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Preface

This book aims to explain recent developments in Rational Extended Thermody-
namics (RET), in particular those that have occurred since the publication of the
book Rational Extended Thermodynamics, Second Edition (Springer, New York,
1998) by Ingo Müller and Tommaso Ruggeri.

RET is a phenomenological field theory capable of describing nonequilibrium
phenomena with steep gradients and rapid changes in space-time out of local equi-
librium. Classical thermodynamics of irreversible processes (TIP) relies essentially
on the assumption of local equilibrium. Therefore, the validity range of RET is
wider than that of TIP. Moreover, RET can predict the finite speed of disturbances
because its basic system of field equations is hyperbolic. In contrast, TIP predicts
the infinite speed of disturbances because of its parabolic character, which is fatal
in a relativistic framework.

RET was strongly motivated by—and is in perfect agreement with—the kinetic
theory, in particular, the system of moment equations derived from the Boltzmann
equation. In RET, the differential system is closed by the universal principles:
the objectivity principle, the entropy principle, and the principle of causality and
stability. This permits an intimate connection between RET and the mathematical
theory of hyperbolic systems with convex extension (symmetric systems). It is,
therefore, possible to give a qualitative analysis, and the Cauchy problem is well
posed. For example, a well-known theory of viscous heat-conducting fluids based
on TIP is the classical Navier-Stokes-Fourier theory with five independent field
variables: the mass density, the velocity and the temperature. On the other hand,
RET adopts more independent field variables by incorporating nonequilibrium
variables such as viscous stress and heat flux into the theory.

The limitation of the previous RET is, however, that its validity range has been
restricted to rarefied monatomic gases. The present book presents the recent results
that have overcome this limitation, that is, the results concerned with polyatomic
gases, moderately dense gases, and mixtures of gases with multi-temperature.
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viii Preface

The features of the book may be summarized as follows:

• We firstly explain the results of RET in the case of monatomic gases briefly,
which are necessary to understand the progress in the new approach of RET.

• We present the hyperbolic theory of polyatomic and moderately dense gases with
14 fields, which, in the parabolic limit, reduces to the Navier-Stokes-Fourier
theory. The singular limit of the theory of monatomic gases with 13 fields is
also considered.

• We present some typical applications of the theory: sound wave, light scattering,
shock wave, heat conduction, fluctuation. We compare the theoretical results with
experimental data.

• The 14-field theory gives us a complete phenomenological model, but its
differential system is rather complex. For this reason, we have constructed a
simplified theory with six fields. This simplified theory preserves the main
physical properties of the more complex theory of 14 variables, in particular
when the bulk viscosity plays a more important role than the shear viscosity
and the heat conductivity. This situation is observed in many gases such as
rarefied hydrogen gases and carbon dioxide gases at some temperature ranges.
This model is particularly interesting because it is also valid in a situation far
from equilibrium.

• We present a theory of molecular RET with an arbitrary number of field variables
by using the method of closure based on both the maximum entropy principle and
the entropy principle. And we prove that two closures are equivalent.

• Recent results in respect of mixtures of gases with multi-temperature are
presented together with a natural definition of the average temperature.

• Qualitative analysis of the differential system is done by taking into account the
fact that, due to the convexity of the entropy, there exists a privileged field (main
field) such that the system becomes symmetric hyperbolic. The existence of the
global smooth solution and the convergence to equilibrium are also studied.

• We summarize open problems and try to provide an outlook on future studies.

This book is designed for applied mathematicians, physicists, and engineers. We
hope that the methodology presented can offer powerful models for possible
applications to, say, re-entry of a satellite into the atmosphere of a planet, semi-
conductors, and nano-scale phenomena.

Bologna, Italy Tommaso Ruggeri
Nagoya, Japan Masaru Sugiyama
May 2015
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Chapter 1
Introduction

Abstract Rational extended thermodynamics (RET), which is compatible with the
kinetic theory of gases and is also closely related to the mathematical theory of
hyperbolic systems, has been a successful theory of rarefied monatomic gases to
explain nonequilibrium phenomena such as light scattering, sound dispersion, shock
wave structure, nonequilibrium radiation. These subjects were treated in detail in the
book “Rational Extended Thermodynamics” by Ingo Müller and Tommaso Ruggeri.

The other subjects remained to be explored in RET were those of polyatomic
gases, of dense gases in general, and of mixtures of gases with multi-temperature.
This is the aim of the present book to discuss such new RET.

In this chapter, before going into the details, we give some introductory
perspective on these subjects starting with a short history of nonequilibrium
thermodynamics.

The new RET theory includes the 14-field theory of dense gases that reduces
to the classical Navier-Stokes Fourier theory in the parabolic limit (Maxwellian
iteration), to the singular limit of a monatomic gas with 13 fields, and to the
subsystem with 6 fields. The 6-field theory is the minimal dissipative system, where
the dissipation is only due to the dynamic pressure, after the Euler system of perfect
fluids. The concept of nonequilibrium temperature is also discussed.

For rarefied polyatomic gases, we discuss a theory of molecular RET with
arbitrary number of field variables by using the methods of closure based on both
the maximum entropy principle and the entropy principle. It can be proved that the
two methods are equivalent to each other.

Several applications of the new RET theory are reviewed as well.
Moreover we discuss the theory of a mixture of gases with multi-temperature,

i.e., a mixture in which each constituent has its own temperature.
In the new approach, the qualitative analysis of the differential system is also

done by taking into account the fact that, due to the convexity of the entropy,
there exists a privileged field (main field) such that the system becomes symmetric
hyperbolic. Existence of global smooth solutions and convergence to equilibrium
are also discussed.

