
53Solutions for Models of Chemically
Reacting Compressible Mixtures

Vincent Giovangigli

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2980
2 Mathematical Modeling of Reactive Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2981

2.1 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2981
2.2 Thermochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2982
2.3 Multicomponent Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2988
2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2995
2.5 Quasilinear Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2996

3 Hyperbolic–Parabolic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2997
3.1 Entropic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2997
3.2 Normal Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2999
3.3 Hyperbolicity and Parabolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3001
3.4 Natural Entropic Form for Multicomponent Flows . . . . . . . . . . . . . . . . . . . . . . . . . 3003
3.5 Natural Normal Form for Multicomponent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 3005

4 The Cauchy Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3007
4.1 Strict Dissipativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3008
4.2 Strong Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3009
4.3 Weak Solutions and Other Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . 3011

5 Relaxation Toward Chemical Equilibrium Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3012
5.1 Chemical Equilibrium Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3013
5.2 Convergence Toward Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3015

6 Models with Elementary Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3016
6.1 Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3016
6.2 Reaction–Diffusion Models as Fluid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3019
6.3 Traditional Reaction–Diffusion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3020

7 Index of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3021
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3024
9 Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3025
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3025

V. Giovangigli (�)
CMAP-CNRS, Ecole Polytechnique, Palaiseau Cedex, France
e-mail: vincent.giovangigli@polytechnique.fr

© Springer International Publishing AG, part of Springer Nature 2018
Y. Giga, A. Novotný (eds.), Handbook of Mathematical Analysis in Mechanics
of Viscous Fluids, https://doi.org/10.1007/978-3-319-13344-7_73

2979

mailto:vincent.giovangigli@polytechnique.fr
https://doi.org/10.1007/978-3-319-13344-7_73


2980 V. Giovangigli

Abstract

The mathematical modeling of chemically reacting mixtures is investigated. The
governing equations, which may be split between conservation equations, ther-
mochemistry, and transport fluxes, are presented as well as typical simplifications
often encountered in the literature. The hyperbolic–parabolic structure of the
resulting system of partial differential equations is analyzed using symmetrizing
variables. The Cauchy problem is discussed for the full system derived from the
kinetic theory of gases as well as relaxation toward chemical equilibrium fluids in
the fast chemistry limit. The situations of traveling waves and reaction–diffusion
systems are also addressed.

1 Introduction

Chemically reacting mixtures are often encountered in nature and industry, notably
in astronautics [4,80], chemical engineering [27,100,102], combustion [25,98,118],
or atmospheric phenomena [104]. This is an important motivation for investigating
chemically reacting mixture models and analyzing the mathematical structure and
properties of the resulting systems of partial differential equations [39].

Mathematical modeling of multicomponent reactive fluids is first investigated.
The equations governing such fluids may be derived from various macroscopic
theories like thermodynamics of irreversible processes [59, 90, 99], statistical
mechanics [6, 67], or statistical thermodynamics [77], as well as from finer
molecular theories like the kinetic theory of gases [16, 26, 33, 44, 85, 110, 116]. The
equations derived from the kinetic theory of reactive polyatomic gas mixtures are
presented. Such equations may be split between thermodynamics, chemistry, trans-
port fluxes, and coefficients. The structural properties extracted from the underlying
kinetic framework are transformed into relevant mathematical assumptions, thereby
soundly founding the mathematical model. Typical simplified diffusion fluxes are
addressed as well as irreversible chemistry often used in mathematical modeling
[34, 36, 37, 57, 58, 97, 113, 117]. The complete fluid model is finally recast into a
quasilinear system of partial differential equations.

The mathematical structure of the resulting system of partial differential equa-
tions is then analyzed taking into account multicomponent aspects such as complex
chemistry and detailed transport phenomena. Symmetrization is a requisite for
analyzing systems of partial differential equations of hyperbolic type [8, 18, 20, 35,
56, 103, 105] as well as hyperbolic–parabolic type [45, 50, 66, 70, 73, 74, 106]. Exis-
tence of a symmetrized form is related to the existence of a mathematical entropy
compatible with convective terms, dissipative terms, and sources. Symmetrizability
properties are investigated using entropic variables and next using normal variables
[45,70,73,106]. The natural entropic form and the natural normal form of the system
of partial differential equations modeling chemically reacting mixtures are finally
evaluated.

Existence of strong solutions to the Cauchy problem is then established for
the full multicomponent reactive fluid model derived from the kinetic theory of
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gases [39,43,45–47]. Global existence theorems of strong solutions around constant
equilibrium states are presented as well as asymptotic stability and decay estimates
[39,45,70,71,108]. The method of proof relies on the normal form of the governing
equations, on hyperbolic–parabolic estimates, and on the local strict dissipativity of
linearized equations [45,70,71,108]. Recent results concerning weak solutions with
large data for related nonreactive fluid models [1,13,14,21,22,30,31,83,94] as well
reactive fluid models [17, 19, 23, 32, 51, 64, 79, 87, 91, 123, 125] are also addressed.

Relaxation toward equilibrium states is an important process of natural phenom-
ena that has been the object of numerous studies [18, 53–55, 84, 93, 119]. In the
context of reactive flows, relaxation toward chemical equilibrium fluids is discussed.
Such chemical equilibrium fluid models are valid when chemical characteristic
times are small in comparison with flow characteristic times. The corresponding
variables are associated with atomic mass densities, momentum, and energy [39].
Global existence results independent of chemical characteristic times are obtained,
and convergence toward the chemical equilibrium fluid model is established [55].

Simplified situations where fluid dynamics remains elementary, namely, traveling
waves and reaction–diffusion systems, are next addressed. With traveling waves,
fluid dynamics is reduced to a scalar – the mass flow rate – which is an eigenvalue
of the system [9–11, 38, 61, 62, 101, 114, 115]. With reaction–diffusion systems, the
fluid velocity vanishes, and it is investigated when reaction–diffusion systems are
exact subsystems of reactive fluid models. Classical reaction–diffusion models from
the literature are also addressed [2, 3, 12, 34, 65, 69, 96, 97, 109, 113].

Open problems associated with chemically reacting mixtures and related models
are finally mentioned.

2 Mathematical Modeling of Reactive Fluids

The fundamental equations governing chemically reacting mixtures as derived from
the kinetic theory of gases are presented in this section.

2.1 Conservation Equations

The governing equations in a multicomponent reactive flow express the conservation
of species mass, momentum, and energy and may be written as [39, 59, 102, 118]

@t�k C r�.�kv/C r�Jk D mk!k; k 2 S; (1)

@t .�v/C r�.�v˝v C pI/C r�˘ D �b; (2)

@t .E C 1
2
�v�v/C r�

�
.E C 1

2
�v�v C p/v

�
C r�.Q C ˘ �v/ D �b�v; (3)

where @t denotes the time derivative operator, r the space derivative operator, �k
the mass density of the kth species, v the mass average flow velocity, Jk the
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diffusion flux of the kth species, mk the molar mass of the kth species, !k the
molar production rate of the kth species, S D f1; : : : ; ng the set of species indices,
n > 1 the number of species, � D

P
k2S �k the total mass density, p the pressure,

I the d -dimensional identity tensor, ˘ the viscous tensor, b the force per unit mass
acting on the species assumed to be species independent, E the internal energy per
unit volume, and Q the heat flux. The spatial dimension is denoted by d and the
spatial coordinates by x D .x1; : : : ; xd /

t ; the components of v and r are written as
v D .v1; : : : ; vd /

t and r D .@1; : : : ; @d /
t where vi denotes the velocity in the i th

spatial direction and @i the derivation in the i th spatial direction; and bold symbols
are used for vector or tensor quantities in the physical space Rd . The mass fluxes and
chemical production rates satisfy the mass conservation constraints

P
k2S Jk D 0

and
P

k2Smk!k D 0, and adding the species conservation equations, the total mass
conservation equation @t�C r�.�v/ D 0 is recovered.

These equations have to be completed by the relations expressing the thermody-
namic properties like p and E , the chemical production rates !k , k 2 S, and the
transport fluxes ˘ , Jk , k 2 S, and Q.

2.2 Thermochemistry

2.2.1 Thermodynamics
The thermodynamics of gas mixtures derived from the kinetic theory of dilute gases
coincides with that of ideal mixtures [39, 60, 78, 107]. This thermodynamics is
conveniently written using the state variable �1; : : : ; �n and T where T denotes
the absolute temperature and the vector of partial densities is denoted by % D

.�1; : : : ; �n/
t [39, 78]. Other state variables could be used as well and may lead

to slightly different mathematical formalisms [39, 60, 107]. The internal energy per
unit volume E and the pressure p may be written as

E.%; T / D
X

k2S

�kek.T /; p.%; T / D
X

k2S

RT
�k

mk

;

where ek is the internal energy per unit mass of the kth species and R the gas
constant. The internal energy ek of the kth species is given by

ek.T / D est
k C

Z T

T st
cvk.�/ d�; k 2 S;

where est
k is the standard formation energy of the kth species at the standard

temperature T st, cvk the constant volume specific heat of the kth species, and the

formation energy at zero temperature is given by e0k D ek.0/ D est
k �

R T st

0
cvk.�/ d� .

The (physical) entropy per unit volume S can be written in the form

S.%; T / D
X

k2S

�ksk.�k; T /;
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where sk is the entropy per unit mass of the kth species. This quantity is in the form

sk.�k; T / D sst
k C

Z T

T st

cvk.T
0/

T 0
dT 0 �

R

mk

log
� �k
�st
k

�
; k 2 S;

where sst
k is the formation entropy of the kth species at the standard temperature T st

and standard pressure pst and �st
k D mkp

st=RT st the standard density of the kth
species. Similarly, one can introduce the mixture enthalpy per unit volume H DP

k2S �khk.T /, the species enthalpies hk.T / D ek.T / C RT =mk , k 2 S, the
mixture Gibbs function per unit volume G D

P
k2S �kgk.�k; T /, the species Gibbs

functions gk.�k; T / D hk.T /�T sk.�k; T /, k 2 S, as well as the reduced chemical
potential�k.�k; T / D gk=RT , k 2 S. The mixture energy e, entropy s, enthalpy h,
Gibbs function g, and constant volume heat capacity cv per unit mass are naturally
defined by E D �e, S D �s, H D �h, G D �g, �cv D

P
k2S �kcvk and the total

energy and enthalpy per unit mass by etl D e C 1
2
jvj2 and htl D hC 1

2
jvj2.

The species mass fractions yk D �k=�, k 2 S, partial pressures pk D

�kRT =mk , k 2 S, and mole fractions xk D pk=p, k 2 S, are introduced as
well as the vectors � D .�1 : : : ; �n/

t , y D .y1 : : : ; yn/t , x D .x1 : : : ; xn/t , m D

.m1 : : : ; mn/
t , and 1I D .1 : : : ; 1/t and the mass matrix M D diag.m1; : : : ; mn/.

Denoting by h ; i the Euclidean scalar product, the mole fractions may also
be evaluated from xi D myi =mi where m is the mean molar weight given by
hy; 1Ii=m D

P
i2S yi =mi . The gradients of mole and mass fractions are related

through rx D Ery where E is the invertible matrix with components [37]

Ekk D
m

mk

C
xk

h1I; xi

�
1 �

m

mk

�
; Ekl D

xk
h1I; xi

�
1 �

m

ml

�
; k ¤ l; (4)

and detE D
Q
k2S.m=mk/, Ey D x, Et1I D 1I. Finally, when the components of a

vector � D .�1; : : : ; �n/
t are positive �i > 0, respectively nonnegative �i � 0, it is

written for short � > 0, respectively � � 0.
The mathematical assumptions concerning thermodynamic properties are the

following where ~ denotes a regularity class of thermodynamic functions [39].

(H1) The molar masses mk , k 2 S, and the perfect gas constant R are positive
constants. The formation energies est

k , k 2 S, and entropies sst
k , k 2 S, are real

constants. The specific heats cvk , k 2 S, are C~�1 functions of T 2 Œ0;1/.
There exist positive constants cv and cv such that 0 < cv 6 cvk.T / 6 cv for
T � 0 and k 2 S.

Denoting by D the total derivative, Gibbs’ relation T DS D DE �P
k2S gk D�k is obtained by using the expression of thermodynamic functions.

Using the conservation equations, one may then obtain the following balance
equation for S
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@tS C r�.vS/C r�
�Q

T
�

X

k2S

gk

T
Jk

�
D �

˘ :rv

T
�

Q�rT

T 2

�
X

k;l2S

Jk �r
�gk
T

�
�

X

k2S

gkmk!k

T
: (5)

The transport coefficients and the chemical production rates must ensure that
entropy production in the right-hand side of (5) is nonnegative.

Thermodynamics of fluid systems is classically introduced with the concept
of local state, that is, the classical laws of thermostatics are applied locally and
instantaneously at any point in the fluid system [59]. More satisfactory nonequi-
librium thermodynamics are obtained from molecular frameworks like statistical
mechanics [59, 77] or the kinetic theory of gases [16, 33, 39, 116] and have a
wider range of validity. The physical justification of the existence of a local state
indeed arises from the Boltzmann equation which shows that the species distribution
functions are essentially Maxwellian distributions when collisions are dominant.
Thermodynamics may finally be generalized to encompass the situation of nonideal
mixtures which are especially important for supercritical fluids and generally at high
pressure [48, 60], but such extension lay out of the scope of the present notes.

2.2.2 Complex Chemistry
Complex chemical networks typically involve a large set of elementary chemical
reactions and may be written as [39, 60, 78, 107]

X

k2S

�f
ki Mk �

X

k2S

�b
ki Mk; i 2 R;

where Mk is the chemical symbol of the kth species, �f
ki and �b

ki the forward and
backward stoichiometric coefficients of the kth species in the i th reaction, R D

f1; : : : ; nrg the set of reaction indices, and nr > 1 the number of chemical reactions.
The overall stoichiometric coefficients are defined by �ki D �b

ki � �f
ki and the

reaction vectors by �f
i D .�f

1i ; : : : ; �
f
ni /

t , �b
i D .�b

1i ; : : : ; �
b
ni /

t , �i D .�1i ; : : : ; �ni /
t .

Note that elementary chemical reactions – representative of molecular events – are
reversible as established from statistical mechanics [77] and the kinetic theory of
reactive gases [39].

The species of the mixture are assumed to be constituted by atoms, and akl

denotes the number of l th atom in the kth species, A D f1; : : : ; nag the set of
atom indices, na > 1 the number of atoms – or elements – in the mixture, and
al D .a1l ; : : : ; anl /

t the l th atom vector. In order to simplify the presentation of
chemical equilibrium limits, it is assumed that the atoms are included in the set
of species. Without loss of generality, one may assume that the atoms are the first
na species so that akl D ıkl for k; l 2 A. The conservation of atoms in chemical
reactions naturally yields that h�i ; ali D 0 for i 2 R and l 2 A. The species masses
are also given by mk D

P
l2Amlakl or, in vector form, m D

P
l2Amlal . The mass
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density of the l th atom present in all the species further reads e�l D mlhM
�1al ; %i

and is distinct from the mass density �l of the l th atom as a species. The vectors
eal D mlM

�1al , l 2 A, naturally associated with the atom densities e�l D heal ; %i,
l 2 A, are further introduced, and e% D .e�1; : : : ;e�na/

t denotes the vector of atom
mass densities.

