. Let G be a mapping of Z2 into Z. There is a minimal reaction
system AG such that, for all x ∈ Z2

G(x) = F 3
AG

(x).

Thus, the function value G(x) appears as the third step in the sequence of AG,
starting with x.

The proof of Theorem 3 shows that the background set and the set of reac-
tions grow only linearly in the transition from A to AM .

Corollary 2. Let A and AM be as in Theorem 3, and let A consist of k ≥ 1
reactions. Then the cardinality of the background set (resp. the set of reactions)
of AM is at most 2 · (�(S)) + k + 3 (resp. 3 · (�(S)) + k + 1).

5 Generalizations to Subset Functions

We now consider arbitrary subset functions, that is, arbitrary mappings 0f Z into
Z. (As before, the background set S defining Z is given.) In particular, we study
possible generalizations of Corollary 1. Clearly, if we work with reaction systems,
then the argument value ∅ always maps to ∅. Consequently, Corollary 1 can be
extended only to concern mappings of Z1 into Z. This will be accomplished in
the following theorem, formulated in analogy of Corollary 1.

Theorem 4. Let G be a mapping of Z1 into Z. There is a minimal reaction
system AG such that, for all x ∈ Z1

G(x) = F 3
AG

(x).

Thus, the function value G(x) appears as the third step in the sequence of AG,
starting with x.
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Proof. We follow the proof of Theorem 3. We have to take care of the case,
where the whole background set S appears as an argument of the function
G. Assume first that G(S) = ∅. Then the proof of Theorem 3 works with-
out any changes. The second state of the sequence of AM , starting with S, is
{E, ρ1, . . . , ρk}. Thus, none of the reactions in point 5 is enabled. This yields the
third state ∅.

Assume, secondly, that G(S) = x 	= ∅. In this case we make the following
additions to the reaction system AM . The element ρS is added to the background
set of AM . For every element a ∈ S, the element ρS is added to the product
set of each reaction in point 2. (The reactions in point 3 are left unchanged.)
Finally, the reaction ({E}, {ρS}, x) is added to the reactions in AM . Denote by
AG. the minimal reaction system thus obtained.

It is now easy to verify that

G(S) = F 3
AG

(S) = x,

whereas
F 3

AG
(y) = F 3

AM
(y),

for all proper subsets y of S. Indeed, the second state of the sequence of AG

does not contain the element ρS exactly in case the initial state equals S. Con-
sequently, only in this case the reaction ({E}, {ρS}, x) is enabled. �

As a case study implementing the techniques we now consider the background
set S = {a, b, c} and the mapping G of Z1 into Z, defined by

x {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
G(x) ∅ {a, b, c} {a, c} ∅ {b} {a, b} {a, b}

We now define the minimal reaction system AG as in Theorem 4. The reac-
tions resulting from Theorem 2 are in this case

ρ1 = ({a, c}, {b}, {b}), ρ2 = ({b, c}, {a}, {a, b}),
ρ3 = ({b}, {a, c}, {a, b, c}), ρ4 = ({c}, {a, b}, {a, c}).

They are mentioned here to ease understanding; only their names ρj , 1 ≤ j ≤ 4,
are used in the sequel.

The minimal reaction system AG has the background set

{a, b, c, a, b, c, ρ1, ρ2, ρ3, ρ4, ρS , B, $, E}

and reactions

({a}, {B}, {a,B}), ({b}, {B}, {b,B}), ({c}, {B}, {c,B}),
({a}, {$}, {ρ2, ρ3, ρ4}), ({b}, {$}, {ρ1, ρ4}), ({c}, {$}, {ρ3}),

({B}, {a}, {ρ1, ρS}), ({B}, {b}, {ρ2, ρ3, ρS}), ({B}, {c}, {ρ1, ρ2, ρ4, ρS}),
({E}, {ρ1}, {b}), ({E}, {ρ2}, {a, b}), ({E}, {ρ3}, {a, b, c}),

({E}, {ρ4}, {a, c}), ({E}, {ρS}, {a, b}), ({B}, {$}, {E}).
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The first three steps in the sequence of AG are listed below, for the 7 possible
initial states.

{a, b, c} ⇒ {a, b, c, B} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ {a, b}
{a, b} ⇒ {a, b,B} ⇒ {ρ1, ρ2, ρ3, ρ4, ρS , E} ⇒ ∅
{a, c} ⇒ {a, c,B} ⇒ {ρ2, ρ3, ρ4, ρS , E} ⇒ {b}

{b, c} ⇒ {b, c, B} ⇒ {ρ1, ρ2, ρ4, ρS , E} ⇒ {a, b}
{a} ⇒ {a,B} ⇒ {ρ1, ρ2, ρ3, ρ4, ρS , E} ⇒ ∅

{b} ⇒ {b,B} ⇒ {ρ1, ρ2, ρ4, ρS , E} ⇒ {a, b, c}
{c} ⇒ {c,B} ⇒ {ρ1, ρ2, ρ3, ρS , E} ⇒ {a, c}

In each case the function value G(x) appears as the third state.

6 Minimal Reaction Systems Generating Long Sequences
and Cycles

The construction discussed above can be applied repetitively. Consider an arbi-
trary listing of all subsets of S, ending with the empty set:

x1, x2, . . . , x2�S = ∅.

Using our earlier notation, the listing defines a mapping G of Z1 onto Z:

G(xj) = xj+1, 1 ≤ j ≤ 2�S − 1, G(∅) = ∅.

Consider now the sequence of the minimal reaction system AG defined in Theo-
rem 4, starting with x1. The third state in the sequence is x2, the sixth state x3,
and so forth. Altogether we obtain a terminating sequence of length 3·2�S , where
all nonempty subsets of S appear in an arbitrary pre-chosen order at every third
step of the sequence. The other steps contain no elements of S.

Consider next an arbitrary listing y1, . . . , y2�S−1 of all nonempty subsets of
S. We obtain now a mapping G of Z1 onto Z1 by

G(yj) = yj+1, 1 ≤ j ≤ 2�S − 2, G(y2�S−1) = y1.

Consider again the reaction system AG. Its sequence is a cycle of length 3 ·
(2�S−1). Again, all nonempty subsets of S appear at every third step in the cycle,
in the arbitrary pre-chosen order, whereas the other steps contain no elements
of S.

Altogether we have established the following theorem

Theorem 5. Consider any ordering of all the 2�S − 1 nonempty subsets of the
background set S. Then there is a minimal reaction system (whose background
set contains S) such that its sequence is a cycle of length 3 · (2�S − 1), where
every third state consists of the nonempty subsets of S in the chosen order, and
the other states do not contain any elements of S. Add next ∅ to the end of
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the chosen ordering of nonempty subsets of S. Then there is a minimal reaction
system with a terminating sequence of length 2�S,where where every third state
consists of the nonempty subsets of S in the chosen order, and the other states
do not contain any elements of S.