© Springer International Publishing Switzerland 2015
T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics beyond
the Monatomic Gas, DOI 10.1007/978-3-319-13341-6_1
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2 1 Introduction

1.1 Thermodynamics of Irreversible Processes
and the Laws of Navier-Stokes and Fourier

1.1.1 Dawn of Thermodynamics

The nineteenth century witnessed the birth of thermodynamics and its great develop-
ments. Thermodynamics was expected to address the demands of the new industrial
mode of production with revolutionary new technology such as a steam engine
that transforms heat into work. Many scientists made fundamental contributions to
this new discipline: Carnot, Mayer, Joule, Helmholtz, Clausius, Kelvin (Thomson),
Maxwell, Gibbs, Duhem, Nernst, and many others.

Three fundamental laws of thermodynamics have been established. The first
is the law of conservation of energy for thermodynamic systems. The second
law selects appropriate evolution of a system by introducing a physical quantity
called entropy. The third law is concerned with the value of the entropy at zero
absolute temperature. On the basis of these laws, theory of thermodynamics has
been successfully constructed, and has been utilized in various theoretical fields and
diverse practical applications. See, for examples the text books [1–4].

Thermodynamics, in particular, the second law of thermodynamics raised the
following questions: Can thermodynamics be traced back, in some way, to mechan-
ics? Thermodynamics predicts the so-called arrow of time (irreversibility), but
the equations of motion for molecules in mechanics have a strict symmetry with
respect to the time reversal (reversibility). If the thermodynamics is a branch of
mechanics, how does the irreversibility come out? Boltzmann tried to answer to this
fundamental problem by using the newly developed H-theorem in the kinetic theory.
However, it was revealed that Boltzmann had introduced implicitly an assumption,
sometimes called assumption of molecular chaos, into his proof of the H-theorem
and had broken the time reversal symmetry. From a mathematical point of view, the
study of the limiting processes has been made in order to deduce the laws of motion
of continua from the atomistic level. This is the 6th Hilbert problem, to which some
authors tried to give answers [5–7].

Thermodynamic studies focusing especially on irreversible processes were made
also in the nineteenth century. For example, Fourier’s law of heat conduction,
Navier-Stokes’ law of viscous flow, Fick’s law of mass diffusion, Ohm’s law of
electrical conduction, and thermo-electrical coupling effects such as the Seebeck
effect and the Peltier effect were found empirically.

From the pioneering works of Onsager, Eckart, Meixner, Prigogine and others,
thermodynamics of irreversible processes (TIP) emerged as a systematic nonequi-
librium thermodynamic theory in the middle of the last century. For its details, see
the monumental book by de Groot and Mazur [8]. The Navier-Stokes Fourier theory
for viscous and heat-conducting fluids [8, 9], for example, can be regarded as one of
the typical TIP theories. TIP has been useful in various practical situations involving
nonequilibrium processes such as mass diffusion, viscous flow, heat conduction,
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chemical reaction, electrical conduction. If we want to analyze nonequilibrium
phenomena keeping its validity range in mind, TIP continues to be useful.

In this section, we review briefly the theoretical structure of TIP through studying
one-component viscous and heat-conducting fluids. The empirical Navier-Stokes
and Fourier laws are naturally derived from TIP. We also point out its validity range.

1.1.2 TIP of One-Component Viscous and Heat-Conducting
Fluids

In thermodynamics of continuous media, time-evolution of relevant densities is
expressed in the balance form: Let F0 .x; t/ be a RN-vector of the densities
depending on the space variable x � .xi/ 2 ˝ � R3 and the time t 2 RC, then
we have

d

dt

Z
˝

F0 d˝ D �
Z
˙

˚ inid˙ C
Z
˝

fd˝; (1.1)

where the first integral on the right-hand side represents the fluxes ˚ i 2 RN .i D
1; 2; 3/ through the surface ˙ with unit outward normal vector n � .ni/, while the
second integral represents the productions.1 Under suitable regularity assumption,
the system (1.1) can be put in the local form:

@F0

@t
C @Fi

@xi
D f; Fi D F0vi C˚ i; (1.2)

where v � .vi/ is the velocity.
Hereafter, let us study a one-component fluid as a typical example. In this

case, five independent fields: the mass density �.x; t/, the velocity v.x; t/, and the
temperature T.x; t/ are the unknowns that we want to determine. These fields should
satisfy the conservation laws of mass, momentum, and energy:

@�

@t
C @�vi

@xi
D 0;

@�vj

@t
C @

@xi

�
�vivj � tij

� D 0;
@

@t

�
�v2

2
C �"

�
C @

@xi

��
�v2

2
C �"

�
vi � tikvk C qi

�
D 0:

(1.3)

1 We adopt the summation convention, i.e., we take summation over repeated indices. i; j D 1; 2; 3.
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This is a particular case of (1.2) with

F0 D
0
@ ��vj

1
2
�v2 C �"

1
A ; Fi D

0
@�vi

�vivj � tij�
1
2
�v2 C �"� vi � tikvk C qi

1
A ; f D

0
@00j

0

1
A ;
(1.4)

where i; j D 1; 2; 3. And tij; " and qi are, respectively, the symmetric stress tensor,
the specific internal energy, and the heat flux.

As usual the stress tensor tij D �pıij C ij can be decomposed into an isotropic
part and a deviatoric part (symmetric traceless part) denoted by the brackets h i:

tij D �.pC˘/ıij C hiji; (1.5)

where p is the equilibrium pressure, ıij is the Kronecker’s delta, ij is the viscous
stress tensor and ˘ D �ll=3 is the so-called dynamic pressure (nonequilibrium
pressure). The deviatoric tensor hiji is called the shear stress tensor. As is well
known the previous system (1.3) can be rewritten, for classical solutions, in the
form:

P� C �
@vj

@xj
D 0;

� Pvi � @tij
@xj
D 0; (1.6)

� P" � tij
@vi

@xj
C @qi

@xi
D 0;

where a dot on a quantity denotes the material time derivative operator:

@

@t
C vi

@

@xi
:

The specific internal energy " and the pressure p are considered to be functions of �
and T that are prescribed by the thermal and caloric equations of state of equilibrium
thermodynamics: p D p.�;T/; " D ".�;T/.

