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Abstract

In this chapter, a general energetic variational framework for modeling the
dynamics of complex fluids is introduced. The approach reveals and focuses
on the couplings and competitions between different mechanisms involved
for specific materials, including energetic contributions vs. kinematic transport
relations, conservative parts vs. dissipative parts and kinetic parts vs. free energy
parts of the systems, macroscopic deformation or flows vs. microscopic defor-
mations, bulk effects vs. boundary conditions, etc. One has to notice that these
variational approaches are motivated by the seminal works of Rayleigh (Proc
Lond Math Soc 1(1):357–368, 1871) and Onsager (Phys Rev 37(4):405, 1931;
Phys Rev 38(12):2265, 1931). In this chapter, the underlying physical principles
and background, as well as the limitations of these approaches, are demonstrated.
Besides the classical models for ideal fluids and elastic solids, these approaches
are employed for models of viscoelastic fluids, diffusion, and mixtures.

1 Introduction

The focus of this chapter is on the mathematical modeling of anisotropic complex
fluids whose motion is complicated by the existence of mesoscales or subdomain
structures and interactions. These complex fluids are ubiquitous in daily life, includ-
ing wide varieties of mixtures, polymeric solutions, colloidal dispersions, biofluids,
electro-rheological fluids, ionic fluids, liquid crystals, and liquid-crystalline poly-
mers. On the other hand, such materials often have great practical utility since the
microstructure can be manipulated by external field or forces in order to produce
useful mechanical, optical, or thermal properties. An important way of utilizing
complex fluids is through composites of different materials. By blending two or
more different components together, one may derive novel or enhanced properties
from the composite. The properties of composites may be tuned to suit a particular
application by varying the composition, concentration, and, in many situations, the
phase morphology. One such composite is polymer blends [121]. Under optimal
processing conditions, the dispersed phase is stretched into a fibrillar morphology.
Upon solidification, the long fibers act as reinforcement and impart great strength
to the composite. The effect is particularly strong if the fibrillar phase is a liquid-
crystalline polymer [99]. Another example is polymer-dispersed liquid crystals, with
liquid crystal droplets embedded in a polymer matrix, which have shown great
potential in electro-optical applications [127].

Unlike solids and simple liquids, the model equations for complex fluids continue
to evolve as new experimental evidences and applications become available [97].
The complicated phenomena and properties exhibited by these materials reflect
the coupling and competition between the microscopic interactions and the macro-
scopic dynamics. New mathematical theories are needed to resolve the ensemble
of microelements, their intermolecular and distortional elastic interactions, their
coupling to hydrodynamics, and the applied electric or magnetic fields. The most
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common origin and manifestation of anomalous phenomena in complex fluids are
different “elastic” effects [77]. They can be attributed to the elasticity of deformable
particles; elastic repulsion between charged liquid crystals, polarized colloids,
and multicomponent phases; elasticity due to microstructures; or bulk elasticity
endowed by polymer molecules in viscoelastic complex fluids. These elastic effects
can be represented in terms of certain internal variables, for example, the orienta-
tional order parameter in liquid crystals (related to their microstructures), the distri-
bution density function in the dumbbell model for polymeric materials, the magnetic
field in magnetohydrodynamic fluids, the volume fraction in mixture of different
materials, etc. The different rheological and hydrodynamic properties will be
attributed to the special coupling (interaction) between the transport (macroscopic
fluid motions) of the internal variable and the induced (microscopic) elastic stress
[115,116]. This coupling gives not only the complicated rheological phenomena but
also formidable challenges in analysis and numerical simulations of the materials.

The common feature of the systems described in this chapter is the underlying
energetic variational structure. For an isothermal closed system, the combination of
the first and second laws of thermodynamics yields the following energy dissipation
law [6, 11, 39, 56]:

d

dt
E total D ��; (1)

where E total is the sum of kinetic energy and the total Helmholtz free energy and �
is the entropy production (here the rate of energy dissipation). The choices of the
total energy functional and the dissipation functional, together with the kinematic
(transport) relations of the variables employed in the system, determine all the
physical and mechanical considerations and assumptions for the problem.

The energetic variational approaches are motivated by the seminal work of
Rayleigh [106] and Onsager [100, 101]. The framework, including Least Action
Principle and Maximum Dissipation Principle, provides a unique, well-defined,
way to derive the coupled dynamical systems from the total energy functionals and
dissipation functions in the dissipation law (1) [67]. Instead of using the empirical
constitutive equations, the force balance equations are derived. Specifically, the
Least Action Principle (LAP) determines the Hamiltonian part of the system [2,
5, 50], and the Maximum Dissipation Principle (MDP) accounts for the dissipative
part [11, 101]. Formally, LAP represents the fact that force multiplies distance is
equal to the work, i.e., ıE D force � ıx; where x is the location and ı the
variation/derivative. This procedure gives the Hamiltonian part of the system and the
conservative forces [2, 5]. The MDP, by Onsager and Rayleigh [67, 100, 101, 106],
produces the dissipative forces of the system, ı 1

2
� D force � ı Px: The factor 1

2
is

consistent with the choice of quadratic form for the “rates” that describe the linear
response theory for longtime near-equilibrium dynamics [74]. The final system is
the result of the balance of all these forces (Newton’s Second Law).

Both total energy and energy dissipation may contain terms related to microstruc-
ture and those describing macroscopic flow. Competition between different parts
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of energy, as well as energy dissipation, defines the dynamics of the system. The
main goal of this chapter is on describing the role of microstructures in the special
coupling between the kinematic transport and the induced “elastic” stresses.

2 Nonequilibrium Thermodynamics

In this section, some basic thermodynamic principles and general relations between
energy laws and differential equations are described. We first clarify notation of
variations of the functionals [50, 54]. Let E D E. / be a functional depending on
a function  in a space H which is equipped with an inner product h ; iH . The
variation ıE D ı E of a function E is defined as

ı E. / D lim
h!0

ŒE. C hı / � E. /� =h;

where ı is a function so that  C hı is a variation of  . The quantity ı E is
often called a directional derivative in the direction of ı at  . It is formally the
Gâteau derivative of E at  in the direction of ı . If ı E can be written as

ı E. / D hf; ı iH ;

with some f for a big class of ı , we often write f by

H_
ıE
ı 

or simply
ıE
ı 
:

This quantity corresponds to the total derivative or the Fréchet derivative if the
latter is well defined [55]. It is simply called the variational derivative . In this
notation, denominator points to the function with respect to which the variation
of the functional in the numerator is taken.

2.1 Energetic Variational Approaches

The first law of thermodynamics [56] states that the rate of change of the sum of
kinetic energy K and the internal energy U can be attributed to either the work PW

done by the external environment or the heat PQ:

d

dt
.K C U/ D PW C PQ:

In other words, the first law of thermodynamics is really the law of conservation
of energy. It is noticed the internal energy describes all the interactions in the system.
In order to analyze heat, one needs to introduce the entropy S [56], which naturally
leads to the second law of thermodynamics [39, 56]:
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T
dS
dt

D PQC�

where T is the temperature and S is the entropy. � is the entropy production
which is always nonnegative and gives the rate of energy dissipation in irreversible
systems. Subtracting the two laws, in the isothermal case when T is constant, one
arrives at:

d

dt
.K C U � T S/ D PW ��;

where F D U �T S is called the Helmholtz free energy. We denote E total D KCF
to be total energy of the system. If the system is closed, when work done by the
environment PW D 0, the energy dissipation law of the system can be written as

dE total

dt
D �2D: (2)

The quantity D D 1
2
� is sometimes called the energy dissipation. The dissipative

law allows one to distinguish two types of systems: conservative (or Hamiltonian)
and dissipative.

The choices of the total energy components and the energy dissipation take into
consideration all the physics of the system and determine the dynamics through
the two distinct variational processes: Least Action Principle (LAP) and Maximum
Dissipation Principle (MDP).

To derive the differential equation describing the conservative system (� D 0),
one employs the Least Action Principle (LAP) [2, 5], which says that the dynamics
is determined as a critical point of the action functional (Remark 1 below). We
give its equivalent form. We consider functionals

R T
0
Kdt and

R T
0
Fdt defined for

a function x (the trajectory in Lagrangian coordinates, if applicable) depending on
space time variables. The inertial and conservative force from the kinetic and free
energies are, respectively, defined as

forceinertial D H_
ı
R T
0
Kdt
ıx

;

forceconservative D H_
ı
R T
0
Fdt
ıx

:

The space H is typically taken as the space time L2 space, L2x;t , i.e., L2x;t D

L2.0; T IL2x/, where L2x is the L2 space in the spatial variables. (These are called
variational forces.) In other words, for all ıx,

ı

Z T

0

Kdt D hforceinertial; ıxiL2x;t D

Z T

0

hforceinertial; ıxiL2xdt

ı

Z T

0

Fdt D hforceconservative; ıxiL2x;t D

Z T

0

hforceconservative; ıxiL2xdt:
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The LAP can be written as

ı

Z T

0

Kdt D ı

Z T

0

Fdt

for all ıx. This gives the natural variational form (the weak form) of the forces with
suitable test functions ıx. The strong form of the system (Euler-Lagrange equation)
can be also written as a force balance (without dissipation).

forceinertial D forceconservative: (3)

The inertial force corresponds to the inertial term ma in Newton’s Second Law,
where a is the acceleration andm is the mass. Note that if the variation is performed
on a bounded domain and involves integration by parts, one has to assume specific
boundary conditions to cancel the boundary terms, so that no boundary effects are
involved.