Theorem 5 improves the known results concerning long sequences and cycles
of minimal reaction systems only in some special cases. This is due to the fact
the background sets of the reaction systems AM and AG depend on the number
k of reactions in the basic reaction system A. Indeed, the cardinality of the
background set of the reaction system AG in Theorem 4 is at most 2·(�S)+k+4,
and AG consists of at most 3 · (�S) + k + 2 reactions. In the case study at the
end of the preceding section we have �S = 3 and k = 4, giving 14 background
elements and 15 reactions.

7 Conclusion

Minimal reaction systems constitute mathematically a very natural object. How-
ever, their capabilities are limited in comparison with arbitrary reaction systems.
The capabilities can be enhanced using an arbitrary sequence of inputs from the
“environment”, [4,10]. We have shown in this paper that minimal reaction sys-
tems can be enhanced to cover the capabilities of arbitrary reaction systems, and
even more generally arbitrary subset functions, without any additional inputs
by considering every third step in the state sequence. Because of Corollary 2,
the approach is pleasing from the point of view of complexity.

An interesting problem area consists in trying to modify this method, or
perhaps in finding other ways of enhancement. The problems are linked with
characterizations of almost minimal reaction systems, and comparisons between
minimal, almost minimal, and arbitrary reaction systems.
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Abstract. A view on grand challenges of broadly understood Informat-
ics is presented and its importance for two mega-challenges of the science
and technology is discussed.

1 Prologue

One way to get a good, motivating and inspiring understanding of the current
state and potential of the science and technology in general, or of a their specific
area in particular, is to try to determine their (current) grand challenges.1

This is important for several reasons. First of all, a good vision of grand
challenges allows to specify short and long term research goals. Grand challenges
make the research community worldwide to work together to meet them, and in
this way accelerate the overall scientific and technological progress. In addition,
grand challenges guide not only researchers, but also the science and technology
supporting agencies.2 Grand challenges are important also for education.

Intensively cooperating research initiatives create the potential for attacking
successfully very broadly and ambitiously formulated challenges that are out-
side of the potential of individuals and also of the small-scale or even national
research efforts. This starts to be well understood, in spite of the validity of
the observation, captured well by the so called black swan principle, that a big
portion of the progress in general and in science and technology in particular, is
due to the impacts of highly improbable and unpredictable discoveries or events.

In order to meet the above goals and to identify important and reachable
grand challenges, an area of science or technology needs to be perceived suffi-
ciently deeply and broadly.

We present a new perception of Informatics, derived from the overall develop-
ments in sciences and technologies and in (especially nature-driven) information

1 Historically, grand challenges used to be seen those problems that had resisted
for long time to concentrated attempts to solve them and, in addition, they were
expected to have, once solved, far-reaching consequences. However, due to the more
and more important role science and technology play in the society, it is desirable
to see grand challenges in much broader and more forward oriented ways and to
consider challenges which can have not only scientific or technological, but actually
very large societal (and sometimes especially economical) impacts.

2 For any area of research a vision that a period of diminishing returns is coming is a
nightmare.

c© Springer International Publishing Switzerland 2014
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processing. As a consequence, Informatics is seen not only as an area of science
and technology that influences (currently) society in general, science and tech-
nology, as well as medicine, but also (to say it in a bit dramatic way), as a new
powerful, wise, but nice, queen at the same time. Informatics is an incredibly
useful, intelligent, powerful and diligent servant of all sciences and technologies
(and most, if not all, of other major areas of society). In a more modest way
Informatics could and should be the area of science and technology transforming
science, technology, medicine and society in a way hardly imaginable not long
time ago.

2 A Glance into the History of Grand Challenges

For centuries, unsolvedmysteries, gaps in scientific knowledgeprovided researchers
with motivations, directions and challenges. (A more modern way of saying that
is: The most important product of knowledge is ignorance (David Gross (2005).)

In the past, when progress in science and technology used to be done mainly
by individuals, or small groups, mainly driven by curiosity, challenges concen-
trated on problems believed to be solvable by individuals. Discovery, especially
after the great success of science and technology in the Second World War, was
captured well in Vannevar Bush report “Science - The Endless Frontiers” from
1945. An understanding has slowly emerged that it can be possible, and actually
very profitable, both for society and the research community, to put before the
research community huge challenges of immense importance for society, espe-
cially its economy.

The huge progress in the science and technology during the last 100, or even
50, years has increased the number of (very) interesting and important open
problems and challenges – the more we know, the more we need to know. That
naturally led to the concentration of the research funding to mainly on a few
specific areas where returns could be seen as the largest.

Formulation of grand challenges for any area of science and technology is
always subjective to a large degree, no matter whether done by individuals or
small groups of knowledgeable experts. Behind this is, on one side, the well
known fact that to ask good questions is very, very hard. On the other side, the
problem is that for most of researchers it is in principle not easy to see beyond
their research expertise, paradigms and scopes and so a revolution in the research
goals is usually fully done and accepted by the majority only after a generation
“dies out”.

As an interesting example of an “old type” of the very influential grand chal-
lenges are Hilbert’s 10 problems formulated at the Mathematical Congress in
1900 (out of his gathering of 23 problems). At that time Hilbert was considered
as the last universal mathematician with a very broad knowledge of Mathematics
and as the one having an idea how to put all Mathematics on a firm basis - after
a turmoil in mathematics caused by the discovery of mathematical paradoxes
and by the existence of many counter-intuitive phenomena in Mathematics. A
recent example are “Millennium problems” (7 of them) in Mathematics formu-
lated by a group of mathematicians at the Clay Mathematical Institute - as the
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final outcome of the original intention to publish, for a “Millennium book”, 50
important and challenging mathematical problems, see [7]. The formulation of
this new set of mathematical problems followed Hilbert’s view of mathematical
challenges. Grand challenges in Physics, as seen in [3,9,10], are already much
more along these lines.

An excellent example of a successful attempt of a societal leader to formulate
a great mega-challenge was Kennedy: Let us put a man on the moon within this
decade. This shocked not only the whole society, but also the scientific and
technological communities, and was perceived by some as science-fiction. The
fact that this mega-challenge was achieved can now be seen as a shocking example
of what can be done with a coordinated effort of scientists and engineers and a
huge societal support.

3 Main Mega-challenges of Current Science and
Technology

The first mega-challenge of modern science was actually to demonstrate geniality
of God and to discover his laws for the objects and phenomena of the physical
world. Namely, to show that the apparently mysterious and enormously com-
plicated physical world, especially our celestial system, follows actually simple
mathematical rules. At that time the main task of science and technology was
more to support the religious view of the world and life before and after the
death, than to make a contribution to the well being of society.

Mega-challenges of another level emerged after a big progress in natural sci-
ences and the development of reductionist philosophy of (natural) sciences. That
resulted in the view that Physics is the most fundamental natural science, Chem-
istry is an applied Physics and Biology can be seen as applied Chemistry. hence,
it was natural to put as a new mega-challenge: get deep understanding of the
space-time as well as of its structure and of the developments of universe. The
mega-challenge therefore was to develop a theory of everything, integrating our
understanding of the micro and macro levels of nature, its elements and forces,
from which all understanding of nature could be derived, step by step.