In order to close the system (1.6), we need the constitutive relations of ij and
qi in terms of the independent fields �; vi and T. In TIP, such relations are derived
in a heuristic manner from the entropy balance equation that is based on the Gibbs
equation of equilibrium thermodynamics2:

T ds D d" � p

�2
d� ” Ps D 1

T

�
P" � p

�2
P�
�
; (1.7)

2The adoption of an equilibrium thermodynamic relation in a small volume element is sometimes
called “ assumption of local equilibrium”. As for the validity criterion of the assumption, see, for
example, Pottier [10].
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where s is the specific entropy. Elimination of P" and P� by using (1.6) gives, after
some calculations, the relation:

�PsC @

@xi

�qi

T

	
D 1

T
hiji

@vhi

@xji
� 1

T
˘
@vi

@xi
� 1

T2
qi
@T

@xi
; (1.8)

or equivalently:

@�s

@t
C @

@xi

�
�svi C qi

T

	
D 1

T
hiji

@vhi

@xji
� 1

T
˘
@vi

@xi
� 1

T2
qi
@T

@xi
; (1.9)

which can be seen as a balance equation of the entropy. Then we may have the
following interpretation:

.intrinsic/ entropy fluxI 'i D qi
T ;

entropy production W ˙ D 1
T hiji

@vhi

@xji
� 1

T˘
@vi
@xi
� 1

T2
qi
@T
@xi
:

The entropy production is a sum of products of:

Dissipative fluxes Thermodynamic forces

shear stress hiji deviatoric velocity gradient 1
T
@v<i
@xj>

;

dynamic pressure ˘ divergence of velocity � 1
T
@vi
@xi
;

heat flux qi temperature gradient � 1
T2
@T
@xi
:

1.1.3 Laws of Navier-Stokes and Fourier

From the second law of thermodynamics, the entropy production must be non-
negative. Assuming linear relations between the dissipative fluxes and the thermo-
dynamic forces, we have the constitutive equations (phenomenological equations)
of the type:

hiji D 2

@v<i

@xj>

 � 0;

˘ D �� @vi

@xi
� � 0; (1.10)

qi D �	 @T

@xi
	 � 0:
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These are known as the laws of Navier-Stokes and Fourier with 
 and � being the
shear and bulk viscosities and 	 the thermal conductivity. All of these coefficients
may be functions of � and T.

Along with the thermal and caloric equations of state, (1.10) is adopted as the
constitutive equations of TIP, and the differential system (1.3) is closed, i.e., five
equations for five unknowns.

1.1.4 Parabolic Structure and the Prediction of Infinite Speed
of Waves in TIP

TIP raises the problem of infinite speed of waves. Historically, in order to avoid this
unphysical prediction of TIP, extended thermodynamics (ET) [11] was conceived.
Let us, therefore, discuss firstly this problem through studying heat conduction

in a fluid at rest with a constant mass density � (heat conduction in a rigid heat
conductor). Inserting the Fourier law (1.10)3 into the energy balance equation (1.6)3,
we obtain the equation of heat conduction:

@T

@t
D D�T; (1.11)

where

D D 	

�cv
and cv D

�
@"

@T

�
�

are, respectively, the thermal diffusion coefficient and the specific heat at constant
volume. We assume, for simplicity, that D is constant.

The solution of (1.11) in an unbounded domain with an initial value T.x; 0/ is
given by

T.x; t/ D 1

.4�D t/3=2

1Z

�1
T.y; 0/e� .y�x/2

4D t dy: (1.12)

We notice that T.x; t/ is nonzero for any x if t > 0 even though the initial value
T.x; 0/ is nonzero only in a bounded domain. This phenomenon has been sometimes
called a paradox, because the temperature propagates with infinitely large speed.
From a mathematical point of view, this is due to the parabolic character of the
basic equation (1.11).

The assertion of infinite speed is, of course, beyond the validity range of TIP.
We cannot describe properly such a rapid change by TIP because TIP is based on
the local equilibrium assumption. On the other hand, it is well known that equations
(1.11) and (1.12) have been utilized quite successfully in various practical situations.
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Indeed, if we take carefully its validity range into account, and if we do not care
about its unphysical predictions, we would have useful results from a practical point
of view.

There is, however, a situation where the infinite speed should be avoided strictly.
It is a relativistic thermodynamic case where propagation speed of a wave should be
less or equal to the light speed.

How can we construct a new thermodynamic theory that predicts only finite
speed of waves by generalizing TIP?

1.1.5 Cattaneo Equation

1.1.5.1 Classical Cattaneo Equation

A heuristic argument made by Cattaneo [12] gives us an interesting suggestion for
the question above.

The heat flux vector q is assumed, by Cattaneo, to be proportional not only to
the gradient of temperature rT but also to the gradient of the time derivative of the
temperature r PT in such a way that

q D �	 �rT � �r PT� :
Assuming that the relaxation time � is very small, he somehow arrived at the
following equation, which is known as the (classical) Cattaneo equation:

� PqC q D �	rT; (1.13)

which reduces to the Fourier law when � ! 0. Combining (1.13) with the energy
equation (1.6)3, we obtain

� RT C PT D D�T: (1.14)

This equation, called telegraph equation, is hyperbolic provided � > 0. It predicts
the propagation of heat pulses with finite speed:

V D
r

D

�
:

If the relaxation time � is negligibly small, the Eq. (1.14) reduces to the heat
conduction equation (1.11). However, we should be careful about this because it is
a singular limit process from hyperbolic to parabolic equation.

