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Abstract

Consider the stationary Navier-Stokes flow in 3D exterior domains with zero
velocity at infinity. What is of particular interest is the spatial behavior of the
flow at infinity, especially optimal decay (summability) observed in general and
the asymptotic structure. When the obstacle is translating, the answer is found in
some classic literature by Finn; in fact, the optimal summability is Lq with q > 2
and the leading profile is the Oseen fundamental solution. This presentation is
devoted to the other cases developed in the last decade, mainly the case where
the obstacle is at rest, together with several remarks even on the challenging
case where the obstacle is rotating. The optimal summability for those cases is
L3;1 (weak-L3) and the leading term of small solutions being in this class is the
homogeneous Navier-Stokes flow of degree .�1/, which is called the Landau
solution. In any case, the total net force is closely related to the asymptotic
structure of the flow. An insight into the homogeneous Navier-Stokes flow of
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degree .�1/, due to Šverák, plays an important role. It would be also worthwhile
finding a class of the external force, as large as possible, which ensures the
asymptotic expansion of the flow at infinity.

1 Introduction

Let � be an exterior domain in R
3 occupied by a viscous incompressible fluid,

where a compact set R3 n � is identified with an obstacle (rigid body) and the
boundary @� of � is assumed to be sufficiently smooth. Given external force
f D .f1.x/; f2.x/; f3.x//

>, the stationary motion of the fluid is described by
the velocity u D .u1.x/; u2.x/; u3.x//> and pressure p D p.x/ which obey the
Navier-Stokes system

��u C rpC .u � ��! � x/ � ru C! � u D f; div u D 0 in � (1)

subject to the boundary conditions

u D �C ! � x on @�; (2)

u ! 0 as jxj ! 1; (3)

where (2) is the usual no-slip condition in which the flow attains the rigid motion in
the sense of trace, while (3) is understood from the class of solutions, mostly either
pointwise or summability. All vectors are throughout column ones and .�/> denotes
the transpose of vectors or matrices. To understand the Eq. (1) of momentum, one
should start with nonstationary Navier-Stokes system in a time-dependent region
exterior to a moving body and make a suitable change of variables to reduce the
problem to an equivalent one in the reference frame attached to the moving body
(see Galdi [26] for the details). The translational velocity � and angular velocity
! are then in general time dependent; however, both are assumed to be constant
vectors, and the flow is assumed to be stationary in the reference frame. The
main issue one would like to address here is the spatial behavior of solutions at
infinity. It turns out that the rate of decay (3) is controlled by the total net force
(momentum flux)

M D M.�; !; f /

D

Z
@�

ŒT .u; p/ � u ˝ .u � � � ! � y/ � .! � y/˝ u� � d�y C

Z
�

f .y/ dy

(4)

associated with (1), which is written as the divergence form

� div ŒT .u; p/ � u ˝ .u � � � ! � x/ � .! � x/˝ u� D f;
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where

T .u; p/ D ru C .ru/> � pI (5)

is the Cauchy stress tensor, I is the 3 � 3 identity matrix, and � stands for the
outward unit normal to @�. One has nonzero force M ¤ 0 in general; however,
if in particular u, p, and ru decay sufficiently fast at infinity, then integrating the
equation above over fx 2 �I jxj < �g and letting � ! 1 yield M D 0. This
simple observation suggests thatM is related to the decay structure of the flow. One
may also refer to [47, section 6] in the context of the self-propelled motion of a rigid
body.

In his celebrated paper [61], Leray showed the existence of at least one solution
in the class of finite Dirichlet integral ru 2 L2.�/ to (1), (2) and (3) (when
� D ! D 0) without any smallness condition on the data. The argument relies on
compactness together with a priori estimate arising from structure of the Navier-
Stokes system. Note that this structure is kept for the case � C ! � x ¤ 0 as
well. His theorem thus provides even large solutions, most of which would be
unstable. From the viewpoint of stability, solutions of the Leray class do not give
us enough information about the asymptotic behavior at infinity. In fact, the only
thing one knows is u 2 L6.�/; however, mathematical analysis developed so far
requires better decay property such as ju.x/j � C jxj�1 or u 2 L3;1.�/ (as well
as smallness) of the stationary flow u to show its stability, where L3;1 denotes
the weak-L3 space (see [6,7,31,38–40,44,46,49,55,63,65,70], and the references
therein). When � D 0, the summabilityL3;1 of stationary flows observed in general
is actually optimal unless assuming any specific condition such as symmetry. As
compared with this case, better summability of stationary flows for the case � 2 R

3n

f0g mentioned in the next paragraph is helpful in the proof of stability of such flows
(under smallness conditions); indeed, there is no need to analyze the full linearized
operator; in other words, analysis of the Oseen semigroup is enough, while that is
not the case when � D 0 (unless using an interpolation technique due to [76]).

The interest is focused on optimal decay/summability at infinity of the flow
together with its asymptotic structure. This was addressed in a series of papers by
Finn [22–24], in which the rigid body was assumed to be translating with velocity
� 2 R

3 n f0g; however, ! D 0. In this case the essential step is to analyze the
asymptotic behavior of solutions at infinity to the Oseen system

��u C rp � � � ru D f; div u D 0; in �: (6)

The Oseen fundamental solution possesses anisotropic decay structure with
paraboloidal wake region behind the body. In fact, the flow decays faster outside
wake than inside, and consequently the summability near infinity is better like
u 2 Lq with q > 2 than the case � D 0. Finn [23], Farwig [15], and Shibata [70]
proved the existence of small Navier-Stokes flow which exhibits the same decay
structure with wake as mentioned above; actually, the leading profile of the flow is
the Oseen fundamental solution, and its coefficient is given by the force M.�; 0; f /
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(see (4)), provided f is of bounded support. Such a flow was called physically
reasonable solution by Finn. Furthermore, Babenko [1], Galdi [25], and Farwig
and Sohr [21] showed that any solution of the Leray class without restriction on
the magnitude becomes a physically reasonable solution (see Galdi [28, Theorem
X.8.1]). This is a contrast to the case � D 0; indeed, when the translation of the
body is absent, one has no result on the asymptotic behavior of large solutions
of the Leray class except for Choe and Jin [13], in which some pointwise decay
rates of axisymmetric solutions of that class were deduced. Later on, Galdi and
Silvestre [33], Galdi and Kyed [29], and Kyed [57–59] generalized the results
mentioned above for purely translational regime to the case � � ! ¤ 0. In fact,
the presence of translation still implies fine decay/summability at infinity of the
flow past a rotating obstacle except the case where ! 2 R

3 n f0g is orthogonal
to �, and, as a consequence, the leading profile of the Navier-Stokes flow is
described in terms of the linear part, in which a remarkable role of axis of rotation
can be also observed. Such a role was discovered first by Farwig and Hishida
[18, 19] for the flow around a purely rotating obstacle, and it will be explained
later.

This presentation studies the other case where the translation of the body is absent
(� D 0/. In this case the existence of solutions, which decay like

ju.x/j � C jxj�1; jru.x/j � C jxj�2 .jxj ! 1/

or

u 2 L3;1.�/; ru 2 L3=2;1.�/;

for small external forces was proved by [7,56,69] (! D 0) and by [17,27] (! ¤ 0).
For the case ! D 0, Deuring and Galdi [14] clarified that the leading profile was
no longer the Stokes fundamental solution. Indeed, the rate jxj�1 of decay yields
the balance between the linear part and nonlinearity since �u � u � ru � jxj�3

(formally). This observation would suggest that a sort of nonlinear effect is involved
in the leading term of the flow. Nazarov and Pileckas [68] first derived asymptotic
expansion under smallness conditions, but the leading term was less explicit. It
was explicitly found much later by Korolev and Šverák [50] (case ! D 0).
When the nonlinearity is balanced with the linear part, it is reasonable to expect
that the self-similar solution would be a candidate of the leading term. Since
the stationary Navier-Stokes system (� D ! D 0) is invariant under the scale
transformation

u	.x/ D 	u.	x/; p	.x/ D 	2p.	x/; 	 > 0; (7)

a smooth solution fu; pg to

��u C rp C u � ru D 0; div u D 0 in R
3 n f0g (8)



6 Stationary Navier-Stokes Flow in Exterior Domains and Landau Solutions 303

is called (stationary) self-similar solution if

u	.x/ D u.x/; p	.x/ D p.x/; 8	 > 0 8x 2 R
3 n f0g

or, equivalently,

u.x/ D
1

jxj
u

�
x

jxj

�
; p.x/ D

1

jxj2
p

�
x

jxj

�
; 8x 2 R

3 n f0g; (9)

that is, u and p are homogeneous of degree .�1/ and .�2/, respectively. Landau [60]
derived its exact form under the assumption of axisymmetry (see (78)), in order to
describe jets from a thin pipe (see also Tian and Xin [75] and Cannone and Karch
[9]). Finally, Šverák [74] has characterized completely the set S of all self-similar
solutions as follows: S is parameterized by vectorial parameter as

S D
n
fUb; PbgI b 2 R

3
o

(10)

whose member fUb; Pbg is symmetric about the axis Rb and satisfies

��Ub C rPb C Ub � rUb D bı; div Ub D 0 in D0.R3/ (11)

across the origin (see also [2, 9]), where ı denotes the Dirac measure. In other
words, every self-similar solution must have its own axis of symmetry, and the
set S eventually agrees with the family of solutions computed by Landau. This is
the reason why the self-similar solution is often called the Landau solution. The
proof of Šverák [74] is closely related to geometric properties of S2 (unit sphere).
Based on his profound insight, he and Korolev [50] proved that the leading term
of asymptotic expansion of solutions to (1) with .�; !; f / D .0; 0; 0/ (without
assuming (2)), which decay like jxj�1 at infinity, is given by the specific Landau
solution UM with label M D M.0; 0; 0/ (see (4)), provided lim supjxj!1 jxjju.x/j
is small enough, where the error term satisfies the pointwise estimate like jxj�2C"

for " > 0 arbitrarily small (but the smallness of u depends on "). The result was
extended to small time-periodic solutions (case � D ! D 0) with period T > 0

by Kang, Miura, and Tsai [48], where the leading term is the Landau solution
Ub with label b D 1

T
R T
0
M , that is, the time average of the force (4). Note

that the Landau solution must be useful to describe the local behavior related to
singularity/regularity as well; indeed, it was proved by Miura and Tsai [64] that the
leading term of point singularity like jxj�1 at x D 0 of the Navier-Stokes flow is
also given by a Landau solution provided it is small enough.