Recent progress and the expected developments in the science and technol-
ogy have allowed, and actually forced society, science and technology, to make
another significant step in the direction of putting before the science and tech-
nology really huge mega-challenges. On one side, these mega-challenges could be
seen as being feasible in the near future, and, on the other side, they could be
expected to have enormous impacts on practically all areas of society - even if
they would be reached only partially.3 These new mega-challenges can be stated
especially due to the enormous progress in the information processing, network-
ing, Informatics (in general and in the Artificial Intelligence and Robotics in

3 The following quote of Leo Burnett seems to capture well the value of such mega-
challenges: If you try to reach for the stars you may not always get one, but you
won’t come up with a handful of mud either.
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particular), Neuroscience, Biology, medicine, nanotechnology, and so on. The
two new mega-challenges are:

– To beat human intelligence.4

– To beat natural death.5

In more details, the goal is: (1) to get deep insights into human intelligence,
into what it means to be human, think intelligently and be creative; (2) to
design systems/robots that could overcome human biological intelligence in an
increasingly larger variety of tasks crucial for mankind; (3) to achieve a merge
of the biological and non-biological intelligence in increasingly larger and more
and more important degrees.

There are good reasons for such mega-challenges. One of them is the recent
and foreseeable progress in Artificial Intelligence and Robotics and also in the
understanding of human brains. Another one is in the progresses in the GNR-
revolution, what stands for Genetics, Nanotechnology and Robotics, and in its
expected developments. The main one is the exponential progress in the power,
energy consummation and miniaturisation of the information processing tools
that is expected, for good reasons, to be going on still for long (enough).

The recent launching of several big projects in the brain and genome research,
such as Human Brain Project6, initiated by EU in 2013 has very ambitious goals:
to functionally simulate human brain, to apply that to the development of new
information processing paradigms and technologies.

Another key reason why these mega-challenges seem to be feasible is the
enormous increase, for huge masses of bright people worldwide, of access to
all scientific, technological and medicine knowledge. That is already happening
due to increasingly ubiquitous and powerful internet, web services and mobiles
and rapidly growing potential for communication, computation and knowledge
distribution and discovery. All that is expected to increase the pool of very
bright people capable to produce innovations on one side, their connectivity and
potential for collaboration on the other side.

The second mega-challenge has the goal to keep significantly increasing
longevity and to achieve that in such a way that people’s productive and enjoy-
able life is more and more prolonged. Progress in Genetics, Nanotechnology,
Robotics, Medical diagnosis through (wearable/embedded) devices, implants,
treatments, regenerative medicine and in creating models of human organs and

4 Some food for thought: It seems probable that once the machine thinking method
had started, it will not take long to outstrip our feeble power. They would be able to
converse with each other to sharpen their wits. At some stage therefore, we should
have to expect machine to take control (Alan M. Turing). Since there is a real danger
that computers will develop intelligence and take over, we urgently need to develop
their direct connections to our brains so that computers can add to human intelligence
rather than be in opposition (Stephen Hawking).

5 Another food for thought: But there is nothing in Biology yet found that indicates
the inevitability of death. (Richard Feynman).

6 It is almost 1.2 billion EUR project with 135 partners from 26 countries.
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in producing them, suggests that longevity could be seen as an achievable. Quite
surprisingly, longevity starts to be seen also as a desirable goal that could con-
tribute significantly to the overall prosperity of mankind.

Of course, dealing with these mega-challenges requires work across traditional
research disciplines boundaries at which Informatics, once properly, broadly and
deeply understood and developed, could play a very significant role.

There are, of course, other interesting challenges for science and technology.
For example: (1) To find out whether there are other civilisations in universe;
(2) To make sun energy to replace all nonrenewable sources of energy and to
create an energy internet making the use of all renewable sources of energy; (3)
To find out whether our universe is a part of a ”multiverse”; (4) To find initial
conditions for Big Bang; (5) To find out whether time was also before Big Bang;
(6) To determine the nature of black holes, dark matter and dark energy; (7)
To find out what are the smallest building blocks of matter; (7) To find out
whether we can and how animate extinct living beings; (8) To design live beings
from lifeless matter; (9) To find out why we dream; (10) To find out . . .. Other
interesting open problems/challenges has been recently compiled in the Science
journal, see [8]. However, their overall impacts can hardly be seen as comparable
to the potential impacts of the two mega-challenges discussed above. In addition,
they can be seen as more easily and faster achievable once a significant progress
on the way to deal with the two mega-challenges presented above is reached.

Society has two other mega-challenges that are, however of different nature:
(1) To beat human wars as the ways to solve conflicts and pursue ambitions and
to establish total and lasting peace; (2) To beat conflicts between demands of
society and needs of nature.

4 Grand Challenges in Physics, Mathematics and
Chemistry

Physics has made enormous progress in the last century (actually in the last 40
years), as the product of both curiosity and wars-driven research, by relatively
small groups of researchers at the beginning. The outcomes have increased enor-
mously our understanding of the evolution of the universe since its Big Bang,
13.798±0.037 billions years ago, and also understanding of the elementary struc-
tures of matter, atoms and particles, powers and energy. Its current main grand
challenges could be, for example, stated as follows:

– The problem of the origin of universe. Can we find out the initial conditions
for Big Bang? A model for the very origin of universe? . . .

– The problem of very basic elements of universe. What is universe made of?
What is the nature of dark matter, dark energy, black holes, . . . ? Can we
create them experimentally? How can dark matter interact with “ordinary”
matter? How do elements of universe - stars, planets,... - form?

– The problem of the true nature of space-time? What is their origin and struc-
ture? How many dimension has space? Is time an emerging concept? Are time
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and space an illusion (N. Seiberg)? Are they doomed (E. Witten)? Was time
before Big Bang? . . .

– The problem of the theory of everything. To develop a theory that would
unify all interactions (in particular, also the general relativity theory and
quantum mechanics, as well as all particles and forces) into a single theory
(that could be then seen as a complete theory of nature) – if such a theory
can exist at all.

All these grand challenges are really fundamental and their significance can
be seen easily also for laymen.

Observe that also Physics is starting to broaden its scope and grand chal-
lenges, in order to keep it in the frontiers of science. For example, in the recent
list of the grand challenges of Physics, as stated by Nobel price (2004) winner
David Gross in his CERN talk in 2005, see [3], the following grand questions
are included: (1) Complexity – behaviour of complex systems and emergence of
various phenomena in their processes; (2) Biology – to help to build theoretical
Biology, if this can be done; (3) Genomics – to find out whether theory of evolu-
tion can be quantitative and predictive; (4) Consciousness – to find out principles
that underline the self-organisation responsible for memory an consciousness.

Other grand challenges for the 21st century Physics have been formulated by
Patel [9], the former president of the American Physical Society: (1) Development
of quantum and nano sciences and technologies; (2) To apply Physics to Biology
and medicine; (3) To develop Physics in support of national security.