What points should we learn from Cattaneo’s heuristic argument for constructing
the new thermodynamic theory ET? The essential points are the following two:
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1. Dissipative fluxes, such as the heat flux, should be introduced as independent
variables into the theory in addition to the usual thermodynamic quantities in
TIP.

2. Relaxation processes of these dissipative fluxes should be properly taken into
consideration in order to make the theory hyperbolic.

1.1.5.2 Generalized Cattaneo Equation and the Second Sound

Although the Cattaneo equation was obtained by the heuristic argument, it has been
a popular model in applications concerning rigid heat conductors. Huge literature
exists on this subject. See, for example, the review papers of Joseph and Preziosi
[13, 14] and the recent book of Straughan [15].

In reality, however, it is simple to verify that the classical Cattaneo equation
with internal energy depending only on the temperature T is compatible with the
entropy principle if and only if the ratio between the relaxation time and the heat
conductivity is proportional to T2. In fact, Coleman, Fabrizio and Owen [16] noticed
for the first time that, in order to be compatible with the entropy principle for a
generic relaxation time and the heat conductivity, the internal energy should have the
dependence not only on T but also on the square of q. This assertion was, however,
criticized by Morro and Ruggeri [17], who revisited a previous paper of Ruggeri
[18]. And they proposed a more general model than the Cattaneo model by adopting
a system of equations of balance type. This adoption overcomes the difficulty and is
compatible with the internal energy depending only on the temperature T. Therefore
the Cattaneo equation is physically meaningful only near equilibrium where only
linear terms in nonequilibrium variables are present in the field equations.

The importance of hyperbolic equations has its experimental evidence in the so-
called second sound, i.e., a heat wave. The second sound was observed first in liquid
helium at low temperatures [19] and then was expected in crystals [20]. Recently
sophisticated experiments were made in [21] observing the propagation of a heat
wave in an ultra-cold quantum gas. In the generalized Cattaneo model, we can
discover interesting new phenomena in crystals such as the passage from hot to
cold shocks at a critical temperature [22, 23], the behavior of a simple wave and
shock formation [24]. Finally we recall that, starting from the pioneering papers of
Guyer and Krumhansl [25, 26], an interesting approach to this problem on the basis
of the phonon-gas theory was taken by Dreyer and Struchtrup [27] and by Larecki
and Banach [28, 29].
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1.2 First Tentative of Extended Thermodynamics
and Rational Extended Thermodynamics

The first approach to ET, made by Müller [30] in a classical framework and by
Müller (PHD thesis) and independently by Israel [31] in a relativistic context, is
based on the modification of the Gibbs equation (1.7) incorporating also the effects
of dissipative fluxes. This point of view has been adopted by several authors and is
the starting point of Extended Irreversible Thermodynamics (EIT), which has gained
popularity through the book of Jou et al. [32].

The introduction of dissipative fluxes as independent variables together with the
usual thermodynamic quantities into the theory has a deep implication. It is evident
that ET has gone beyond the local equilibrium assumption because dissipative fluxes
play an essential role to characterize a nonequilibrium state in the theory.

The applicability range of ET becomes, in this way, to be wider than that of
TIP. In other words, ET is applicable to highly nonequilibrium phenomena where
the local equilibrium assumption is no longer valid. Examples of such phenomena
are shock waves, micro- and nano-flows, second sounds, light scattering and so on.
Thus ET is expected to be useful not only for relativistic cases but also for such
non-relativistic cases.

Such an approach was, however, criticized by Ruggeri [33] because the entropy
production depends strongly on the choice of the entropy flux, and there appear
different field equations for a different entropy flux. Moreover the differential
system is not a priori in the form of balance laws. This implies, from a mathematical
point of view, that it is not possible to define weak solutions and therefore impossible
to study, in particular, shock waves.

Later a revision of ET was proposed by Liu and Müller [34] in a classic
context, and by Liu, Müller and Ruggeri in a relativistic framework [35]. This
new approach was named Rational Extended Thermodynamics (RET) and the main
results obtained at that time were summarized in the two editions of the book by
Müller and Ruggeri [11, 36].

The mathematical framework of RET consists of a hierarchy of balance laws.
The same hierarchical structure can be seen in the system of moment equations
in the kinetic theory with the truncation at some arbitrary order of moments. The
RET theory, in this respect, resembles to the theory of moment equations. However,
the closure of RET is achieved by means of the universal principles of physics:
objectivity principle, entropy principle, and principle of causality and stability.

1.3 Rational Thermodynamics and the Entropy Principle

Before we present the details of Rational Extended Thermodynamics, we need to
recall the approach of the so-called Rational Thermodynamics (RT). RT is mainly
due to the Truesdell school [37] and has the starting point in the fundamental
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paper of Coleman and Noll [38] where they reinterpreted the second law of
thermodynamics as a selection rule for constitutive equations. We have seen that the
basic system of equations of continuous media is in the form of balance laws (1.1),
(1.2). To close the system, constitutive equations are necessary. The idea of Coleman
and Noll is to regard the entropy law:

@�s

@t
C @

@xi

�
�svi C qi

T

	
> 0 (1.15)

as a constraint for the admissible physical constitutive equations. In this way,
the prescription of the arrow of time that characterizes the irreversibility is made
indirectly. In fact, if we pick up some constitutive equations, we are not sure whether
the second law is certainly satisfied or not. Therefore, according with this new idea,
we select at the beginning the class of admissible constitutive equations that satisfy
the inequality for any initial or boundary data. This was a very important observation
and very useful as we will see in Sect. 2.2 where we will characterize, in more
precise way, the entropy principle. We have seen before that, from (1.9), how the
Navier-Stokes Fourier constitutive equations (1.10) are compatible with the entropy
principle.