Later on, Farwig and Hishida [19] studied the case where the body is purely
rotating with angular velocity ! 2 R

3 n f0g and proved that the leading term of
solutions to (1) (with � D 0, f D 0), which are small in L3;1.�/, is another
Landau solution Ub with label b D . !

j!j
� M/ !

j!j
, whose axis of symmetry is
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parallel to the axis of rotation along which the flow is largely concentrated, where
M D M.0; !; 0/ (see (4)). The solution enjoys better summability if and only if
! � M D 0, while so does the solution for the case where the body is at rest if
and only if the full force M vanishes. Thus, one is able to find out the effect of
rotation, which was not clear until the study of [18, 19]. They considered solutions
inL3;1.�/ rather than pointwise decay properties, and the error term was estimated
in terms of summability. Their result was then refined by Farwig, Galdi, and Kyed
[16] in the sense that the asymptotic expansion with error term satisfying a pointwise
estimate (as in [50]) was deduced even for solutions of the Leray class with the
energy inequality under appropriate smallness of !.

Most part of this presentation is devoted to the case ! D 0, but key points for the
purely rotating case ! 2 R

3nf0g and the remarkable difference between those cases
are also explained. One specifies a class of the external force f , which ensures the
asymptotic expansion of the Navier-Stokes flow u 2 L3;1.�/ as long as it is small
enough. Since the class of f is rather large, it seems difficult to deduce pointwise
estimates of the error term; instead, it is estimated in terms of summability as in
[19]. Before the analysis of the Navier-Stokes flow, it is also worthwhile showing
the asymptotic expansion of the Stokes flow with general external force as above
(see Theorem 1).

This presentation consists of six sections. After some preliminaries in the next
section, asymptotic structure for the linearized system is studied in sect. 3. At the end
of sect. 3, a few crucial facts which interpret why the axis of rotation is preferred for
the case ! 2 R

3 n f0g are mentioned. In sect. 4 the existence theorem (Theorem 2)
for small solutions in L3;1.�/ is provided. It is based on the linear theory (see
Theorem 3). The result is due to Kozono and Yamazaki [56], but one carries out
linear analysis in a different way, which can be applied to the other cases �C ! �

x ¤ 0 (see [17,71]). The asymptotic expansion of the Navier-Stokes flow obtained
in Theorem 2 is studied in sect. 5 (see Theorem 4), in which one needs a bit more
decay property of the external force than assumed in Theorem 2. The final section
summarizes what is done and raises several open questions about the related issues.
Although this is a survey article, the complete proof of Theorems 1, 3, and 4 will be
presented.

2 Preliminaries

In this section some function spaces are introduced and notation is fixed. Let B� be
the open ball in R

3 centered at the origin with radius � > 0. For sufficiently large
� > 0, we set �� D � \ B�, where � is the exterior domain under consideration.

Let D be a smooth domain in R
3, such as the exterior domain �, whole space

R
3, or a bounded domain. By C1

0 .D/ one denotes the class of smooth functions
with compact support in D. For 1 � q � 1 the usual Lebesgue spaces are denoted
by Lq.D/ with norm k � kq;D . To introduce the Lorentz space (for details, see Bergh
and Löfström [3]), given measurable function f on D, set



6 Stationary Navier-Stokes Flow in Exterior Domains and Landau Solutions 305

mf .t/ WD jfx 2 DI jf .x/j > tgj ; t > 0;

where j � j stands for the Lebesgue measure. Then mf .�/ is monotonically non-
increasing, right continuous, and measurable. It is well known that f 2 Lq.D/,
1 � q < 1, if and only if

Z 1

0

˚
t mf .t/

1=q
�q dt

t
< 1:

With this in mind, one denotes by Lq;r .D/ the vector space consisting of all
measurable functions f on D which satisfy

�Z 1

0

˚
t mf .t/

1=q
�r dt

t

�1=r
< 1 if 1 � r < 1;

sup
t>0

t mf .t/
1=q < 1 if r D 1:

(12)

Note that

Lq;r0.D/ � Lq;r1.D/ if r0 � r1I Lq;q.D/ D Lq.D/;

the latter of which is obvious as mentioned above. Each of finite quantities (12) is a
quasi-norm; however, by the use of the average function, it is possible to introduce
a norm k � kq;r;D , which is equivalent to that, unless q D 1 (see [3]). Then Lq;r .D/
equipped with k � kq;r;D (1 < q < 1; 1 � r � 1) is a Banach space, called
the Lorentz space; in particular, Lq;1.D/ is well known as the weak-Lq space, in
which C1

0 .D/ is not dense. As a typical function in this space, recall that jxj�˛ 2

L3=˛;1.R3/ as long as 0 < ˛ � 3. One also has the weak Hölder inequality ([7,
Lemma 2.1]): let 1 < p � 1; 1 < q < 1 and 1 < r < 1 satisfy 1=r D

1=p C 1=q, and let f 2 Lp;1.D/, g 2 Lq;1.D/, then fg 2 Lr;1.D/ with

kfgkr;1;D � kf kp;1;Dkgkq;1;D (13)

where L1;1.D/ D L1.D/.
Let 1 < q < 1 and 1 � r � 1. The Lorentz spaces can be also constructed via

real interpolation

Lq;r .D/ D
�
L1.D/;L1.D/

�
1�1=q;r

: (14)

This together with the reiteration theorem in the interpolation theory ([3, 5.3.1])
implies that

Lq;r .D/ D
�
Lq0;r0 .D/; Lq1;r1 .D/

�

;r

(15)
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provided

1 < q0 < q < q1 < 1; 1=q D .1 � 
/=q0 C 
=q1; 1 � r0; r1; r � 1:

Then one knows

kf kq;r;D � Ckf k1�
q0;r0;D
kf k
q1;r1;D (16)

for all f 2 Lq0;r0 .D/ \ Lq1;r1 .D/ � Lq;r .D/. For fixed f 2 Lp;1.D/, the map
g 7! fg is bounded from Lq;1.D/ to Lr;1.D/ by (13), where 1 < p � 1,
1 < q < 1, and 1 < r < 1 satisfy 1=r D 1=pC1=q. Hence, the interpolation (15)
leads to

kfgkr;s;D � kf kp;1;Dkgkq;s;D (17)

for f 2 Lp;1.D/ and g 2 Lq;s.D/, where p; q; r are the same as above and
1 � s � 1. For

1 < q < 1; 1 < r � 1; 1=q0 C 1=q D 1; 1=r 0 C 1=r D 1; (18)

the duality relation

Lq;r .D/ D Lq
0;r 0

.D/�

holds, in particular, Lq;1.D/ D Lq
0;1.D/�. In what follows, the same symbols for

vector and scalar function spaces are adopted as long as there is no confusion. The
abbreviations k �kq D k�kq;� and k �kq;r D k�kq;r;� are used for the exterior domain
� under consideration.

One needs the homogeneous Sobolev space. For 1 < q < 1, let PH1
q .D/ be the

completion of C1
0 .D/ with respect to the norm kr.�/kq;D . For D D R

3 one has

PH1
q .R

3/ D fu 2 L
q
loc.R

3/I ru 2 Lq.R3/g=R:

When 1 < q < 3, one may take the canonical representative elements to adopt

PH1
q .R

3/ D fu 2 Lq�.R3/I ru 2 Lq.R3/g;

where 1=q� D 1=q � 1=3, together with the embedding estimate

kukq�;R3 � Ckrukq;R3 :

Let

1 < q0 < q < q1 < 1; 1=q D .1 � 
/=q0 C 
=q1; 1 � r � 1; (19)
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and define

PH1
q;r .D/ D

�
PH1
q0
.D/; PH1

q1
.D/

�

;r
;

which is independent of the choice of fq0; q1g, with norm kr.�/kq;r;D . Note that
C1
0 .D/ is dense in PH1

q;r .D/ unless r D 1. For D D R
3 the embedding relations

([56])

PH1
q;r .R

3/ ,! Lq�;r .R3/; kukq�;r;R3 � Ckrukq;r;R3 ;

PH1
3;1.R

3/ ,! L1.R3/ \ C.R3/; kuk1;R3 � Ckruk3;1;R3 ;
(20)

hold provided 1 < q < 3, 1=q� D 1=q � 1=3 and 1 � r � 1.
Let 1 < q < 3, 1=q� D 1=q � 1=3 and 1 � r � 1. Let � � R

3 be the
exterior domain. For every u 2 L1loc.�/ satisfying ru 2 Lq;r .�/, there is a constant
k D k.u/ such that u C k 2 Lq�;r .�/ with

ku C kkq�;r � Ckrukq;r

where C > 0 independent of u (see [7, Theorem 5.9]). By taking the canonical
representative element of u 2 PH1

q;r .�/, one has the characterization ([34, 52, 56])

PH1
q;r .�/ D fu 2 Lq�;r .�/I ru 2 Lq;r .�/; uj@� D 0g; (21)

together with

kukq�;r � Ckrukq;r : (22)

One can also take the canonical representative element of u 2 PH1
3;1.�/ ,!

L1.�/\ C.�/, which goes to zero for jxj ! 1 and satisfies uj@� D 0 as well as

kuk1 � Ckruk3;1: (23)

For fq; rg satisfying (18), the space PH�1
q;r .D/ is defined as the dual space of

PH1
q0;r 0.D/, and set PH�1

q .D/ D PH�1
q;q .D/. The duality theorem for interpolation

spaces ([3, 3.7.1]) implies that

PH�1
q;r .D/ D

�
PH�1
q0
.D/; PH�1

q1
.D/

�

;r

(24)

for q; q0; q1; r satisfying (19) with 1 < r � 1. For r D 1, one also defines
PH�1
q;1 .D/, 1 < q < 1, as the dual space of the completion of C1

0 .D/ with

respect to the norm kr.�/kq0;1;D , which is denoted by OH1
q0;1.D/

�
¤ PH1

q0;1.D/
�

.