In UK, Physics Grand Challenges Advisory Board suggested the following
four grand challenges for Physics in UK in 2006 [10]: (1) Emergence and Physics
far from equilibrium; (2) Quantum Physics for new quantum technologies; (3)
Nanoscale design of functional material and (4) Understanding of the Physics
of life. This list indicates a shift from those with quite short time impacts to
areas where cooperation with other science and technology fields are needed and
future impact on society and economy could be very important.

Concerning Mathematics, the situation is on one side different and on the
other side quite similar. As the grand challenges one could try to see already men-
tioned the “Millennium problems”, formulated at the end of the last century as
the problems for the next century. Namely, the following problems, see [7]: (1) P
= NP problem.7 (2) The Poincaré conjecture8(Solved in 2003, by Perelman.) (3)
The Hodge conjecture9 (4) The Riemann conjecture10 (5) Soundness of quantum

7 Is it more difficult to prove theorems than to check their proofs?
8 In topology, a sphere with a two-dimensional surface is characterised by the fact that

it is compact and simply connected. The Poincare conjecture was that this is also
true in higher dimensions.

9 For projective algebraic varieties, Hodge cycles are rational linear combinations of
algebraic cycles.

10 To show that all nontrivial zeros of the analytical continuation of the Riemann zeta
function have a real part of 1/2.
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Yang-Mills theory11 (6) Analysis of Navier-Stokes equation12 (7) The Birch and
Swinnerton-Dyer conjecture13

All these problems have been open for a very long time. However, a layman
cannot see their large importance and even most mathematicians can hardly see
how these problems can have really a great impact on Mathematics, not to speak
on society as the whole.

It seems that Mathematics has a problem to formulate such grand challenges.
Can one see the formulation of such grand challenges in Mathematics as a grand
challenge by itself?

Following [2], the Chemistry grand challenges are: (1) To discover the chem-
ical origin of life (to find out which substrates can provide life. Under which cir-
cumstances and how matter can come alive and, eventually, can know itself and
how to bridge the gap from inanimate matter to self-replicating and self). (2)
To understand chemical basis of memory and thoughts. (3) To develop chem-
ical information technology - to see chemical world as consisting of chemical
elements connected by chemical reactions and on this bases to develop chemi-
cal sensing, diagnosing, monitoring, signalling as well as information exchange
between molecules and atoms and to integrate chemical phenomena and processes
with the electronic ones, especially circuitry, to be used especially in biomedicine
and in enhancing humans by implants and so on. (4) To develop the science and
engineering of designing new molecules - in particular to develop good dynamic
model of molecules. (5) To develop computational Chemistry capable to model
efficiently behaviour of complex molecules, vast biomolecular systems, complex
chemical processes and behaviours - to help to understand cells environments
(where many molecules, large and small, interact, aggregate and react,...). (6) To
develop artificial photosynthesis (to convert efficiently solar energy to chemical
energy/fuel). (7) To develop efficiently biofuels. (8) To overcome limits of peri-
odic table - to design new forms of matter. (9) To find the potential of graphene
and carbon nanotechnology. (10) To understand the chemical basis of epigenetic.

All of them can be easily seen as really fundamental and important ones.

5 A New Perception of Informatics

The first very influential perception of the science related to computers and infor-
mation processing, written excellently by A. Newel, H. Simon and A. Perlis, was
presented in 1967 in the Science journal and its basic idea reads as follows: When-
ever there are phenomena there can be a science dealing with these phenomena.
Phenomena breed sciences. Since there are computers, there is computer science.
The phenomena surrounding computers are varied, complex and rich.

11 For almost 50 years the standard model of particle Physics rested on quantum Yang-
Mills theory, which links the behaviour of particles to structures found in geometry.
Though theory is elegant and simple, no one so far has proved it is sound.

12 To determine whether the equation has smooth solutions.
13 This conjecture says how to determine the number of solutions have elliptic curves

in the realm of rational numbers.
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Such a perception corresponded well to the developments and understanding
of the field in their time, but should be seen as not broad and deep enough
nowadays. The first observation of narrowness of such a perception of the field
was perhaps due to Dijkstra, who noted that Computing science is no more
about computers than astronomy is about telescopes. The developments in the
field at Dijkstra’s time were enough for seeing what the underlying science and
technology is not, but not yet how it should be perceived in its full depth and
broadness, as discussed in the next.

The perception presented in the following has its roots in the recent develop-
ments in the understanding of the crucial role information processing has played
in the evolution of universe and life, see [1], for example, and in getting deeper
insights into the fundamental physical, chemical and biological as well as social
phenomena.14 The basic position presented in the following is also based on
standpoints that the main scientific goal of Physics is to study concepts, pro-
cesses, laws and limitations of the physical worlds and that the main scientific
goal of Informatics is to study concepts, processes, laws and limitations of the
information precessing worlds. As a consequence, Physics and Informatics could
(and should) be seen as representing two windows through which we try to per-
ceive, understand and develop our world.

5.1 A Perception of Scientific Informatics

As a scientific discipline of a very broad scope and deep nature, Informatics has
many goals. Its main task is to discover, explore and exploit in depth, the laws,
limitations, paradigms, concepts, models, theories, phenomena, structures and
processes of natural and virtual information processing worlds.

To achieve its tasks, the scientific Informatics concentrates on the develop-
ment of the information processing based understanding of the universe, evolu-
tion, nature, lives (natural and artificial), brain and mind processes, intelligence,
creativity, information storing, processing and transmission systems and tools,
complexity, security, and other basic phenomena of the information processing
worlds.

In order to meet its goals, the scientific Informatics has developed close rela-
tions with other sciences and technology fields - currently especially with Physics,
Biology and Chemistry, on one hand, and with electronics, optics, nano- and bio-
technologies on the other hand.

The basis of the relationship between Informatics and natural sciences rests
first of all on the fact that information carriers are always elements of the phys-
ical, biological or chemical worlds, and, consequently, information processing is
governed and constrained by their laws and limitations. Of the importance is also
that information processes are inherent parts of the basic processes of nature and
life.

14 For more on the analyses of the obsolete perceptions of computer science see [4] and
[5].



Grand Challenges of Informatics 457

Informatics as a science includes also numerous theories and subareas much
needed for its development to depth and in broadness. Some of them are very
abstract, others quite specific, and some are oriented on making better use of
the outcomes of the scientific Informatics to create a scientific basis of the tech-
nological Informatics and Informatics-driven methodology.

Informatics is, without doubts, currently the leading science and technology
discipline with enormous impacts on all other sciences, technologies, industry,
economics, health and environment care, liberal art and so on - guiding them
and serving them in their reasoning and doing.15

5.2 Grand Challenges of Scientific Informatics

Grand challenges of the scientific Informatics can be seen briefly as follows;

– To explore the ensemble of all potential information processing worlds and
our real information processing worlds as points in such an ensemble.

– To explore basic laws and limitations of the information processing that
govern universe, evolution, nature, life and society.