The limitation of the idea of Coleman and Noll is, however, in the postulation that
the entropy flux is in the form of Clausius, i.e., the ratio of heat flux to temperature,
qi=T. Müller noticed with the help of kinetic considerations that this requirement is
too much restrictive and he proposed to extend the entropy principle with a general
entropy flux as a constitutive quantity [39].

An interesting book based on the framework of mathematical methods of
Rational Mechanics and Thermodynamics is the one due to Šilhavý [40].

1.4 Other Approaches

We observe that, in addition to Classical Irreversible Thermodynamics (CIT or TIP),
Rational Thermodynamics (RT), Extended Irreversible Thermodynamics (EIT) that
we briefly summarized before and Rational Extended Thermodynamics (RET), there
are other approaches in nonequilibrium thermodynamics with exotic acronyms.

The most popular and interesting one is GENERIC, an acronym for Gen-
eral Equation for Non-Equilibrium Reversible-Irreversible Coupling proposed by
Grmela and Öttinger [41–43]. It is the general form of dynamic equation for a
system with both reversible and irreversible dynamics.

Another approach proposed by Müller, Reitebuch and Weiss is the so-called
Consistent-Order Extended Thermodynamics (COET) [44]. In this approach every
nonequilibrium variable has a certain order of magnitude and the set of variables
taken into account contains only variables up to a chosen order.

A different point of view of nonequilibrium thermodynamics based on a revisit of
the entropy principle and the introduction of the so-called calortropy is the subject
of a book of Eu [45].
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Connection between nonequilibrium thermodynamics and variational principles
is the subject of the book of Gyarmati [46].

A first partial tentative to give a comparison among different approaches of
nonequilibrium theories was recently presented by Cimmelli, Jou, Ruggeri and Ván
(see [47] and references cited therein).

An interesting review of nonequilibrium thermodynamics, elucidating different
pathways to macroscopic equations, was published by Müller and Weiss [48].

Finally we recall that there exist parabolic-type approaches to nonequilibrium
processes by using kinetic considerations: the works by Torrilon and Struchtrup [49,
50] via regularization of moment-equations and the works by Bobylev and Windfäll
[51] via revisited Chapman-Enskog method.

1.5 Rational Extended Thermodynamics and the Kinetic
Theory

The study of nonequilibrium phenomena in gases is particularly important. We have
two complementary approaches to rarefied gases, namely the continuum approach
and the kinetic approach.

The continuum model consists in the description of the system by means of
macroscopic equations (e.g., fluid-dynamic equations) obtained on the basis of
conservation laws and appropriate constitutive equations. A typical example is
TIP. The applicability of this classical macroscopic theory is, however, inherently
restricted to a nonequilibrium state characterized by a small Knudsen number Kn,
which is a measure to what extent the gas is rarefied:

Kn D mean free path of molecule

macroscopic characteristic length
:

The transport coefficients associated to dissipation processes are not provided by the
theory except for the sign. Usually we require experimental data on the coefficients.

The approach based on the kinetic theory [52–54] postulates that the state of
a gas can be described by the velocity distribution function. The evolution of the
distribution function is governed by the Boltzmann equation. The kinetic theory is
applicable to a nonequilibrium state characterized by a large Kn, and the transport
coefficients naturally emerge from the theory itself. Therefore the range of the
applicability of the Boltzmann equation has been limited to rarefied gases.

The RET theory, a generalization of the TIP theory, also belongs to the continuum
approach but is applicable to a nonequilibrium state with larger Kn. In a sense, RET
is a sort of bridge between TIP and the kinetic theory. An interesting point to be
noticed is that, in the case of rarefied gases, there exists a common applicability
range of the RET theory and the kinetic theory. Therefore, in such a range, the
results from the two theories should be consistent with each other. Because of this,
we can expect that the kinetic-theoretical considerations can motivate us to establish
the mathematical structure of the RET theory.



12 1 Introduction

1.5.1 Boltzmann Equation and the Moments

The kinetic theory describes a state of a rarefied gas by using the phase density
(velocity distribution function) f .x; t; c/, where f .x; t; c/dc is the number density of
(monatomic) molecules at the point x and time t that have velocities between c and
cCdc. Time-evolution of the phase density is governed by the Boltzmann equation:

@tf C ci @if D Q; (1.16)

where the right-hand side, the collision term, describes the effect of collisions
between molecules. Here @t � @

@t and @i � @
@xi

.
As is well known, almost all macroscopic thermodynamic quantities are identi-

fied as moments of the phase density:

Fk1k2���kj D
Z
R3

mfck1ck2 � � � ckj dc; (1.17)

where m is the mass of a molecule. The moments satisfy a hierarchy of the balance
laws in which the flux in one equation becomes the density in the next one:

@tF C @iFi D 0
.

@tFk1 C @iFik1 D 0
.

@tFk1k2 C @iFik1k2 D Pk1k2

. (1.18)

@tFk1k2k3 C @iFik1k2k3 D Pk1k2k3

:::

@tFk1k2:::kn C @iFik1k2:::kn D Pk1k2:::kn

:::

where

Pk1k2���kj D
Z
R3

mQck1ck2 � � � ckj dc: (1.19)

Taking Pkk D 0 into account, we notice that the first five equations are exactly
the conservation laws, and correspond to the conservation laws (1.3) of mass,
momentum and energy, respectively.
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Due to the structure of the hierarchy (1.18), we obtain, from (1.18)2 and the
trace of (1.18)3, the relation 3.pC ˘/ D 2�". As ˘ is a nonequilibrium variable
vanishing in equilibrium, we have

p D 2

3
�" and ˘ � 0: (1.20)

Then the gas under consideration is indeed monatomic, and the dynamic pressure
vanishes identically.