Remark 1. The standard approach [5] dictates to define the Lagrangian functional
L D K � F and the action functional as A .x/ D

R T
0
Ldt . The Euler-Lagrange

equation in this case is H_ ıA
ıx D 0.

For a dissipative system .� D 2D > 0/, according to Onsager [100, 101], the
dissipation D is taken to be proportional to a “rate” xt raised to a second power.
The Maximum Dissipation Principle (MDP) [67] implies that the dissipative force
may be obtained by minimization of the dissipation functional D with respect to
the above mentioned “rate.” Hence, through MDP, the dissipative force (linear with
respect to the same rate function) can be derived as follows:

ıD D hforcedissipative; ıxt i QH :

In other words,

QH_ıD=ıxt D forcedissipative:

Note that the test function in MDP is different from that in LAP before.

Remark 2. It is important to note that although the limitation for the dissipation D
to be quadratic in “rate” is rather restrictive, strong nonlinearities can be introduced
through coefficients independent of the “rate.”

When all forces are derived, according to the force balance (Newton’s Second
Law, where inertial force plays role of ma):

forceinertial D forceconservative C forcedissipative: (4)
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Notation. For shorter notation, one can write Eq. (4) as H_ ı
R T
0 Kdt
ıx D

H_ ı
R T
0 Fdt
ıx C QH_ ıD

ıxt
with H D L2.0; T I QH/.

It is important to notice that Eq. (4) uses the strong form of the variational result.
This might bring ambiguity in the original variational weak form, since the test
functions may be in different spaces.

2.2 Hookean Spring

As a start, a simple ordinary differential equations (ODE) example of a dissipative
system is considered here, which had been originally proposed by Lord Rayleigh
[106]: the Hookean spring of which one end is attached to the wall and the other
end to a mass m (see Fig. 1). Let x .t/ be a displacement of the mass from
the equilibrium. Consider that the spring has friction-based damping which is
proportional to the velocity (relative friction to the resting media). Under these
assumptions,

K D
mx2t
2
; F D

kx2

2
; and D D

�x2t
2
;

where k is spring strength material parameter and � is damping coefficient. The
energy dissipation law is clearly as follows:

d

dt

�
mx2t
2

C
kx2

2

�

D ��x2t :

The corresponding action functional of the spring [50] in terms of the position
x.t/:

A D

Z T

0

�
mx2t
2

�
kx2

2

�

dt:

Then the Least Action Principle, i.e., variation with respect to the trajectory x.t/,
yields [50]:

Fig. 1 Spring attached to a
wall on one end, with mass m
on the other end
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ıA D

Z T

0

Œmxt .ıx/t � kxıx� dt D

Z T

0

.�mxtt � kx/ ıx dt

D

�

L2t _
ıA

ıx
; ıx

�

L2.0;T /

D

Z T

0

�

L2t _
ıA

ıx
; ıx

�

R
dt:

Here the space H with inner product is L2t D L2.0; T / because here L2x is just
R. On the other hand, the principle of maximum dissipation gives

R_
ıD
ıxt

D �xt :

Indeed, looking at forces involved and formulating Newton’s Second Law (F D

ma) for this system, one can get mxtt D �kx � �xt ; or equivalently

mxtt C �xt C kx D 0; (5)

which is equivalent to the variational force balance (corresponding to (4)) L2t _
ıA
ıx

D

R_ ıD
ıxt

for this example.
Looking at the explicit solution of (5), it is clear that the Hamiltonian part

describes the transient dynamics, the oscillation near initial data, while the dissi-
pative part gives the decaying longtime behavior near equilibrium.

2.3 Gradient Flow (Dynamics of Fastest Descent)

The energetic variational approaches have many different forms in practices and
applications. Next look at the familiar example of gradient flow (dynamics of fastest
descent):

�
ıF.'/
ı'

C 't D 0; (6)

where F is a general energy functional in terms of '. Here ' is a function of spatial
variables with parameter time t , and the constant � > 0 is the dissipation rate
which determines the evolution approaching the equilibrium. Such a system has
been used in many applications both in physics and in mathematics; in particular, it
is commonly used in both analysis and numerics to achieve the minimum of a given
energy functional.

It is clear that with natural boundary conditions (Dirichlet or Neumann), the
solution of (6) satisfies the following energy dissipation law (by chain rule and
integration by parts, if needed):

d

dt
F D �

Z

�

1

�
j't j

2 dx;

where � is a domain in a Euclidean space.
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On the other hand, one can put this in the general framework of energetic
variational approaches. Notice that there is no kinetic energy in this system,
indicating the nature of being the longtime near-equilibrium dynamics.

Notation. When working on a bounded domain, one should consider a variation
up to the boundary. Generally, for a functional E depending on a function  defined
in �, the variation ı E is often of the form

ı E. / D

Z

�

f ı dx C

Z

@�

gı dS:

Then, we denote

f D
ıE
ı� 

; g D
ıE
ı@� 

:

Here f gives variational force inside the domain, while g is a kind of a boundary
force. So if the boundary is taken into account, boundary forces should be also
balanced.

Unless mentioned otherwise, in this chapter, specific boundary conditions are taken
to cancel the boundary effects (i.e., make boundary integral equal to zero).

In the case of F D
R
�
W .'; rx'/ dx and D D 1

2�

R
�

j't j
2dx, the variation

leads to the following two variational derivatives:

L2x_
ıF
ı�'

D �r �
@W

@r'
C
@W

@'
; L2x_

ıD
ı�'t

D
1

�
't ;

which after substitution in (4) yield equation (6). In this case, the boundary effects
would be canceled out in case of homogeneous Dirichlet or Neumann boundary
conditions.

Remark 3. To derive implicit Euler’s time discretization scheme [8], one may
consider minimization of the following functional:

min
'nC1

given 'n

Z

�

(
1

�

ˇ
ˇ'nC1 � 'n

ˇ
ˇ2

2�t
CW

�
'nC1; r'nC1

�
)

dx:

By introducing time discretization, one can avoid the two different variations
and only take the variation with respect to 'nC1. However, the scheme often fails
in the case of � dependent on ', since it is unclear whether to take it explicit
or implicit: explicit may cause stability issues and implicit will lead to a highly
nonlinear system.
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3 Basic Mechanics

Before moving on to more complicated and realistic applications, it is important
first to introduce some basic terminologies and concepts in continuum mechanics
[36,59]. In particular, in this section, the relation between Eulerian (space reference)
and Lagrangian (material reference) coordinates [119] is explored, and the varia-
tional techniques in terms of deformable medium are described. In this section, the
boundary conditions are not in the focus of attention. However they may and should
also be derived through the variational procedure with various specific boundary
energy terms and dissipative terms.

3.1 Flow Map and Deformation Gradient

For a given velocity field u .x; t /, one can define the corresponding flow map
(trajectory) x .X; t / as

xt D u; x .X; 0/ D X: (7)

In other words, x .X; t / describes the position of a particle moving with velocity
u and initial position X. Here x are the Eulerian coordinates, and X – the
Lagrangian coordinates or initial configuration (see Fig. 2). Since the flow map
should satisfy (7), its recovery is possible only if u .x; t / has certain regularity
properties, for instance, being Lipschitz in x [36].

In order to describe the evolution of structures or patterns (configurations), it is
clear that one needs to consider the matrix of partial derivatives, the Jacobian matrix,
the deformation gradient (or deformation tensor) [61]:

F .X; t / D
@x .X; t /
@X

:

If one writes F by components .Fij /, our convention is

Fij D
@xi

@Xj
:

Fig. 2 A schematic
illustration of a flow map
x .X; t /. For t fixed x maps
�0

X to �t
x. For X fixed

x .X; t / is the trajectory of X
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Then by chain rule:

@Fij

@t
D

@

@t

�
@xi

@Xj

�

D
@

@Xj

�
@xi

@t

�

D
@

@Xj
ui .x .X; t / ; t/ D

X

k

@ui
@xk

@xk

@Xj
;

which in Eulerian coordinates will take the form as:

QFt C .u � rx/ QF D
@F

@t
D

@

@X
u .x .X; t / ; t/ D .rxu/ QF:

Here QF .x .X; t / ; t/ D F .X; t / and rx denote the gradient. In Eulerian
coordinates, QF satisfies the following important identity:

QFt C .u � rx/ QF D .rxu/ QF: (8)

Remark 4. The form of (8) is directly related to the equation of vorticity w D curl u
in inviscid incompressible fluids [94]: in two-dimensional cases, the solution of
wt C .u � r/w D 0 is expressed along the trajectory as w .x .X; t / ; t/ D w0 .X/;
in three-dimensional case wt C .u � r/w � .w � r/ u D 0, the solution becomes
w .x .X; t / ; t/ D Fw0 .X/. It is clear that the stretch term .w � r/u is the direct
consequence of the deformation F , although F itself is absent from the original
fluid equations.