Then (24) holds for r D 1 as well (see [3, p.55]). Let 1 < q < 1 and 1 � r � 1,
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then there exists a constant C > 0 such that for every f 2 PH�1
q;r .D/, one can take

F 2 Lq;r .D/ satisfying

div F D f; kF kq;r;D � Ckf k PH�1
q;r .D/

I

see [51, Lemma 2.2] and [56, Lemma 2.2].
Let D � R

3 be a bounded domain. Then

Lp;r .D/ � Lq;s.D/ for all 1 < q < p < 1; r; s 2 Œ1;1�:

Both embeddings

PH1
q;r .D/ ,! Lq;r .D/ ,! PH�1

q;r .D/ (25)

are compact, where 1 < q < 1 and 1 � r � 1 (see [3, 3.14.8]). For the same
fq; rg, one also has

PH1
q;r .D/ D fu 2 Lq;r .D/I ru 2 Lq;r .D/; uj@D D 0g;

together with the Poincaré inequality

kukq;r;D � Ckrukq;r;D: (26)

Finally, consider the boundary value problem for the equation of continuity

div w D f in D; w D 0 on @D;

where D is a bounded domain in R
3 with Lipschitz boundary @D. Given f being

in a suitable class, say f 2 Lq.D/, with compatibility condition
R
D
f D 0,

there are a lot of solutions, some of which were found by many authors (see
Galdi [28, Notes for Chapter III]). Among them a particular solution discovered
by Bogovskii [4] is useful to recover the solenoidal condition in a cutoff procedure
on account of some fine properties of his solution. By the following lemma, the
operator f 7! his solution w (called the Bogovskii operator) is well defined, and its
properties are summarized. For the proof, see Borchers and Sohr [8], Galdi [28], as
well as Bogovskii [4].

Lemma 1. Let D � R
3 be a bounded domain with Lipschitz boundary. Then there

is a linear operator B W C1
0 .D/ ! C1

0 .D/
3 such that, for 1 < q < 1 and k � 0

integer,

krkC1Bf kq;D � Ckrkf kq;D

with some C D C.D; q; k/ > 0 and that

div Bf D f if
Z
D

f .x/dx D 0;
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where the constant C is invariant with respect to dilation of the domain D.
By continuity, B is extended uniquely to a bounded operator from PHk

q .D/ to
PHkC1
q .D/3, where PHk

q .D/ is the completion of C1
0 .D/ with respect to the norm

krk.�/kq;D . Furthermore, by real interpolation, it is extended uniquely to a bounded
operator from PHk

q;r .D/ to PHkC1
q;r .D/

3, where 1 � r � 1 and

PHk
q;r .D/ D

�
PHk
q0
.D/; PHk

q1
.D/

�

;r

with q0; q1 and 
 satisfying (19).

3 Asymptotic Structure of the Stokes Flow

Let us start with asymptotic structure of the simplest case, that is, the exterior Stokes
flow without external force

��u C rp D 0; div u D 0; in �; (27)

where nothing is imposed at the boundary @�. Note that the result below does not
depend on the boundary condition on @�. Since (27) admits polynomial solutions,
it is reasonable to impose a growth condition, for instance,

u.x/ D o.jxj/ as jxj ! 1;

or u=.1C jxj/ 2 Lq;r .�/ for some q 2 .1;1/; r 2 Œ1;1�;

or ru 2 Lq;r .�/ for some q 2 .1;1/; r 2 Œ1;1�;

(28)

to exclude polynomials except constants. Note that the growth condition on the
pressure is not needed here since it is controlled through the Eq. (27) by the velocity
(but that is not the case in Theorem 1 below; see Remark 1). Then the asymptotic
structure is described in terms of the Stokes fundamental solution

E.x/ D
1

8�

�
1

jxj
I C

x ˝ x

jxj3

�
; Q.x/ D

x

4�jxj3
; (29)

to be precise (Chang and Finn [11]), for every solution to (27) subject to (28), there
are constants u1 2 R

3 and p1 2 R such that

u.x/ D u1 CE.x/

Z
@�

T .u; p/� d� CO.jxj�2/;

p.x/ D p1 CQ.x/ �

Z
@�

T .u; p/� d� CO.jxj�3/;

(30)
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as jxj ! 1. For the proof, there are two methods. One is to employ a potential
representation formula (as in, for instance, [18]), and the other is a cutoff technique
for reduction to the whole space problem. This section takes the latter way since it
works for the Navier-Stokes system as well (see sect. 5). It will be also clarified
which condition on the external force f ensures that the Stokes fundamental
solution is still the leading profile at infinity for

��u C rp D f; div u D 0 in �: (31)

For simplicity, let us consider smooth solution to (31) for smooth external force. If
f .x/ D O.jxj�3/ or f D div F with F .x/ D O.jxj�2/, it is formally balanced
with the second derivative of E.x/ and thus the situation would be delicate (the
equality ��.jxj�1 log jxj/ D jxj�3 suggests that one could not expect even the rate
jxj�1 of decay for the former case). In order to make this point clear, one needs the
following lemma on asymptotic structure of the volume potentialsE	f andQ	f .

Lemma 2. Let f 2 C1.R3/ and assume that there are constants ˛ > 3 andC > 0

such that

jf .x/j �
C

.1C jxj/˛
8x 2 R

3:

Then

rj .E 	 f /.x/ D rjE.x/

Z
R3

f .y/ dy C

8<
:
O.jxj�˛C2�j /; 3 < ˛ < 4;

O.jxj�2�j log jxj/; ˛ D 4;

O.jxj�2�j /; ˛ > 4;

.Q 	 f /.x/ D Q.x/ �

Z
R3

f .y/ dy C

8<
:
O.jxj�˛C1/; 3 < ˛ < 4;

O.jxj�3 log jxj/; ˛ D 4;

O.jxj�3/; ˛ > 4;

(32)

as jxj ! 1, where j D 0; 1.

Proof. One can split the error term as

Z
R3

f.rjE/.x � y/ � rjE.x/gf .y/ dy

D

Z
jyj<jxj=2

f.rjE/.x � y/ � rjE.x/gf .y/ dy � rjE.x/

Z
jyj�jxj=2

f .y/ dy

C

Z
jxj=2�jyj�2jxj

.rjE/.x � y/f .y/ dy C

Z
jyj>2jxj

.rjE/.x � y/f .y/ dy

DW I1 C I2 C I3 C I4:
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It is easy to see that

jI2j C jI4j � C jxj�˛C2�j

and that

jI3j � C jxj�˛
Z

jyj�2jxj

dy

jx � yj1Cj

� C jxj�˛
Z

jy�xj�3jxj

dy

jx � yj1Cj
D C jxj�˛C2�j :

One also finds

jI1j � C

Z
jyj<jxj=2

Z 1

0

d�

jx � �yj2Cj
jyjjf .y/j dy

�
C

jxj2Cj

Z
jyj<jxj=2

jyj

.1C jyj/˛
dy

�
C

jxj2Cj

Z jxj=2

0

.1C r/�˛C3 dr

which concludes (32) for rj .E 	 f /; j D 0; 1. The other one Q 	 f can be
discussed similarly. ut

When the external force does not possess pointwise estimate, one needs the
following existence result for the Stokes system in the whole space

��u C rp D f; div u D 0 in R
3: (33)

Lemma 3. Let 1 < q < 1 and 1 � r � 1. For every f 2 PH�1
q;r .R

3/, there is a

unique solution fu; pg 2 PH1
q;r .R

3/ � Lq;r .R3/ to (33) with

kfru; pgkq;r;R3 � Ckf k PH�1
q;r .R

3/ (34)

in the sense that

hru;r'i � hp; div 'i D hf; 'i

holds for all ' 2 C1
0 .R

3/, where h�; �i stands for duality pairings. If in particular
q < 3, then

kukq�;r;R3 � Ckf k PH�1
q;r .R

3/ (35)
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and the solution fu; pg is unique within the class Lq�;r .R3/ � Lq;r .R3/, where
1=q� D 1=q � 1=3.

Proof. Suppose fu; pg satisfies (33) with f D 0. One has ru 2 S 0.R3/, which
implies u 2 S 0.R3/ by [12, Proposition 1.2.1]. Since the Fourier transform of u is
supported in f0g, the condition ru 2 Lq;r .R3/ concludes that u is a constant vector,
which means zero element in PH1

q;r .R
3/. Then rp D 0, yielding p D 0 in Lq;r .R3/,

which proves the uniqueness. When f D div F with F 2 C1
0 .R

3/, one has a
solution fu; pg D fE 	 f;Q 	 f g. In terms of the Riesz transform R D .Rj /, we
have

ru D �.R˝R/p CR.R � F /; p D �.R˝R/ W F;

yielding (34). The continuity argument then provides a solution for f 2 PH�1
q .R3/.

Finally, by real interpolation, one gets a solution for f 2 PH�1
q;r .R

3/ with desired
estimate (34), which combined with (20) implies (35). ut

From two lemmata above, one obtains the following theorem, in which (37) can
be regarded as asymptotic expansion in terms partly of summability.

Theorem 1. Let f D f0 C div F with

F 2 Ls.�/ \ C1.�/

for some s 2 .1; 3=2�. Let f0 2 C1.�/ and assume that there are constants ˛ > 3
and C > 0 such that

jf0.x/j �
C

.1C jxj/˛
8x 2 �: (36)

For every smooth solution of class u; p;ru 2 Lsloc.�/ to (31) subject to (28), there
is a constant u1 2 R

3 such that

u.x/ D u1 CE.x/M0 C v0.x/C v1.x/; (37)

for jxj � 3R with

M0 D

Z
@�

�
T .u; p/C F

�
� d� C

Z
�

f0.y/ dy;

rj v0.x/ D

8<
:
O.jxj�˛C2�j /; 3 < ˛ < 4;

O.jxj�2�j log jxj/; ˛ D 4;

O.jxj�2�j /; ˛ > 4;

(38)
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(j D 0; 1) as jxj ! 1 and

v1 2 Ls�.� n B3R/; rv1 2 Ls.� n B3R/;

where s� 2 .3=2; 3� is defined by 1=s� D 1=s � 1=3. Here, R > 0 is taken such that
R
3 n� � BR. If in particular F D 0, then v1 is absent from (37).