– To understand and model human brain, mind, consciousness, intelligence,
creativity, reasoning, learning, body and their processes from the information
processing and functional point of views.

– To study complexity - complex processes, their outcomes and emergent phe-
nomena.

– To understand and manage all fundamental aspects of computations, com-
munications, interactions and their complexities and feasibilities as well as
the design and analysis of algorithms.

– To develop theoretical foundations for specification, design, analysis, verifi-
cation, security, simulation, modelling and visualisation of huge information
processing systems.

– To develop foundations for huge data sets and streams driven scientific
approaches as well as for harvesting from incomplete and imprecise infor-
mation.

– To help other sciences in their merge with Informatics and to help them to
develop new information processing paradigms.

– To develop sound approaches to forecasting and understanding of the fast
changing future.

5.3 Grand Challenges of Technological Informatics

An increasingly important feature of the current development of sciences and
technologies in general is their convergence to the scientific and technological
15 Science used to have (always?) a Queen. It used to be Theology in the middle age,

Philology in the Renaissance, Mathematics in the Galileo’s time and also Physics
(at least for natural sciences) in modern time. This has been, in a condense way,
well captured by remark of Ernest Rutherford (1912): All science is either Physics
or stamp collecting.



458 J. Gruska

Informatics, and also their merges. As the consequence, the current science can
be seen as being, to a large extent, technology-driven and current technology
as science-driven. This is also reflected in the following view of main grand
challenges of the technological Informatics.

(1) To achieve sufficient security, privacy and reliability of and in huge infor-
mation processing systems and networks; (2) To develop methods for specifica-
tion, design, correctness proving, efficiency analysis, updating, maintenance and
understanding of huge, distributed, parallel and reliable information processing
and communication systems and networks; (3) To achieve steady miniaturisa-
tion of the size and energy consumption, as well as maximisation of perfor-
mances, of the information processing systems - to give still quite long life to
the Moore law; (4) To keep designing more and more perfect global computation
and communication environment connecting all computation and communication
systems with a new quality internet (of people, things and energy resources)
and new quality webs; (5) To keep designing artificial intelligence systems
(robots) beating (much) human intelligence and actions capabilities in important
aspects; (6) To develop micro- and nano-scale robots and ways of their controlled
self-assembly; (7) To develop bio- , brain- , cell- , molecule- and DNA-driven com-
puters and computing and the merge of bio- and non-bio-computing technolo-
gies. (8) To develop fully and make full use of the GNR-revolution (G-genetics,
N-nano-technology and R-robotic/AI); (9) To design and explore the virtual
reality worlds and systems; (10) To develop global warning systems against
natural disasters and terrorist attacks; (11) To keep developing more and more
sophisticated information gathering, processing and sharing systems to make
medicine knowledge global and models, as well as treatments, personalised; (12)
To design advanced, especially mind controlled, human-computer interfaces; (13)
To develop insights, methods and tools for management, analysis, processing and
visualisation of huge (up to petabytes and exabytes) data sets and streams; (14)
To achieve permanent and open access to the rapidly growing worldwide infor-
mation and knowledge bases.

5.4 Informatics-Driven Methodology

Modern science and its two main methodologies, observations/experiments and
theory/deduction, or induction and deduction, are usually seen as having its
modern and fully worked out origin in the 16-17th century in the critical rational-
ism of René Descartes and in practical empiricism of Francis Bacon and Galileo
- as well as in breathtaking contributions of Isac Newton. Galileo’s philosophy
was a concentration on measuring things quantitatively, thinking mathemat-
ically and submitting theoretical outcomes/hypothesis to repeatable verifica-
tion/experiments by nature.16 All that represented a big change in the science
methodology.

16 Well known is Galileo’s dictum: Measure what is measurable, and make measurable
what is not.
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Indeed, before and in the golden era of Greek Mathematics/science, concen-
tration was on searches for causes of phenomena and on the understanding why
things happen. F. Bacon’s, Descartes’ and Galileo’s points of view was that it is
sufficient, in many cases, to concentrate on an understanding how things happen
and in order to do that to find key and simple relations (expressed mathemati-
cally and fully understandable by men) between the key and simple quantitative
characteristics of the underlying phenomena and processes (and by that to glo-
rify God). That was also seen as sufficient for making useful and important
predictions concerning the behaviour of the basic phenomena of physical nature
and to understand quite enough how things happen.17

Developments in Informatics, as in a science and technology discipline,
started to create another, fundamentally new, methodology. The starting and
main assumption is that we often need to know neither causes of phenomena
nor explicitly and fully relations between their important quantitative charac-
teristics. In many important and also complex cases it is sufficient, to a large
degree, to design an (evolving - capable to learn and improve) oraculum, an infor-
mation processing model of phenomena/processes, that can be used to answer,
through simulations, or even visually demonstrate, sufficiently well, answers to
important questions about the phenomena and help to develop also their deeper
understanding. That would also allow to pursue much a new, holistic, approach
to science.

The main features of Informatics-driven methodology are:

– Modelling – Design of the information processing models of nature-made,
men-made, and also virtual complex phenomena and processes.

– Simulation – Utilisation of the information processing models to study phe-
nomena of nature-made, men-made and virtual objects and processes.

– Visualisation – Visual presentation of complex data, objects and processes
in order to make them (better) understandable by humans.

– Virtualization – Design of virtual systems and processes including designs of
virtual reality systems and worlds.

– Formalisation of reasoning – Design of formal systems for learning and for
mechanised problem solving, reasoning and proofs making as well as for proof
checking and creative actions.

– Searching – Design of special searching techniques (to use a sophisticated
searching in data sets and structures as an alternative to sophisticated knowl-
edge based reasoning).

– Methods for design and analysis of artificial systems, especially artificial
intelligence and life systems, also as a way to understand and explore systems
made by nature.

17 Observe that, on a more philosophical level, scientists of those times were not yet
completely able to ignore the role of God, not even Galileo. Their dominating view
was that the all-powerful God-creator has designed the world (nature) describable in
the mathematical language and let the nature run according to simple mathematical
laws. The role of the science and scientists was to discover such laws and by that to
demonstrate ingenuity and rationality of God.
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– Development of (formal) methods to specify, design, analyse, verify, update
and maintain complex (information processing) systems.

– Design of algorithms, study of their performances and inherent complexities
of computational, communication and description problems and systems, as
a way to get a deeper understanding of phenomena and their interrelations.

– Development of huge-data-driven approaches to problem solving.

The power of the new methodology could be summarised as follows: (1) It
brings new dimensions to both old methodologies; (2) It brings into new heights
an enormous power of modelling and simulations; (3) It utilises an enormous
power of visualisation; (4) It utilises an enormous potential that the study of
artificial and virtual worlds brings for an understanding of the real world; (5)
It utilises an enormous power of (sophisticated) search techniques. (6) It allows
to change the old vision of science - namely, that science is to achieve its goals
mainly by discovering, isolating and studying the primitive phenomena and pro-
cesses - and provides intellectual frameworks and tools to investigate also very
complex and large systems, in their full complexity.