Remark 5. Incompressibility condition is actually a restriction on deformation
detF D 1. By using Jacobi’s formula,

0 D @t detF D detF � tr
�
F �1@tF

�
D 1 � tr

�
@X
@x

@u
@X

�

D tr .rxu/ D rx � u;

which yields the usual incompressibility condition in conventional descriptions of
fluids. Notice that the nonlinear constraint in Lagrangian coordinates becomes a
linear one in Eulerian coordinates. (Here rx � u denotes the divergence of u.)

Remark 6. F also determines the kinematic relations of transport of various
physical quantities. The following formulations of kinematic relations describing
transport of scalar quantities are expressed in Eulerian and Lagrangian coordinates
as:

't C .u � rx/ ' D 0 is equivalent to ' .x .X; t / ; t/ D ' .X; 0/ ; (9)

't C rx � .'u/ D 0 is equivalent to ' .x .X; t / ; t/ D
' .X; 0/

detF
: (10)
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3.2 Newtonian Fluids and Navier-Stokes Equations

Next the classic Newtonian fluids [36] are examined, and the Navier-Stokes
equations are derived from the energetic variational approaches. Consider fluid with
density � and velocity field u. Here the local mass conservation law is postulated,
i.e.,

�t C rx � .�u/ D 0: (11)

For fluids, one should consider the free energy depending only on the density
� (the single most important characterization of the material being a fluid), which
implies the following energy dissipation law:

d

dt

Z

�

"
� juj2

2
C ! .�/

#

dx D �

Z

�

2

42�

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C

�

� �
2

3
�

�

jr � uj2

3

5dx;

(12)

where
ˇ
ˇ
ˇruC.ru/T

2

ˇ
ˇ
ˇ
2

D
P

i;j

.ui;jCuj;i /2

2
, ui;j D @ui =@xj . In general for matrix

M , we write jM j D
p

trMMT which is often called the Hilbert-Schmidt norm

or the Frobenius norm. Then K D
R
�
�juj2

2
dx; F D

R
�
! .�/ dx; D D

R
�

�

�
ˇ
ˇ
ˇruC.ru/T

2

ˇ
ˇ
ˇ
2

C
�
1
2
� � 1

3
�
�

jr � uj2
	

dx. The last being the viscosity contribu-

tion [76], the relative friction between particles of the fluids. The constants � and
� are called coefficients of viscosity (� is second viscosity coefficient), and !.�/ is
free energy density.

Since the rate in the dissipation is u D xt , one will have to take the variation with
respect to the flow map x in the Lagrangian coordinates X. Since dx D .detF /X,
and since (11) and (10) imply � .x .X; t / ; t/ D �0 .X/ = detF .X; t / with �0 .X/ D

� .X; 0/, we observe that

ı
R T
0
Kdt D ı

R T
0

R
1
2

�0.X/
detF jxt .X; t /j

2det FdXdt D ı
R T
0

R
1
2
�0.X/ jxt .X; t /j

2 dXdt

D
R T
0

R
�0xt � ıxt dXdt D �

R T
0

R
�0xt t � ıxdXdt

D
R T
0

R 

�� d

dt
u .x .X; t / ; t/ � ıx

�
dxdt

D
R T
0

R
Œ�� .ut C .u � r/u/ � ıx� dxdt D h�� .ut C .u � rx/u/ ; ıxiL2x;t ;

ı
R T
0
Fdt D ı

R T
0

R
!
�
�0

detF

�
detFdXdt

D
R T
0

R 

�!�

�
�0

detF

�
�0

detF C !
�
�0

detF

��
detF tr

�
F �1 @ıx

@X

�
dXdt

D
R T
0

R 

�!� .�/ �C ! .�/

�
.rx � ıx/dxdt

D
R T
0

R
rx


!� .�/ � � ! .�/

�
� ıx dxdt D

˝
r


!�.�/� � !.�/

�
; ıx

˛
L2x;t

:
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The normal component of the variation ıx � 	 is assumed to be zero at the
boundary @�, which follows from no penetration boundary condition. This gives
the following force terms expressed in the strong PDE form:

L2x;t_
ı
R T
0
Kdt

ı�x
D �� .ut C .u � r/ u/ ; L2x;t_

ı
R T
0
Fdt

ı�x
D r



!� .�/ � � ! .�/

�
;

The second (conservative) force term is exactly the gradient of the thermody-
namic pressure. In the absence of the dissipation, from the force balance (3) with
LAP, one obtains the compressible Euler equations [118]:

8
ˆ̂
<

ˆ̂
:

�t C r � .�u/ D 0;

� .ut C .u � r/ u/C rp .�/ D 0;

p .�/ D !� .�/ � � ! .�/ :

(13)

By taking variation of the dissipation (MDP) (here we assume no-slip boundary
conditions: both velocity and its variation vanish at the boundary), one gets

L2x_
ıD
ı�xt

D
ıD
ı�u

D ���u �

�

� C
1

3
�

�

r Œr � u� :

Combining all this into the force balance (4) with MDP yields the compressible
Navier-Stokes equations [76]:

8
ˆ̂
<

ˆ̂
:

�t C r � .�u/ D 0;

� .ut C .u � r/u/C rp .�/ D ��u C
�
� C 1

3
�
�

r Œr � u� ;

p .�/ D !� .�/ � � ! .�/ :

(14)

Remark 7. The flow with pressure depending solely on density is sometimes called
barotropic [36]. The choice of function ! .�/ results in different specific equations
of states for the pressure p .�/ as follows:

1. Taking the free energy density ! .�/ D a�� , one can formally obtain the model
for isentropic flow of ideal gas with pressure p D a.� � 1/�� .

2. In the classical example of isothermal flow of ideal gas, when internal energy
does not depend on density (and thus does not affect the dynamics of isothermal
flow), the free energy density contains only the contribution of Gibbs entropy
! .�/ D a� ln �, which yields the linear in � Boyle’s law for pressure p D a�

[36].

We have derived several important equations in fluid mechanics from LAP and
MDP with local mass conservation laws.
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3.3 Elasticity and Viscoelasticity

Next under consideration are the models for elastic solids. In elasticity modeling,
free energy density depends on the full deformation gradient F [59], not just
the determinant (as that for Navier-Stokes energy for the fluids, W .F / D

!
�
�0

detF

�
detF ). Consequently one needs a reference configuration to conveniently

articulate the idea of the deformation with respect to some initial state. Hence, it is
common to use Lagrangian coordinates in such models. The energy conservation
law in Lagrangian coordinates of a conventional elastic solid is:

d

dt

Z

�

 
�0 .X/ jxt j

2

2
CW .F /

!

dX D 0; F .X; t / D
@x.X; t/
@X

: (15)

It is clear that one can take K D
R
�
�0.X/jxt j

2

2
dX; F D

R
�
W .F / dX; D D 0 in

the energetic variational framework.
The Least Action Principle, the variation with respect to x .X; t /, results in the

following force terms:

L2X;t_
ı
R T
0
Kdt

ı�x
D ��0 .X/ xt t .X; t / ; (16)

L2X;t_
ı
R T
0
Fdt

ı�x
D �rX �WF .F / : (17)

Here WF .F / D
�
@W .F /

@Fij



ij
and rX � M D

�P
j

@
@Xj
Mij



i
for a tensor field M .

Hence, the force balance (3) yields the elasticity equation (usually as a hyperbolic
type wave equation):

�0 .X/ xt t .X; t / D rX �WF .F / ; (18)

where WF is called Piola-Kirchhoff tensor and represents elastic stress in the
Lagrangian frame of reference [59, 119].

In the case of linear isotropic elasticity, W .F / D 1
2


�
jF j2 � 3


D

1
2


�
tr
�
FF T

�
� 3

�
, one gets WF D 
F D 
rXx, which yields the linear elasticity

equation (wave equation):

�0xt t D 
�x;

where 
 > 0 is the Hookean constant and constant 3 is subtracted to null the energy
of the nondeformed material. Here and hereafter � denotes the Laplace operator,
i.e., � D r � r. This model is closely related to neo-Hookean materials, where
free energy may also depend on detF [33]. In [59] free energy density for linear
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elastodynamics depends on E, symmetric part of displacement gradient, related to
deformation gradient F by E D 1

2

�
F C F T

�
� I .