Proof. First of all, note that the boundary integral of M0 can be understood as
h.T .u; p/C F /�; 1i@� in the sense of normal trace .T .u; p/C F /� 2 H

�1=s
s .@�/

since T .u; p/CF 2 Lsloc.�/ and div .T .u; p/C F / D �f0 2 L1.�/ � Lsloc.�/.
Let us reduce the problem to the one with vanishing flux at the boundary @�.
Without loss one may assume 0 2 int .R3 n�/. We introduce the flux carrier

z.x/ D ˇr
1

4�jxj
; ˇ D

Z
@�

� � u d�; (39)

for given solution fu; pg. Since

Z
@�

� � z d� D ˇ; div z D 0; �z D 0 in R
3 n f0g; (40)

the pair fQu; pg with Qu D u � z fulfills also (31) subject to

Z
@�

� � Qu d� D 0: (41)

By using a cutoff function

 2 C1
0 .B3RI Œ0; 1�/;  .x/ D 1 .jxj � 2R/; kr k1 �

C

R
(42)

and the Bogovskii operator B (Lemma 1) in the domain

AR D fx 2 R
3I R < jxj < 3Rg; (43)

one sets

v D .1 �  /Qu C BŒQu � r �; 
 D .1 �  /p; (44)

where the Bogovskii term is understood as its zero extension to the whole space R3.
It should be noted that

R
AR

Qu � r dx D 0 follows from (41). Then the pair fv; 
g

obeys

��vCr
 D gC .1� /f0Cdiv ..1 �  /F /; div v D 0 in R
3 (45)
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for some function g 2 C1
0 .AR/. Here, one does not need any exact form of g

and what is important is structure of the Eq. (45). When either u.x/ D o.jxj/ or
u=.1 C jxj/ 2 Lq;r .�/, it is obvious that v 2 S 0.R3/. Under the alternative
assumption ru 2 Lq;r .�/ in (28), one has rv 2 S 0.R3/, which implies v 2 S 0.R3/

([12, Proposition 1.2.1]). Going back to the Eq. (45) yields r
 2 S 0.R3/ and,
therefore, 
 2 S 0.R3/ by the same reasoning. Let

v1 2 PH1
s .R

3/ ,! Ls�.R3/; 
1 2 Ls.R3/;

be the solution to (33) with the external force div ..1 �  /F / 2 PH�1
s .R3/ obtained

in Lemma 3. We then find

v.x/ D
	
E 	 fg C .1 �  /f0g



.x/C v1.x/C Pv.x/;


.x/ D
	
Q 	 fg C .1 �  /f0g



.x/C 
1.x/C P
 .x/;

(46)

with some polynomials Pv and P
 ; however, from (28) it follows that Pv must be a
constant vector, which is denoted by u1. Thus, one concludes from Lemma 2 that
u.x/ can be represented as

u.x/ D Qu.x/C z.x/ D E.x/M0 C v0.x/C v1.x/C u1 .jxj � 3R/

with

M0 D

Z
R3

fg C .1 �  /f0g.y/ dy;

where rj v0.x/ behaves like the remainder of (32) since rj z.x/ D O.jxj�2�j /

(see (39)). Let � > 3R. From

Z
jyjD�

�
rz C .rz/>

� y
�
d� D

ˇ

��4

Z
jyjD�

y d� D 0 (47)

one can deduce
Z
B�

fg C .1 �  /f0g.y/ dy D �

Z
B�

div fT .v; 
/C .1 �  /F g dy

D �

Z
jyjD�

.T .u; p/C F /
y

�
d�

D

Z
@�

.T .u; p/C F /� d� C

Z
��

f0.y/ dy:

Letting � ! 1 leads to

M0 D

Z
@�

.T .u; p/C F /� d� C

Z
�

f0.y/ dy;

which concludes (37). This completes the proof. ut
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Remark 1. Because of less information about div F , one cannot say anything about
the polynomial P
 in (46) unless assuming the behavior of p at infinity. If in
particular F D 0 so that 
1 D 0, then P
 must be a constant. In fact, one knows
that both �.E 	 h/ and r.Q 	 h/ belong to Lr.R3/ for every r 2 .1;1/ because
so does h WD gC .1� /f0. By going back to (31), one finds that P
 is a constant,
which we denote by p1. As a consequence,

p.x/ D p1 CQ.x/ �M0 C

8<
:
O.jxj�˛C1/; 3 < ˛ < 4;

O.jxj�3 log jxj/; ˛ D 4;

O.jxj�3/; ˛ > 4;

(48)

as jxj ! 1.

Theorem 1 immediately implies the following corollary.

Corollary 1. In addition to the assumptions of Theorem 1 with s D 3=2, suppose
either u 2 L3.�/ or ru 2 L3=2.�/. Then M0 D 0.

Remark 2. For the Stokes system in n-dimensional exterior domains, either u 2

Ln=.n�2/.�/ or ru 2 Ln=.n�1/.�/ yields M0 D 0 (under suitable assumptions on
the external force).

Consider (31) subject to uj@� D 0. Corollary 1 then tells us that the condition
u 2 PH1

3=2;1.�/ is an optimal class observed in general even if f D div F with
F 2 C1

0 .�/. The following corollary claims the uniqueness of solutions in this
class.

Corollary 2. Let fu; pg 2 PH1
3=2;1.�/ �L3=2;1.�/ be a solution to (27) subject to

uj@� D 0. Then fu; pg D f0; 0g.

Proof. Theorem 1 with f D 0 can be applied. Since u 2 L3;1.�/, one has (37)
with u1 D 0 as well as v1 D 0. One also knows (48) with p1 D 0 (or even more
directly, the same procedure as in the proof of Theorem 1 with use of p 2 L3=2;1.�/

leads to the same expansion). As a consequence,

u.x/ D O.jxj�1/; fru.x/; p.x/g D O.jxj�2/ (49)

as jxj ! 1. Let 
 2 C1.Œ0;1/I Œ0; 1�/ satisfy 
.t/ D 1 for 0 � t � 1 and

.t/ D 0 for t � 2, and set 
�.x/ D 
.jxj=�/ for � > 0 large enough and
x 2 R

3. Since the local regularity theory for the Stokes boundary value problem
together with a bootstrap argument yields fu; pg 2 H2.�2�/ � H1.�2�/, one can
multiply (27) by 
�u to obtain
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Z
�

jruj2
� dxC

Z
�<jxj<2�

.ru �r
�/ �u dx�

Z
�<jxj<2�

.u �r
�/p dx D 0: (50)

Letting � ! 1 by use of (49) together with jr
�.x/j � C=� leads toR
�

jruj2 dx D 0, so that u D 0 by the boundary condition. Then rp D 0, yielding
p D 0 on account of (49). ut

Remark 3. The key is that smallness at infinity in a weak sense implies the
pointwise decay property (49). The argument works even for fu; pg 2 PH1

q;r .�/ �

Lq;r .�/ provided fq; rg 2 .1; 3/� Œ1;1� or fq; rg D f3; 1g; thus, the uniqueness of
solutions within that class also holds true.

One turns to the case where the obstacle is purely rotating with angular velocity
!. The linearized system (the Stokes system with rotation) is given by

��u C rp � .! � x/ � ru C ! � u D f; div u D 0 in �: (51)

Without loss one may assume ! D ae3 with a 2 R n f0g. Let us introduce

�.x; y/ D

Z 1

0

O.at/>.GI CH/.O.at/x � y; t/ dt; (52)

where

G.x; t/ D .4�t/�3=2e�jxj2=4t ; H.x; t/ D

Z 1

t

r2G.x; s/ ds

and

O.t/ D

0
@ cos t � sin t 0

sin t cos t 0
0 0 1

1
A :

Note that .GI C H/.x; t/ is a fundamental solution of the nonstationary Stokes
system and that the fundamental solution (29) of the stationary Stokes system is
represented as

E.x/ D

Z 1

0

.GI CH/.x; t/ dt;

which can be compared with (52). By [18,20] the pair f�.x; y/;Q.x � y/g with Q
given by (29) is a fundamental solution to

��u C rp � .! � x/ � ru C ! � u D f; div u D 0 in R
3 (53)
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with ! D ae3. The following lemma gives us the asymptotic behavior of �.x; y/;
in particular, (57) plays a crucial role.

Lemma 4. Let ! D ae3 with a 2 R n f0g, and let j D 0; 1. Then

jrj �.x; y/j � C jxj�1�j for jxj > 2jyj; (54)

jrj �.x; y/j � C jyj�1�j for jyj > 2jxj; (55)

Z
jyj�2jxj

jrj �.x; y/j dy � C jxj2�j for x 2 R
3; (56)

where r denotes either rx or ry . Set

ˆ.x/ WD
1

8�jxj3

0
@0 0 x1x3
0 0 x2x3
0 0 jxj2 C x23

1
A ;

then

j�.x; y/ �ˆ.x/j � C jyjjxj�2 C C jaj�1jxj�3 for jxj > 2jyj: (57)

Proof. A brief sketch will be presented here. Let us take the Taylor formula (with
respect to y)

G.O.at/x � y; t/ D G.x; t/CG.x; t/
.O.at/x/ � y

2t
C .remainder/

and consider each term multiplied by O.at/>. To get (57), the point is rapid decay
due to oscillation

ˇ̌
ˇ̌
Z 1

0

�
cos at
sin at

�
G.x; t/ dt

ˇ̌
ˇ̌ �

C

jajjxj3

and a part of non-oscillating terms comes to the leading profile ˆ.x/. The term
H.O.at/x � y; t/ can be discussed similarly although the computation is more
complicated. The details are found in [18, section 4]. The others (54), (55) and (56)
are much easier (see [18, (2.11)] and [47, (6.23)]). ut

By the same splitting of the volume potential as in the proof of Lemma 2, one
can make use of Lemma 4 to conclude the following asymptotic expansion. In
the proof, the dominant term is I1 for the region jyj < jxj=2, in which (57) is
employed.
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Lemma 5. Let ! D ae3 with a 2 R n f0g. Suppose f satisfies the same condition
(with ˛ > 3) as in Lemma 2. Then

u.x/ D

Z
R3

�.x; y/f .y/ dy

enjoys

u.x/ D

�
e3 �

Z
R3

f .y/ dy

�
E.x/e3 C

8<
:
O.jxj�˛C2/; 3 < ˛ < 4;

O.jxj�2 log jxj/; ˛ D 4;

O.jxj�2/; ˛ > 4;

(58)

as jxj ! 1, where E.x/ is the Stokes fundamental solution (29).