For the quantities defined by

h0 D �kB

Z
R3

f log f dc; hi D �kB

Z
R3

f log f ci dc (1.21)

with kB being the Boltzmann constant, it is possible to prove the famous H-theorem:

@th
0 C @ih

i D ˙ > 0: (1.22)

This represents the balance law of entropy if we identify h0 , hi and˙ as the entropy
density, the entropy flux, and the entropy production, respectively.

1.5.2 Closure of RET

If we truncate the hierarchy at the density with the tensorial order n, we encounter
the problem of closure because the last flux and the productions are not in the list
of the densities. The first idea of RET [11] was to consider the truncated system
as a phenomenological system of continuum mechanics and then to consider the
quantities out of the list as constitutive functions:

Fk1k2:::knknC1
� Fk1k2:::knknC1

.F;Fk1 ;Fk1k2 ; : : :Fk1k2:::kn/ ;

(1.23)

Pk1k2:::kj � Pk1k2:::kj .F;Fk1 ;Fk1k2 ; : : :Fk1k2:::kn/ ; 2 6 j 6 n:

The constitutive quantities at one point and time depend on the independent fields
at the same point and time, i.e., local and instantaneous. As mentioned above,
according to the continuum theory, the restrictions on the constitutive equations
come from the universal principles (see Chap. 2).
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1.5.3 Macroscopic Approach of RET with 13 Fields

The first attempt of RET was the 13-field case. Thirteen is a special number because,
by comparison between the first five moments and conservation laws (1.25) below,
it is possible to relate, in a unique way, the 13 moments {F;Fi;Fij;Flli} to the 13
fields f�; vi; hiji; qig. Therefore, in the case of rarefied monatomic gases, the first 13
moments have concrete physical meanings.

The balance laws in this case are given by

@tF C @iFi D 0;
@tFk1 C @iFik1 D 0;
@tFk1k2 C @iFik1k2 D Pk1k2 ; (1.24)

@tFkkj C @iFkkij D Pkkj:

The constitutive quantities are Fi<k1k2>, Fik1kk;P<k1k2> and Pkkj.
The restrictions by the universal principles—in particular the entropy principle—

are so strong that, at least for processes not too far from equilibrium, the system can
be completely closed. In this case, the closed system is given, by employing the
usual symbols, as [11, 34]

@�

@t
C @

@xk
.�vk/ D 0;

@�vi

@t
C @

@xk

˚
�vivk C pıik � hiki


 D 0;
@

@t
.�v2 C 2�"/C @

@xk

˚
�v2vk C 2.�"C p/vk � 2hklivl C 2qk


 D 0;
@

@t

˚
�vivj C pıij � hiji


C

C @

@xk

�
�vivjvk C p.viıjk C vjıki C vkıij/� hijivk � hjkivi � hkiivj (1.25)

C 2

5
.qiıjk C qjıki C qkıij/

�
D hiji

�S
;

@

@t

˚
�v2vi C 2 .�"C p/ vi � hliivl C 2qi


C

C @

@xk

�
�v2vivk C 2�"vivk C p.v2ıik C 4vivk/ � hikiv2 � 2hliivlvk � 2hlkivlvi

C 4

5
qlvlıik C 14

5
qivk C 14

5
qkvi C 5kB

m
Tpıik � 7kB

m
Thiki

�

D �2 qi

�q
C 2hiji

�S
vj;
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where �S and �q are the relaxation times, which are related to the viscosity and the
heat conductivity, respectively.

The first five equations in (1.25) are the usual conservation laws of mass,
momentum and energy, while the last two blocks are the balance laws for the viscous
stress ij (in the present case of monatomic gases, ij D hiji) and for the heat flux
qi, respectively. They reduce to the Navier-Stokes and Fourier constitutive equations
when the relaxation times are small [11].

We emphasize that we have assumed the system (1.24) motivated by the kinetic
theory but, after that, our procedure has been completely macroscopic. In particular,
we have not relied on the fact that the F0s are related to the distribution function of
the kinetic theory.

1.5.4 Grad Distribution

It is interesting to observe that the macroscopic universal principles give us the result
that is in perfect agreement with the kinetic-theoretical result derived from the Grad
distribution function [55]. The idea of Grad is to use a perturbation method based
on the expansion of the distribution function in terms of the Hermite polynomials
around the Maxwellian distribution fM:

fM D �

m

r
m

2�kBT

3

e� m.C21CC22CC23 /
2kBT ;

where Ci D ci � vi is the peculiar velocity. He obtained the distribution function:

fG D fM

�
1 � 1

2p
hiji

�
m

kBT
CiCj � ıij

�
� 1

p

m

kBT
qiCi

�
1 � 5 m

kBT
C2

��
: (1.26)

Inserting fG into the definition of the moments (1.17), we can accomplish the
closure, and have the same result as that derived from the method of RET (1.25).
This is the first success of RET because it is proved clearly that both the macroscopic
approach and the kinetic Grad approach give the same result!

1.5.5 Closure via the Maximum Entropy Principle
and Molecular RET of Monatomic Gases

The 13-moment theory has extensively shown its superiority over the Navier-Stokes
Fourier theory. However, in some situations, for examples, high-frequency sound
waves, light scattering with large scattering angle, shock waves of large Mach
number, even the 13-moment theory can not provide satisfactory results. In order to
remedy this difficulty a larger number of moments are required. RET can provide a
coherent theoretical framework for building theories with larger number of moments
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that give results in excellent agreement with experiments. In this sense, RET is
the theory of theories. But, usually, it is too difficult to adopt the pure continuum
approach for a system with such a large number of field variables.