The vector spaces spanned by the reaction vectors and by the atom vectors
are denoted by R D Spanf �i ; i 2 R g and A D Spanf al ; l 2 A g. Atom
conservation then yields A � R?, and in order to simplify the presentation of
chemical equilibrium, it is assumed in these notes that A D R? or equivalently
R D Spanf �i ; i 2 R g D A?. This assumption means that the chemical
equilibrium states of the reaction mechanism M� 2 R? coincide with the natural
chemical equilibrium states obtained when all possible chemical reactions are taken
into account M� 2 A. Keeping in mind that the atomic species have been chosen
as the first na species so that akl D ıkl for k; l 2 A, the dimension of A
is na and the dimension of R is n � na. For each species that is not an atom
k 2 SnA D fnaC1; : : : ; ng, one may further introduce the corresponding formation
reaction vector vk D .�ak1; : : : ;�akna ; 0; : : : ; 0; 1; 0; : : : ; 0/

t where the 1 is at the
kth place or equivalently vk D �

P
l2A aklel C ek , where ei , 1 � i � n, denote

the basis vectors of R
n. The formation reaction vector vk is associated with the

reaction
P

l2A akl Ml � Mk that may not necessarily be part of the reaction
mechanism. It may easily be checked that the reaction vectors may be written as
�i D

P
k2SnA �kivk , i 2 R, in such a way that vk , k 2 SnA, form a basis of R

that is of dimension n � na.
The molar production rates that are considered are the Maxwellian production

rates obtained from the kinetic theory [26, 39, 85] when the chemical characteristic
times are larger than the mean free times of the molecules and the characteristic
times of internal energy relaxation. Letting ! D .!1; : : : ; !n/

t , these rates are in
the form

! D
X

i2R

�i�i ; (6)

where �i is the rate of progress of the i th reaction. The rate of progress �i is given by

�i D Ks
i

�
exph�;M�f

i i � exph�;M�b
i i

�
; (7)

where Ks
i is the symmetric constant of the i th reaction, as deduced from the kinetic

theory [39] as well as thermodynamics or statistical mechanics [57, 77, 86]. Using
�k D �u

k.T / C .1=mk/ log.�k=mk/ where �u
k.T / D �k.mk; T / only depends on

temperature, the rates of progress (7) are found to be compatible with the law of
mass action since they may be written as

�i D Kf
i

Y

l2S

� �l
ml

��f
li

� Kb
i

Y

l2S

� �l
ml

��b
li
: (8)

The forward and backward rate contants Kf
i and Kb

i of reaction i are Maxwellian
averaged values of molecular chemical transition probabilities and satisfy the
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reciprocity relations Kf
i .T / D Kb

i .T /Ke
i .T / where logKe

i .T / D �h�i ;M�ui,
i 2 R, and �u D .�u

1; : : : ; �
u
n/
t [24, 39]. These reciprocity relations are closely

associated with reciprocity relations between reactive transition probabilities and
may be seen as Onsager relations for chemistry. The mass weighted chemical source
term M! may also be written in quasilinear form M! D ��� where � is the
square matrix of size n

� D
X

i2R

�iM�i˝M�i ; (9)

and �i D Ks
i

R 1
0

exp
�
he�f
i ; �i C �he�b

i � e�f
i ; �i

�
d� . The coefficients �i , i 2 R, are

positive so that the matrix � is symmetric positive semi-definite with nullspace
N.�/ D M�1A and range R.�/ D MR. The mathematical assumptions
concerning chemistry are finally the following.

(H2) The stoichiometric coefficients �f
ki and �b

ki , k 2 S, i 2 R, and the atomic
coefficients akl , k 2 S, l 2 A, are nonnegative integers. The first na species
are the atoms and the linear subspaces R and A are orthogonal complements
R D A?. The vector of species molar masses m is given by m D

P
l2Aml al .

Finally the symmetric reaction constants Ks
i are C~ positive functions of T >

0 for i 2 R.

Using the expression of the species production rates and of the reaction rates
of progress, the entropy production due to chemistry �

P
k2S gkmk!k=T D

�Rh�;M!i is easily rewritten in the form

�Rh�;M!i D
X

i2R

RKs
i

�
h�;M�f

i i � h�;M�b
i i

� �
exph�;M�f

i i � exph�;M�b
i i

�
:

(10)

Entropy production due to chemistry thus appears as a sum of nonnegative terms in
full agreement with the second principle of thermodynamics. The relation (10) also
appears as a macroscopic consequence of Boltzman H-theorem involving reactive
collisions.

2.2.3 Chemical Equilibrium
Chemical equilibrium points are defined in the following proposition using the
expression of entropy production due to chemistry (10) [39, 78, 107].

Proposition 1. Assume that (H1)–(H3) hold and let % > 0 and T > 0. The
following statements are equivalent :

(i) The entropy production due to chemistry vanishes �Rh�;!i D 0.
(ii) The reaction rates of progress vanish �j D 0, j 2 R.

(iii) The species production rates vanish ! D 0.
(iv) The vector � belongs to .MR/?.
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A point T > 0, % > 0, which satisfies these equivalent properties is termed an
equilibrium point.

Property .i i/ implies that all chemical reactions are equilibrated when the
species production rates vanish and is termed the detailed balance property. Only
positive equilibrium states with % > 0, i.e., �i > 0, i 2 S, which are in the interior
of the composition space are considered in these notes. Spurious points with zero
mass fractions where the source terms !k , k 2 S, vanish – termed “boundary
equilibrium points” – are of a different nature [39]. Properly structured chemical
kinetic mechanisms automatically exclude such spurious points unless some atom
is missing in the mixture [39].

Proposition 2. For Te > 0 and Q% > 0 there exists a unique equilibrium point
%e > 0 such that h%e;eali D e�l , for l 2 A. In other words, there exits a unique %e

such that �.%e; Te/ 2 M�1A and h%e;eali D e�l , for l 2 A, and the equilibrium
partial densities %e are C~ function of .e%; Te/.

Proof. The proof is only sketched and we refer to [39, 48, 78] for more details. For
e% > 0, there exists %sp > 0 with h%sp;eali D e�l taken as %sp D

P
l2Ae�lel C

ı
P

k2SnAMvk for ı > 0 small enough. The equilibrium point is then investigated
in the simplex I D .%sp C MR/ \ .0;1/n, and the Helmholtz free energy F D

E�TeS is shown to be continuous over the closure I D .%spCMR/\Œ0;1/n which
is a compact set. The function F is strictly convex on I and achieves its maximum
at %e in the interior of the simplex since the proper derivatives have the wrong sign
near boundaries [39]. This point %e is next shown to be an equilibrium point using
that @%F D RTe� and that MR is in the tangent space of the simplex. Uniqueness
of the equilibrium point on the simplex is then a consequence of the strict convexity
of F . Finally, the equilibrium partial densities %e are C~ function of .e%; Te/ as a
direct application of the implicit function theorem [39, 78]. ut

The energy and entropy per unit volume at equilibrium are defined from

Ee.e%; Te/ D E
�
%e.e%; Te/; Te

�
D

X

k2S

�ek.e%; Te/ ek.Te/;

Se.e%; Te/ D S
�
%e.e%; Te/; Te

�
D

X

k2S

�ek.e%; Te/sk
�
�ek.e%; Te/; Te

�
;

and the specific heat at constant volume by �ecev D @TeEe.e%; Te/. The pressure
pe is given by pe D RTe

P
k2S �ek=mk , the Gibbs function per unit volume by

Ge D Ee C pe � TeSe, and the total density �e can be written as �e D
P

k2S �ek DP
l2Ae�l . The energy and entropy per unit volume at chemical equilibrium Ee and

Se are a C~ functions of the variables .e%; Te/ over the domain Te > 0, e% > 0.

Lemma 1. The specific heat at chemical equilibrium �ecev D @TeEe.e%; Te/ is
positive �ecev > 0 and the map .e%; Te/ ! .e%; Ee/ is a C~ diffeomorphism from
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the domain Te > 0, e% > 0 onto an open set. Over this domain, denoting by @ the
derivation with respect to .e%; Ee/, the following relations hold:

@EeSe D
1

Te
; @e�lSe D �

gel

Te
; l 2 A; (11)

where gel D gl
�
�el .e%; Te/; Te

�
, for l 2 A, so that Te DSe D DEe �

P
l2A gel De�l ,

and moreover Se is a strictly concave function of .e%; Ee/.

The proof of this proposition relies on clever manipulations of equilibrium point
constraints and properties as well as their derivatives with respect to Te and e% [55].

2.2.4 Irreversible Reactions
Even though elementary chemical reactions are always reversible, it may happen
that some chemical reactions are approximated or modeled as being irreversible.
This is the case in particular for global reactions that typically simplify a complex
chemical process into a few reaction paths that are not representative of molecular
events. It is thus important to analyze the situation where both reversible and
irreversible reactions are present in a given chemical reaction mechanism, and such
an analysis has been conducted by Gorban and Yablonski [57] and Gorban, Mirkes,
and Yablonski [58].

In this situation, one may introduce the indexing set of reversible reaction
Rrev, the indexing set of irreversible reactions Rirv, the vector space spanned by
the reversible reactions Rrev D Spanf �i ; i 2 Rrev g, and the convex hull of
the set of irreversible reactions C irv D Convf �i ; i 2 Rirv g. Systems that are
well behaved are obtained as limits of sets of reversible reactions and satisfy two
important properties. There is first a geometric structural condition Rrev \ C irv D ;

that essentially states that irreversible reactions cannot be included in oriented
cyclic pathways. There are then algebraic conditions which state that the subset of
reversible reactions is structured as in the previous section so that detailed balance
holds at equilibrium as established in Proposition 1. In the situation where there is
no reversible reaction, a chemical model investigated by Feinberg [29] is recovered.
There is no well-defined and satisfactory thermodynamics for such systems with
irreversible reactions, however, and different Lyapunov functions have to be used to
capture the relaxation of the reversible and of the irreversible parts of the chemical
reaction mechanism [58].

2.3 Multicomponent Transport

2.3.1 Transport Fluxes and Coefficients
The transport fluxes ˘ , Jk , k 2 S, and Q due to spatial gradients may be
obtained from various macroscopic and molecular theories, but only the kinetic
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theory provides the transport coefficients [16, 24, 33, 39, 44, 116]. These fluxes may
be written as

˘ D � 	.r�v/I � 

�
rv C .rv/t � 2

d 0
.r�v/I

�
; (12)

Jk D �
X

l2S

Ckl .bd l C xle�lr logT /; k 2 S; (13)

Q D � �rT C
X

k2S

.RT
e�k
mk

C hk/Jk; (14)

where 	 denotes the volume viscosity, 
 the shear viscosity, I the d dimensional
identity tensor, Ckl , k; l 2 S, the multicomponent flux diffusion coefficients, bdk ,
k 2 S, the unconstrained diffusion driving forces, t the transposition operator,
e�k , k 2 S, the rescaled thermal diffusion ratios, and � the thermal conductivity.
The spatial components of the transport fluxes are written in the form Q D

.Q1; : : : ;Qd /
t , Jk D .Jk1; : : : ;Jkd /t , and ˘ D .˘ij /1�i;j�d . In the expression of

the viscous tensor, d 0 denotes the dimension of the velocity space in the underlying
kinetic framework. It will be assumed in the following that the dimension of the
kinetic velocity space d 0 is such that 2 � d 0 and d � d 0. The assumption
1 � d � d 0 means that the spatial dimension d of the model has eventually been
reduced, so that the equations are considered in R

d independently from kinetic
velocity fluctuations that always have dimension d 0. The assumption 2 � d 0 is
natural since d 0 D 3 in the physical world and since rv C .rv/t � .2=d 0/.r�v/I

is identically zero when d 0 D d D 1.
When the mass fractions are nonzero, it is also possible to define the species

diffusion velocities vk , k 2 S, by

vk D
Jk

�k
D �

X

l2S

Dkl.bd l C xle�lr logT /;

where Dkl D Ckl=�k , k; l 2 S, are the multicomponent diffusion coefficients.
The diffusion coefficients considered in these notes are the symmetric coefficients
introduced by Waldmann [116]. Letting C D .Ckl /k;l2S, D D .Dkl /k;l2S, and
Y D diag.y1; : : : ; yn/, then D D .1=�/Y�1C is symmetric positive semi-definite
with nullspace Ry. The diffusion driving forces are defined by bdk D .rpk/=p D

rxk C xkr logp, k 2 S. The alternative diffusion driving forces dk D rxk C�
xk � yk

�
r logp that sum up to zero may equivalently be used since Dy D 0

and d D bd � yhbd ; 1Ii where d D .d1; : : : ;dn/
t and bd D .bd1; : : : ;bdn/

t . We also
define for convenience the full constrained diffusion driving forces d 0

k D dk C

xke�kr logT , k 2 S, that sum up to zero and also include Soret effects, as well as
d 0 D .d 0

1; : : : ;d
0
n/
t . There exist many alternative forms of multicomponent fluxes

that lay out the scope of the present notes [24, 39].
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The transport coefficients for gas mixtures are not given explicitly by the
kinetic theory of gases but require solving transport linear systems [16, 24, 33, 39,
116]. These linear systems arise from Galerkin solution of systems of linearized
Boltzmann equations obtained from the Chapman-Enskog method. The mathemat-
ical properties of transport coefficients may be extracted from the properties of
Boltzmann linearized collision operator or from the structure of transport linear
systems [16, 24, 33, 36, 37, 44, 116]. The symmetry properties of the transport
coefficients are notably inherited from the symmetry properties of the Boltzmann
collision operator. The main symmetry properties, mass conservation constraints,
as well as positivity properties of transport coefficients may be summarized in the
following form.

.H3/ The flux diffusion matrix C D .Ckl /k;l2S, the rescaled thermal diffusion
ratios vector e� D .e�1; : : : ;e�n/t , the volume viscosity 	, the shear viscosity

, and the thermal conductivity � are C~ functions of y > 0 and T > 0. They
satisfy the mass conservation constraints N.C/ D Ry, R.C/ D 1I?, and
e� 2 x?. The thermal conductivity � and the shear viscosity 
 are positive and
the volume viscosity 	 is nonnegative. The diffusion matrixD D .1=�/Y�1C

is symmetric positive semi-definite, and its nullspace is N.D/ D Ry.