Informatics-driven methodology subsumes and extends the role Mathematics
used to play in advising, guiding and serving other scientific and technology
disciplines and society in general.

Another main challenges of Informatics-driven methodology is to develop
“Informatics thinking” as an underlying basis of all education.

6 Relations Between Grand Challenges of Informatics
and two Mega-Challenges

The grand challenges of Informatics discussed above are also to the large extent
related to the two mega-challenges. Let us discuss this briefly.

On a meta level, three grand challenges of Informatics, which can significantly
contribute to both mega-challenges are: (1) Developments of (especially commu-
nication) resources and tools that would allow most of the society members (also
from the underdeveloped parts of the world) to get an easy access to the world
open pool of knowledge and this way to speed up much frequency of innovations,
and also the overall progress in science and technology. (2) Developments of the
ways and tools for knowledge presentation as well as for distributed cooperation
in the production of knowledge and tools that would allow much more effective
use of all knowledge produced worldwide. (3) To increase quality of Informatics-
driven thinking of the whole society, especially of the research and development
communities.

The first five grand challenges of the scientific Informatics are closely related,
on various levels of abstraction, to the two mega-challenges. The information pro-
cessing exploration of life, brain, mind, intelligence, creativity, deduction and
artificial intelligence as well as of the ways to speed up information process-
ing and communications are directly relevant. Progress in the understanding of
complex systems and emergent phenomena is also of the large importance.
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In addition, most of grand challenges of technological Informatics are closely
related to the two mega-challenges. Of special importance are challenges to
increase much performance of information obtaining and processing tools, to
decrease much size of very powerful information processing and communication
tools as well as to decrease much their energy consumption. This is also related
to the challenge to develop an information processing technology inspired by
those used in nature especially in living beings. Grand challenges in artificial
intelligent systems in general and in (nano)robotics in particular are of special
importance, but so are many others. For example, so are tools needed to specify,
design, verify and manage huge software systems.

Informatics-driven methodology paradigms and tools are of special impor-
tance to the development of knowledge and tools concerning the design and use
of huge (especially discrete) models and their simulations as well as visualisations
of their outcomes.

Less explicitly, but actually also deeply important for the two mega-challenges,
are such grand challenges on “big-data science and technology”, a well as the devel-
opment of the science and technology of the science and technology development.
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Abstract. Konrad Zuse’s self–identity was that of an engineer, as a
person who creates “means to purposes” [1]. In its German beginnings,
Informatics focused on theoretical aspects. In my opinion this goes a
long way to explaining Zuse’s hesitant acceptance of this emergent dis-
cipline. Later, the solving of practical problems came to the fore. This
may explain his delayed affinity for this academic discipline.

1 Konrad Zuse (1910–1995)

In 1941 Konrad Zuse (1910–1995) completed the “first fully automatic program
controlled and freely programmable in a binary floating point working computing
device” (F.L. Bauer, in [20]1). He went on to build one of the first process con-
trol devices, proposed a parallel computer, designed the first high level computer
language (“Plankalkül”), published considerations of the universe as a cellular
automaton (“Rechnender Raum”), founded the first computer factory in con-
tinental Europe, to mention only his major achievements. In my opinion this
justifies characterizing him as a visionary. His inventions were fundamental for
the birth of Informatics, the discipline founded in the 1960s. Although he never
held a full academic position – with the exception of an honorary professorship
at the University of Göttingen – he was in contact with Informatics scientists
and practitioners, and he observed the genesis of the corresponding studies with
critical attention. In this article I will try to refer to his (changing) positions on
the basis of his published comments. This (clearly incomplete) report also gives
some clues as to the different directions in which Informatics in Germany could
have developed.

2 The Beginning of Informatics in the Federal Republic
of Germany

It should be remembered that “Informatics” was only “defined” at the universi-
ties of the Federal Republic of Germany (FRG) during the last third of Konrad
Zuse’s life, and this establishment did not happen immediately or at the same
pace. Therefore it is worth describing this process, if only very briefly. Vollmar

1 Translated by the author.
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[15] gives a short survey of the genesis of the discipline in the FRG. Coy [5] gives
more details from a critical point of view. Reuse [11] describes the political and
financial decisions which led to the establishment of the field at universities and
colleges of higher education.

Even in the late fifties and sixties computers were widespread in the sci-
ences, industry and throughout the economy. Nevertheless, it was widely accep-
ted that Informatics would be sufficiently represented as a minor field of study
for mathematicians, physicists and electrical engineers. In 1969 the “respon-
sible” federal ministry (Bundesministerium für Bildung und Wissenschaft) 2

initiated the development of Informatics in academia in the FRG under the
title “Überregionales Forschungsprogramm Informatik” (supraregional Informat-
ics research program) [11]. 13 topics were marked: automata theory and formal
languages; programming and dialogue languages and their translators; computer
organization and sequential circuits; operating systems; information processing
systems; computer technology; digital processing of continuous signals and six
application–oriented areas. At a first glance this list is quite impressive, but the
listed fields were much narrower than they are today. The number of methods
and results was quite small compared with the present situation.

In 1969 a so–called GAMM–NTG committee proposed framework examina-
tion regulations for the study of Informatics at universities. This committee was
composed of leading German Informatics researchers, mainly mathematicians
and electrical engineers. Due to the (numerical) predominance of mathemati-
cians the introductory study period was dominated by mathematical courses.
But the quite marginal provision of genuine Informatics courses at this time was
realistic and pragmatic, because there were very few teachers available and the
number of results was small. The prescribed mathematics courses were generally
identical to those proposed for students of Mathematics. I believe two reasons
were instrumental in making this choice: the limited capacity of the mathematics
departments and differing opinions about the “right Mathematics”, even among
the Informatics professors. By the end of the seventies a (numerical) balance
between courses in Mathematics and Informatics had already been attained at
many universities. This adjustment is one example of the early changes to Infor-
matics (or more precisely its instantiation at German universities). At a first
glance the consequences of deciding in favour for a more mathematical orienta-
tion for the new discipline are far–reaching. But in the long run they may be
negligible. The development of Computer Science in the USA dominated the dis-
cipline, at least in the Western World, and meant eventually Informatics would
have the actual shape. I dare say it would have appealed more to Konrad Zuse
if its aim had been the “mechanical engineering” of computers.