By means of harmonic analytic method developed by [20], it is possible to deduce
exactly the same well-posedness for (53) as in Lemma 3, where the constants in (34)
and (35) are independent of a 2 R n f0g. It was done by [43, Theorem 2.1], [17,
Proposition 3.2]. By using this together with Lemma 5, one can follow the proof
of Theorem 1 (with a bit more care of the flux carrier, see [47, section 6]) under
the same assumptions on the external force to obtain the asymptotic expansion of
solutions to (51), in which the leading term is given by

V .x/ WD

�
!

j!j
�M0

�
E.x/

!

j!j
;

!

j!j
D e3; (59)

where

M0 D

Z
@�

ŒT .u; p/C u ˝ .! � y/ � .! � y/˝ u C F �� d�y C

Z
�

f0.y/ dy:

Since e3 � .e3�y/ D 0, the third term of the boundary integral does not contribute to
the coefficient e3 �M0. This was proved under the no-slip condition uj@� D !�x by
Farwig and Hishida [18], who deduced not only the leading term but also the second
one although they restricted their consideration to the simple case where f D div F
with F 2 C1

0 .�/. The leading term (59) satisfies

��V C r… D .e3 �M0/e3ı; div V D 0

in D0.R3/, where ….x/ D .e3 �M0/x3=.4�jxj3/. But the pair fV;…g enjoys

��V C r… � .! � x/ � rV C ! � V D .e3 �M0/e3ı; div V D 0 (60)

as well, since

.e3 � x/ � rV � e3 � V D 0: (61)
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Note that (61) holds for all vector fields which are symmetric about Re3 (x3-axis).
In fact, because such vector fields must be of the form

V D .W .r; x3/ cos 
;W .r; x3/ sin 
; V3.r; x3//
>

in cylindrical coordinates r; 
; x3, one finds .e3 � x/ � rV D @
V D e3 � V . As
long as V .x/ � 1=jxj near the origin, (61) holds also in D0.R3/, that is,

hV ˝ .e3 � x/ � .e3 � x/˝ V; r
i D 0

for all 
 2 C1
0 .R

3/. Hence, the leading term (59) satisfies (60) in D0.R3/.

4 Existence of Flows in L3,1

Consider the problem (1) and (2) with � D ! D 0, that is,

��u C rp C u � ru D f; div u D 0 in �; (62)

u D 0 on @�: (63)

Before proceeding to study of asymptotic structure of the Navier-Stokes flow,
one should establish the existence of (small) solutions having optimal asymptotic
behavior at infinity. The existence of solutions decaying like jxj�1 was proved by
Finn [23], Galdi and Simader [35], Novotny and Padula [69], and Borchers and
Miyakawa [7]. Indeed, such a pointwise estimate is fine, but one may take another
way by the use of function spaces, so that the proof becomes easier. Among some
function spaces which are able to catch homogeneous functions of degree .�1/, the
weak-L3 space is probably the simplest one. Actually, Kozono and Yamazaki [56]
succeeded in showing the existence of a unique Navier-Stokes flow in L3;1.�/
whenever the external force is small in a sense. Since the next section studies
the asymptotic structure of solutions in L3;1.�/, one will provide the existence
theorem due to [56].

It was known ([7, 53, 54]) that either u 2 L3.�/ or ru 2 L3=2.�/ necessarily
yields M.0; 0; f / D 0 (see (4)), although those Lebesgue spaces are invariant
under the scale transformation (7). Hence, one has no chance to find the Navier-
Stokes flow belonging to L3.�/ in generic situation. This is a nonlinear counter
part of Corollary 1 (for the Stokes flow) and can be also interpreted by asymptotic
expansion in the next section.

For the Stokes boundary value problem (31) subject to uj@� D 0, one has the
well-posedness in the class u 2 PH1

q .�/ if and only if

� n

n � 1
D

� 3

2
< q < 3 .D n: space dimension/; (64)
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see Borchers and Miyakawa [5], Galdi and Simader [34], and Kozono and Sohr
[51, 52]. To be precise, the condition q > 3=2 is necessary for solvability and it is
consistent with Corollary 1, while for uniqueness one needs q < 3; in fact, the proof
of Corollary 2 does not work when u 2 PH1

3 .�/ because the constant u1 cannot
be excluded in (37). Kozono and Yamazaki [56] clarified that all things for both
Stokes and Navier-Stokes systems work well if replacing L3.�/ (resp. L3=2.�/) by
L3;1.�/ (resp. L3=2;1.�/) for u (resp. ru). When n � 4, the Lq-theory is enough
to construct (small) Navier-Stokes flow u 2 Ln.�/ with ru 2 Ln=2.�/ because
n
n�1

< n
2
< n in this case.

The existence theorem due to [56] now reads as follows.

Theorem 2. There is a constant � > 0 such that for every f 2 PH�1
3=2;1.�/ with

kf k PH�1
3=2;1.�/ < �, problem (62) and (63) admits a unique solution

u 2 PH1
3=2;1.�/ ,! L3;1.�/; p 2 L3=2;1.�/;

kfru; pgk3=2;1 C kuk3;1 � Ckf k PH�1
3=2;1.�/;

(65)

in the sense that

hru;r'i � hp; div 'i � hu ˝ u;r'i D hf; 'i

holds for all ' 2 C1
0 .�/ (and, therefore, all ' 2 PH1

3;1.�/), where h�; �i stands for
duality pairings.

Remark 4. It is an open question whether the small solution fu; pg constructed
in Theorem 2 is unique in the class PH1

3=2;1.�/ � L3=2;1.�/ without assuming
smallness, in other words, whether fu; pg coincides with other large solutions
fv; qg in this class. The difficulty seems to stem from unremovable singularity like
1=jx � x0j of the velocity being in L3;1.�/. If such a singular behavior is ruled
out for large solutions v by assuming additionally v 2 L3.�/ C L1.�/, then the
answer is affirmative (provided kuk3;1 is small enough that is accomplished by (65)
when kf k PH�1

3=2;1.�/ is still smaller). This interesting uniqueness criterion was proved

by Nakatsuka [67] (see also [66]).

Once the following linear theory is established, it is straightforward by using a
simple contraction argument with the aid of (13) to show Theorem 2 (whose proof
may be omitted).

Theorem 3. For every f 2 PH�1
3=2;1.�/, problem (31) subject to (63) admits a

unique solution

u 2 PH1
3=2;1.�/ ,! L3;1.�/; p 2 L3=2;1.�/;

kfru; pgk3=2;1 C kuk3;1 � Ckf k PH�1
3=2;1.�/;

(66)
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in the sense that

hru;r'i � hp; div 'i D hf; 'i

holds for all ' 2 C1
0 .�/ (and, therefore, all ' 2 PH1

3;1.�/), where h�; �i stands for
duality pairings.

The well-posedness in the class PH1
q;r .�/ � Lq;r .�/ for every f 2 PH�1

q;r .�/ was
established first by Konozo and Yamazaki [56] when fq; rg satisfies

fq; rg D f3=2;1gI fq; rg 2 .3=2; 3/ � Œ1;1�I fq; rg D f3; 1g;

which is a generalization of (64) (case q D r). Indeed Theorem 3 is just one of
those cases, but it is the most important case to solve the nonlinear problem. Later
on, Shibata and Yamazaki [71] proved the well-posedness not only in the class above
but in the sum of function spaces

u 2 PH1
q;r .�/C PH1

3=2;1.�/; p 2 Lq;r .�/C L3=2;1.�/

even for the other cases

fq; rg 2 .1; 3=2/ � Œ1;1�I q D 3=2 and r 2 Œ1;1/:

This result suggests that ru and p do not decay faster than jxj�2 in general. In
[71] they discussed the Oseen system (6) as well as the Stokes system to study the
relation between solutions to (1) with � ¤ 0 and � D 0 (i.e., the behavior for the
limit � ! 0). The well-posedness in the class above for (51) was proved by Farwig
and Hishida [17] when the obstacle is purely rotating. It was generalized by Heck,
Kim, and Kozono [37] when taking both translation and rotation of the obstacle
into account. As a result, one has Theorem 2 for the Navier-Stokes boundary value
problem (1) and (2) even if ! ¤ 0 provided the data (� C ! � x in (2) as well as
f ) are small enough; in fact, the case � � ! D 0 is reduced to [17], while the other
case � � ! ¤ 0 is reduced to [37] by using the Mozzi-Chasles transform ([32], [28,
Chapter VIII]). The pointwise estimate like ju.x/j � C jxj�1 for (1) and (2) with
! ¤ 0 was successfully deduced by Galdi [27] and Galdi and Silvestre [32].

For the proof of Theorem 3, a sort of duality argument was employed in [56], but
this way is not taken here; instead, a parametrix is constructed as in [71]. The latter
method was also adopted in [17] and [37] since the argument of [56] does not seem
to work because of lack of homogeneity of the equation with �C ! � x ¤ 0. Also,
one cannot use any continuity argument since C1

0 .�/ is not dense in L3=2;1.�/.
Given f 2 PH�1

3=2;1.�/, one intends to construct directly a solution with the use
of solutions in the whole space (Lemma 3) and in a bounded domain (Lemma 6
below).

Let D be a bounded domain in R
3 with smooth boundary @D, and consider the

boundary value problem
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��u C rp D f; div u D 0 in D; (67)

u D 0 on @D: (68)

The following lemma is due to Cattabriga [10], Solonnikov [73], Kozono and Sohr
[51], and Kozono and Yamazaki [56]. In (69) below, the Poincaré inequality (26) is
involved.

Lemma 6. Let 1 < q < 1 and 1 � r � 1. For every f 2 PH�1
q;r .D/, problem (67)

and (68) admits a solution

u 2 PH1
q;r .D/; p 2 Lq;r .D/;

kfru; u; p � pgkq;r;D � Ckf k PH�1
q;r.D/

;
(69)

with p WD 1
jDj

R
D
p dx, in the sense that

hru;r'i � hp; div 'i D hf; 'i

holds for all ' 2 C1
0 .D/, where h�; �i stands for duality pairings. The solution is

unique up to an additive constant for p.

One is in a position to show Theorem 3.