Both the entropy production terms due to viscous phenomena and heat and mass
transfer

�
˘ :rv

T
D
dd 0	 C 2
.d 0 � d/

dd 0T
.r�v/2 C




2T

ˇ̌
rv C rvt � 2

d
.r�v/ I

ˇ̌2
;

(15)

�
Q�rT

T 2
�

X

k;l2S

Jk �r
�gk
T

�
D �

jrT j2

T 2
C
p

T

X

k2S

Dkld
0
k �d

0
l ; (16)

are then nonnegative where d 0
k D dk C xke�kr logT .

The behavior of transport coefficients for large and small temperature may
also be required. This behavior is inherited from that of transport linear systems
through collision integrals [38, 39]. One may typically assume that there exists
a positive function '.T / defined for T > 0 such that the reduced coefficients
C0.y; T / D C.y; T /='.T /, �0.y; T / D �.y; T /='.T /, and e�0.y; T / D e�.y; T /
have continuous extensions for T 2 Œ0;1
, y > 0, y ¤ 0, that satisfy all previous
properties of transport coefficients [38, 39]. The temperature scale for transport
coefficients ' depends on the interaction potentials between particles [38], and for
rigid spheres one has, for instance, '.T / D

p
T [16, 33].

2.3.2 Stefan-Maxwell-Type Equations
The preceding assumptions on the transport coefficients (H3) are a first set of
physically realistic assumptions. In a number of situations, however, finer properties
may be required, namely, more information about the dependence on species mass
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or mole fractions of the transport coefficients. As an illustration, finer properties
of diffusion coefficients obtained from typical transport linear systems [24, 37] that
lead to Stefan-Maxwell-type equations are investigated in this section. For the sake
of simplicity, we only discuss diffusion fluxes due to concentration gradients and
associated with the diffusion driving forces d . The Soret cross effets may simply
be obtained by using the complete driving forces d 0 instead of d . The situation of
positive species is first considered and next the case of nonnegative species. The
Stefan-Maxwell matrix � D .�kl /kl2S has coefficients

�kk D
X

l2S
l¤k

xkxl
Dbin
kl

; �kl D �
xkxl
Dbin
kl

; k ¤ l; (17)

where Dbin
kl denotes the binary diffusion coefficient of the species pair .k; l/

and xk the mole fraction of the kth species. The kinetic theory of gases shows
that, at first order, the coefficients Dbin

kl only depend on pressure and temperature
Dbin
kl D Dbin

kl .p; T /. More generally, for more accurate multicomponent diffusion
coefficients, the quantities Dbin

kl , k; l 2 S, are Schur complements arising from
transport linear systems of size larger than n and are then functions of all state
variables [24]. Similarly, with the kinetic theory of dense gases, the binary diffusion
coefficients are also functions of the state variables .�1; : : : ; �n; T /t . These binary
diffusion coefficients are assumed to be symmetric and smooth functions of the state
variable, and it is also assumed in this section that % > 0 or equivalently � > 0 and
y > 0, that is, yi > 0 for i 2 S. It is not necessarily assumed that hy; 1Ii D 1

in such a way that the analysis may also be used for other rescaled Stefan-Maxwell
type systems of equations. The mole fractions are defined from xi D myi =mi where
hy; 1Ii=m D

P
i2S yi =mi so that h1I; xi D h1I; yi and In denotes the identity matrix

in n dimensions. The following properties of the matrix � are easily established
[36, 37, 39].

Proposition 3. Assume that the coefficients Dbin
kl , k; l 2 S, k ¤ l , are positive and

symmetric and that the species mass fractions are positive. Then � is symmetric
positive semi-definite,N.�/ D R 1I, R.�/ D 1I?,� is irreducible and is a singular
M -matrix.

The multicomponent diffusion matrix D may then be obtained as a generalized
inverse of � [36, 37, 39].

Proposition 4. Keeping the assumptions of Proposition 3, there exists a unique
generalized inverse D of � with prescribed range y? and nullspace Ry, that is,
a unique matrix D such that D�D D D, �D� D �, R.D/ D y?, and N.D/ D

Ry. This matrix D is positive semi-definite and such that �D D In � y˝ 1I=hy; 1Ii
and D� D In � 1I˝ y=hy; 1Ii. Finally D D .� C ay˝y/�1 � b1I˝1I for any
positive a; b with abhy; 1Ii2 D 1, D is a smooth function of T > 0 and y > 0 and is
irreducible.
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The Stefan-Maxwell relations for the diffusion matrix D derived from the
kinetic theory are in the form �D D In � y˝1I=hy; 1Ii and must be completed
by the mass constraint Dy D 0 or R.D/ � y? [16, 24, 33, 36, 37, 39, 116].
The unique solution to these equations is the generalized inverse matrix D of
Proposition 4. In particular, using the matrix D is equivalent to solving the
traditional Stefan-Maxwell equations for the diffusion velocities. Denoting indeed
by v the vector of diffusion velocities v D .v1; : : : ; vn/t where Jk D �kvk for
k 2 S, and d D .d1; : : : ;dn/

t , the vector of constrained diffusion driving forces
with h1I;di D 0, then v D �Dd so that after a little algebra the traditional Stefan-
Maxwell relations with a mass conservation constraint are recovered

�v D �d ; hv; yi D 0: (18)

In particular, from Proposition 4, the general assumptions (H3) do include diffusion
matrices arising from the traditional Stefan-Maxwell equations (18).

In order to investigate finer properties of the diffusion matrix D, the situation
where some mass fractions are vanishing must be analyzed. The flux Stefan-
Maxwell matrix � D .�kl /kl2S has coefficients

�kk D
1

�

m

mk

X

l2S
l¤k

xl
Dbin
kl

; �kl D �
1

�

m

ml

xl
Dbin
kl

; k ¤ l; (19)

is such that � D �� Y , and the following properties are easily established [37, 39].

Proposition 5. Assume that the coefficients Dbin
kl , k; l 2 S, k ¤ l , are positive and

symmetric and that the species mass fractions are nonnegative y � 0 and nonzero
y ¤ 0. Then N.� / D R y, R.�/ D 1I?, and � is a singular M -matrix.

The multicomponent flux diffusion matrix C may then be obtained as a general-
ized inverse of � [37, 39].

Proposition 6. Keeping the assumptions of Proposition 5, there exists a unique
group inverse C of � , that is, a unique matrix C such that C� C D C , � C� D � ,
and C� D � C . The matrix C is also the generalized inverse with prescribed
range 1I? and nullspace Ry so that R.C/ D 1I?, N.C/ D Ry, � C D C� D

In � y˝1I=hy; 1Ii. Moreover, C D .� C ay˝1I/�1 � by˝1I for any a; b positive
with abhy; 1Ii2 D 1. The coefficients of C are smooth functions of T and y � 0,
y ¤ 0, and when the mass fractions are positive, C andD are such that C D �YD.

The Stefan-Maxwell relations for the diffusion matrix C derived from the kinetic
theory are in the form � C D In � y˝1I=hy; 1Ii and must be completed by the
mass constraint Cy D 0 or R.C/ � 1I? [37, 39]. The unique solution to these
equations is the generalized inverse matrix C of Proposition 6. Using the matrix C
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is also equivalent to solving the flux Stefan-Maxwell equations that are in the form
�J D �d with the constraint hJ; 1Ii D 0 where J D .J1; : : : ;Jn/

t . Using the
matrix C , it is further possible to clarify the behavior of the matrix C when some
mass fractions are vanishing.

Proposition 7. Let y > 0, y ¤ 0, SC D f k 2 S; yk > 0 g, S0 D f k 2 S; yk D

0 g, and PS denote the permutation matrix associated with the reordering of S into
.SC;S0/. Then the following block structure holds

PtS C PS D

�
CCC CC0

0 C 00

�
;

where C00 is diagonal with positive diagonal coefficients and where DCC defined
by �DCC

kl D CCC
kl =yk , k; l 2 SC, is symmetric positive semi-definite with

nullspace RyC where yC corresponds to the SC mixture, that is, y D PS.yC; 0/t .

The flux diffusion matrixC and more generally all the other transport coefficients
�, 
, e�, and 	 have smooth extensions to the domain y � 0 and y ¤ 0 [24].
This is also the case for the nondiagonal coefficients Dij for i ¤ j , whereas
the coefficient Cii D �iDii has a finite positive limit when �i ! 0 [24, 37, 39].
This is a direct consequence of Proposition 7 which yields that Cij D 0 when

i ¤ j and yi D 0 in such a way that �Dij D
R 1
0
@yi Cij

�
by.�/

�
d� for i ¤ j

where by.�/ D .y1; : : : ; yi�1; �yi ; yiC1; : : : ; yn/t . This generally allows to use the
maximum principle in order to establish that the mass fractions remain nonnegative.
One may indeed decompose !i in the form !i D ai � yi bi where ai and bi are
nonnegative [39] as well as Ji D Ciiryi C yi fi for some vector fi , and the
maximum principle applied to the partial differential equation governing yi with
proper boundary conditions generally yields that yi � 0. Entropy production due to
diffusive processes and involving the quadratic form associated with the matrix D
on the hyperplane 1I? is now investigated [38, 39].

Proposition 8. There exists a positive constant ı such that

8 y > 0 with hy; 1Ii D 1; 8 x 2 1I?; ı
X

k2S

x2k
yk

�
p

T

X

k;l2S

Dklxkxl : (20)

Proof. Defining bDkk D Ckk for k 2 S, and bDkl D �Dkl

p
ykyl for k; l 2 S,

k ¤ l , then bD is a continuous function over y � 0, hy; 1Ii D 1. The map .y; x/ !

hbD.y; T /x; xi over y � 0, hy; 1Ii D 1, kxk D 1, hx;
p

yi D 0 then reaches a
minimum that is shown to be positive; otherwise, x D 0 contradicting kxk D 1.
Changing of variable zk D xk

p
yk , k 2 S, finally completes the proof [38]. ut
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Entropic estimates for diffusive processes thus typically involve quantities
in the form

P
k2S

R
˝

jdkj
2=yk dx as was first used for traveling waves with

complex chemistry and detailed multicomponent transport [38]. Letting Y D

diag.y1; : : : ; yn/, the nonzero eigenvalues of Y1=2DY1=2 may also directly be
estimated from Proposition 8. Indeed if � is a nonzero eigenvalue of Y1=2DY1=2

with eigenvector x, then x D .1=�/Y1=2DY1=2x so that Y1=2x 2 1I?, and one may
directly use (20) to deduce that ı � .p=T /� . The case of the matrix X 1=2DX 1=2

where X D diag.x1; : : : ; xn/ may then be deduced from that of Y1=2DY1=2.

2.3.3 Simplified Diffusion Models
In order to simplify diffusive processes, one may first neglect the Soret and Dufour
cross effects by letting e� D 0 in such a way that pv D �Dr.p1; : : : ; pn/

t . Further
neglecting barodiffusion – a typical approximation for small Mach number flows –
then yields v D �Drx, and from rx D Ery, one obtains v D �DEry. One
may then try to either simplify C and D and use pv D �Dr.p1; : : : ; pn/

t or
v D �Drx, or, alternatively, simplify CE and DE and use v D �DEry.

In order to simplify diffusive processes, it is natural to seek for diagonal
structures. However, it is established that none of these diffusion matrices may
be diagonal because of mass constraints, and when partial densities are positive,
it is even established that C and D are irreducible [37]. One may thus seek for
the weaker but sufficient property that they coincide with a diagonal matrix on the
physical hyperplane 1I? since d , rx, and ry always remain on 1I? [37].

Assuming that y > 0, the diffusion matrices C or D coincide with a diagonal
matrix on the physical hyperplane 1I? if and only if the productsmlmlDbin

kl are equal,
and in this situation C coincide with a scalar matrix and all diagonal coefficients are
equal [37]. Similarly, still assuming y > 0, the matrices CE andDE coincide with a
diagonal matrix on the physical hyperplane 1I? if and only if all the binary diffusion
coefficients Dbin

kl are equal, and in this situation CE coincide with a scalar matrix
and all diagonal coefficients are equal [37].

Such strong constraints on binary diffusion coefficients are not likely to happen in
practice. Therefore, in order to obtain simplified diffusion processes still avoiding
constraints on binary diffusion coefficients, it is mandatory to assume that some
mass fractions are vanishing, that is, to assume that some species are in trace
amounts [37, 39]. In order to obtain a diagonal diffusion process avoiding any
constraint between binary diffusion coefficients, a dilution limit must be used
and one species has to be discarded. Introducing the pure species state yp D

.y1; 0; : : : ; 0/t where y1 > 0 one has the following limit [37]:

lim
y!yp

C.y/ D

2

6666
66
4

0 �ı2 � � � � � � �ın
0 ı2 0 � � � 0
::: 0

: : :
: : :

:::
:::
:::
: : :

: : : 0

0 0 � � � 0 ın

3

7777
77
5

;
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where the coefficients ık D mkDbin
kn=mn, 2 � k � n, are positive. As a consequence,

in the limit y D yp, one obtains that Jk D �ıkryk for 2 � k � n keeping in mind
that dk D ryk D rxk when yk D 0. Assuming that the first species is in excess,
one may assume that y1 ' 1 remains constant and use that Jk D �ıkryk for
2 � k � n and the resulting diffusion process for the reduced set of n � 1 trace
species is then diagonal. This is the dilution approximation, and discarding the first
species with a new indexing set S0 D Snf1g D f2; : : : ; ng, it is obtained that
Jk D �ıkryk , for k 2 S0.

Finally, with the full transport model derived from the kinetic theory, the fluxes
are given by Jk D �

P
l2S Cklrxl with k 2 S, and diffusive processes are

complex and nondiagonal and couple all species. Moreover, this diffusion model
is intrinsically nonlinear since N.C/ D N.D/ D Ry so that it is not possible
to assume that C or D is constant since y is varying. But the mass conservation
constraint

P
k2S Jk D 0 still holds, that is, diffusion is not creating mass and the

total mass conservation equation @t� C r � .�v/ D 0 is recovered from the species
equations. On the other hand, with the dilution approximation, Jk D �ıkryk ,
for k 2 S0, diffusive processes for the trace n � 1 species lead to uncoupled heat
equation operators for the S0 species, and the diagonal coefficients ık , k 2 S0, may
even be taken as constants. But the mass fluxes

P
k2S0 Jk D �

P
k2S0 ıkryk do

not sum to zero for the reduced system of S0 species. In this situation, the diffusion
is diagonal with constant coefficients, but diffusion is creating mass for the reduced
system of S0 species since

P
k2S0 Jk may differ from zero and a priori estimates

of the species mole or mass fractions may be a difficult problem [96].

2.4 Boundary Conditions

A detailed discussion of boundary conditions for multicomponent reactive flows lay
out the scope of these notes, and the reader is referred to [8,39,76,95,98]. Boundary
conditions may be complex with subsonic inflow or outflow, free boundaries, elastic
interactions, thermal interactions, as well as heterogeneous chemical reactions. The
aim of this section is only to present a set of simplified boundary conditions often
used at nonreactive impermeable wall boundaries.