2 It should be mentioned that the situation was complicate: In effect the federal gov-
ernment was not allowed to interfere educational topics, this was in the competence
of the states (so–called “Kulturhoheit der Länder”). Therefore the given finances
were declared as a support for research.
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3 Domains of Informatics in Germany

It is obvious that an emerging branch of science needs some time to create its
identity, cutting the cord from the areas it arose from and separating from neigh-
bouring disciplines. “The new domain starts to forget its parentage and strike
out on its own, and a consciousness emerges that a new field is starting to exist
in its own right.” [1] The dispute about the “right” Informatics was not lim-
ited to teaching concepts or to the importance of Mathematics; the impacts of
the different areas were also discussed. Such conflicts arise for different reasons.
Conceptions of a discipline may be strongly influenced by its application areas,
and within these areas by divergent ideas about future development. But per-
sonal predilections tempered by education and experience also play a role. This
situation is not restricted to new disciplines (even in such long standing depart-
ments such as Mathematics, discussions about the “rank” of the topics still take
place), but in expanding disciplines with people with completely different back-
grounds and histories such contentions are more virulent. The resulting essential
changes to the discipline have often been emphasized, e.g. in [9]: “[. . . ] since the
beginning of the institutionalization of Computer Science since 1959/60 in the
USA and since 1964/65 in Europe the debate about the focus, the basic theory
and the paradigms of the science has not ended.” From the beginning the word
“Informatics” has been used in Germany.

The preface of the first edition (1970) of a standard course book [3] states:
“Informatics is the German term for ’Computer Science’, an area which has been
developed during the sixties esp. in USA, but also in Great Britain, to become
its own scientific discipline.”3

To get a better understanding of Konrad Zuse’s attitude to the discipline, a
rough description of the content will be helpful [6]: “The major subdisciplines of
computer science have traditionally been (1) architecture (including all levels of
hardware design, as well as the integration of hardware and software components
to form computer systems), (2) software (the programs [. . . ]), here subdivided
into software engineering, programming languages, operating systems, informa-
tion systems and databases, artificial intelligence, and computer graphics, and
(3) theory, which includes computational methods and numerical analysis on the
one hand and data structures and algorithms on the other.”

Although in my opinion some areas are missing, e.g. the social implications of
computer applications, this “definition” was widely accepted from the mid-sixties
until the nineties. There were also a lot of other influential proposals, e.g. the
ACM recommendations of 1968 or the GAMM–NTG recommendations of 1969,
but at least in the German academia they were controversially discussed (cf.
e.g. [9]). When introducing this artificial word “Informatics” (analogous to the
French term “informatique”), the restriction to computers (such as “Computer
Science” or “Computing Science” may suggest) should be avoided.

Considering Zuse’s attitude to Informatics this may provide one of many
explanations for his different statements about the discipline. Although he was

3 Translated by the author.
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not strongly integrated within academia, Konrad Zuse pursued the development
of the discipline, as the notes quoted below will prove.

4 Konrad Zuse’s Situation at the End of the Sixties

Before discussing Konrad Zuse’s relationship to Informatics, I will briefly con-
sider his situation at the end of the sixties. Zuse’s most important achievements
by this time include (keywords only):

– Design and construction of computing devices, esp. Z1, Z2, Z34, Z4
– Conditional combinatorics (˜ propositional logic)
– Design of a coding device
– Associative memory
– Process computer
– Concept for a higher programming language (“Plankalkül”)
– Pipeline principle
– Plotter (“Graphomat”)
– Self-reproducing systems
– Design of a parallel computer (“Feldrechner”)
– “Computing universe” (“Rechnender Raum”)

Details may be found in his autobiography [20] (English translation [21]), specif-
ically in the original articles. Although he had published a remarkable number of
papers about different topics, he was mainly acknowledged as the German com-
puter pioneer. Even in 1984 he states: “My present-day standing is essentially
predicated on the ten to twenty years of my pioneering work since 1934.”5[20]
His economic situation was determined by his retirement from ZUSE KG, a
company founded by him, which was taken over by BBC Mannheim in 1964. An
unfortunate event in his life was the definite rejection of a very long pending
application for a patent for “computers” by the Federal Patent Court in 1967.

5 Some Statements by Konrad Zuse Concerning
Informatics

Konrad Zuse’s main interests comprised the development of the computer tech-
nology and his “Plankalkül”. On the basis of statements made by Zuse in various
lectures and articles in the relevant period (the sixties and the first half of the
seventies) I will discuss his opinions in two separate parts.

Most of Konrad Zuse’s lectures were devoted to the development of comput-
ers. The talks had similar compositions, but were updated in each case. As an
example I will outline the content of a lecture at the Technion (Haifa) in 1960:

4 It may be remarkable that the Z3 was in principle a universal computer as Rojas [13]
has shown by a sophisticated programming construction.

5 Translated by the author.
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Zuse started with mechanical computing devices, then he outlined program-
controlled ones, starting with Babbage’s Analytical Engine. Thereafter he out-
lined his most important ideas for computing devices since the mid-thirties and
their realizations as Z1, Z2 and Z3. He emphasized the appropriateness of the
logical design of the switching mechanisms for a mechanical realization as well
as for relay and tube technologies. He states that he was convinced even in the
early forties that the progress of program-controlled computing would eventually
lead to an “artificial brain” and that for this purpose conditional instructions
would become necessary, a feature he did not build into his first devices. [22] In
an article [23] Zuse underlined the significance of program storage and control.
A lecture in 1961 [32] follows the same line, but his main point is the demand
on an academic direction of computer design and technology. I am unable to
assess his opinion about Computer Science, which was under development in
the USA at the time (cf. e.g. [9]). It is interesting that this talk was given at
the Braunschweig Technical University, where at this time the establishment of
a chair for data processing devices in the EE faculty had been discussed and
were successfully completed in 1962. Konrad Zuse was later invited to accept
the chair, but he “waved it aside” [14]. This is in line with a remark of his eldest
son, Horst who states that his father never strived for a university position,
instead pursuing his vision to build and sell computers. [16] Therefore it will
not be surprising that most of his lectures were devoted to the development of
computers – sometimes with elements of advertisement for his company, ZUSE
KG – rather than programmatic aspects of the burgeoning field of Informatics.
Yet there were exceptions: In an article from 1965 [24] he ascribes computers as
“working material of the intelligence” (“Arbeitsmittel der Intelligenz”). Figure 1
is an illustration of his perception of the possible embodiment of a new disci-
pline. His categorizations of “Formelsprachen (Plankalkül)”6 as “Theory” and
of “Programm-Sprachen (Algol, Fortran)” as “skill” points to his assessment
of the second–rank value of the theoretical results of the formal languages for
the systematics and analysis of programming languages. It is surprising that he
renounces an explicit reference to operating systems and information systems
– unless he tacitly subsumes them as “Systeme” in the “Technik” section. In
his listing of theoretical topics, “Kybernetik” is listed as the last point. Never-
theless he had a special affinity to it. In another article titled “Thoughts about
an institute for automation”7 [28] he underlines the function of cybernetics:
“Automation has a similar central place in industry and economy as cybernetics
in science.”8 But there he considered it not as a self-contained domain but as a
bridge between the sciences.

In other lectures (e.g. [26], [27]), Zuse laments the gap between theory and
praxis in the computer development, but without an explicit elucidation of this

6 To conserve the authenticity I don’t try to translate the German notions, but due
to their affinity to the English words they should be understandable.