Remark 8. In case of incompressible elasticity , in order to enforce the nonlinear
constraint detF D 1, we are tempted to consider the variation of action integral
under volume preserving diffeomorphism x", i.e., det dx"

dX D 1. However, it is more
convenient to introduce Lagrange multiplier ' and consider variation of I.x/ under
no constraint of variation x", i.e., x0 D x; dx"

d"

ˇ
ˇ
"D0

D ıx: Then the variation of

I .x/ D

Z T

0

�

K � F �

Z
' .X; t /

�

det
@x
@X

� 1

�

dX
	

dt

yields the following incompressible elasticity equation:

8
<

:

�0 .X/ xt t .X; t / D rX �
�
WF .F /C 'F �T

�
;

detF D 1;
(19)

where F �T D .F �1/T . Note that even for linear isotropic elasticity with Piola-
Kirchhoff tensor WF D 
F , this equation still has a nonlinear term and the
nonlinear constraint.

3.3.1 Eulerian Description of Elasticity
One can also express the elasticity system in Eulerian coordinates . For this one
needs to use the deformation tensor in Eulerian coordinates QF .x .X; t / ; t/ D

F .X; t /. Then after coordinate change, the energy law (15) would take form

d

dt

Z

�

 
� juj2

2
C

1

det QF
W
�

QF
�
!

dx D 0:

This energy law has to be considered together with mass conservation (11)
and kinematic relation for deformation tensor (8), which are consequential from

coordinate change. Thus here the kinetic energy is K D
R
�
�juj2

2
dx; and the free

energy is F D
R W . QF/

det QF
dX. The system is conservative, so there is no dissipation.

Variation of the kinetic energy goes exactly the same as in Sect. 3.2, so

L2x;t_
ı
R T
0
Kdt

ı�x
D �� .ut C .u � r/ u/ :
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Similarly, for the free energy, we get

ı
R T
0
Fdt D ı

R T
0

R
W .F / dXdt D

R T
0

R
WF .F / W @ıx

@X dXdt

D
R T
0

R �
WF

�
QF
�

QF T W rxıx
�

1

det QF
dxdt

D
R T
0

R
�

�rx �

�
WF . QF/ QF T

det QF

�	

� ıx dxdt D

�

�rx �

�
WF . QF/ QF T

det QF

�

; ıx
�

L2x;t

:

Hence, the conservative force resulting from this free energy is

L2x;t_
ı
R T
0
Fdt
ıx

D �rx �

 
WF

�
QF
�

QF T

det QF

!

:

Writing force balance (3) together with kinematic assumptions (8) and (11), one
obtains the following system:

8
ˆ̂
<̂

ˆ̂
:̂

� .ut C .u � r/ u/ D r �

�
WF . QF/ QF T

det QF

�

;

QFt C .u � rx/ QF D .rxu/ QF;

�t C r � .�u/ D 0:

(20)

The term
WF . QF/ QF T

det QF
is a Cauchy stress for this system [59, 119]. For the case of

linear isotropic elasticity with WF D F and incompressibility condition detF D 1,
it reduces to the left Cauchy-Green tensor B D FF T [119].

Remark 9. For incompressible viscoelasticity system, one may use the kinetic

energy in Eulerian coordinates as K D
R
�
�juj2

2
dx. The elasticity requires the

free energy to depend on the deformation QF , so F D
R
�
W
�

QF
�
dx. The entropy

production (the dissipation) is that from viscosity D D
R
�
�
ˇ
ˇ
ˇruC.ru/2

2

ˇ
ˇ
ˇ
2

dx. Again,

the incompressibility condition detF D 1 in Lagrangian coordinates is transformed
into r � u D 0 in Eulerian coordinates (see Remark 5). The total energy dissipation
law takes the form:

d

dt

Z  
� juj2

2
CW

�
QF
�
!

dx D �

Z
2�

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

dx: (21)

Combining results from Remark 8 and derivation of the system (20) yields

L2x;t_
ı
R T
0 Kdt
ı�x D �� .ut C .u � r/u/ ; L2x;t_

ı
R T
0 Fdt
ı�x D �r�



WF

�
QF
�

QF T
�
; variation

of dissipation gives L2x_ ıD
ıxt

D ���u, and Lagrange multiplier accounting for
incompressibility adds the pressure term rp to the force balance because ıx should
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be restricted as r � ıx D 0 (as similar to the Remark 5, ı
�
det @x

@X

�
D r � ıx). Hence,

the system for incompressible viscoelasticity may be written as follows [84, 91]:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

� .ut C .u � r/ u/C rp D r �
�
WF

�
QF
�

QF T
�

C ��u;

r � u D 0;

QFt C .u � rx/ QF D .rxu/ QF;

�t C r � .�u/ D 0:

(22)

3.4 Other Approaches to Elastic Fluids

Macroscopic elastic fluids can be realized from many different mechanisms [97],
such as those in micro-macro model for polymeric fluid [14, 44] and liquid crystal
materials [127].

3.4.1 Micro-Macro Model for Polymeric Fluids
Although the macroscopic continuum mechanics approach dominated the devel-
opment of rheology in the past, details of the fluid microstructures are often not
explicitly taken into account. The hydrodynamical and rheological properties of
complex fluids depend intimately on their molecular conformation and configu-
rations [63, 120]. The pure macroscopic descriptions are often not adequate and
sufficient to capture the multiscale-multiphysics properties of the materials [14].
The micro-macro or kinetic theory provides an effective “vehicle” to deliver the
microscopic information needed in the macroscopic momentum transport [12, 15,
44, 112].

Here the polymeric fluids are used as an example to demonstrate such micro-
macro approaches [15, 44]. The micromechanical models for polymeric liquids
usually consist of beads joined by springs or rods [84] (see Fig. 3). In the simplest
case, a molecule configuration can be described by its end-to-end vector q. Taking

Fig. 3 A schematic
illustration of a physical
continuum �x and
configuration space R

3
q
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into account the elastic effect together with the thermofluctuation, the probability
distribution function [6] f .x; q; t / of molecular orientation q should satisfy the
conservation law

ft C rx � .uf /C rq � .Vf / D 0;

where u .x; t / is macroscopic background velocity and V .x; q; t / is microscopic
velocity in the configuration space. For simplicity one may consider the situations
when r � u D 0, the macroscopic flow field being incompressible. For each
microscopic q, ‰ .q/ is the spring energy, which is typically radially symmetric,
i.e., depending only on jqj. Then the free energy includes both the entropy and
internal energy terms averaged (integrated):

’ �
�2f lnf C‰f

�
dqdx.

Remark 10. Consider the probability distribution function (PDF) f .q; t / satisfy-
ing the conservation law ft C rq � .Vf / D 0. Then performing the variation
of the energy dissipation law d

dt

R
R3q

�
�2f lnf C‰f

�
dq D �

R
R3q

1
D
f jVj2 dq

with respect to the flow map generated by V, i.e., @tq .Q; t / D V .q .Q; t / ; t/,
one gets the convection-diffusion (the Fokker-Planck) equation ft D Drq ��
�2rqf C f rq‰

�
. This equation may be obtained as in Sect. 3.2 by setting F D

R
R3q

�
�2f lnf C‰f

�
dq and D D 1

2D

R
R3q
f jVj2 dq. Indeed, the conservation law

with the force balance L2q;t_
ı
R T
0 Fdt
ıq CL2q_ ıD

ıV D 0 yields the desired Fokker-Planck
equation. See Sect. 3.5 for similar derivation.

Using the proposed free energy, the energy dissipation law may be postulated as:

d

dt

Z

�

�
1

2
� juj2 C 


Z

R3q

�
�2f lnf C‰f

�
dq

#

dx

D �

Z

�

2

42�

ˇ
ˇ
ˇ
ˇ
ˇ
rxu C .rxu/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C

Z

R3q




D
f jV � .rxu/qj2 dq

3

5 dx;

where kinetic energy is K D
R
�
1
2
� juj2 dx, Helmholtz free energy takes the form

of F D 

R
�

R
R3q

�
�2f lnf C‰f

�
dqdx, and the energy dissipation functional

is equal to D D
R
�

�

�
ˇ
ˇ
ˇrxuC.rxu/T

2

ˇ
ˇ
ˇ
2

C
R
R3q



2D
f jV � .rxu/ qj2 dq

	

dx. Here

the term .rxu/ q accounts for the deformations on microscopic level due to the
macroscopic flow. The dissipation on the microlevel is due to relative friction of
the particles to the macroscopic flow field. It comes from the configuration space
part of convective derivative with configuration space obeying Cauchy-Born rule
q D FQ and Q being initial (Lagrangian) configuration. It captures the effect of
the macroscopic flow field on the microscopic configurations. Taking full material
derivative, one gets:
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d

dt
f .x .X; t / ; F .X; t /Q; t / Dft C .u � rx/ f C ..rxu/ q/ � rqf

Dft C .u � rx/ f C rq � ..rxu/ qf / :

Note that qt in Eulerian coordinates equals .rxu/q. So rq �.rxu/ q D rx �u D 0:

To apply the energetic variational approach in this case, it is important to
introduce the “separation of scales.” It means that on macroscopic level (dynamics
of the flow given by u), configuration space follows the flow, i.e., satisfies Cauchy-
Born rule q D FQ and consequently V D .rxu/q, while on microscopic level
(dynamics of micro-variable f ), we treat q and V as being independent from
x. Thus, on macroscopic level, the free energy written in Lagrangian coordinates
.X; Q/ will take the form

F D 


Z

�

Z

R3q

�
�2f0 .X; Q/ lnf0 .X; Q/C‰ .FQ/ f0 .X; Q/

�
dQdX:

On microscopic level, we define the flow map in the configuration space
@tq.x; Q; t / D V.x; q.x; Q; t /; t/ independently for each x, so the free energy
in Lagrangian coordinates will take the form

F D 


Z

�

Z

R3q

 

�2f0 .x; Q/ ln
f0 .x; Q/

det @q
@Q

C‰ .q/ f0 .x; Q/

!

dQdx:

Performing the variation on macro- and microlevel separately results into the
system which includes the kinematic constraints (conservation of mass, incom-
pressibility), as well as force balance laws in both microscopic and macroscopic
spaces [84]:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

�t C rx � .�u/ D 0;

� .ut C .u � rx/u/C rxp D rx � �;

� D �
�
rxu C .rxu/T


� 


R
R3q

�
rq‰ ˝ q

�
fdq;

rx � u D 0;

ft C u � rxf C rq � ..rxu/ qf / D Drq �


�2rqf C f rq‰

�
:

(23)

Notation. For vectors a and b, the product a ˝ b is the matrix with an element
.a ˝ b/ij D aibj .

The elastic stress M D
R
R3q

�
rq‰ ˝ q

�
fdq incorporates the effects of the

microscopic configurations into the macroscopic flow by averaging (integrating) in
q. In the simplest Hookean spring case, ‰ D 1

2
jqj2, if one takes the second moment

of f , which is the elastic stress M , as a dependent variable, the system is closed
in M , and the well-known Oldroyd-B equations constitutive will be recovered,
which has been extensively studied [30, 35, 51, 57, 58, 85]. In general, one may
hope that the closure equations will help to solve for approximate f . However,
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since the energy law becomes inadequate to provide any closed system for M
after this momentum closure procedure, the well-posedness of both the original
problem and the closure problem is still not complete except for the local existence
[7,107]. In [84], the well-posedness of the dumbbell system in the near-equilibrium
situations was investigated.

It was noticed that the commonly used methods for treating the transport
equations, such as the velocity average method [41–43], cannot be (directly) applied
here. We observe that the left-hand side of the energy law forbids the presence of
the concentration of the singularities when passed to the limits [43, 48]. It is the
oscillation of f that needs to be controlled, and new analytical tools have to be
developed for these multiscaled transport-parabolic systems.

For more general cases, such as the Finite Extensible Nonlinear Elasticity
(FENE) models, there are no finite moment closure systems. Hence, it is important
to develop a method to treat such a multiscale system. See [64–66] and their
references for specific closure methods developed for FENE systems.

Nematic Liquid Crystals
Liquid crystals and liquid-crystalline polymers constitute a class of complex fluids
with anisotropic viscoelastic features due to the orientation of the molecules and
their configurations [38]. Not only such materials have seen many applications, the
relatively well-developed theories also give the models for other complex fluids.

Let the orientation of particles in nematic liquid crystal be given by the normed
director d .x; t /. One can derive the (simplified) Ericksen-Leslie system [78] for
small molecule nematic liquid crystal flows by considering the energy dissipation
law [82, modified viscous dissipation]:

d

dt

Z

�

�
1

2
� juj2 C




2
jrdj2 C 
G.d/

	

dx

D �

Z

�

2

42�

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C



�
jdt C .u � r/dj2

3

5 dx:

The last term in the dissipation jdt C .u � r/dj2 postulates kinematic assumption
on the transport of the director d. For the treatment of more general kinematic
assumptions, see [115, 132] and their references.

The competition between kinetic and elastic energy produces the specific prop-
erties of the system, such as the existence, stability, and regularity of the hydrostatic
configurations [83]. The elastic energy determines the microstructure formation,
as well as the defect configurations, and at the same time interacts with the fluid
[26,27,82,86]. Such energy laws are important for designing the accurate numerical
algorithms [45, 90, 92], especially when the solutions involve singularities.

Using the energetic variational approaches, that is, taking independent variations
with respect to the flow map generated by incompressible macroscopic velocity u
and with respect to microscopic director d, one can obtain the following Ericksen-
Leslie system:
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

� .ut C .u � r/ u/C rp D r � �;

� D �
�
ru C .ru/T


� 
.rd ˇ rd/;

dt C .u � r/d D �.�d �G0.d//;

r � u D 0;

(24)

where the induced elastic stress .rd ˇ rd/ij D
Pn

kD1.ri dk/.rj dk/. In [132], the
authors employed the energetic variational derivation of the system for more general
elastic energy and energy dissipation functionals.

In liquid crystal flows, there are topological defects due to the constraints on the
order parameter and the prescribed boundary conditions [83]. The dynamics of such
defects are also governed by elastic effects coupled with the flow. In many cases,
there are also flow-induced defects [28]. Usually the number of such defects is very
large. The presence of defects can dramatically change the effective properties of the
liquid crystal materials. When the effects of fluctuations are taken into account, the
defect configuration can melt, and the defects will lose their positional order. The
material becomes a “defect liquid,” similar to those studied in superconductivity
[70, 79, 80, 126]. One approach involves deriving the regularity of the velocity that
is independent of the director field and employing the machinery developed in
[70, 79, 81]. The fact that the defects will induce flow (back flow) indicates the
close coupling between flow and director orientation in these systems. This makes
it difficult to derive the explicit dynamics of defects from the momentum equations.
Some partial results in case of the velocity being smoother than the Leray solutions
have been achieved [83]. The difficulty lies in the convergence of the elastic stress
term. See more details and references in the chapter � “Equations for Viscoelastic
Fluids”.

3.5 Generalized Diffusions

Diffusion is one of the most familiar and studied systems for more than a hundred
years [39, 49, 103]. The conventional description involves the conservation law
ft D r � J and the Fick’s law stating that J is proportional to rf . In this section,
the energetic variational structures for diffusion dynamics of a conserved quantity
f .x; t/ (may be concentration or probability distribution) are going to be explored.

Diffusion of a conserved quantity f .x; t/ can be, above all, viewed as a
transport:

ft C r � .f u/ D 0; (25)

with the energy dissipation law

d

dt

Z
! .f / dx D �

Z
f juj2 dx: (26)

http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-13344-7_25
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In the energetic variational framework outlined in the previous section,
this energy law corresponds to the kinetic energy K D 0; the free energy
F D

R
�
! .f / dx (similar to that of fluid), and the energy dissipation D D

1
2

R
�
f juj2 dx, which corresponds to Darcy’s law (the friction relative to the

resting media) in fluid dynamics. Performing a variation with respect to the
flow map x .X; t / generated by u (LAP) yields the following conservative force:

L2x;t_
ı
R T
0 Fdt
ıx D r

�
!f .f / f � ! .f /

�
. The MDP, variation with respect to u,

gives L2x_ ıD
ıu D f u; and balance of forces (4) results in:

f u C r
�
!f .f / f � ! .f /

�
D 0;

which combined with (25) results in a generalized diffusion equation

ft D �


!f .f / f � ! .f /

�
: (27)

Remark 11. Different models can be obtained by taking various free energy
densities.

1. Taking ! .f / D 
f lnf gives !f f � ! D 
f , which results in the linear
diffusion equation:

ft D 
�f:

2. For more complicated free energy density ! .f / D 

��1

f � ; � > 1, when
particle interactions are involved, one gets !f f � ! D 
f � , which results in
the porous medium equation [10, 122]:

ft D 
�f � :

3.5.1 Inhomogeneous Diffusions
For diffusion involving spatial inhomogeneities, one can introduce the correspond-
ing energy law:

d

dt

Z
f ln .a .x/ f / dx D �

Z
f

a .x/ b .x/
juj2 dx:

Then the variation yields the following:

L2x;t_
ı
R T
0
Fdt
ıx

D
1

a .x/
f ra .x/C rf; L2x_

ıD
ıu

D
f

a .x/ b .x/
u:

Hence, balance of forces (4) combined with (25) results in linear diffusion
equation with variable coefficients:
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ft D r � Œb .x/r .a .x/ f /� :

Notice that the coefficient a .x/ from free energy will affect the equilibrium.
In particular, if a .x/ is not constant, a constant f will no longer be a solution.
The other inhomogeneous term b .x/ corresponds to the mobility coefficient, which
determines the rate of the dynamics approaching the equilibrium.

Remark 12. If terms a � b D 1, the equation takes the form of ft D �f C r �

Œr ln a .x/ f �, the usual convection-diffusion equation.