A gaseous mixture occupying a domain Ox � R
d in contact with a fixed solid

body at the boundary @Ox satisfies the adherence condition

v.x/ D 0; x 2 @Ox: (21)

The temperature may either be prescribed at the solid boundary T D Tw where Tw

is a given temperature field on @Ox , or the wall may be adiabatic

Q.x/�n D 0; x 2 @Ox; (22)
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where n denotes the normal vector at the boundary. The species boundary conditions
at a nonreactive wall are also of flux type

Jk.x/�n D 0; x 2 @Ox; k 2 S: (23)

The set of boundary conditions v D 0, Q�n D 0, and Jk �n D 0; k 2 S, at @Ox is
often used in the mathematical modelling of reactive mixtures [23,32,51,64,79,91,
122].

2.5 Quasilinear Form

2.5.1 Vector Notation
The equations governing multicomponent flows (1), (2), and (3) can be written in
vector form

@tu C
X

i2D

@iFi C
X

i2D

@iFdiss
i D Ω; (24)

where u is the conservative variable, @i the spatial derivative operator in the i th
spatial direction, D D f1; : : : ; dg the indexing set of spatial directions, d 2 f1; 2; 3g

the spatial dimension, Fi the convective flux in the i th direction, Fdiss
i the dissipative

flux in the i th direction, and Ω the source term. Letting n D n C d C 1, the
conservative variable u 2 R

n is found to be

u D
�
�1; : : : ; �n; �v; E C 1

2
�v�v

�t
; (25)

and the natural variable is defined by z D
�
�1; : : : ; �n; v; T

�t
. For convenience, the

velocity components of vectors in R
n D R

n � R
d � R are written as vectors of Rd ,

and bold symbols are used for vector or tensor quantities in the physical space R
d .

Proposition 9. The map z 7�! u is a C~ diffeomorphism from the open set Oz D

.0;1/n�Rd�.0;1/ onto an open set Ou. The open set Ou is convex and given by

Ou D f u 2 R
nI uk > 0; 1 � k � n; un � �.u1; : : : ; unCd / > 0 g;

where �.u1; : : : ; unCd / D 1
2
.u2nC1 C � � � C u2nCd /=

P
k2S uk C

P
k2S uke0k and e0k is

the energy of formation of the kth species at zero temperature.

Proof. The map z ! u is easily shown to be one to one from Oz onto Ou using
the positivity of the constant volume-specific heats. The Jacobian matrix @zu has a
triangular structure and is invertible, and one may use the inverse function theorem.

ut
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2.5.2 Directional Fluxes
The convective flux Fi in the i th direction, the diffusive fluxes Fdiss

i in the i th
direction, and the source term Ω read

Fi D
�
�1vi ; : : : ; �nvi ; �viv C pei ; .E C 1

2
�v�v C p/vi

�t
;

Fdiss
i D

�
J1i ; : : : ; Jni ; ˘ i ; Qi C ˘ i �v

�t
;

Ω D
�
m1!1; : : : ; mn!n; 0; 0

�t
;

where ei denotes the i th basis vector in the physical space R
d , Jki the diffusion

flux of the kth species in the i th direction, Qi the heat flux in the i th direction,
˘ i the vector ˘ i D .˘1i ; : : : ; ˘di /

t , 0 D .0; : : : ; 0/t , and where it is assumed
that the force term b vanishes. The dissipative fluxes may also be written as
Fdiss
i D �

P
j2D

bBij .u/@j z since all transport fluxes are linear expressions in
terms of the gradients of the natural variable z. Since z ! u is a smooth
diffeomorphism, defining Bij .u/ D bBij .u/@uz, i; j 2 D, it is obtained that
Fdiss
i D �

P
j2D Bij .u/@ju, i 2 D, where the dissipation matrix Bij relates the

dissipative flux in the i th direction to the gradient of the conservative variable in the
j th direction. Further denoting by Ai D @uFi , i 2 D, the convective flux Jacobian
matrices, a quasilinear system in the conservative variable u is finally obtained. The
mathematical structure of such quasilinear systems is discussed in the next section.

3 Hyperbolic–Parabolic Structure

Symmetrization of quasilinear second-order systems of partial differential equa-
tions is discussed using entropic variables and normal variables. The hyperbolic–
parabolic structure of the resulting systems of partial differential equations is then
addressed. The natural entropic symmetrized form as well as the natural normal
form for the system of partial differential equations modeling multicomponent
reactive fluids are evaluated.

3.1 Entropic Variables

A second-order quasilinear system of conservation laws in the general form

@tu C
X

i2D

Ai .u/@iu �
X

i;j2D

@i
�
Bij .u/@ju

�
� Ω.u/ D 0; (26)

is considered where u 2 Ou, Ou is an open convex set of R
n, and n � 1. The

system coefficients are such that Ai D @uFi and the convective fluxes Fi , i 2 D,
the dissipation matrices Bij , i; j 2 D, and the source term Ω are assumed to be C~

over Ou where ~ � 3.
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A mathematical entropy for the system of partial differential equations (26) must
be compatible with the convective terms, the dissipative terms, as well as the source
terms. The definition presented in [49, 50, 53] is used and simplified to the situation
where the set Ou is convex. Properties (E1)(E2) concerning the convective terms
have been adapted from [35,56], properties (E3)(E4) associated with the dissipative
terms have been adapted from [70,71,73,108], properties (E5)–(E7) concerning the
source terms have been adapted from [18, 74], and ˙d�1 denotes the sphere in d
dimensions.

Definition 1. Consider a C~ function u ! �.u/ defined over the open convex
domain Ou. The function � is said to be an entropy function for the system (26) if
the following properties hold:

.E1/ The Hessian matrix @2u�.u/ D @u.@u�/
t .u/ is positive definite over Ou.

.E2/ There exist C~ functions u ! qi .u/ such that @u�.u/Ai .u/ D @uqi .u/ for
u 2 Ou and i 2 D.

.E3/ The reciprocity relations
�
Bij .u/

�
@2u�.u/

��1�t
D Bj i .u/

�
@2u�.u/

��1
hold for

u 2 Ou and i; j 2 D.
.E4/ The matrix

P
i;j2D Bij .u/

�
@2u�.u/

��1
�i �j is positive semi-definite for u 2

Ou and � 2 ˙d�1.
.E5/ There exists a fixed vector space E � R

n such that Ω.u/ 2 E? for u 2 Ou and
Ω.u/ D 0 if and only if

�
@u�.u/

�t
2 E and if and only if @u�.u/ Ω.u/ D 0.

.E6/ If Ω.u/ D 0, then the matrix @uΩ.u/
�
@2u�.u/

��1
is symmetric and its

nullspace is given by N
�
@uΩ.u/ .@2u�.u//

�1
�

D E.
.E7/ The inequality @u�.u/ Ω.u/ � 0 holds for u 2 Ou.

Existence of an entropy is closely associated with symmetrization properties as
established for hyperbolic systems of conservation laws [8,18,20,35,56,74,103] as
well as hyperbolic–parabolic systems [45, 50, 66, 70, 106]. The difficulty associated
with nonideal fluids where only local symmetrization is feasible and where Ou may
not be convex [49] is avoided for ideal mixtures. Note also that more general source
terms with no symmetry properties at equilibrium have been considered by Chen,
Levermore, and Liu [18] and Yong [120].

Definition 2. Consider a C~�1 diffeomorphism u ! v from Ou onto an open
domain Ov and the system in the v variable

eA0.v/@tv C
X

i2D

eAi .v/@iv �
X

i;j2D

@i
�eBij .v/@j v

�
� eΩ.v/ D 0; (27)

where eA0 D @vu, eAi D Ai @vu, eBij D Bij @vu, and eΩ D Ω have at least regularity
~ � 2. The system is said of the symmetric form if properties (S1)–(S7) hold.
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.S1/ The matrix eA0.v/ is symmetric positive definite for v 2 Ov.

.S2/ The matrices eAi .v/, i 2 D, are symmetric for v 2 Ov.

.S3/ The reciprocity relations eBtij .v/ D eBj i .v/ hold for i; j 2 D and v 2 Ov.

.S4/ The matrix eB.v; �/ D
P

i;j2D
eBij .v/�i �j is positive semi-definite for v 2 Ov

and � 2 ˙d�1.
.S5/ There exists a fixed vector space E � R

n such that eΩ.v/ 2 E? for v 2 Ov and
eΩ.v/ D 0 if and only if v 2 E and if and only if

˝
v;eΩ.v/

˛
D 0.

.S6/ If eΩ.v/ D 0, then @veΩ.v/ is symmetric and N
�
@veΩ.v/

�
D E.

.S7/ The inequality
˝
v;eΩ.v/

˛
� 0 holds for v 2 Ov.

The manifold E is naturally termed the equilibrium manifold since eΩ.v/ D 0

when v 2 E. The equivalence between symmetrization (S1)–(S7) and entropy (E1)–
(E7) for hyperbolic–parabolic systems of conservation laws is obtained with v D

.@u�/
t [49].

Theorem 1. Assume that the system (26) admits a C~ entropy function � defined
over an open convex domain Ou. Then the system can be symmetrized with
the entropic variable v D .@u�/

t . Conversely, assume that the system can be
symmetrized with the C~�1 diffeomorphism u ! v. Then there exists a C~ entropy
over the open convex set Ou such that v D .@u�/

t .

Sketch of the proof. The equivalence of (S1)–(S2) and (E1)–(E2) is classical and is
essentially obtained with Poincaré lemma. Then (S3)–(S7) and (E3)–(E7) become
identical statements with v D .@u�/

t . ut

3.2 Normal Variables

In order to split between hyperbolic and parabolic variables, it is necessary to put the
system into a normal form, that is, in the form of a symmetric hyperbolic–parabolic
composite system [45, 70, 73].

Definition 3. Consider a symmetrized system as in Definition 2, and let v ! w be a
C~�1 diffeomorphism from the open set Ov onto an open set Ow. Letting v D v.w/
in the symmetrized system (27) and multiplying on the left side by .@wv/t , a new
system is obtained in the variable w

A0.w/@tw C
X

i2D

Ai .w/@iw �
X

i;j2D

@i
�
Bij .w/@jw

�
� Ω.w/ D r.w;rw/; (28)

where A0 D .@wv/t eA0 .@wv/, Ai D .@wv/t eAi .@wv/, Bij D .@wv/t eBij .@wv/, and
Ω D .@wv/teΩ have at least regularity ~ � 2 and where r D �

P
i;j2D @i .@wv/t



3000 V. Giovangigli

eBij .@wv/@jw is quadratic in the gradients. This system satisfies the properties (S1)–
(S4) rewritten in terms of overbar matrices. System (28) is said to be of the normal
form if there exists a partition of f1; : : : ;ng into I D f1; : : : ;nIg and II D fnI C

1; : : : ;nI C nIIg with n D nI C nII such that the following properties hold.

.N1/ The matrices A0 and Bij have the block structure

A0 D

"
A

I;I

0 0nI ;nII

0nII ;nI
A

II;II

0

#

; Bij D

"
0nI ;nI

0nI ;nII

0nII ;nI
B

II;II

ij

#

:

.N2/ The matrix B
II;II
.w; �/ D

P
i;j2D B

II;II

ij .w/�i �j is positive definite for w 2 Ow

and � 2 ˙d�1.
.N3/ The quadratic residual is in the form r.w;rw/ D

�
rI.w;rwII/; rII.w;rw/

�t
.

The vector and matrix block structure induced by the partitioning of R
n into

R
n D R

nI � R
nII has been used in (N1)–(N3) so that w D .wI;wII/

t , for instance,
and 0i;j denotes the zero matrix with i lines and j columns.

The quadratic residual may also be written in the more elegant form

r D
X

i;j2D

Mij .w/ @iw @jw; (29)

where Mij .w/ are third-order tensors that are functions of w 2 Ow. From
the regularity assumptions of the original system (26), the coefficients of both
symmetrized systems (27) and (28) have at least regularity ~�2 and the coefficients
Mij , i; j 2 D, have at least regularity ~ � 3. A sufficient condition for system (27)
to be recast into a normal form is that the nullspace naturally associated with the
dissipation matrix eB is a fixed subspace of Rn. This is Condition (N) introduced by
Kawashima and Shizuta [73] which has been strengthened in [45].

.N/ The nullspace N.eB/ of the matrix eB.v; �/ D
P

i;j2D
eBij .v/�i �j does not

depend on v 2 Ov and � 2 ˙d�1 and eBij .v/N .eB/ D 0, for i; j 2 D.

Let nI D dim
�
N.eB/

�
, nII D n � nI , and P be an arbitrary constant nonsingular

matrix of dimension n such that its first nI columns span the nullspace N.eB/.
In order to characterize more easily normal forms for symmetric systems of
conservation laws satisfying (N), one may introduce the auxiliary variables u0 D

Ptu and v0 D P�1v, and the following characterization of normal variables holds
[39, 45].
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Theorem 2. Any normal form of the system (27) is given by a change of variable in
the form w D

�
FI.u0

I/;FII.v0
II/

�t
where FI and FII are two diffeomorphisms of RnI

and R
nII , respectively, and the quadratic residual is in the form

r D
�
0; rII.w;rwII/

�t
D

�
0;

X

i;j2D

M
II;II;II
ij .w/ @iwII @jwII

�t
; (30)

where M
II;II;II
ij .w/ are third-order tensors depending on w with regularity at least

~ � 3. Finally, when FII is linear, the quadratic residual r is zero.

The main interest of normal forms is that the resulting subsystem of partial
differential equations governing wI is symmetric hyperbolic, whereas the subsystem
governing wII is symmetric strongly parabolic [70, 73, 105]. It is further possible to
investigate situations where the general structure of the symmetrized source term eΩ
is transferred to the source term Ω of the normal variable [53].

3.3 Hyperbolicity and Parabolicity

Consider a first-order system of partial differential equations written in the general
form

A0.w/@tw C
X

i2D

Ai .w/@iw � Ω.w/ D 0; (31)

where A0, Ai , i 2 D, and Ω are smooth functions of w over Ow and where A0 is
assumed to be invertible. The following definition of hyperbolicity can be found in
the book of Denis Serre [105] where i2 D �1.

Definition 4. Letting A.w; �/ D
P

i2D Ai .w/�i , the system (31) is said to be
hyperbolic at a given point w if

sup
�2Rd

�
� exp

�
� i

�
A0.w/

��1
A.w; �/

��� < 1: (32)

When the system (31) is hyperbolic, it is easily established that the matrix�
A0.w/

��1
A.w; �/ is diagonalizable with real eigenvalues so that it is hyperbolic

in the classical sense [20, 105]. Sufficient condition in terms of eigenvalues and
eigenvector matrices is presented by Serre [105]. A fundamental property of
Definition 4 is its invariance under a change of variable, and one has also the
following property for symmetric systems [20, 105].
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Proposition 10. Assume that the system (31) is symmetric at a given point w, that
is, assume that A0.w/ is symmetric positive definite and the matrices Ai .w/, i 2 D,
are symmetric. Then the system is hyperbolic.