7 Translated by the author.
8 Translated by the author.
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deficit. To clarify his attitude, the following citation may help [30]:9 “In Infor-
matics and the science of the computers, we have several directions and some are
very practically oriented: there are the constructors, the designers of the com-
puters, the pr[o]grammers and so on, and on the other side we have some very
theoretically oriented disciplines, the informatic[s], the discipline of algor[i]thmic

9 Unfortunately it is not dated (and not well edited), but it seems this lecture was
given in 1973.
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languages based on automata theory, and so on. Turing machines are very math-
ematically oriented and I have the feeling that these two fields, very practically
oriented informatics and very theoretically oriented, cannot be put together.
They are two worlds [. . . ]. And I have the feeling that the practical informatic[s]
engineer cannot use these mathematical tools and that on the other hand there
are very good ideas in the field of the theoreticians of the automata theory.”

In the first draft of his autobiography in 1968, Konrad Zuse seems to express
a positive opinion about Informatics studies: “After long discussions the plan
is now to eventually start a branch of Informatics studies at some technical
universities.”10 [25] But in a 1970 article [17], addressed to a wide public, Zuse
avoided the term “Informatics”. In an answer [29] to a critical letter from F.L.
Bauer [2], he conceded that he possibly had taken a partial look at certain
developments, but in my opinion a wholehearted acceptance of the new discipline
cannot be inferred. In an article from 1972 [27], Zuse extensively reduced his
criticism: “Unfortunately however it can also be seen that theory and practice do
not cooperate closely enough and sometimes develop apart.”11 These quotations
should not be misinterpreted as contempt on the part of Konrad Zuse to the
theory in its entirety. E.g. he had a pronouncedly positive attitude to some
mathematical topics, particularly to mathematical logic.

At least until the mid–60s, i.e. until his retirement from the ZUSE KG, in
my opinion Zuse did not intend to influence the emerging discipline or even to
shape it. Although he had numerous contacts with scientists and universities,
he was not involved in committees establishing science policy; instead he was
dedicated to advertising the products of his company. The references to his own
epoch-making inventions and developments – at this time not universally known
and appreciated – should add authority.

6 Konrad Zuse’s “Plankalkül”

Yet in 1984 Konrad Zuse was still aware that his reputation as a computer pio-
neer was reliant on his work in the 20 or so years since 1934 [20]. This was partly
based on the fact that his main interests after retirement from ZUSE KG were
outside the mainstream of research and teaching of university Informatics. His
longstanding endeavours to propagate his “Plankalkül” were particularly coun-
terproductive: “Efforts to the practical introduction of the ‘Plankalkül’ [. . . ] did
not gain enough recognition; partly one can even speak from a closed defensive
front both from the industry and from the research.”12 [20] Since the scarce
uptake of the “Plankalkül” was a longstanding nuisance for Zuse – and possibly
provides an (emotional) reason for his hesitating attitude against Informatics –
I will discuss this work in greater detail. Konrad Zuse was aware early on that
his computers were not restricted to solving arithmetical tasks. In his proposal

10 Translated by the author.
11 Translated by the author.
12 Translated by the author.
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of a programming language, called “Plankalkül” (PK)13, he demonstrated this
via examples of sorting algorithms, graph algorithms and chess problem algo-
rithms. The history of PK was strange: The manuscript was completed in 1945,
but there was no publication of the full text before 1972 [18]. In the meantime
two short papers appeared and he spoke about it in some lectures; however,
he attracted almost no interest. Disregarding PK’s meagre propagation, it also
has some inherent difficulties. “[. . . ] at first glance the programs of the PK are
strange for us. The notation looks a bit two-dimensional [. . . ]. Adapting this
notation for the teletype writer, which was used in the early days to input the
programs, appears rather difficult. [. . . ] In addition to the notation of programs,
the lack of ’goto’, ’if then, else’ and recursive procedures (usual in machine pro-
gramming) discredited the PK with the few people that had known it. Another
cause is deeper. PK’s very rich data structures, which makes it so interesting
now, make a technical realisation of this language seem unpromising.”14[10]

“John Backus comments on the Plankalkül: “Like most of the world (except
perhaps Heinz Rutishauser and Corrado Böhm [. . . ]), we were entirely unaware
of the work of Konrad Zuse. Zuse’s ‘Plankalkül’, which he completed in 1945, was,
in some ways, a more elegant and advanced programming language than those
that appeared 10 and 15 years later. (IEEE Annals of the History of Computing,
Band 20, 1998, Heft 4, Seite 69 [. . . ])” [4]

On various occasions Konrad Zuse recommended the use of PK. With the
emergent multiple-access systems, he saw a chance for the PK [26]. Due to its
universality he proposed PK as ideally suited to serving as a reference language
between different systems and he considered it an adequate language for man-
machine communication. Zuse also recommended PK to overcome the “software
crisis”, because it is designed to support structured programming [19].

Other concepts and proposals by Konrad Zuse, e.g. for an associative mem-
ory, an array computer or the “Computing Universe”, also only garnered low
attention. But this did not influence him as strongly as the disrespect for his
PK.

7 Konrad Zuse, Viewed from Outside

We could see that Konrad Zuse doubted in his self–evaluation that he should
be considered as an informatician, at least in the sense of the established disci-
pline. This contrasts with the assessment of senior scientists. By 1969, when the
aforementioned GAMM-NTG recommendations were formulated, Konrad Zuse
was not only a computer pioneer; he had so many scientific results that he could
have a competent voice in at least five of the areas of the corresponding report.
This had been widely acknowledged – at least in Germany. E.g. F.L. Bauer [2]

13 I could not find a clue about the naming; possibly it should be reminiscent to
“Plansprache” which, according to Blanke, is an artificial language to facilitate the
international communication.

14 Translated by the author.
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emphasizes that Zuse could be considered as the senior of Informatics. A state-
ment by Giloi [7] conveys a similar appraisal: “Konrad Zuse, developing his
“Plankalkül” in 1945, already had a clear conception of an abstract program-
ming model with abstract data types and operations and of data representation
suitable for numerical and non-numerical applications. Such concepts were only
introduced into Informatics in the seventies. This gives him the rank of the
first informatician.”15 In 1971 K. Steinbuch offered Zuse the chance to give a
statement about Informatics (in a TV series entitled “Man, technology, future”).
[31].

During his life Konrad Zuse received a lot of tributes and awards, includ-
ing some honorary doctorates from Informatics faculties and the first honorary
membership of the German Society for Informatics (GI). One award in partic-
ular should be mentioned: In 1965 he received together with George Stibitz the
Harry H. Goode Memorial Award from the American Federation of Information
Processing Societies (AFIPS), only a year after Howard H. Aiken has been dis-
tinguished with it. This also shows that his eminent role in the development of
computers has also been acknowledged in the USA.

8 Conclusion

I have tried to show that Konrad Zuse was convinced that an “Informatics”
discipline should also be established in Germany. He never fully agreed with
its embodiment in the academic environment. He would have preferred a more
engineering-based approach instead of a theory-oriented development. He also
had emotional reservations concerning the discipline due to the extensive disre-
gard for his “Plankalkül”.
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