Proof of Theorem 3. Since the uniqueness is already known by Corollary 2, one will
show the existence part. Fix R > 0 so large that R3 n � � BR�5. Take functions

; 
1 2 C1.R3I Œ0; 1�/ satisfying


.x/ D

�
1; jxj � R � 3;

0; jxj � R � 2;

1.x/ D

�
0; jxj � R � 5;

1; jxj � R � 4;

and set A D fx 2 R
3I R � 4 < jxj < R � 1g. Given f 2 PH�1

3=2;1.�/, it is easily
seen that

f 2 PH�1
3=2;1.�R/; kf k PH�1

3=2;1.�R/
� kf k PH�1

3=2;1.�/;


1f 2 PH�1
3=2;1.R

3/; k
1f k PH�1
3=2;1.R3/ � Ckf k PH�1

3=2;1.�/;
(70)

for the latter of which (20)2 is used. Consider (67) and (68) with f in the bounded
domain D D �R, and let fu0; p0g be the solution obtained in Lemma 6 subject toR
�R
p0 dx D 0. Consider also (33) with f replaced by 
1f , and let fu1; p1g be the

solution obtained in Lemma 3. Set

‰f WD .1 � 
/u1 C 
u0 C BŒ.u1 � u0/ � r
�;

…f WD .1 � 
/p1 C 
p0;
(71)
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where B is the Bogovskii operator (see Lemma 1) in the bounded domain A. SinceR
A
.u1�u0/ �r
 dx D 0, one has div ‰f D 0. Then it follows from (34), (35), (69),

and (21), Lemma 1, and (70) that

.‰f;…f / 2 PH1
3=2;1.�/ � L3=2;1.�/;

kfr‰f;…f gk3=2;1 C k‰f k3;1 � Ckf k PH�1
3=2;1.�/

(72)

and that .‰f;…f / is a solution to

��‰f C r…f D f C Rf; div ‰f D 0; ‰f j@� D 0 (73)

where

Rf D 2r
 � r.u1 � u0/C .�
/.u1 � u0/��BŒ.u1 � u0/ � r
�� .r
/.p1 �p0/;

which is in L3=2;1.�R/ ,! PH�1
3=2;1.�R/ and satisfies

kRf k3=2;1;�R � Ckf k PH�1
3=2;1.�/: (74)

For every  2 C1
0 .�/, one finds

jhRf; ij � kRf k3=2;1;�Rk k3;1;�R

which combined with k k3;1;�R � Ck k1 � Ckr k3;1 (see (23)) implies that
Rf 2 PH�1

3=2;1.�/ with

kRf k PH�1
3=2;1.�/ � CkRf k3=2;1;�R :

Actually, one has even

kRf k PH�1
3=2;1.�/ � CkRf k PH�1

3=2;1.�R/
: (75)

In fact, with the use of a fixed function ' 2 C1
0 .�R/ with '.x/ D 1 .x 2 A/, one

observes

jhRf; ij D jh'Rf; ij � kRf k PH�1
3=2;1.�R/

k' k PH1
3;1.�R/

� CkRf k PH�1
3=2;1.�R/

kr k3;1

for every  2 C1
0 .�/, owing to (23) as well as Rf D 0 outside A. This

implies (75).
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Now it turns out that R W PH�1
3=2;1.�/ ! PH�1

3=2;1.�/ is a compact operator.

In fact, suppose ffj g is a bounded sequence in PH�1
3=2;1.�/, and then by (74)

the sequence fRfj g is bounded in L3=2;1.�R/ and, therefore, converges in
PH�1
3=2;1.�R/ along a subsequence on account of the compact embedding (25). Then

it is also convergent in PH�1
3=2;1.�/ by virtue of (75).

One next shows that 1 C R is injective. Suppose f 2 PH�1
3=2;1.�/ fulfills .1 C

R/f D 0 in PH�1
3=2;1.�/. Since f D �Rf 2 L3=2;1.�R/ which vanishes outside

A, one has f D 0 in�nA. It thus suffices to show that f D 0 in A. In view of (72)
and (73), it follows from Corollary 2 that f‰f;…f g D f0; 0g. Hence, by (71) one
observes

fu1; p1g D f0; 0g; jxj � R � 1I fu0; p0g D f0; 0g; jxj � R � 4

which shows that both fu1; p1g and fu0; p0g can be regarded as solutions to

��v C r
 D f; div v D 0; in BRI vj@BR D 0

and belong to PH1
3=2;1.BR/ � L3=2;1.BR/. It follows from uniqueness assertion of

Lemma 6 that u1 D u0 and that p1 D p0 C c for some constant c. One goes back
to (71) to see that 0 D …f D .1 � 
/.p0 C c/C 
p0; however, the side conditionR
�R
p0 dx D 0 yields c D 0, so that p1 D p0. After all, one finds fu1; p1g D f0; 0g,

yielding f D 0 inA. By the Fredholm alternative, 1CR is bijective, and, therefore,
the pair

u D ‰.1C R/�1f; p D ….1C R/�1f

provides the desired solution, which enjoys (66) on account of (72). The proof is
complete. ut

5 Asymptotic Structure of the Navier-Stokes Flow

This section is devoted to a precise look at the profile of solutions for jxj ! 1

obtained in Theorem 2. In order to make essential points clear, it would be better
to avoid things caused by less local regularity of solutions. In what follows, let us
consider smooth solutions which are of class fu; pg 2 L3;1.�/�L3=2;1.�/. If the
solution enjoyed slightly faster decay property than described in Theorem 2, such as
u�ru D O.jxj�˛/with ˛ > 3 or u˝u 2 Ls.�/with s � 3=2, then one could regard
the nonlinear term as the external force and use Theorem 1 to see that the leading
profile would be still the Stokes fundamental solution. But that is not the case here.
As mentioned in sect. 1, the balance between the linear part and nonlinearity implies
that the leading term of asymptotic expansion would be a self-similar solution.
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Given b 2 R
3 n f0g, Landau [60] (see also [9, 75]) found a nontrivial exact

solution to (8), which satisfies axial symmetry about Rb as well as homogeneity (9).
Set x D jxj�; � D .�1; �2; �3/

T 2 S
2 (unit sphere). When b is parallel to e3, the

Landau solution is of the form

U.x/ D
2

jxj

�
c�3 � 1

.c � �3/2
� C

1

c � �3
e3



;

P .x/ D
4 .c�3 � 1/

jxj2.c � �3/2

(76)

with parameter c 2 .�1;�1/ [ .1;1/, and it satisfies

��U C rP C U � rU D ke3ı; div U D 0 in D0.R3/

(see (11)), where k is given by

k D k.c/ D
8�c

3.c2 � 1/

�
2C 6c2 � 3c.c2 � 1/ log

c C 1

c � 1

�
: (77)

This calculation was done by Cannone and Karch [9, Proposition 2.1] (see also
Batchelor [2, p.209]). The function k.�/ is monotonically decreasing on each of
intervals .�1;�1/ and .1;1/ and fulfills

k.c/ ! 0 .jcj ! 1/I k.c/ ! �1 .c ! �1/I k.c/ ! 1 .c ! 1/:

Hence, for every b 2 R
3nf0g parallel to e3, there is a unique c 2 .�1;�1/[.1;1/

such that k.c/e3 D b. Since the Navier-Stokes system (8) is rotationally invariant,
the Landau solution fUb; Pbg for general b 2 R

3 n f0g is given by rotation of (76).
Let O 2 R

3�3 be an orthogonal matrix that fulfills O b
jbj

D e3. Then one finds

Ub.x/ D
2

jxj

�
c.O�/3 � 1

fc � .O�/3g2
� C

1

c � .O�/3
b

jbj



;

Pb.x/ D
4 fc.O�/3 � 1g

jxj2fc � .O�/3g2

(78)

for x D jxj�; � 2 S
2. Since

kUbk1;S2 C kPbk1;S2 D O.jcj�1/

for jcj ! 1 or, equivalently, jbj ! 0, one observes

kUbk3;1;R3 C kPbk3=2;1;R3 ! 0 .b ! 0/: (79)
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When b D 0, one may understand fU0; P0g D f0; 0g. As proved by Šverák [74],
for each b 2 R

3 the Landau solution (78) is the only solution to (11) which is
smooth in R

3 n f0g and possesses the homogeneity (9) (however, without assuming
axisymmetry), and the family of Landau solutions covers all of possible self-similar
solutions to (8). This fact as well as the Eq. (11) itself is essential in the proof of
Theorem 4 below, while the exact form (78) is not really needed except for (79).

Given Navier-Stokes flow u 2 L3;1.�/, the aim is to clarify how a specific
Landau solution is singled out from the set S (see (10)). One also takes care of the
external force, to which less attention has been paid in previous literature except
[48]. Concerning that, the situation is the same as in Theorem 1 for the Stokes
flow, that is, the class f 2 PH�1

3=2;1.�/ yields the balance between the Landau
solution and the error term. Thus, one needs slightly more decay property of f .
In this presentation the class of the external force is a bit larger than the one in [48],
for pointwise decay of F is not assumed below.

The main result reads

Theorem 4. Let f D f0 C div F with

F 2 Ls;1.�/ \ L3=2;1.�/ \ C1.�/ (80)

for some s 2 .1; 3=2/. Suppose f0 2 C1.�/ satisfies (36) for some ˛ > 3. Let
fu; pg be a smooth solution of class

u 2 L3;1.�/; p 2 L3=2;1.�/; ru 2 L
3=2;1
loc .�/ (81)

to (62). Set

M D

Z
@�

ŒT .u; p/ � u ˝ u C F � � d� C

Z
�

f0.y/ dy (82)

and

q D max f3=.˛ � 1/; sg 2 .1; 3=2/; q� D max f3=.˛ � 2/; s�g 2 .3=2; 3/;

where s� 2 .3=2; 3/ is defined by 1=s� D 1=s � 1=3 (note that 1=q� D 1=q � 1=3).
There is a constant � > 0 such that if

kuk3;1 C jM j < �; (83)

then

u�UM 2 Lr�.�/; fru�rUM ; p�PM g 2 Lr.�/; 8r 2 .q; 3=2/; (84)

where fUM ;PM g 2 S denotes the Landau solution with label given by (82),
see (10), and r� 2 .q�; 3/ is defined by 1=r� D 1=r � 1=3.
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Even if F satisfies

F 2 L3=2.�/ \ C1.�/ (85)

in place of (80), the conclusion above still holds true, in which (84) is replaced by

u �UM 2 L3;3=2.� nB3R/; fru � rUM ; p�PM g 2 L3=2.� nB3R/; (86)

where R > 0 is taken large enough.