Since the existence of an entropy function implies symmetrizability, it automat-
ically implies hyperbolicity in the sense of Definition 4 as well as in the classical
sense [20, 105].

Consider then a second-order system in the form

A0.w/@tw �
X

i;j2D

Bij .w/@i@iw � Ω.w;rw/ D 0; (33)

where A0, Bij , i; j 2 D, are smooth functions of w over Ow, Ω is a smooth function
over Ow � R

dn, and A0 is invertible. Such systems are said to be symmetric in the
following sense.

Definition 5. The system (33) is said to be symmetric at a given point w when
A0.w/ is symmetric positive definite and

�
Bij .w/

�t
D Bj i .w/, for i; j 2 D.

The following definition of strongly parabolic systems of second-order partial
differential equations involves the Legendre-Hadamard condition. This definition
should only concern the parabolic subsystem in the variable wII , but all II indices
have been suppressed in order to simplify the presentation.

Definition 6. Assume that the system (33) is symmetric at a given point w. This
system is said to be strongly parabolic at w if there exists a positive constant ı > 0

such that for any � D .�1; : : : ; �d /
t and any x D .x1; : : : ; xn/

t ,
X

1�i;j�d
1�k;l�n

�
Bij .w/

�
kl
�i �j xkxl � ıj�j2jxj2: (34)

The definition of strong parabolicity is only given here for symmetric systems
and will be applied to the symmetrized forms like (27) or (28), thereby naturally
involving entropy Hessians. Indeed, the definition of strong parabolicity in the
usual sense, which neither require symmetry properties nor entropy hessians, is
not invariant by a change of variable. It only has a meaning for particular forms
of systems of partial differential equations under consideration which need to be
specified as shown by simple counterexamples [49].

Definition 7. Denoting B.w; �/ D
P

i;j2D �i �jBij .w/, a system (33) is said to
be parabolic in the sense of Petrovsky at a given point w if there exists a positive
constant ı such that for any � 2 R

d , the eigenvalues � of
�
A0.w/

��1
B.w; �/ satisfy

<.�/ � ıj�j2: (35)
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Various other generalized definitions of parabolicity are discussed in the book of
Ladyženskaja et al. [81], but these definitions coincide with that of Petrovsky for
second-order systems [81] and also coincide with the notion of normal ellipticity.
For symmetric systems, Petrovsky parabolicity and strong parabolicity are equiva-
lent [49].

Proposition 11. Consider a second-order system in the form (33) and assume that
the system is symmetric. Then the system is strongly parabolic at w if and only if it
is Petrovsky parabolic at w.

Sketch of the proof. The eigenvalues of
�
A0.w/

��1
B.w; �/ are essentially extremal

values of Rayleigh quotients with respect to the scalar product hhx; yii D hA0x; yi.
ut

From a practical point of view, for systems of partial differential equations
derived from physics, thanks to the existence of a mathematical entropy, one may
use symmetrized forms of the systems of partial differential equations and then rely
on the proper definition of strongly parabolic systems given in Definition 6. Strong
parabolicity is then invariant by a change of variable for symmetric systems after
multiplication on the left by the transpose of the Jacobian matrix.

3.4 Natural Entropic Form for Multicomponent Flows

The natural entropic symmetrized form for the system of partial differential
equations modeling multicomponent reactive fluids is evaluated in this section.
For this particular system of partial differential equations n D n C d C 1, the
velocity components of all quantities in R

nCdC1 are denoted as vectors of Rd , and
the corresponding partitioning is also used for matrices.

Theorem 3. Assume that (H1)–(H3) hold. Then the function � D �S=R is a
mathematical entropy for the system governing multicomponent fluids, and the
corresponding entropic variable is

v D .@u�/
t D

1

RT

�
g1 � 1

2
jvj2; : : : ; gn � 1

2
jvj2; v;�1

�t
: (36)

The map u ! v is a C~�1 diffeomorphism from Ou onto Ov D R
n �R

d � .�1; 0/.
The system written in terms of the entropic variable v is

eA0.v/@tv C
X

i2D

eAi .v/@iv �
X

i;j2D

@i
�eBij .v/@j v

�
� eΩ.v/ D 0; (37)
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with eA0 D @vu, eAi D Ai @vu, eBij D Bij @vu, and eΩ D Ω, and is of the symmetric
form. The matrix eA0 is given by

eA0 D

2

66
6
4

M Sym

v˝M1I hM1I; 1Iiv˝v C �RT I

.Metl/t hMetl; 1Iivt C �RT vt hMetl; etli C �RT .cvT C jvj2/

3

77
7
5
;

(38)

where M D diag.m1�1; : : : ; mn�n/ and etl D .etl
1 ; : : : ; e

tl
n/
t . Since eA0 is symmetric,

only its left lower triangular part is written and “Sym” is written in the upper
triangular part. Denoting by � D .�1; : : : ; �d /

t an arbitrary vector of Rd and letting
eA D

P
i2D �i

eAi , then

eA D v�� eA0 CRT

2

666
4

0 Sym

�˝% �.�˝v C v˝�/

v�� %t v�� �vt C �htl�t 2�htlv��

3

777
5
: (39)

Moreover, one may write eBij D eBD�ıij C 	RT eB	ij C 
RT eB
ij with

eBD� D
RT

p

2

66
4

D Sym

0d;n 0d;d

.Dh/t 01;d �pT C hDh; hi

3

77
5 ; (40)

where D D .�k�lDkl /k;l2S is the matrix of size n with components �k�lDkl and h
is the vector of size n with components hi D hi CRTe�i=mi . Moreover, denoting by
� D .�1; : : : ; �d /

t and � D .�1; : : : ; �d /
t arbitrary vectors of Rd , the matrices eB	ij

and eB
ij , i; j 2 D, are given by

X

i;j2D

�i �jeB	ij D

2

6
4

0n;n 0n;d 0n;1

0d;n �˝� v�� �

01;n v�� �t v�� v��

3

7
5 ; (41)

X

i;j2D

�i �jeB


ij D

2

6
4

0n;n 0n;d 0n;1

0d;n ���I C �˝� � 2
d 0

�˝� ��� v C v�� � � 2
d 0

v�� �

01;n ��� vt C v�� �t � 2
d 0

v�� �t ��� v�v C d 0�2
d 0

v�� v��

3

7
5 :

(42)
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Finally, the equilibrium manifold is given by E D .MR/? �R
d �R and is spanned

by al D .eal ; 0; 0/t , l 2 A, and anaCl D fnCl , for 1 � l � d C 1, where fi ,
1 � i � n, denote the basis vectors of Rn. The source term Ω D eΩ is in quasilinear
form eΩ D �eL.v/ v with

eL D
X

i2R

�ipi˝pi ; (43)

where pi D .M�i ; 0; 0/
t , i 2 R, �i is as in (9) and N.eL/ D E.

Sketch of the proof. The proof is lengthy but presents no serious Difficulty, and the
reader is referred to [39, 45, 49]. ut

For mixtures of ideal gases, there is also a uniqueness theorem for mathematical
entropies that are independent of transport coefficients [50]. This result strengthen
the representation theorem of normal variable as well as the importance of the
natural entropic symmetrized form.

Theorem 4. Let e� be a C~ function defined on the open set Ou satisfying (E2)(E3)
and such that @2ue� is invertible. Assuming that e� is independent of the mass and heat
diffusion parameters, then e� is in the form e� D ˛SSC

P
i2S ˛i�i C˛v�vC˛E.EC

1
2
�jvj2/ where ˛S , ˛i , i 2 S, ˛v, and ˛E are constants.

This shows in particular that mathematical entropies independent of transport
parameters – a somewhat natural condition – are indeed unique up to an affine
transform, once the trivial factors proportional to conserved quantities have been
eliminated and the corresponding entropic variables are then proportional.

3.5 Natural Normal Form for Multicomponent Flows

The symmetric system (37) may be rewritten into a normal form, that is, in the
form of a symmetric hyperbolic–parabolic composite system, where hyperbolic and
parabolic variables are split [45,46,73,106,121]. The nullspace invariance property
has been established for multicomponent flows [39, 45].

Lemma 2. The nullspace of the matrix eB.v; �/ is independent of v 2 Ov and � 2

˙d�1 and given by N.eB/ D R.1I; 0; 0/t , and eBij .v/N .eB/ D 0, i; j 2 D, for
v 2 Ov.

Since the nullspace of N.eB/ is spanned by .1I; 0; 0/t , one may introduce the
invertible matrix P obtained by replacing the first column vector of the identity
matrix by .1I; 0; 0/t . The auxiliary variables u0 D Ptu and v0 D P�1v are then given
by u0 D

�
�; �2; : : : ; �n; �v; E C 1

2
�jvj2

�t
and v0 D

�
g1 � 1

2
jvj2; g2 � g1; : : : gn �
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g1; v;�1
�t
=RT . From the representation in Theorem 2, all normal forms of the

system (27) are obtained with variables w in the form

w D

	
FI

�
�

�
;FII

�g2�g1
RT

; : : : ;
gn�g1

RT
;

v

T
;

�1

RT

�
t
; (44)

where FI and FII are diffeomorphisms of R and R
nCd . In the following theorem,

the normal form corresponding to the natural normal variable is evaluated.

Theorem 5. Assume that (H1)–(H3) hold and consider the normal variable

w D
�
�;
g2�g1

RT
; : : : ;

gn�g1

RT
;

v

RT
;

�1

RT

�t
: (45)

Then v 7�! w is a diffeomorphism from Ov onto Ow D .0;1/ � R
n�1 � R

d �

.�1; 0/, and the system of partial differential equations in normal form may be
written as

A0.w/@tw C
X

i2D

Ai .w/@iw �
X

i;j2D

@i
�
Bij .w/@jw

�
� Ω.w/ D 0: (46)

The matrix A0 is given by

A0 D

2

666
4

1=hM1I; 1Ii Sym
0n�1;1 .M /n�1;n�1

0d;1 0d;n�1 �RT I

0 .Metl/tn�1 �RT vt hMetl; etli C �RT .cvT C jvj2/

3

777
5
;

where

M D M �
.M1I/˝.M1I/

hM1I; 1Ii
;

.M /n�1;n�1 is the lower right submatrix of size n � 1 of M, and .Metl/n�1 are
the n � 1 last components of Metl, keeping in mind that 1I D .1; : : : ; 1/t and etl D

.etl
1 ; : : : ; e

tl
n/
t . Denoting by � D .�1; : : : ; �d /

t an arbitrary vector of Rd , the matrices
Ai , i 2 D, are given by

X

i2D

�iAi D A0v�� C �RT

2

6666
66
4

0 Sym

0n�1;1 0n�1;n�1

�=hM1I; 1Ii �˝.y/n�1 0d;d

v��=hM1I; 1Ii v��.y/tn�1 h
tl
�t 2h

tl
v��

3

7777
77
5

;
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where

y D y �
M1I

hM1I; 1Ii
; h

tl
D htl � hMetl; 1Ii=hM1I; 1Ii;

and .y/n�1 are the last n � 1 components of y.

The matrices Bij have the structure Bij D ıijB
D�

C RT 	B
	

ij C RT 
B



ij where

B
	

ij D eB	ij and B



ij D eB
ij for i; j 2 D, whereas B
D�

has its first line and first

column composed of zeros and its lower right block B
D� II;II

equal to eBD� II;II so that

B
D�

D
RT

p

2

66
66
4

0 Sym
0 Dn�1;n�1

0 0d;n 0d;d

0 .Dh/tn�1 01;d �pT C hDh; hi

3

77
77
5
;

where Dn�1;n�1 is the lower right submatrix of size n � 1 of D and .Dh/n�1 are the
n � 1 last components of Dh.

The equilibrium linear manifold E with respect to the normal variable is the fixed
subspace spanned by the vectors a1 D f1, al D .al ; 0; 0/

t , for l 2 Anf1g, where
al D eal �ea1l1I, l 2 A, and anaCl D fnCl , for 1 � l � d C 1, where fi , 1 � i � n,
denote the basis vectors of Rn. The source term Ω D

�
0;m2!2; : : : ; mn!n; 0; 0

�t

may also be written in quasilinear form Ω.w/ D �L.w/w where

L D
X

i2R

�ip
0
i˝p0

i ; (47)

and p0
i D .M�0

i ; 0; 0/
t , �0

i D .0; �2i ; : : : ; �ni /
t , �i is as in (9) and N.L/ D E.

Moreover, denoting by � the orthogonal projector onto E
?

, then L D �L D L�
and �w represents the fast variable or the “reactive” part of w.

Proof. The proof is lengthy and tedious but presents no serious difficulties. ut

4 The Cauchy Problem

The equations governing multicomponent reactive flows derived from the kinetic
theory of gases have local smooth solutions [46], global smooth solutions around
constant equilibrium states [45], and traveling wave solutions [38]. The dependence
on a parameter has also been investigated in [43]. Existence results around
equilibrium states and asymptotic stability are investigated in this section. Local
strict dissipativity is first addressed, and then the Cauchy problem is discussed
[8, 43, 45, 49, 70, 73–75, 105, 112]. Weak solutions with large data for related fluid
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[1,14,21,30,31,83,94] and chemically reacting mixtures are also briefly addressed
[19, 23, 32, 51, 64, 79, 87, 123–125].

4.1 Strict Dissipativity

Dissipativity properties around equilibrium states are required in order to establish
global existence and asymptotic stability [45, 70, 108]. Consider a symmetrizable
quasilinear system (26); assume that the nullspace invariance property (N) holds
and that the system has been rewritten in normal form. Assume that there exists
an equilibrium state u? 2 Ou with Ω.u?/ D 0, and denote by v? and w? the
corresponding constant states in the v and w variables, respectively.

Linearizing the system in normal form (28) around the constant stationary state
w?, a linear system in the variable ıw D w � w? is obtained

A0.w?/@t ıw C
X

i2D

Ai .w?/@i ıw �
X

i;j2D

Bij .w?/@i@j ıw C L.w?/ıw D 0: (48)

By Fourier transform, the spectral problem associated with the linear system (48)
reads

�A0.w?/� C
�

i�A.w?; �/C �2B.w?; �/C L.w?/
�
� D 0; (49)

where � 2 R, i2 D �1, � 2 ˙d�1, � 2 C
n, A.w?; �/ D

P
i2D Ai .w?/�i ,

B.w?; �/ D
P

i;j2D Bij .w?/�i �j , and L.w?/ D �@wΩ.w?/. The matrix A0.w?/

is symmetric positive definite, the matrices Ai .w?/, i 2 D, are symmetric, the
reciprocity relations Bij .w?/t D Bj i .w?/, i; j 2 D, hold, the matrix B.w?; �/

is positive semi-definite for � 2 ˙d�1, and the matrix L.w?/ is symmetric positive
semi-definite from general symmetrization properties [49] or from the quasilinear
form of Ω (47). The set of complex numbers � such that there exists � 2 C

n,
� ¤ 0, satisfying (49) is denoted by S.�; �/. The following equivalent forms of the
“Kawashima condition” have been established by Shizuta and Kawashima [108] for
(K1)–(K4) and Beauchard and Zuazua [5] for (K5).