Therefore it is necessary to recall that the field variables are the moments of a
distribution function truncated at some order. And then the closure of the balance
equations of the moments, which is known as the maximum entropy principle
(MEP), should be introduced. This is the procedure of the so-called molecular
extended thermodynamics (molecular RET). The principle of maximum entropy
has its root in statistical mechanics. It is developed by Jaynes in the context of the
theory of information basing on the Shannon entropy [56, 57].

Nowadays the importance of MEP is recognized fully due to the numerous
applications in many fields, for example, in the field of computer graphics.

MEP states that the probability distribution that represents the current state of
knowledge in the best way is the one with the largest entropy. Another way of
stating this is as follows: take precisely stated prior data or testable information
about a probability distribution function. Then consider the set of all trial probability
distributions that would encode the prior data. Of those, one with maximal
information entropy is the proper distribution, according to this principle.

Concerning the applicability of MEP in nonequilibrium thermodynamics, this
was originally motivated by the following two reasons: One is the similarity between
the field equations in ET and the moment equations. The other is the observation
made by Kogan [58] that Grad’s distribution function maximizes the entropy. The
MEP was proposed in RET for the first time by Dreyer [59].

In this way the 13-moment theory can be obtained in three different ways: RET,
Grad, and MEP. A remarkable point is that all closures are equivalent to each other!

The MEP procedure was then generalized by Müller and Ruggeri to the case
of any number of moments [36], and later proposed again and popularized by
Levermore [60]. The complete equivalence between the entropy principle and the
MEP was finally proved by Boillat and Ruggeri [61]. Later MEP was formulated
also in a quantum-mechanical context [62].

A comprehensive review of the state-of-the-art of the maximum entropy principle
in both classical (MEP) and quantal (QMEP) formulations was presented by Trovato
and Reggiani [63]. Interesting approach of MEP to radiation was given by Larecki
and Banach [64, 65]. Some mathematical delicate questions concerning the domain
of validity of the MEP was given in a series of papers by Junk and co-workers [66–
68].

The details on MEP in RET will be given in Chap. 4.

1.6 New Approach to Polyatomic Gas and Dense Gas

Unfortunately the previous RET theory, being strictly connected with the kinetic
theory, suffers from nearly the same limitations as the Boltzmann equation. Indeed,
the previous RET is valid only for rarefied monatomic gases, where the specific
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internal energy " and the pressure p are connected by the relation 2�" D 3p, and the
dynamic pressure˘ vanishes identically.

In the case of polyatomic gases, on the other hand, the rotational and vibrational
degrees of freedom of a molecule, which are not present in monatomic gases, come
into play [69], and in the case of dense gases, as the average distance between
the constituent molecules is finite, the interaction between the molecules cannot
be neglected. From a mathematical standpoint, these effects are responsible for
intrinsic changes in the structure of the system of field equations. A simple hierarchy
of field equations as in the case of monatomic gases is no longer valid. In particular,
the internal specific energy is no longer related to the pressure in a simple way.

1.6.1 Macroscopic Approach with 14 Fields

After some pioneering works [70, 71], a 14-field RET theory for dense gases and for
rarefied polyatomic ones has recently been developed by Arima, Taniguchi, Ruggeri
and Sugiyama [72]. This theory adopts two parallel hierarchies (binary hierarchy)
for the independent fields: the mass density, the velocity, the internal energy, the
shear stress, the dynamic pressure and the heat flux. One hierarchy consists of
balance equations for the mass density, the momentum density and the momentum
flux (momentum-like hierarchy), and the other one consists of balance equations for
the energy density and the energy flux (energy-like hierarchy):

@tF C @iFi D 0;
@tFk1 C @iFik1 D 0;
@tFk1k2 C @iFik1k2 D Pk1k2 ; @tGkk C @iGikk D 0;

@tGkkj C @iGkkij D Qkkj:

(1.27)

These hierarchies cannot merge with each other in contrast to the case of rarefied
monatomic gases because the specific internal energy (the intrinsic part of the
energy density) is no longer related to the pressure (one of the intrinsic parts of
the momentum flux).

By means of the closure procedure of the RET theory, the constitutive equations
are determined explicitly by the thermal and caloric equations of state. For example,
let us consider the particular case of rarefied polyatomic gases with the thermal and
caloric equations of state given by

p D kB

m
�T and " D D

2

kB

m
T; .D D 3C f i/ (1.28)

where D is related to the degrees of freedom of a molecule given by the sum of the
space dimension 3 for the translational motion and the contribution from the internal
degrees of freedom f i.> 0/. For monatomic gases, D D 3.
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Then, as will be explained in Chap. 5, we obtain the closed system as follows:

@�
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C @

@xk
.�vk/ D 0;

@�vi

@t
C @

@xk

˚
�vivk C .pC˘/ıik � hiki


 D 0;
@

@t
.�v2 C 2�"/C @

@xk

˚
�v2vk C 2.�"C pC˘/vk � 2hklivl C 2qk


 D 0;
@

@t

˚
�vivj C .pC˘/ıij � hiji


C

C @

@xk

�
�vivjvk C .pC˘/.viıjk C vjıki C vkıij/� hijivk � hjkivi � hkiivjC

C 2

DC 2.qiıjk C qjıki C qkıij/

�
D �˘ıij

�˘
C hiji

�S
;

@

@t

˚
�v2vi C 2 .�"C pC˘/ vi � 2hliivl C 2qi


C

C @

@xk

�
�v2vivk C 2�"vivk C .pC˘/.v2ıik C 4vivk/ � hikiv2 (1.29)

� 2hliivlvk � 2hlkivlvi

C 4

DC 2qlvlıik C 2DC 8
DC 2 qivk C 2DC 8

DC 2 qkvi C kB

m
T Œ.DC 2/p

C.DC 4/˘� ıik�

� kB

m
T.DC 4/hiki

�
D �2 qi

�q
� 2

�
˘ıij

�˘
� hiji

�S

�
vj;

where �S, �˘ , and �q are the relaxation times . The Navier-Stokes Fourier theory is
contained in the present theory as a limit of small relaxation times (the Maxwellian
iteration [11, 73]) as shown in [72] (see also [74]). Details will be explained in
Chap. 5, Sect. 5.3.6.