Remark 13. Diffusion equation can be interpreted by the Brownian motion [53].
Consider random process

dx D a .x/ dt C � .x/ dB;

where B is standard Brownian motion. Writing a Taylor expansion of probability
distribution function f .x; t /, one may obtain the following PDEs:

(a) Ito calculus provides ft C r � .af / D 1
2
�
�
�2f

�
,

(b) The derivation using Stratonovich integral yields ftCr�.af / D 1
2
r�Œ�r .�f /�,

(c) Lastly one can derive PDE with self-adjoint diffusion term ft C r � .af / D
1
2
r �



�2rf

�
.

If following fluctuation-dissipation theorem [39, 74], one restricts the convection
coefficient a D � 1

2
�2r and assumes that f satisfies conservation law (25), the

equations above may be obtained from variation of the following energy laws:

(a) d
dt

R 

f ln

�
1
2
�2f

�
C  f

�
dx D �

R
f

�2=2
juj2 dx,

(b) d
dt

R
Œf ln .�f /C  f � dx D �

R
f

�2=2
juj2 dx,

(c) d
dt

R
Œf lnf C  f � dx D �

R
f

�2=2
juj2 dx.

3.5.2 Nonlocal Diffusions
Many systems involve nonlocal interactions between particles. Such effects include
Coulomb electric interactions, size effects, Lennard-Jones potential, and other
nonlocal relations (see, for instance, [23, 68, 123] and their references).

Consider the energy dissipation law with the nonlocal free energy:

d

dt

�Z

f lnf dx C

“
H .x � y/ f .y/ f .x/ dydx

	

D �

Z
�.f / juj2 dx;

(28)
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where 
f lnf is the entropy and
’
H .x � y/ f .y/ f .x/ dydx is the internal

energy in the Helmholtz free energy (with 
 being constant). Then balance of
forces (4) reads as

�.f /u C 
rf C

�

r

Z
H .x � y/ f .y/ dy

�

f D 0;

which in the case �.f / D f combined with (25) results in the nonlocal diffusion
equation as:

ft D 
�f C r �

�

f r

Z
H .x � y/ f .y/ dy

�

: (29)

Remark 14. The transport of charged particles is described by a known Poisson-
Nernst-Planck (PNP) system [13, 110, 111, 125, 131, 133, 135]. The dynamics takes
account of diffusion and convection as well as electrostatics. The system may be
written in terms of n and p – densities of negative and positive ions, respectively.
Then the energy dissipation law takes the form [133]

d

dt

Z n
kT .n lognC p logp/C

"

2
jr�j2

o
dx

D �

Z
kT

�
n

Dn

junj
2 C

p

Dp

ˇ
ˇup

ˇ
ˇ2
�

dx; (30)

where Dn and Dp are diffusion constants and Dn=.kT / and Dp=.kT / are mobility
constants. Notice that the free energy has both the electric energy (which is nonlocal,
as will be shown below) and the entropy (contributing to the diffusion of charge
density). � is the electrostatic potential satisfying the Poisson equation:

�"�� D �zne nC zpe p;

where " is the dielectric constant and zn and zp are valences of the ions. Also each
density satisfies the conservation law nt C r � Œunn� D 0; pt C r �



upp

�
D 0. To

perform the variation, one should resolve the Poisson equation:

� D
1

"

Z
G .x � y/

�
�zne nC zpe p

�
.y; t / dy;

where G is a Green’s function [50]. Substituting this to the energy law (30), one
gets the dissipation law with the nonlocal electric energy term. After combining the
variation with respect to the two independent flow maps generated by un and up
with conservation laws for the densities, one gets the PNP system:
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8
ˆ̂
<̂

ˆ̂
:̂

nt D r �


Dnrn � zne

Dn
kT
nr�

�
;

pt D r �
h
Dprp C zpe

Dp
kT
pr�

i
;

�"�� D �zne nC zpe p:

(31)

Remark 15. One may notice that the nonlocal effects can be realized even in the
model with only the local free energy but with different dissipation contributing the
nonlocal term. To get such an effect, instead of Darcy’s type dissipation density
f juj2 in (28), one may consider the entropy production (energy dissipation) taking
the form similar to the viscosity in fluid dynamics, i.e.,

D D
1

2

Z
� jruj2 dx:

Then (with K D 0; F D
R
�
! .f / dx) the force balance equation (4) will yield

the Poisson equation for u:

rp D ��u; p D !f .f / f � ! .f / :

Solving for u in terms of p, one can (formally) get

u D �
1

�
r

Z
G .x � y/ p .f / .y; t / dy;

where G is a Green’s function. Substituted to (25), this gives a nonlocal diffusion
equation:

ft � r �

�
f

�
r

Z
G .x � y/ p .f / .y; t / dy

�

D 0: (32)

This corresponds to 
 D 0; p D f , and H D G=� in (29) while being derived
from totally different physics (energy laws).

4 Complex Fluid Mixtures: Diffusive Interface Models

4.1 Surface Tension and the Sharp Interface Formulation

Interface problems arising in mixtures of different fluids, solids, and gases have
attracted attention for more than two centuries. Many surface properties, such
as capillarity, are associated with the surface tension through special boundary
conditions [72, 73]. The classical approach to this problem usually considers the
interface to be a free surface that evolves in time with the fluid velocity [60].
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Fig. 4 A schematic
illustration of domain � with
two fluids separated by free
interface t

Consider domain � with two incompressible fluids occupying subdomains �1

and �2 (see Fig. 4) and t D �1 \ �2 free interface between the two fluids.
Classical approach to this problem yields incompressible Navier-Stokes equation
in each subdomain:

(
�i
�
uit C

�
ui � r

�
ui
�

C rpi D �i�ui ;

r � ui D 0;
in �i : (33)

Define Cauchy stress tensor �i by the following relation [119]:

�i�ui � rp D r � �i with �i D �i

�
rui C

�
rui

�T 
� piI:

Then the position of the interface at each individual time is determined by the
immiscibility condition

ui � 	 D Vn (34)

and the Young-Laplace stress free (force balance) condition (see, for instance, [9]):

Œ� � � 	 D ��H	;

where Œ� � is the jump of the stress across the interface t , with 	 its normal, H the
mean curvature of the surface, and � the surface tension constant. Also we assume
no-slip condition both on the boundary and on the interface

ui D 0 on @�; Œu� D 0 on t :

Since,
Z

t

Vn � Œ� � � 	dSx D

Z

t

��HVn � 	dSx D �
d

dt
� areat ;
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multiplying first equation in (33) by ui and integrating over�i for i D 1; 2, one can
get the energy dissipation law:

d

dt

"
X

iD1;2

Z

�i

1

2
�
ˇ
ˇui
ˇ
ˇ dx C � areat

#

D �
X

iD1;2

Z

�i

2�i

ˇ
ˇ
ˇ
ˇ
ˇ

rui C
�
rui

�T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

dx:

(35)

4.2 Diffusive Interface Approximations (Phase Field Methods)

To regularize the transition between two phases, here the statistical point of view
(or phase field approach) is employed, which treats the interface as a continuous,
but steep, change of properties (density, viscosity, etc.) of the two fluids. Within a
“thin” transition region, the fluid is mixed and has to store certain amount of “mixing
energy.” Such an approach coincides with the usual phase field models in the theory
of phase transition [24,25,95,98,117,128]. These models will allow the topological
change of the interface [93] and have many advantages when simulating front
motions [29]. Recently many researchers have employed the phase field approach
for various fluid models [4, 16, 18, 19, 31, 32, 62, 69, 71, 88, 91, 96, 104].

Suppose that the interface t has thickness O."/. Then consider phase field
satisfying

' .x/ D

(
1; in �1

�1; in �2;

which takes values in .�1; 1/ on the diffusive interface. ' may not necessarily be an
obvious physical quantity (like concentration or volume fraction) but just a labeling
function representing the smooth transition between phases.

Following [25], here the mixing energy is introduced as a functional of ' to
approximate the interface term in the energy (35)




�
W .'/ D




�

Z
1

2
jr'j2 C

1

"2
G .'/ dx � areat ; (36)

where G is a so-called double-well potential (e.g., G .'/ D 1
4

�
'2 � 1

�2
), " is

a parameter responsible for the “width” of the interface, and 
=� depends on
G .'/ and " (for given example 
 D 3"

2
p
2
� , see [134]). The gradient term in this

energy is diffusive (“philic,” represents weakly nonlocal interactions between the
components that prefers complete mixing), while the second term is Ginzburg-
Landau potential (repulsion potential, “phobic,” prefers total separation of the
phases). The competition between the two effects defines the profile of ' across
the interface.
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Remark 16. The study of the physics of biological membranes of vesicles such as
cells and liposomes may involve more complicated forms of surface bending energy.
One example of such elastic energy [46] may take the form:

E D

Z



k.H � c0/
2 dS; (37)

where H D .k1 C k2/=2 is the mean curvature of the membrane surface, with
k1 and k2 as the principle curvatures, k is the bending rigidity, and c0 is the
spontaneous curvature that describes the asymmetry effect of the membrane or its
environment. The equilibrium configuration of the vesicle membrane is determined
by minimizing the above elastic bending energy with prescribed volume and surface
area constraints. To approximate this energy by phase field, one can write

E".'/ D
3
p
2k

16"

Z

�

�

"�' C

�
1

"
' C c0

p
2

�
�
1 � '2

�
�2

dxI (38)

the volume of the region enclosed by the membrane will be determined by (V D

.j�j C A.'//=2): A.'/ D
R
�
' dx; and the surface area of the membrane is

determined by (up to a constant) B".'/ D
R
�
"
2
jr'j2 C 1

4"
.'2 � 1/2 dx: The

original spontaneous curvature c0 is defined only on the surface  (it may vary
on the surface, representing a heterogeneity of the membrane). We extend c0 to
the whole domain � in a way that, in a neighborhood of  , c0 is constant in the
direction normal to  . The equilibrium configuration is obtained by minimizing the
above elastic bending energy E".'/ with the constraints that A.'/ and B�.'/ are
constants. See [46] for convergence of E".'/ to E as " ! 0.