Proof. Since T .u; p/ � u ˝ u � F 2 Ltloc.�/ for every t 2 .1; 3=2/, the boundary
integral of (82) makes sense by the same reasoning as in Theorem 1. Set ˇ DR
@�
� � u d� . One assumes 0 2 int .R3 n�/ without loss and uses the flux carrier

z.x/ given by (39), which fulfills not only (40) but also z � rz D r jzj2

2
. So the pair

Qu D u � z; Qp D p �
jzj2

2

belongs to the class (81) and obeys

��Qu C r Qp C Qu � r Qu D f � u � rz � z � ru; div Qu D 0 in �

as well as vanishing flux condition (41). Fix R0 > 0 such that R3 n � � BR0 . Let
R 2 ŒR0;1/ be the parameter to be determined later. One takes

v D .1 �  /Qu C BŒQu � r �; 
 D .1 �  / Qp; (87)

by using the cutoff function (42) together with the Bogovskii operator B (Lemma 1)
in the domain AR (see (43)). One then finds

��v C r
 C v � rv D h; div v D 0 in R
3 (88)

with

h WD g C .1 �  /f0 C div f.1 �  /.F � z ˝ u � u ˝ z/g; g 2 C1
0 .AR/;

where the exact form of g is not needed as in the proof of Theorem 1.
One is going to show that

Z
R3

fg C .1 �  /f0g.y/ dy D M; (89)
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(see (82)) and that

kvk3;1;R3 � Ckuk3;1 C
C jˇj

R
: (90)

Let � > 3R. By taking

Z
jyjD�

�
jzj2

2
� z ˝ z

�
y

�
d� D

�ˇ2

32�2�5

Z
jyjD�

y d� D 0

as well as (47) into account, one finds

Z
B�

fg C .1 �  /f0g.y/ dy

D �

Z
B�

div fT .v; 
/ � v ˝ v C .1 �  /.F � z ˝ u � u ˝ z/g dy

D �

Z
jyjD�

ŒT .Qu; Qp/ � Qu ˝ Qu C F � z ˝ u � u ˝ z�
y

�
d�

D �

Z
jyjD�

ŒT .u; p/ � u ˝ u C F �
y

�
d�

D

Z
@�

ŒT .u; p/ � u ˝ u C F � � d� C

Z
��

f0.y/ dy:

Letting � ! 1 leads to (89). To show (90), set vu WD .1 �  /u C BŒu � r � and
vz WD .1 �  /z C BŒz � r �. Since the map u 7! vu is bounded from Lq.�/ to
Lq.R3/ for every q 2 .1;1/, the real interpolation implies that

kvuk3;1;R3 � Ckuk3;1: (91)

Fix � 2 .3;1/ arbitrarily. It then follows from (42), the Gagliardo-Nirenberg
and Poincaré inequalities together with dilation invariance of the estimate of the
Bogovskii operator (due to Borchers and Sohr [8], see Lemma 1) that

kBŒz � r �k1;AR � CkBŒz � r �k
1�3=�

�;R3
krBŒz � r �k

3=�

�;R3

� CR1�3=�krBŒz � r �k�;AR

� CR1�3=�kz � r k�;AR

� Ckzk1;AR D
C jˇj

R2
:
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Thus, jxjjvz.x/j � C jˇj=R for all x 2 R
3 and thereby

kvzk3;1;R3 �
C jˇj

R
;

which together with (91) concludes (90).
Let fU;P g D fUM ;PM g be the Landau solution whose label is given by (82).

To regularize fU;P g around x D 0, one may follow the same cutoff procedure as
in (87):

V D .1 �  /U C BŒU � r �; ‚ D .1 �  /P:

One then observes
R
AR
U � r dx D 0 because

Z
AR

div . U / dx D

Z
jxjDR

�x � U

R
d� D

Z
jxjD"

�x � U

"
d� D O."/ ." ! 0/:

The same reasoning as in (91) implies that

kV k3;1;R3 � CkU k3;1;R3 : (92)

The pair fV;‚g obeys

��V C r‚C V � rV D H; div V D 0 in R
3 (93)

for some function H 2 C1
0 .AR/ with

Z
R3

H.y/ dy D M: (94)

In fact, by using a test function 
 2 C1.R3/ satisfying 
.x/ D 1 .jxj � 3R/ and

.x/ D 0 .jxj � 4R/, one sees from (11) with b D M that

Z
AR

H.y/ dy D �

Z
jyjD3R

.T .U; P / � U ˝ U/
y

3R
d�

D

Z
3R<jyj<4R

.T .U; P / � U ˝ U/.r
/ dy

D hMı; 
i

which leads to (94).
Set

v WD v � V 2 L3;1.R3/; 
 WD 
 �‚ 2 L3=2;1.R3/;
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and consider the auxiliary linear system

��wCr# D .h�H/�div .v ˝ w C w ˝ V /; div w D 0 in R
3 (95)

with

h �H D fg C .1 �  /f0 �H g C div f.1 �  /.F � z ˝ u � u ˝ z/g;Z
R3

fg C .1 �  /f0 �H g.y/ dy D 0;
(96)

where the latter property follows from (89) and (94). It is obvious that fv; 
g

satisfies (95). Furthermore, it is the only solution to (95) within the classL3;1.R3/�
L3=2;1.R3/ provided that

kvk3;1;R3 C kV k3;1;R3 < �1 (97)

with a suitable small constant �1 > 0. In fact, let fw; #g 2 L3;1.R3/ �

L3=2;1.R3/ satisfy (95) in which h � H is replaced by zero, then it follows from
uniqueness for the homogeneous Stokes system within this class (see Lemma 3)
that fw; #g coincides with the solution to (33), where the external force is given by
�div .v ˝ w C w ˝ V / 2 PH�1

3=2;1.R
3/, obtained in Lemma 3. By (35) together with

kdiv .v ˝ w C w ˝ V /k PH�1
3=2;1.R3/ � C.kvk3;1;R3 CkV k3;1;R3 /kwk3;1;R3 (98)

which follows from (13), one gets fw; #g D f0; 0g under the smallness condi-
tion (97). Hence, the task is to find a solution

w 2 Lq�;1.R3/ \ L3;1.R3/; frw; #g 2 Lq;1.R3/ \ L3=2;1.R3/ (99)

to (95) under the condition (80). Once that is available, the only solution fv; 
g

must belong to the class (99), which combined with (16) (with q D r) and decay
properties of (39) lead to

u � U 2 Lr�.� n B3R/; fru � rU; p � P g 2 Lr.� n B3R/

for every r 2 .q; 3=2/. By (81) one has also

u � U 2 Lr�.�3R/; fru � rU; p � P g 2 Lr.�3R/

for the same r as above. Thus, (84) is proved.
Set

w1 WD E 	 fgC .1� /f0 �H g; #1 WD Q 	 fgC .1� /f0 �H g: (100)
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It follows from Lemma 2 together (96)2 that rjw1 (j D 0; 1) and #1 enjoy the same
pointwise estimates at large distance as the error terms of (32) do. Therefore,

w1 2 Lt�;1.R3 n BL/ \ L1.R3 n BL/;

frw1; #1g 2 Lt;1.R3 n BL/ \ L1.R3 n BL/
(101)

for some L > 0, where

t D 3=.˛ � 1/; t� D 3=.˛ � 2/ if ˛ 2 .3; 4/;

t 2 .1; 3=2/ is arbitrary; 1=t� D 1=t � 1=3 if ˛ � 4:

Since w1; rw1; #1 2 L�.BL/ for every � 2 .1;1/, which follows from g C .1 �

 /f0 CH 2 L�.R3/ for such � , we obtain

w1 2 Lt�;1.R3/\L3;1.R3/; frw1; #1g 2 Lt;1.R3/\L3=2;1.R3/: (102)

One observes
p
1 �  jzj 2 L3=2;1.R3/ \ L1.R3/, which combined withp

1 �  juj 2 L3;1.R3/ and (13) imply that

.1 �  /.z ˝ u C u ˝ z/ 2 L�;1.R3/; 8 � 2 .1; 3�: (103)

It thus follows from (80) that

div
˚
.1 �  /.F � z ˝ u � u ˝ z/

�
2 PH�1

s;1.R
3/ \ PH�1

3=2;1.R
3/: (104)

Let

w2 2 PH1
s;1.R

3/ \ PH1
3=2;1.R

3/ ,! Ls�;1.R3/ \ L3;1.R3/;

#2 2 Ls;1.R3/ \ L3=2;1.R3/;
(105)

be the solution to (33) with the external force (104) obtained in Lemma 3. Then one
finds

w0 WD w1 C w2 2 Lq�;1.R3/ \ L3;1.R3/;

rw0 2 Lq;1.R3/ \ L3=2;1.R3/;

#0 WD #1 C #2 2 Lq;1.R3/ \ L3=2;1.R3/;

(106)

with q D maxf 3
˛�1

; sg, where 1=q� D 1=q � 1=3.
Given w 2 Lq�;1.R3/ \ L3;1.R3/ (see (99)), the velocity part of the unique

solution to (33) with the external force

� div .v ˝ w C w ˝ V / 2 PH�1
q;1.R

3/ \ PH�1
3=2;1.R

3/
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obtained in Lemma 3 is denoted by Tw. Then problem (95) is rewritten as

w D w0 C Tw (107)

and the right-hand side returns to the class (99) on account of (106). By (35) together
with (98) (and the similar one in terms of kwkq�;1;R3), the map w 7! w0 C Tw is
contractive from Lq�;1.R3/ \ L3;1.R3/ into itself provided that

kvk3;1;R3 C kV k3;1;R3 < �2 (108)

with a suitable small constant �2 D �2.q/ > 0. One thus gets a fixed point
w 2 Lq�;1.R3/\L3;1.R3/ with rw 2 Lq;1.R3/\L3=2;1.R3/. Since the pressure
associated with Tw belongs to Lq;1.R3/ \ L3=2;1.R3/, so does the pressure
associated with the fixed point because of (106).