Theorem 6. The system of partial differential equations is said to be strictly
dissipative at w? when any of the following equivalent properties holds:

.K1/ There exists a C1 map K W ˙d�1 ! R
d;d such that for any � 2

˙d�1, the product K.�/A0.w?/ is skew symmetric, K.��/ D �K.�/, and
K.�/A.w?; �/C B.w?; �/C L.w?/ is positive definite.

.K2/ For any � 2 R, � ¤ 0, and any � 2 ˙d�1, the eigenvalues � 2 S.�; �/ have
a negative real part <.�/ < 0.

.K3/ Let � 2 R
nnf0g such that B.w?; �/� D 0 and L.w?/� D 0 for some � 2

˙d�1. Then �A0.w?/� C A.w?; �/� ¤ 0 for any � 2 R.
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.K4/ There exists ı > 0 such that for any � 2 R, � 2 ˙d�1, all eigenvalues
� 2 S.�; �/ have their real part majorized by <.�/ � �ıj�j2=.1C j�j2/.

.K5/ Letting bA? D
�
A0.w?/

��1
A.w?; �/ and bB? D

�
A0.w?/

��1�
B.w?; �/ C

L.w?/
�
, the Kalman condition rank

�bB?;bA?bB?; : : : ; .bA?/n�1bB?
�

D n holds.

A physical interpretation of the “Kawashima condition” (K1)–(K5) is that
the waves � exp.�t C ��x/ associated with the convective constant coefficient
hyperbolic operator A0.w?/@t C

P
i2D Ai .w?/@i lead to dissipation, i.e., entropy

production, since they are not in the nullspace of B or L as shown by (K3). Only the
symmetric part of the product K.�/A.w?; �/ plays a role in (K1). The traditional
Kalman condition involving the n2 � n matrix with first block bB?, second block
bB?bA?, and kth block bB? .bA?/k�1 has been rewritten in the form (K5) with a n � n2

matrix, thanks to the symmetry of A0.w?/, B.w?; �/, and L.w?/. It is not known in
general if the matrix K.�/ may be written as

P
j2DKj �j although it is generally

possible to obtain compensating matrices in this form in practical applications
[45, 70, 108].

4.2 Strong Solutions

Local-in-time solutions may be obtained by using an existence theorem of Volpert
and Hujaev [112] together with a normal form [46]. Such an existence result has
been presented for chemically reacting mixtures in vibrational desequilibrium [46]
but also directly applies to the system of partial differential equations presented in
the previous sections.

On the other hand, global solutions around equilibrium states may be obtained
using the local strict dissipative properties for multicomponent flows [45]. The
existence of equilibrium states is first a consequence of the structural properties
of thermochemistry as discussed in previous sections [39].

Proposition 12. For T ? > 0, e%? > 0, v? 2 R
d , there exists a unique

chemical equilibrium point u? associated with z? D
�
�?1 ; : : : ; �

?
n; v

?; T ?
�t

such that
mlh%

?;M�1ali D e�?l .

The system of partial differential equations governing multicomponent reactive
flows written in normal form is then strictly dissipative at w? [45, 49].

Proposition 13. Consider an equilibrium state w? as obtained in Proposition 12.
Then the linearized normal form at w? is strictly dissipative.

Proof. Using for convenience the characterization (K3), consider � 2 ˙d�1 and
assume that � ¤ 0 is such that B.w?; �/� D L.w?/� D 0. It is first established
that � D ˛.1; 0; : : : ; 0/t for some ˛ ¤ 0. From the expression of B in Theorem 5,
letting � D .�1; : : : ; �n;�v; �T /

t it is obtained that
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hB�; �i

RT ?
D 	?

�
� � .�v C v?�T /

�2
C 
?

�
d 0�2
d 0

�
� � .�v C v?�T /

�2
C

ˇ̌
�v C v?�T

ˇ̌2�

C
1

p?

X

2�i;j�n

D?
ij .�i C h?i �T /.�j C h?j �T /C �?RT ?2�2T ;

where the superscript ? is used to denote quantities evaluated at w?. This is a sum
of nonnegative terms, and if it is zero, it is successively deduced that �T D 0 and
then that �v D 0 and finally that

P
2�i;j�n D?

ij �i�j D 0. This shows that the
auxiliary vector .0; �2; : : : ; �n/t is in the nullspace D? given byN.D?/ D R1I (since
N.D/ D Ry?) so that the auxiliary vector must vanish �2 D : : : D �n D 0. It has
thus been established that � is proportional to .1; 0; : : : ; 0/t and such vectors are in
the nullspace of L from (47). A direct calculation then yields

hM1I; 1Ii
�
�A0.w?/�CA.w?; �/�

�
D ˛

�
�Cv?��; 0; : : : ; 0; �?RT ?�; �?RT ?v��

�t
;

and �A0.w?/� C A.w?; �/� never vanishes since � 2 ˙d�1 and (K3) holds. ut

The local strict dissipativity properties now imply global existence and asymp-
totic stability of equilibrium states [43, 45, 70]. The global existence proof mainly
consists in a priori estimates for linearized equations, local existence, a priori
estimates independent of time intervals using strict dissipativity, and repeated use
of local existence [43,45,54,70,71,108]. A key property of the source term [45,49],
which may be deduced from (S5)–(S7) [120], is notably that ıjeΩj2 � �hv � v?;eΩi

for some constant ı > 0 and v in the neighborhood of v?. A global existence
theorem for the equations governing multicomponent reactive flows in their natural
normal form [45] is presented in the following, and j � jl denotes the norm of the
Sobolev space Hl.Rd /.

Theorem 7. Let d > 1, l > Œd=2
 C 2, consider the equations governing
multicomponent reactive flows with the normal variable w D .wI;wII/

t where

wI D �; wII D
�g2�g1
RT

; : : : ;
gn�g1

RT
;

v

RT
;

�1

RT

�t
; (50)

and let w? be a chemical equilibrium state as in Proposition 12. There exist
constants Nb and Nc such that if the initial condition w0 satisfies kw0 � w?kl < Nb,
then the Cauchy problem with w.0; x/ D w0.x/ has a global solution with

wI � w?
I 2 C0

�
Œ0;1/;H l

�
\ C1

�
Œ0;1/;H l�1

�
; rwI 2 L2

�
.0;1/;H l�1

�
;

wII � w?
II 2 C

0
�
Œ0;1/;H l

�
\ C1

�
Œ0;1/;H l�2

�
; rwII 2 L2

�
.0;1/;H l

�
:

This solution w is such that
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kw.t/ �w?k2l C

Z t

0

�
krwI.�/k

2
l�1 C krwII.�/k

2
l

�
d� 6 Nc2kw0 � w?k2l ; (51)

and sup
R
d jw.t/ � w?j goes to zero as t ! 1.

From Theorem 7 the equilibrium point w? is asymptotically stable, and with
stronger assumptions it is possible to obtain decay estimates [45, 70].

Theorem 8. Let d > 1, l > Œd=2
C 3 and assume that the initial condition w0 is
such that w0 � w? 2 Hl.Rd / \ Lp.Rd /, where p D 1, if d D 1, and p 2 Œ1; 2/, if
d > 2. There exist constants Nb and Nc such that if kw0 � w?kl C kw0 � w?kLp < Nb

is small enough, the global solution satisfies the decay estimate

kw.t/ � w?kl�2 6 Nc.1C t /�˛
�
kw0 � w?kl�2 C kw0 � w?kLp

�
;

for t 2 Œ0;1/, where ˇ is a positive constant and ˛ D d � .1=2p � 1=4/.

Such theorems for hyperbolic–parabolic systems may be used for various other
fluid models. They have been notably used for ambipolar plasmas where Poisson
equation is replaced by the zero current limit [43], partial equilibrium flows where
some group of chemical reactions is assumed to be infinitely fast [47], as well as for
Saint-Venant equations modeling thin viscous layers over fluid substrates [52].

4.3 Weak Solutions and Other Boundary Value Problems

Many results have been devoted to the existence of strong solutions for single-
species compressible Navier-Stokes equations [1, 8, 21, 22, 70, 71, 88, 92]. Con-
cerning the Cauchy problem, Nash [92] has proved a local existence result, and
global existence around equilibrium states has been established by Matsumura and
Nishida [88]. Estimates for strong solutions are generally obtained upon deriving
the governing equations, multiplying by the solution derivatives, and integrating in
space and time. The Cauchy problem is in particular similar to the case of periodic
boundary conditions. Danchin [21, 22] has further established global existence of
solutions in critical hybrid Besov spaces with minimum regularity for the isentropic
as well as the full compressible model around constant equilibrium states using
Littlewood-Paley decompositions. Alazard [1] has investigated the limit of small
Mach number flows for inviscid as well as viscous compressible flows with large
temperature variations. The Cauchy problem for general hyperbolic systems has
been investigated by Dafermos [20], Benzoni and Serre [8], and Serre [105], and for
composite hyperbolic–parabolic systems by Kawashima [70, 71] in his pioneering
work. Strong solutions for boundary value problems have also been addressed by
Matsumura and Nishida [89], Benzoni and Serre [8], and Kawashima, Nishibata,
and Zhu [72].

On the other hand, the existence of global-in-time weak solutions with no
restriction on initial data is among one of the most difficult problems concerning
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compressible fluids [8, 13, 30, 31, 83]. Estimates for weak solutions are usually
derived from energy and zeroth-order entropy estimates as well as by using
renormalized equations. The behavior of compressible fluid models at low/high
densities and at low/high temperatures has been a key ingredient in recent advances
concerning the existence of global weak solutions with large initial data [13, 14,
30, 83] as well as classical solutions [111]. This requires to adapt and modify
both thermodynamics and transport coefficients for extreme values of temperature
and density as, for instance, with the introduction of a cold pressure. Fundamental
existence results have been obtained by Lions [83] in his pioneering work – both for
the Cauchy problem and boundary value problems, as well as Feireisl [30], Bresch,
and Desjardins [13,14], Novotný and Straškraba [94], and Feireisl and Novotný [31]
for boundary value problems. Among the difficulties are density oscillations and
concentrations in temperature, and a major problem is the compactness properties
of weak sequences of approximated solutions [13, 14, 30, 31, 83, 94].

These outstanding difficulties are of course inherited by compressible chemically
reacting mixtures which naturally include the compressible Navier-Stokes-Fourier
model as a subsystem. Both the Cauchy problem [123, 124] and boundary value
problems with boundary conditions typically in the form (21), (22), and (23)
have been investigated [17, 23, 32, 51, 64, 79, 91, 122, 125]. In a one-dimensional
geometry, for reacting systems with one deficient component, weak solutions with
discontinous large initial data have been investigated by Chen, Hoff, and Trivisa [17]
and Zlotnik [125], and the multispecies situation with no diffusion has also been
investigated by Hoff [64]. In the multidimensional situation, proofs established
in the nonreacting single-species situation have been adapted to the reacting case
with modified thermodynamics and transport coefficients. Global existence with
large data has been obtained in three dimensions with arbitrary complex chemistry
and a simplified diffusion model by Feireisl, Petzeltová, and Trivisa [32] using
notably weighted oscillation defect measures. Steady solutions have been obtained
by Zatorska [122] with pressure laws depending on the species variables. Kwon and
Trivisa [79] have analyzed the limit of low Mach numbers in a similar framework.
Radiating gases including a transport equation for radiative intensity have been
analyzed by Ducomet, Feireisl, and Nečasová [23]. The case of nondiagonal
diffusion with cross effects with a special form of the diffusion matrix has also been
investigated by Zatorska [123, 124], Giovangigli, Pokorný, and Zatorska [51] and
Mucha, Pokorný, and Zatorska [91]. On the other hand, the incompressible case with
Stefan-Maxwell-type equations has been investigated by Marion and Temam [87] as
well as Chen and Jüngel [19].

5 Relaxation Toward Chemical Equilibrium Fluids

Relaxation is a natural process habitually modeled by systems of partial differential
equations with stiff damping terms. This dynamical process has been the object
of numerous studies in various physical and mathematical contexts [18, 20, 74, 93,
106, 119]. Relaxation of chemically reacting mixtures toward chemical equilibrium
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fluids is investigated in this section. To this aim, the multicomponent reactive fluid
equations are rewritten in the form [55]

@tu C
X

i2D

Ai .u/@iu �
X

i;j2D

@i
�
Bij .u/@ju

�
�
1

�
Ω.u/ D 0; (52)

where � represents the ratio between chemical characteristic times and fluid
characteristic times, and the singular limit � ! 0 is investigated. The limiting
chemical equilibrium fluid model is of interest for various applications such as flows
around space vehicles [4] or diverging nozzle rocket flows [118].

5.1 Chemical Equilibrium Fluids

In order to derive the chemical equilibrium fluid equations, it is necessary to
introduce the proper projectors associated with the slow manifold E. Let a1; : : : ;ane

denote a basis of the slow manifold E and aneC1; : : : ;an a basis of the fast manifold
E?. The slow manifold E D M�1A�R

d �R is of dimension ne D na CdC1 and is
spanned by the vectors al D .eal ; 0; 0/t , l 2 A, and anaCl D fnCl , for 1 � l � dC1.
The vectors eal D emlM

�1al , l 2 A, are associated with atomic densities and fi ,
1 � i � n, denote the basis vectors of Rn. In addition, the fast manifold is spanned
by aneCk�na D .Mvk; 0; 0/

t for k 2 SnA D fna C 1; : : : ; n g, where vk is the
formation reaction vector of the kth species. The linear operators …e and …r are
defined in the canonical bases by

…e D Œa1; : : : ;ane 
 ; …r D ŒaneC1; : : : ;an
 ;

and the metric matrices Je and Jr of order ne and n � ne, respectively, are
defined by J �1

e D …t
e…e and J �1

r D …t
r…r. Each vector x 2 R

n admits a
unique decomposition x D xE C xE? where xE D …eJe…

t
e x 2 E and xE? D

…rJr…
t
r 2 E?. Moreover, it is easily established that In D …eJe…

t
e C …rJr…

t
r

and Q� D …rJr…
t
r where Q� is the orthogonal projector onto E?.