More complicated form of elastic bending energy is a part of the Helfrich model,
which has been studied extensively in the literature in recent years (see [34,102,113,
114] and additional references in [47]). This is also related to the classical Willmore
problem in differential geometry [130].

Now, taking u to be incompressible background velocity (e.g., volume-averaged
[1]), not the velocity of either of fluids, the following kinetic and Helmholtz free
energy follows:

K D

Z
� .'/ juj2

2
dx; F D 
W .'/ : (39)

In addition, on macroscopic level, it is sensible to impose immiscibility con-
dition (9), which is equivalent to (34). While using this approximation, one
can introduce additional microscopic dissipative term for regularization purposes
(introducing energy dissipation on the diffusive interface). If one takes microscopic
dynamics to be that of gradient flow (and introducing appropriate dissipation D),
variation produces Allen-Cahn/Navier-Stokes system, while to get the phase field to
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satisfy conservation law, one can introduce “Darcy’s like” dissipation (proportional
to relative drag) and deduce Cahn-Hilliard/Navier-Stokes system.

4.2.1 Allen-Cahn/Navier-Stokes Systems
Here the following energy dissipation law is considered [67, modified viscous
dissipation]:

d

dt
.K C F/ D �

Z

�

2

42� .'/

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C
1

�
j't C .u � r/ 'j2

3

5 dx;

(40)

where K and F are taken from (39). There are two quantities of interest in this
model: u and ', so the variation will be performed for each of them separately.

First, we look at the microscopic dynamics on the interface given by Allen-
Cahn equation [3]. It can be seen as gradient flow with convection in microscale
variable ':

't C .u � r/ ' D ��

 

L2x;t_
ı
R T
0
.K C F/ dt
ı'

!

To get this equation from energy dissipation law (40) as force balance for variable
', one may to notice that variation of kinetic energy

R
1
2
� juj2 dx gives inertial force

only when performed with respect to the flow map generated by u. So performing
variation with respect to ', the total energy K C F should be treated altogether as
Helmholtz free energy. So the variation goes as

ı'
R T
0
K C Fdt D

R T
0

R
�

h
�0.'/juj2

2
ı' C 


�
r' � rı' C 1

"2
G0 .'/ ı'

�i
dxdt

D
R T
0

R
�

h
�0.'/juj2

2
C 


�
��' C 1

"2
G0 .'/

�i
ı'dxdt

C
R T
0

R
@�
.r' � 	/ ı' dSxdt:

Notation. Here we have two quantities of interest: ' and u. So one has to adapt the
variational notation to multiple variations of the same functional. Thus, here

ı'

Z T

0

Kdt D lim
h!0

R T
0

K .' C hı'; x/ � K .'; x/
h

dt;

ıx

Z T

0

Kdt D lim
h!0

R T
0

K .'; x C hıx/ � K .'; x/
h

dt;

and similarly for other functionals.

To cancel the boundary effects, one would make the boundary term in the variation
equal to zero, which results in the boundary condition r' � 	 D 0. Then the force
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balance (4) can be rewritten as L2x;t_
ı
R T
0 Kdt
ı'

C L2x;t_
ı
R T
0 Fdt
ı'

C L2x_ ıD
ı't

D 0, which
reads as follows

8
<

:

�0.'/juj2

2
C 




��' C 1

"2
G0 .'/

�
C 1

�
.'t C .u � r/ '/ D 0; x 2 �;

r' � 	 D 0; x 2 @�:

Now, considering macro-scale background flow u yields the variation with
respect to flow map x .X; t /. When writing macroscopic force balance, to account
for “separation of scales,” one should consider microscopic variable ' to be
transported with the flow, i.e., satisfy Eq. (9), so one has to include only viscous

part of dissipation D� D
R
�
� .'/

ˇ
ˇ
ˇruC.ru/T

2

ˇ
ˇ
ˇ
2

dx in the variation. Performing the

variation (subject to the assumption detF D 1 or equivalently r � u D 0) yields

ıx
R T
0
Kdt D ıx

R T
0

R
�
1
2
� .'0 .X// jxt .X; t /j

2 dXdt

D
R T
0

R
�
Œ�� .'/ .ut C .u � r/ u/ � ıx� dxdt;

ıx
R T
0
Fdt D ıx

R T
0

R
�


h
1
2

ˇ
ˇF �1rX .'0/

ˇ
ˇ2 C 1

"2
G .'0/

i
dXdt

D
R T
0

R
�

 Œr � .r' ˝ r'/� � ıx dxdt

�
R T
0

R
@�

 .r' � 	/r' � ıx dSxdt;

ıuD� D
R
�
�
��

ruC.ru/T

2


W
�
rıu C .rıu/T


dx

D
R
�

�r �
h
�
�
ru C .ru/T

i
� ıu dx

C
R
@�
�
�
rıu C .rıu/T


W .ıu ˝ 	/ dSx:

Notation. For two matrices A and B , the scalar product A W B D
P

i;j

Ai;j Bi;j .

Remark 17. When taking the variation of kinetic energy K, one can perform
integration by parts (in t ) after changing the coordinates back to Eulerian. Then

the variation would result in L2x;t_
ı
R T
0 Kdt
ıx D � .� .'/u/t � .u � r/ .� .'/ u/.

Hence, force balance may be written as L2x;t_
ı
R T
0 Kdt
ıx D L2x;t_

ı
R T
0 Fdt
ıx CL2x_ ıD�

ıu ,
which yields

� .'/ .ut C .u � r/ u/C rp D r�
h
�
�
ru C .ru/T

i
�
r�.r' ˝ r'/ ; x 2 �;

(41)

and on the boundary, the condition u D 0 is taken, which yields ıu D 0, so takes
care the boundary term.
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Altogether this results in the Allen-Cahn/Navier-Stokes system [89]:
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

't C .u � r/ ' D �



�' � 1

"2
G0 .'/

�
� �

2
�0 .'/ juj2 ; x 2 �;

� .'/ .ut C .u � r/ u/C rp D r �
h
�
�
ru C .ru/T

i

�
r � .r' ˝ r'/ ; x 2 �;

r � u D 0; x 2 �;

u D 0; r' � 	 D 0; x 2 @�:

(42)

Remark 18. In order to get the system without the �

2
�0 .'/ juj2 term in the first

equation, one can use 1
2
Œ� .'/ .ut C .u � r/ u/C .� .'/u/t C .u � r/ .� .'/ u/� as

a convective term in the second equation.

4.2.2 Cahn-Hilliard/Navier-Stokes Systems
Now assume that phase field satisfies conservation law:

't C r � .'V/ D 0; (43)

and energy law [21]

d

dt
.K C F/ D �

Z

�

2

42� .'/

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C '2
˝
M�1 .'/ .V � u/; .V � u/

˛
3

5dx:

(44)

On macro-scale the variation is identical to the gradient flow case so gives
Eq. (41). To perform variation on microscopic interfacial scale, one should define
flow map x' .X; t / as @tx' D V and x' .X; 0/ D X: We treat the macroscopic flow
velocity u is fully independent from x' . And, as in gradient flow case, kinetic energy
K is treated as a part of free energy. Using (10), one gets

ıx'

R T
0
Kdt D ı

R T
0

R
�
1
2
�

�
'0.X/

det
@x'
@X

�

juj2 det @x'
@X dXdt

D
R T
0

R
�
1
2
rx' Œ�

0 .'/ ' � � .'/� juj2 � ıx' dxdt

D
R T
0

R
�
'r

h
1
2
�0 .'/ juj2

i
� ıx' dxdt;

ıx'

R T
0
Fdt D ı

R T
0

R
�



"
1
2

ˇ
ˇ
ˇ
ˇF

�1rX

�
'0.X/

det
@x'
@X

�ˇˇ
ˇ
ˇ

2

C 1
"2
G

�
'0.X/

det
@x'
@X

�#

dXdt

D
R T
0

R
�

'r



��' C 1

"2
G0 .'/

�
� ıx' dxdt

C
R T
0

R
@�


�
�r �

�
' ıx'