In view of (90), (92) with U D UM , and (79), the parameter R 2 ŒR0;1/ is first
fixed so that jˇj=R is small enough, and then it is possible to take a suitable constant
� > 0 such that both (97) and (108) are accomplished under the condition (83).

Finally, consider the case when F satisfies (85) in place of (80), then

div
˚
.1 �  /.F � z ˝ u � u ˝ z/

�
2 PH�1

3=2.R
3/

on account of (103). Hence, one has

w2 2 PH1
3=2.R

3/ ,! L3;3=2.R3/; #2 2 L3=2.R3/

(see (20)), instead of (105). On the other hand, (101) yields

w1 2 L3;3=2.R3 n BL/; frw1; #1g 2 L3=2.R3 n BL/

for some L > 0, which implies

w1 2 L3;3=2.R3/; frw1; #1g 2 L3=2.R3/ (109)

by the same reasoning as in (102). One thus obtains

w0 2 L3;3=2.R3/; frw0; #0g 2 L3=2.R3/ (110)

instead of (106). For the proof of (86), it suffices to find a solution

w 2 L3;3=2.R3/; frw; #g 2 L3=2.R3/ (111)

to (95). Given w 2 L3;3=2.R3/, one observes

� div .v ˝ w C w ˝ V / 2 PH�1
3=2.R

3/
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with

kdiv .v ˝ w C w ˝ V /k PH�1
3=2 .R

3/ � C.kvk3;1;R3 C kV k3;1;R3 /kwk3;3=2;R3

by (17). Therefore, the term Tw in (107) belongs to PH1
3=2.R

3/ ,! L3;3=2.R3/. By
virtue of (110), the rest of the proof of existence of a solution of class (111) is the
same as above. The proof is complete. ut

Remark 5. If, in addition, div F 2 L1.�/ \ Ltloc.�/ for some t > 1, then the
equality

R
�
f .y/ dy D

R
�
f0.y/ dy C

R
@�
F � d� is justified, so that (82) is equal

to M.0; 0; f / given by (4).

Remark 6. If F is absent (so that f D f0) and if ˛ � 4, the exponent q is chosen
arbitrarily in the interval .1; 3=2/ (as close to 1 as one wishes) and the small constant
� depends on the choice of q.

Finally, let us consider the Navier-Stokes system around a rotating obstacle

��uCrpCu �ru�.!�x/ �ruC!�u D f; div u D 0 in �; (112)

where ! D ae3 with a 2 Rnf0g. As mentioned in [74, section 3], a scaling argument
with (7) works for the case ! D 0 to see that, if solutions are asymptotically
homogeneous of degree .�1/, then their leading terms are the Landau solutions.
But (112) is no longer invariant under the transformation (7) unless ! D 0. One thus
needs another heuristic observation, which is based on knowledge of the linearized
system (51). The point is the asymptotic expansion (58), which yields the leading
term (59) of the linearized flow. Let u 2 L3;1.�/ be the solution to the Navier-
Stokes system (112). In view of features of (59), it is reasonable to expect that the
leading term, denoted by U , still keeps symmetry about the axis of rotation (i.e.,
Re3) as well as homogeneity of degree .�1/ and that the quantity e3 � M controls
the rate of decay; here, M D M.0; !; f / is given by (4), or

M D

Z
@�

ŒT .u; p/ � u ˝ .u � ! � y/ � .! � y/˝ u C F � � d�y C

Z
�

f0.y/ dy

(113)
when the external force is of the form f D f0 C div F satisfying the same
assumptions as in Theorem 4. One can also expect, as in (60), that the leading term
U together with some scalar field P solves

��U C rP CU � rU � .! � x/ � rU C ! �U D .e3 �M/e3ı; div U D 0

(114)
in D0.R3/; however, this is reduced to

��U C rP C U � rU D .e3 �M/e3ı; div U D 0 (115)
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because U satisfies (61) under the symmetry about Re3. Hence, U is a self-similar
solution to (8), and it should be a Landau solution U.e3�M/e3 . This observation can be
justified along the same way as in the proof of Theorem 4, in which (94) and (96)2
should be replaced by

Z
R3

H.y/ dy D .e3 �M/e3; e3 �

Z
R3

fgC .1� /f0�H g.y/ dy D 0: (116)

Then one can use Lemma 5 to obtain (101)1 for w1, which combined with the result
of [20] implies (102)1=(109)1 for w1. This was done by Farwig and Hishida [19]
for (112) with no external force under the no-slip boundary condition uj@� D !�x.
But their result can be extended to the case where the external force satisfies the
same conditions as in Theorem 4 without assuming any boundary condition on
@� (see [47, section 6] for the flux carrier). Note that the corresponding Landau
pressure P.e3�M/e3 is not solely the leading term of the associated pressure unlike
Theorem 4 for ! D 0. This is because (116)2 is not sufficient to get faster decay
of the pressure, so that (101)2 for #1 is not available. In addition to P.e3�M/e3 ,
however, one can use (32)2 to take the leading term of #1 given by (100) so that
one gets

P.e3�M/e3 CQ.x/ �

Z
R3

fg C .1 �  /f0 �H g.y/ dy

D P.e3�M/e3 CQ.x/ � fM � .e3 �M/e3g;

which is the leading term of the pressure, where Q.x/ is the fundamental solu-
tion (29). This was found by Farwig, Galdi, and Kyed [16]. In [16] the authors
deduced the asymptotic expansion of solutions of the Leray class satisfying the
energy inequality, which eventually decay like jxj�1 (see [30]), as long as they are
small enough.

6 Conclusion

The asymptotic structure at infinity as well as existence of 3D exterior stationary
Navier-Stokes flows being in L3;1 (weak-L3) is discussed when the obstacle is
at rest. The class L3;1 is critical from both of the following points of view (one
is essential, while the other would be technical). On the one hand, it is optimal
summability of generic flows in the sense that better summability than L3;1

necessarily implies the vanishing total net force, M.0; 0; f / D 0 (see (4)). On the
other hand, it is difficult to conclude the stability of flows with worse summability
than L3;1 (even if they are small enough) as long as one adopts the mathematical
analysis developed until now.

The Stokes fundamental solution, which is the leading profile of the Stokes flow,
is no longer the leading profile of the Navier-Stokes flow being in L3;1 on account
of the balance between the linear part and nonlinearity. The correct leading term



6 Stationary Navier-Stokes Flow in Exterior Domains and Landau Solutions 335

is the Landau solution whose label is the net force M.0; 0; f / of given Navier-
Stokes flow provided it is small enough. The reason comes essentially from Šverák’s
observation on structure of the set that consists of all homogeneous Navier-Stokes
flows of degree .�1/. One finds a contrast with the case where the obstacle is
translating, in which the leading profile is described in terms of the linear part,
that is, the Oseen fundamental solution. When the obstacle is rotating with constant
angular velocity !, the leading term is still a Landau solution; however, its label
is given by . !

j!j
� M/ !

j!j
with M D M.0; !; f /, which follows from a decay

structure of the associated fundamental solution. One is able to specify a condition
on the external force (which is not necessarily of bounded support) such that the
conclusions above hold true.

Several open questions about the related issues are in order. The results above
(except the case where the obstacle is translating) require smallness of the Navier-
Stokes flow in L3;1 because a perturbation argument is adopted. Asymptotic
structure of large solutions of this class is much more involved and remains open.
When ! D 0, as pointed out by Šverák [74, section 3], once one establishes the
asymptotic expansion with homogeneous leading term of degree .�1/ without any
smallness, it turns out by a scaling argument that the leading term must be a Landau
solution.

If the external force f has less decay property (i.e., ˛ is close to 3 and s is close
to 3=2, or even F 2 L3=2.�/, in Theorem 4), it is then hopeless to find out the
second term after the leading one (a Landau solution) in the asymptotic expansion.
For the simple case f D 0, however, one can ask what the second term is. It is
probably homogeneous of degree .�2/.

As compared with the 3D problem, there are many open problems concerning
exterior stationary Navier-Stokes flows in 2D (see Galdi [28, Chapter XII] for the
details). The most difficult case is that the obstacle is at rest (unless assuming
any symmetry), where the linearization method can no longer work because of the
Stokes paradox. No one knows the asymptotic structure of the Navier-Stokes flow
even if it is small enough; however, a remarkable conjecture based on numerical
verification has been recently proposed by Guillod and Wittwer [36]. When the
obstacle is translating, the problem is less difficult on account of decay structure
of the 2D Oseen fundamental solution, which is the leading profile of the Navier-
Stokes flows without restriction on the magnitude as in 3D (see Smith [72] and
Galdi [28, Theorem XII.8.1]). But the stability/instability of such flows is far
from clear.

The case when the obstacle is rotating in 2D has been much less studied. As for
the linearized problem, it was found by Hishida [45] that the oscillation caused by
rotation of the obstacle leads to the resolution of the Stokes paradox and that the
leading term of the flow at infinity involves the profile x?=jxj2 whose coefficient is
(not the net force but) the torque, where x? D .�x2; x1/

>. Very recently, Higaki,
Maekawa, and Nakahara [41] showed that asymptotic structure of small Navier-
Stokes flow around a slowly rotating obstacle exhibits the same profile as above.
Such a structure has still remained open unless imposing smallness on the angular
velocity. Note that the pair
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u.x/ D
cx?

jxj2
; p.x/ D

�c2

2jxj2
.c 2 R/; (117)

is a self-similar solution to the Navier-Stokes system (8) in R
2 n f0g and that it also

satisfies (112) with f D 0 in R
2 n f0g since the last two terms in the left-hand

side vanish, that is, �ax? � ru C au? D 0 (by following the standard notation
in 2D). By Theorem 2 of Šverák [74, section 5], under the zero flux conditionR
S1
� �u d� D 0, the homogeneous Navier-Stokes flow of degree .�1/ in 2D must be

either the circular flow (117) or a particular Jeffery-Hamel flow (whose component
tangent to the circle S

1 vanishes). When the fluid region is in particular the exterior
of a rotating disk, one refers to interesting papers by Hillairet and Wittwer [42] and
by Maekawa [62]: the former finds the Navier-Stokes flow which is close to the
solution (117) with large jcj and whose leading profile is also given by x?=jxj2,
and the latter successfully proves the L2 stability of the solution (117) provided
jcj is sufficiently small. One can expect that this latter result would hold for small
Navier-Stokes flow constructed in [41].

7 Cross-References
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