Since the slow manifold E is orthogonal to the stiff source term Ω, the slow
conservative variable is naturally given by ue D …t

eu, and the limiting governing
equations as � ! 0 are obtained by applying the projection operator …t

e to
the governing equations in conservative form and by superimposing the chemical
equilibrium condition Ω.u/ D 0. The conservative variable at equilibrium thus reads

ue D .…e/
tu D

�
e�1; : : : ; e�na ; �eve; Ee C 1

2
�ejvej

2
�t
;

where e�l , l 2 A, are the atomic mass densities and Ee the internal energy at
chemical equilibrium discussed in Sect. 2.2.3. The natural variable at equilibrium
ze 2 R

ne is defined by ze D
�
e�1; : : : ; e�na ; ve; Te

�t
and the map ze ! ue is a C~

diffeomorphism from the open set Oze D .0;1/na�Rd�.0;1/ onto an open set
Oue [39]. The open set Oue can be fully characterized and shown to be convex under
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stronger assumptions involving the heats of formation at zero temperature [39].
From Proposition 12, for any ue 2 Oue there exists a unique u D ueq such that
the chemical equilibrium condition holds Ω.ueq/ D 0 and .…e/

tueq D ue. The map
ue ! ueq is C~ and veq 2 M�1A where veq is the entropic variable associated
with ueq. Applying the projector …t

e to (52) and using the equilibrium condition
u D ueq.ue/, it is obtained that

@tue C
X

i2D

Ae
i .ue/@iue �

X

i;j2D

@i
�
Be
ij .ue/@jue

�
D 0; (53)

where Ae
i .ue/ D …t

eAi
�
ueq.ue/

�
@ueueq and Be

ij .ue/ D …t
eBij .ueq.ue/

�
@ueueq.

These equations express the conservation of atomic mass densities, momentum, and
total energy. They are also equivalent to a one term Chapman-Enskog expansion of
the conservative variable u in the fast chemistry limit [53]. More accurate equations
may be obtained by using a two-term Chapman-Enskog expansion [18, 53, 54, 84]
but are not required here and lay out the scope of the present notes.

The entropic symmetrized form as well as a normal form for the system modeling
fluids at thermodynamic equilibrium (53) is evaluated [39, 55].

Theorem 9. Assume that (H1)–(H3) hold. Then the function �e D �Se=R is
a mathematical entropy for the system at thermodynamic equilibrium, and the
corresponding entropic variable is

ve D
1

RTe

�
�1 � 1

2
jvej

2 : : : ; �na � 1
2
jvej

2; ve; �1
�t
; (54)

where �l , l 2 A, are uniquely defined by .g1e; : : : ; gne/
t D

P
l2A �leal and

in addition veq D …eve and ve D Je…
t
eveq. The map ue ! ve is a C~�1

diffeomorphism from Oue onto the open set Ove D fv 2 R
ne I vnaCdC1 < 0g. The

system written in terms of the entropic variable ve is of the symmetric form

eAe
0.ve/@tve C

X

i2D

eAe
i .ve/@ive �

X

i;j2D

@i
�eBe

ij .ve/@j ve
�

D 0; (55)

where eAe
0 D @veue D …t

e
eA0…e, eAe

i D Ae
i @veue D …t

e
eAi…e, eBe

ij D Be
ij @veue D

…t
e

eBij…e, have regularity ~ � 1.

The nullspace invariance property for the symmetrized system (55) modeling flu-
ids at thermodynamic equilibrium has been established withN.eBe/ D R.1Ie; 0; 0; /

t

where 1Ie D .1; : : : ; 1/t 2 R
na [39] and the normal variable

we D
�
�e;

�2 � �1

RTe
; : : : ;

�na � �1

RTe
;

ve

RTe
;

�1

RTe

�t
; (56)

is used for convenience. The corresponding equations in normal form are inves-
tigated in the following theorem where the linear operator associated with the
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equilibrium manifold E with respect to the normal variable is denoted by …e D

Œa1; : : : ;ane 
 and a1; : : : ;ane are defined in Theorem 5. The orthogonal projector

onto E
?

is also denoted by � and the metric matrix associated with …e by
J e D …

t

e…e.

Theorem 10. Assume that (H1)–(H3) hold. Then the map ve ! we is a
C~�1 diffeomorphism from Ove onto the open set Owe given by Owe D

.0;1/�Rna�1Cd�.�1; 0/. The system written in the we variable is of the normal
form

A
e
0.we/@twe C

X

i2D

A
e
i .we/@iwe �

X

i;j2D

@i
�
B

e
ij .we/@jwe

�
D 0; (57)

where A
e
0 D .@weve/

t eAe
0 @weve, A

e
i .@weve/

t eAe
i @weve, B

e
ij D .@weve/

t eBe
ij @weve, have

regularity ~ � 1. The system coefficients are finally given by A
e
0 D …

t

eA0…e, A
e
i D

…
t

eAi…e, i 2 D, and B
e
ij D …

t

eBij…e, i; j 2 D.

5.2 Convergence Toward Equilibrium

A global existence result independent of chemical characteristic times for the out
of equilibrium model with the source term in quasilinear form is first presented and
next a convergence result toward the limiting chemical equilibrium fluid model [55].

Theorem 11. Let d�1 and l�Œd=2
 C 2 be integers. There exists Nb > 0 and Nc

such that if w0 satisfies jw0 � w?j2l C 1
�
j�w0j

2
l�1 <

Nb
2
; there exists a unique global

solution to the Cauchy problem

A0.w/@tw C
X

i2D

Ai .w/@iw �
X

i;j2D

@i
�
Bij .w/@jw

�
C
1

�
L.w/w D

X

i;j2D

Mij .w/ @iw @jw;

with initial condition w.0;x/ D w0.x/ and

wI � w?
I 2 C0

�
Œ0;1/;H l

�
\ C1

�
Œ0;1/;H l�1

�
; rwI 2 L2

�
.0;1/;H l�1

�
;

wII � w?
II 2 C

0
�
Œ0;1/;H l

�
\ C1

�
Œ0;1/;H l�2

�
; rwII 2 L2

�
.0;1/;H l

�
;

and w satisfies the estimate

jw.t/ � w?j2l C
1

�
j�w.t/j2l�1 C

Z t

0

jrwIj
2
l�1 d� C

Z t

0

jrwIIj
2
l d� C

1

�

Z t

0

j�w.�/j2l d�

C
1

�2

Z t

0

j�w.�/j2l�1 d� C

Z t

0

j@tw.�/j2l�1 d� � Nc2
�
jw0 � w?j2l C

1

�
j�w0j

2
l�1

�
;

(58)

and supx2Rd jw.t;x/ � w?j goes to zero as t ! 1.
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The estimates in the stiff case (58) notably differ from that of the nonstiff case
(51) by the inclusion of new terms associated with the fast variables �w=

p
�

and �w=� as well as the coupling with the estimates for @tw. On the other
hand, at chemical equilibrium, there are not anymore sources in (57), and in
order to obtain a global existence result, Kawashima’s theory may directly be
used [39, 70]. Using estimates of the out of equilibrium solution and stability at
chemical equilibrium [54] valid on any finite time interval Œ0; N�
, convergence of
the out of equilibrium solution toward the chemical equilibrium solution is then
established [55].

Theorem 12. Let d � 1, l � l0 C 3, l0 D Œd=2
 C 1, be integers and let Nb from

Theorem 11. For any w0 2 O0 with jw0 � w?j2l C 1
�
j�w0j

2
l�1 <

Nb
2

there exists a
unique solution to the out of equilibrium system such that the estimates (58) hold.
For Nb small enough, there exists also a unique global solution of the equilibrium
system starting from the equilibrium projection J e…

t

ew0. Then for any time N� , there
exists a constant c depending on N� such that

sup
�2Œ0;N�


jw �…ewejl�2 � c �;

and the out of equilibrium solution converges toward the chemical equilibrium
solution as � ! 0.

6 Models with Elementary Hydrodynamics

This section is concerned with chemically reacting mixtures whose hydrodynamics
remains elementary. Traveling waves, where hydrodynamics is reduced to a single
scalar, namely, the wave mass flow rate, are first discussed [9–11, 38, 61, 62, 101,
114, 115]. The case of reaction–diffusion systems, where the velocity v identically
vanishes, is next addressed. The situation where solutions of the complete reactive
fluid system coincide with that of a reaction–diffusion subsystem is investigated,
and typical results obtained in the literature concerning classical reaction–diffusion
models are also discussed [2, 3, 12, 34, 63, 65, 69, 96, 97, 109, 113].

6.1 Traveling Waves

Traveling waves in inert or reactive flows can be classified into deflagration waves
and detonation waves [118]. The structure of reactive exothermic detonation waves
lay out the scope of these notes and the reader is referred to [118], whereas weak
deflagration waves typically correspond to plane flames. The existence of solutions
for plane flame models with complex chemistry has been investigated [38, 62, 115].
An existence theorem for deflagration waves with an arbitrary number of reversible
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chemical reactions and the complete transport model derived from the kinetic
theory [38] is discussed in this section.

For other existence theorems associated with combustion models, the reader is
referred to [9–11,61,62,101,114,115] and the references therein. The mathematical
structure and properties of chemically reacting mixtures and the existence of
traveling wave solutions have been investigated by Volpert and Hudjaev [114].
Singular limits in combustion with a single exothermic reaction have been analyzed
by Berestycki, Nicolaenko, and Scheurer [9]. Complex networks of exothermic
reactions with no cycles have been studied by Heinze [62]. Multidimensional
flame fronts have been investigated in cylindrical geometries by Berestycki, Lar-
routurou, and Lions [10] as well as conical geometries by Hamel, Monneau, and
Roquejoffre [61]. Stability of travelling wave solutions of the multidimensional
thermodiffusive model for flame propagation with unit Lewis number has been
established by Berestycki, Larrouturou, and Roquejoffre [11]. A remarkable survey
of traveling wave solutions of parabolic systems has been given by Volpert, Volpert,
and Volpert [115].

6.1.1 Plane Flame Equations
The equations governing plane flames can be derived from the equations presented
in Sect. 2 upon using the low Mach number limit, stationarity, and the one-
dimensional geometry. The conservation of species mass and energy is found in
the form

c y0
k C J 0

k D mk!k; k 2 S; (59)

c h0 CQ0 D 0; (60)

where c denotes the mass flow rate, 0 the spatial derivation with respect to the flame
normal coordinate x, Jk D .Jk; 0; 0/t the mass flux of the kth species, h D H=�
the enthalpy per unit mass, and Q D .Q; 0; 0/t the heat flux. The unknowns are
the mass flow rate c – which is a nonlinear eigenvalue – the mass fractions y D

.y1; : : : ; yn/t , and the enthalpy h, or equivalently the temperature T . Denoting by
v D .v; 0; 0/t the velocity vector, the product �v is the mass flow rate �v D c that is
constant in space from the total mass conservation equation .�v/0 D 0. The pressure
has been decomposed in the form p D pu Cep where pu – the ambient pressure – is
a constant and ep – the pressure corrector – is of the order ep=pu D O.Ma2/ where
Ma is the Mach number [39]. The state law is then in the form pu D �RT =m, and
the momentum equation ep 0 D �cv0 C

�
. 4
3

 C 	/v0

�0
uncouples and may only be

needed in order to evaluate the pressure corrector ep [38, 39, 118].
The mass fractions are more convenient to use with (59) than the species partial

densities. The enthalpy h is written as h D
P

k2S ykhk.T / where hk.T / D hst
k C

R T
T stcpk.t/ dt and cpk D cvk CR=mk , and the specific entropy s D S=� is rewritten

in a similar way [38]. In the small Mach number limit, the transport fluxes Jk ,
k 2 S, and Q are in the form Jk D �

P
l2S Ckl .x

0
l C xle�lT 0=T /, k 2 S and

Q D
P

k2S.hk CRTe�k=mk/Jk ��T 0. All the species second derivatives are thus
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coupled through the flux matrix C and are coupled with the temperature second
derivative through the thermal diffusion coefficients e�.

A typical difficulty associated with traveling waves in infinite reactive media
.�1;C1/ is that reactive source terms generally have a single equilibrium state in
atom conservation manifolds. The hot boundary condition, say at C1, corresponds
to hot combustion products and to a chemical equilibrium state, but then source
terms cannot vanish at the cold boundary �1, and this is traditionally termed the
cold boundary difficulty. For steady waves, the most satisfying model is that of
anchored waves that represents an idealized adiabatic flame holder located at the
origin [38]. The corresponding domain is the half line Œ0;1/ and the boundary
condition at x D 0 are in the form

c.yk.0/�yf
k/CJk.0/ D 0; k 2 S; c.h.0/�hf/CQ.0/ D 0; T .0/ D T i;

where .T f; yf/ is a state out of equilibrium and T i a temperature such that T f < T i.
The boundary conditions in the hot gases are

yk.1/ D ye
k; k 2 S; T .1/ D T e;

where .T e; ye/ is an equilibrium state whose existence and uniqueness can be
deduced from the structure of thermochemistry under natural assumptions on
.T f; yf/, and it is also assumed that T i < T e [38]. One may also replace the
boundary conditions at the origin by T .�1/ D T f and y.�1/ D yf with
T .0/ D T i. In this situation, it is necessary to replace the source term ! by H!
where H is the Heaviside function. One may establish that this formulation over
.�1;1/ with the source term H! is equivalent to that of the anchored flame over
Œ0;1/. Smooth solutions .y; T; c/ of the anchored flame model such that T > 0,
y > 0, y ¤ 0, and c > 0 are investigated.

A key tool in the analysis is then to use the entropy s, thanks to the properties
of the source terms and of the transport coefficients [38]. Denoting by s the specific
entropy and  D .Q �

P
k2S gkJk/=T the entropy flux, then

c s0C 0 D v D �
�T 0

T

�2
C
p

T

X

k;l2S

Dkl

�
x0
kCxke�k

T 0

T

��
x0
lCxle�l

T 0

T

�
�

X

k2S

gkmk!k

T
:

(61)
In order to estimate accurately entropy production, it is assumed that the diffusion
coefficients are obtained from Stefan-Maxwell-type equations in such a way that
Proposition 8 holds and it is also assumed that there is a common temperature scale
' to all transport coefficients as presented in Sect. 2.3.1 [38, 39].

6.1.2 Existence of Solutions
In order to establish the existence of solutions, the anchored flame problem is first
considered on a bounded domain Œ0; a
 with the boundary conditions at a written
as T .a/ D T e and y.a/ D ye. The problem is solved by using a fixed point
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formulation and the Leray-Schauder topological degree. The main difficulty is to
establish a priori estimates in order to show that the degree is well defined and to
evaluate this degree with suitable homotopy paths. An important issue is to establish
that the species remain positive in order to be able to use the entropy estimates
(8). This entropic estimate allows to control the integrals of '

P
k2S y02

k =yk and
'.T 0=T /2 which yields a L1 estimate on temperature [38]. A priori estimates for
the eigenvalue c require similar techniques, and it is next possible to estimate the
derivatives of T and y at any order and to establish an existence theorem over Œ0; a

using the homotopy invariance of the degree [38].