��
.r' � 	/

C

�
1
2

jr'j2 C '�' C 1
"2
ŒG .'/ � 'G0 .'/�

 �
ıx' � 	

�
dSxdt;

ıVD D
R
�
'2M�1 .'/ .V � u/ � ıV dx:
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Thus, the force balance '2M�1 .'/ .V � u/ C 'r


�
�' C 
 1

"2
G0 .'/

C 1
2
�0 .'/ juj2

i
D 0, combined with (43), leads to Cahn-Hilliard equation

't C .u � r/ ' D r � ŒM .'/r�� ; � D �
�' C 

1

"2
G0 .'/C

1

2
�0 .'/ juj2 :

Force balance on the boundary gives r' � 	 D 0; V � 	 D 0 (second

condition yields ıx' � 	 D 0). Notice that � D L2x;t_
ı
R T
0 Kdt
ı'

C L2x;t_
ı
R T
0 Fdt
ı'

is the
same variational gradient as in Allen-Cahn equation. All combined with boundary
conditions leads to Cahn-Hilliard/Navier-Stokes system :

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

't C .u � r/ ' D r � ŒM .'/r�� ; x 2 �;

� D �
�' C 
 1
"2
G0 .'/C 1

2
�0 .'/ juj2 ;

� .'/ .ut C .u � r/ u/C rp D r �
h
�
�
ru C .ru/T

i

�
r � .r' ˝ r'/ ; x 2 �;

r � u D 0; x 2 �;

u D 0; r' � 	 D 0; M .'/r� � 	 D 0; x 2 @�:

(45)

Remark 19. For the system (45), the phase field effective velocity V is defined up to

a term QV with r �
�
' QV


D 0, which results in nonuniqueness of the energy law (44).

To eliminate this drawback, one may employ the operatorR� D .��/1=2r� and with
M D 1 consider the following energy dissipation law:

d

dt
.K C F/ D �

Z

�

2

42� .'/

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C jR � .'V � 'u/j2

3

5 dx:

Performing the variational procedure on this energy law, one would still get
system (45).

Remark 20. To formally derive conservative Allen-Cahn/Navier-Stokes system,
consider energy law (40) constraint by conservation law (43), which may be
rewritten as

d

dt
.K C F/ D �

Z

�

2

42� .'/

ˇ
ˇ
ˇ
ˇ
ˇ
ru C .ru/T

2

ˇ
ˇ
ˇ
ˇ
ˇ

2

C
1

�
jr � .'V � 'u/j2

3

5 dx:

(46)
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Once again, macroscopic force balance yields Navier-Stokes equation (41), while
microscopic force balance reads as

'r

�

�
1

�
r � .'V � 'u/ � 
�' C 


1

"2
G0 .'/C

1

2
�0 .'/ juj2

	

D 0;

or

�r � .'V/C .u � r/ ' D ��

�

�
�' C 

1

"2
G0 .'/C

1

2
�0 .'/ juj2

	

C C:

Integrating this equation over � and using boundary conditions u D 0; r' �

	 D 0; V � 	 D 0 yield C D 1
j�j
�
R
�

 1
"2
G0 .'/C 1

2
�0 .'/ juj2 dx, which altogether

give nonlocal Allen-Cahn/Navier-Stokes system:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

't C .u � r/ ' D �
h
��C 1

j�j

R
�
�dx

i
; x 2 �;

� D �
�' C 
 1
"2
G0 .'/C 1

2
�0 .'/ juj2 ;

� .'/ .ut C .u � r/ u/C rp D r �
h
�
�
ru C .ru/T

i

�
r � .r' ˝ r'/ ; x 2 �;

r � u D 0; x 2 �;

u D 0; r' � 	 D 0; x 2 @�:

(47)

4.3 Boundary Conditions in the Diffusive Interface Models

Authors of [105] have shown that the model with energy dissipation at the solid
boundary surface better matches molecular dynamics experiments and avoids
discrepancy of the contact line dynamics. More precisely, standard boundary
conditions do not allow contact line to move along the boundary, while molecular
dynamics experiments show that near-complete slip occurs in vicinity of contact
line near the boundary.

Hence, one may consider the following expression for energy dissipation (includ-
ing bulk terms already mentioned above):

D D 1
2

R
�

�

2� .'/
ˇ
ˇ
ˇru C .ru/T

2

ˇ
ˇ
ˇ
2

C '2
˝
M�1 .'/ .V � u/; .V � u/

˛
�

dx

C 1
2

R
@�

�
ˇ ju� j

2 C 3"

2
p
2

�
�

j't C .u� � r� / 'j2

dSx;

where subscript � denotes components tangential to the boundary (e.g., u� D u �

.u � 	/ 	). The force balance after combining LAP and MDP results into the dynamic
boundary conditions on ' and generalized Navier boundary conditions on u:
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8
ˆ̂
<

ˆ̂
:

't C .u� � r� / ' C �@	' D 0; hM .'/r�; 	i D 0;

ˇ .u� /C � .'/ @	 .u� / � � 3"

2
p
2
@	'r�' D 0;

u � 	 D 0; x 2 @�; t > 0:

The inhomogeneous viscosity � .'/ and mobility M .'/ may produce specific
boundary properties in the sharp interface limit, such as Navier slip boundary
conditions [22].

Remark 21. In generalized Navier boundary conditions, the term � 3"

2
p
2
@	'@�' is

the so-called uncompensated Young stress. See [105] for expression in terms of
contact angle and physical interpretation.

Remark 22. The case above considers the equilibrium contact angle [37, 109] to
be �=2. For more general contact angle �c in [105], authors suggest boundary
conditions

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

't C u� � r�' C �@	' D 0; hM .'/r�; 	i D 0;

ˇ .u� /C � .'/ @	 .u� / � 
L .'/r�' D 0;

u � 	 D 0; x 2 @�; t > 0;

L .'/ D @	' C @�f s .'/ =@';

where �f s D
Cfs
2

cos �c sin .�'=2/ is an additional interfacial free energy density.
The free energy considered in this case should be

F D 


�

W .'/C

Z

@�

�f sdSx

�

:

5 Conclusion

The general energetic variational framework, with its energy dissipation laws, as
well as the corresponding variational forms (weak forms), gives a self-consistent
coupled system. It focuses on the coupling and competition of various parts of
the mechanism, such as the energetics vs. kinematics, macroscopic (fields) vs.
microscopic (configurations), and conservative forces vs. dissipative forces. It is
a natural framework to study the multiscale and multiphysics problems. Moreover,
such derivations are also very important in the analysis as well as the designing of
numerical schemes in simulations.
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There are two essential underlying hypothesis in the framework presented in
this chapter. First, as described in Sect. 2.1, the procedure is only applicable to
isothermal processes. For examples of non-isothermal complex fluid models, one
may refer to [52, 87] and their references. Secondly, the dissipation D is limited
to be quadratic in “rate,” which is equivalent to the linear response theory in
nonequilibrium thermodynamics [39,74]. On one hand, this limitation is strong, and
it does not allow considerations of some models, including Ostwald-de Waele type
(power-law) fluids [40, 75, 108]. However, it is important to note that strong non-
linearities can be introduced through coefficients not dependent on the “rate” (e.g.,
density-dependent viscosity). Also, some non-Newtonian structure of the fluid may
be introduced through additional parameters (e.g., incompressible viscoelasticity
system (22)).

This chapter only demonstrates the underlying variational structures for several
complex fluid models. With the common energetic variational themes, each system
possesses its own unique properties, hence difficulties and challenges: the viscoelas-
tic fluids with its elastic mechanism (the transport of the deformation tensor), the
mixtures with the interface evolutions (hence the dynamics of singularities), the
diffusion with the complicated free energy and also the dissipative terms. All these
are the motivation and challenges for researchers in both theoretical fields and in
many interdisciplinary applications.

Energetic variational approaches have been successfully incorporated in many
other important application not listed in this chapter, such as multicomponent
flows with more than two phases [20–22], fracture mechanics [17, 129], and more.
Contributions of the boundary effects, such as slip (Navier) boundary conditions
[104, 105] and capacitors and surface chemistry [124], can also be incorporated
in the variational framework. However, these boundary effects will bring in high
gradients in the system and hence difficulties both in analysis and numerics.

For some of the models in this chapter analysis, results are presented in other
chapters. Despite the constant efforts by many researchers, there are still many open
problems in the area of complex fluids, as we can see in many other chapters. In
particular, we want to point out the following areas for further research:

• For both micro-macro system (23) and Oldroyd-B equations that may be
recovered from it, besides the difficulties of Navier-Stokes subsystem, the global
existence of Leray-Hopf solutions and stability is mostly open;

• For phase field models in Sect. 4, further investigations may include: limit when
interface thickness " goes to zero, various dynamic boundary conditions and
boundary effects, and various longtime stabilities.

• The understanding and reformulation of various weak forms of the system,
with suitable test functions that are consistent with the energetic variational
framework, such as the approaches of optimal transport for various diffusion
equations.
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