In order to let a ! 1, it is important to derive estimates of the eigenvalue
c independent of a. A fundamental tool is the exponential decrease of entropy
dissipation rate residuals

R a
x
v dx when .y; T / remains close to the equilibrium state

.T e; ye/ [38]. This exponential decrease is obtained by using (61) with a stability
inequality due to Boillat and Pousin which states that for some ı > 0

h.y; T / D he; y � ye 2 MR H) ı
�
se � s.y; T /

�
6 �

X

k2S

gkmk!k

T
:

Such stability inequalities are established locally around equilibrium states and
then globally when chemical reaction mechanisms do not have spurious “boundary
equilibrium points” in the atom conservation manifolds associated with .T e; ye/

[38]. These exponential decrease rates next allow to prove the asymptotic behavior
of the solution at infinity. Finally, passing to the limit a ! 1 and using a priori
estimates independent of a, one may establish the following result [38, 39].

Theorem 13. There exists a C~C2 solution to the anchored flame problem over
Œ0;1/.

6.2 Reaction–Diffusion Models as Fluid Systems

Chemically reacting fluid models which admit solutions with zero convective
velocity v D 0 are investigated in this section. To this aim, it is first assumed that
the species have the same molar mass m1 D : : : D mn and mole and mass fractions
then coincide x D y. It is further assumed that initially the density and temperature
are constants �0 D � and T0 D T and that the initial velocity is zero v0 D v D 0.
Since the mixture is constituted by isomass species, it is obtained that the initial
pressure p0 is also constant p0 D p in such a way that the initial derivative of
both density and velocity vanishes .@t�/0 D 0 and .@tv/0 D 0. In order to obtain
a similar property for temperature .@tT /0 D 0, it is found after a little algebra that
it is sufficient to assume that the heat produced by the chemical reactions vanishesP

k2S hkmk!k D 0 at T D T . Since
P

k2S hkmk!k D
P

i2R.�H/i�i where
.�H/i D

P
k2S hkmk�ki , it is sufficient to ensure that

P
k2S hk.T /mk�ki D 0,

i 2 R, or after a little algebra, that the formation enthalpies of the species that
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are not atoms are in the form hk.T / D
P

l2A aklmlhl .T /=mk , k 2 SnA. In this
situation, considering the subsystem of partial differential equations with unknowns
.�; v; T /t , it is readily seen that the solution of the subsystem is the constant solution
.�; v; T /t D .�; 0; T /t for all times.

As a consequence, the corresponding solutions of the full reactive fluid system
are exact solutions of the reaction–diffusion subsystem

�@txk � r�
� X

l2S

Ckl .T ; x/rxl
�

D mk!k; k 2 S; (62)

where C satisfies assumptions obtained from the kinetic theory of gases (H3). In
particular, previously established existence theorems for chemically reacting fluids
also apply to reaction–diffusion systems with complex chemistry described by
arbitrary sets of elementary reactions and diffusive models derived from the kinetic
theory like, for instance, the Stefan-Maxwell equations [46].

6.3 Traditional Reaction–Diffusion Systems

Traditional reaction-diffusion systems have been the object of many studies in the
literature and are briefly addressed in this section. The corresponding governing
equations may be obtained starting from the species governing equations, assuming
that the system is isothermal, using the dilution approximation, assuming that the
diluent species is inert, discarding the diluent species, and typically assuming that
the limiting diffusion coefficients are constants in such a way that

�@txk � ıkr
2xk D mk!k; k 2 S0; (63)

where r 2 denotes the Laplace operator and S0 the reduced set of species.
Many studies have been devoted to these systems in various functional settings.

[2, 3, 12, 34, 63, 65, 69, 96, 97, 109, 113]. Mathematical modeling of reaction–
diffusion systems is discussed in the monograph by Fife [34]. Global existence and
uniform boundedness for a class of boundary value problems for binary reaction–
diffusion systems has been investigated by Hollis, Martin, and Pierre [65]. A
comprehensive mathematical analysis of the existence of strong solutions in an
elegant mathematical framework for boundary value problems has been given by
Amann [2, 3]. Invariant sets and boundary value problems are also investigated
in the well-known monograph by Smoller [109]. Since there is no simple mass
conservation result – keeping in mind that chemistry does conserve mass but not
diffusion in such models – there may be explosions of some of the species as
investigated by Pierre and Schmitt [97], and a priori estimates of the mole fractions
are generally difficult to obtain. In this context, there is the traditional entropic
estimates as well as the elegant dual estimates of Pierre presented in the remarkable
survey [96]. On the other hand, the situation where multicomponent diffusion
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is modeled from the Stefan-Maxwell relations has been investigated. The local
existence result of Giovangigli and Massot [46] for the Cauchy problem applies
to reaction–diffusion systems as established in the previous section. Bothe [12]
and Herberg et al. [63] have also established local existence theorems on bounded
domains, and a remarkable global existence has been established by Jüngel and
Stelzer [69]. A detailed survey on reaction–diffusion equations including monotone
systems as well as multiscale analysis has also been given by Volpert [113].

7 Index of Notation

The main symbols used in this chapter are listed in this Index. Symbols which only
occur in a few consecutive lines, however, are not included in this list since their
definition is always very close to the place where they are used. The section title
following the description of the meaning of a symbol indicates the first section
where the symbol is introduced.

akl atom decomposition of chemical species, Complex Chemistry.
al atom vectors, Complex Chemistry.
eal specific atom vectors, Complex Chemistry.
ai basis vectors of E or E?, Theorem 3 and Chemical Equilibrium Fluids.
ai basis vectors of E or E

?
, Theorem 5 and Chemical Equilibrium Fluids.

b force per unit mass, Conservation Equations.
cvk species specific heat at constant volume, Thermodynamics.
cv mixture specific heat at constant volume, Thermodynamics.
d spatial dimension, Conservation Equations.
d 0 dimension of the kinetic velocity space, Transport Fluxes and Coefficients.
dk species constrained diffusion driving forces, Transport Fluxes and Coefficients.
d vector of constrained diffusion driving forces, Transport Fluxes and Coeffi-

cients.
bdk species diffusion driving force, Transport Fluxes and Coefficients.
bd vector of diffusion driving forces, Transport Fluxes and Coefficients.
ek species specific internal energies, Thermodynamics.
e mixture specific internal energy, Thermodynamics.

ek standard basis vectors in R
n, Complex Chemistry.

ei standard basis vectors in R
d , Directional Fluxes.

fi standard basis vectors in R
n, Natural Normal Form for Multicomponent Flows.

gk species specific Gibbs function, Thermodynamics.
g mixture specific Gibbs function, Thermodynamics.
hk species specific enthalpies, Thermodynamics.
h mixture specific enthalpy, Thermodynamics.
i imaginary unit, Hyperbolicity and Parabolicity.

mk species molar masses, Conservation Equations.
m mixture molar mass, Thermodynamics.
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m vector of molar masses, Thermodynamics.
n number of species, Conservation Equations.
nr number of chemical reactions, Complex Chemistry.
na number of atoms, Complex Chemistry.
n number of unknown components, Vector Notation.
n normal vector at the boundary, Boundary Conditions.
pk species partial pressures, Thermodynamics.
p pressure, Conservation Equations.
qi directional mathematical entropy fluxes, Entropic Variables.

r quadratic residual of a normal form, Normal Variables.
sk species specific entropies, Thermodynamics.
s mixture specific entropy, Thermodynamics.
t time variable, Conservation Equations.
u conservative variable, Vector notation and Entropic Variables.
v entropic variable, Entropic Variables.
v mass average flow velocity, Conservation Equations.

vk species diffusion velocities, Transport Fluxes and Coefficients.
v vector of species diffusion velocities, Stefan-Maxwell-Type Equations.
w normal variable, Normal Variables.
x spatial coordinates, Conservation Equations.

xk species mole fractions, Thermodynamics.
x vector of species mole fractions, Thermodynamics.

yk species mass fractions, Thermodynamics.
y vector of species mass fractions, Thermodynamics.
z natural variable, Vector Notation.

A indexing set for atoms, Complex Chemistry.
A vector space spanned by the atom vectors, Complex Chemistry.

eA0 derivative @vu, Entropic Variables.
A0 matrix coefficient for a normal form, Normal Variables.
Ai convective Jacobian @uFi , Directional Fluxes.
eAi convective Jacobian @vFi , Entropic Variables.
Ai convective matrices of a normal form, Normal Variables.

Bij dissipation matrices of the natural conservative form, Directional Fluxes.
eBij dissipation matrices of the natural entropic form, Entropic Variables.
Bij dissipation matrices of a normal form, Normal Variables.
Ckl flux multicomponent diffusion coefficients, Transport Fluxes and Coefficients.
C flux diffusion matrix, Transport Fluxes and Coefficients.

Dkl multicomponent diffusion coefficients, Transport Fluxes and Coefficients.
D multicomponent diffusion matrix, Transport Fluxes and Coefficients.

Dbin
kl species pair binary diffusion coefficients, Stefan-Maxwell-Type Equations.
D indexing set of spatial directions, Vector Notation.
E derivative of x with respect to y, Thermodynamics.
E mixture internal energy per unit volume, Conservation Equations.
E equilibrium manifold, Entropic Variables and Theorem 3.
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E equilibrium manifold for w, Natural Normal Form for Multicomponent Flows.
Fi directional convective fluxes, Vector Notation.

Fdiss
i directional dissipative fluxes, Vector Notation.
G mixture Gibbs function per unit volume, Thermodynamics.
H mixture enthalpy per unit volume, Thermodynamics.
I unit tensor in the physical space R

d , Conservation Equations.
In unit tensor in n dimensions, Stefan-Maxwell-Type Equations.
Jk species diffusion fluxes, Conservation Equations.
J vector of diffusion fluxes, Stefan-Maxwell-Type Equations.
Kj directional compensating matrices, Strict Dissipativity.
K compensating matrix, Strict Dissipativity.
Ks
i symmetric reaction rate constants, Complex Chemistry.

eL quasilinear source with respect to v, Theorem 3.
L linearized source term with respect to w, Strict Dissipativity and Theorem 5.
M mass matrix, Thermodynamics.
Mk symbol of chemical species, Complex Chemistry.
Mij Third order tensors associated with r, Normal Variables.
Ou open set associated with the variable u, Entropic Variables.
Ov open set associated with the variable v, Entropic Variables.
Ow open set associated with the normal variable w, Normal Variables.
Ox open set associated with the spatial variable x, Boundary Conditions.
Q heat flux, Conservation Equations.
R vector space spanned by the reaction vectors, Complex Chemistry.
R perfect gas constant, Thermodynamics.
< real part, Hyperbolicity and Parabolicity.
S mixture entropy per unit volume, Thermodynamics.
S indexing set for chemical species, Conservation Equations.
T absolute temperature, Thermodynamics.
Y diagonal matrix of mass fractions, Transport Fluxes and Coefficients.

�l atomic Gibbs functions, Theorem 9.
� Flux Stefan-Maxwell matrix, Stefan-Maxwell-Type Equations.
ık diagonal species diffusion coefficients, Simplified Diffusion Coefficients.
ıkl Kronecker symbol, Thermodynamics.
�kl Stefan-Maxwell matrix coefficients, Stefan-Maxwell-Type Equations.
� Stefan-Maxwell matrix, Stefan-Maxwell-Type Equations.
� ratio of flow time to chemical time, Equation (52).
' temperature scale of transport coefficients, Transport Fluxes and Coefficients.

 shear viscosity, Transport Fluxes and Coefficients.
	 volume viscosity, Transport Fluxes and Coefficients.
~ regularity class of thermodynamic functions, Thermodynamics.
� thermal conductivity, Transport Fluxes and Coefficients.
� matrix of the quasilinear form for !, Complex Chemistry.
�k species reduced chemical potentials, Thermodynamics.
� vector of reduced chemical potentials, Thermodynamics.
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�ki reaction stoichiometric coefficients, Complex Chemistry.
�i reaction vectors, Complex Chemistry.
!k species molar production rates, Conservation Equations.
! vector of molar production rates, Complex Chemistry.
Ω source vector of the conservative quasilinear form, Directional Fluxes.
eΩ source vector of the entropic form, Entropic Variables.
Ω source vector of the normal form, Normal Variables.
� orthogonal projector onto E

?
, Natural Normal Form for Multicomponent Flows.

…e linear operator associated with E, Chemical Equilibrium Fluids.
…r linear operator associated with E?, Chemical Equilibrium Fluids.
…e linear operator associated with E, Chemical Equilibrium Fluids.
˘ viscous tensor, Conservation Equations.
�k species partial densities, Conservation Equations.
� total mass density, Conservation Equations.
% vector of species partial densities, Thermodynamics.

e�l atom partial densities, Complex Chemistry.
e% vector of atom partial densities, Thermodynamics.
� mathematical entropy, Entropic Variables.

˙d�1 sphere in d dimensions, Entropic Variables.
�i reactions rates of progress, Complex Chemistry.

e�k rescaled thermal diffusion ratios, Transport Fluxes and Coefficients.
� vector of Rd , Entropic Variables.
� vector of Rd , Natural Entropic Form for Multicomponent Flows.

1I vector of Rn with unit coefficients, Thermodynamics.
r vector derivation operator in R

d , Conservation Equations.
e chemical equilibrium subscript, Chemical Equilibrium.
f forward superscript, Complex Chemistry.
b backward superscript, Complex Chemistry.
? equilibrium symbol, Strict Dissipativity.
0 derivation with respect to the flame coordinate, Plane Flame Equations.
t transposition symbol, Conservation Equations.

8 Conclusion

Mathematical models derived from the kinetic theory describing chemically reacting
mixtures and their mathematical structures and properties have been presented in
these notes. The hyperbolic–parabolic structure, local-in-time solutions [46], global
solutions around equilibrium states [39, 45, 49], as well as traveling wave solutions
in the low Mach number limit [38] have been investigated. Weak solutions with
large data for related reactive fluid models have also been addressed. In addition, the
situation of traveling waves in reactive media as well as reaction–diffusion parabolic
systems has been discussed.
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Various extensions could also consider initial-boundary value problems with
boundary conditions involving complex phenomena like inflow or outflow condi-
tions, heat losses, radiation, surface reactions with detailed heterogeneous chem-
istry, species surface diffusion, as well as heat surface conduction [39, 42, 76, 95,
98]. Various numerical analysis theoretical results could also be extended to the
case of chemically reacting mixtures like convergence results of Petrov-Galerkin
“Streamline Diffusion” finite element techniques [66, 68].

On the other hand, models at thermodynamic nonequilibrium with two tempera-
tures for a single gas have been investigated, and the apparition of a volume viscosity
term has been justified mathematically [53, 54]. These models could be generalized
in order to investigate the relaxation of a whole family of quantum states [15].

The notion of higher-order entropy may also be generalized to the situation of
multicomponent flows [14, 28, 40, 41] as well as the singular limit of small Mach
number flow [1, 31]. Multiphase flows with sprays governed by Boltzmann-type
equations [7, 118], or derived multifluid sectional models for droplets [82], may
also be investigated mathematically.

Last but not least, one of the formidable problem concerning multicomponent
reactive fluids is the global existence of weak solutions with large data taking into
account the full complexity of the models obtained from the kinetic of gases as well
as high-pressure models with nonideal thermodynamics.
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