The validity of the theory has been confirmed by comparing its predictions to
experimental data for rarefied polyatomic gases in the cases of ultrasonic waves
[75, 76], light scattering [77] and shock waves [78, 79]. The application of the
theory to heat conduction was considered as well [80]. See Part IV for details.

1.6.2 Singular Limit from Polyatomic to Monatomic Gas

Let us consider the limiting process from polyatomic to monatomic rarefied gases
when we let D approach 3 (i.e., D ! 3) from above, where D is assumed to be a
continuous variable. The limit is a singular in the sense that the system for rarefied
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polyatomic gases with 14 independent variables seems to converge to the system
with only 13 independent variables for rarefied monatomic gases. What happened
to the remaining one equation?

It is possible to prove that the 14 equations and the solutions of the system (1.29)
converge to the 13 equations and solutions of monatomic gas (1.25) with ˘ D 0,
respectively, provided that the initial data are chosen in such a way that the data are
compatible with a monatomic gas, i.e., ˘.x; 0/ D 0 [81]. Details will be given in
Sect. 5.6.

1.6.3 MEP Closure and the Molecular Approach
for the 14-Moment Theory

Concerning the kinetic counterpart, a crucial step towards the development of the
theory of rarefied polyatomic gases was made by Borgnakke and Larsen [82]. The
distribution function is assumed to depend on an additional continuous variable
representing the energy of the internal modes of a molecule in order to take into
account the exchange of energy (other than translational one) in binary collisions.
This model was initially used for Monte Carlo simulations of polyatomic gases,
and later it was applied to the derivation of the generalized Boltzmann equation by
Bourgat, Desvillettes, Le Tallec and Perthame [83].

As a consequence of the introduction of one additional parameter, the velocity
distribution function f .t; x; c; I/ is defined on the extended domain Œ0;1/�R3�R3�
Œ0;1/. Its rate of change is determined by the Boltzmann equation which has the
same form as the one of monatomic gases (1.16) but the collision integral Q.f / takes
into account the influence of the internal degrees of freedom through the collisional
cross section.

Recently Pavić, Ruggeri and Simić proved [84] that, by means of the maximum
entropy principle, the kinetic model for rarefied polyatomic gases presented in [82]
and [83] yields appropriate macroscopic balance laws. This is a natural generaliza-
tion of the classical procedure of MEP from monatomic gases to polyatomic gases.
They considered the case of 14 moments, and showed the complete agreement with
the binary hierarchy (1.27). The moments are defined by

0
@ F

Fi1

Fi1i2

1
A D

Z
R3

Z 1

0

m

0
@ 1

ci1

ci1ci2

1
A f .t; x; c; I/ '.I/ dI dc;

(1.30)
�
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Gppk1

�
D
Z
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Z 1

0

m

�
c2 C 2 I

m�
c2 C 2 I

m

�
ck1

�
f .t; x; c; I/ '.I/ dI dc:
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The weighting function '.I/ is determined in such a way that it recovers the caloric
equation of state in equilibrium for polyatomic gases. It can be shown that '.I/ D I˛

leads to an appropriate caloric equation (1.28) provided that

˛ D D � 5
2

: (1.31)

The important feature of the nonequilibrium distribution obtained with MEP is its
compatibility with the distribution obtained by Mallinger using the Grad procedure
for diatomic molecules (˛ D 0) [85]. Therefore, also for rarefied polyatomic gases,
the three closure procedures (RET, MEP and Grad) give the same result!

1.6.4 Applications of the 14-Field RET Theory

Some applications of the 14-field theory to specific problems have been made. In
this section we review briefly some of them. Their detailed exposition will be made
in Part IV.

1.6.4.1 Dispersion Relation for Sound in Rarefied Diatomic Gases

The dispersion relation for sound in rarefied diatomic gases; hydrogen, deuterium
and hydrogen deuteride gases basing on the 14-field RET theory was recently
studied in detail [75]. The relation was compared with those obtained in experiments
and by the Navier-Stokes Fourier (NSF) theory. As is expected, the applicable
frequency-range of the RET theory was shown to be much wider than that of the
NSF theory. The values of the bulk viscosity and the relaxation times involved
in nonequilibrium processes were evaluated. It was found that the relaxation time
related to the dynamic pressure has a possibility to become much larger than the
other relaxation times related to the shear stress and the heat flux. The isotope effects
on sound propagation were also clarified [75, 76]. The analysis was made in the
temperature range where the rotational and vibrational modes in a molecule play an
important role. The RET theory can be applied to many other rarefied polyatomic
gases in a wider temperature range where the rotational and/or vibrational modes in
a molecule play a role.

1.6.4.2 Shock Wave Structure in a Rarefied Polyatomic Gas

The shock wave structure in a rarefied polyatomic gas is, under some conditions,
quite different from the shock wave structure in a rarefied monatomic gas due to
the presence of the microscopic internal modes in a polyatomic molecule such as
the rotational and vibrational modes [86, 87]. For examples: (1) The shock wave
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Fig. 1.1 Schematic representation of three types of the shock wave structure in a rarefied
polyatomic gas, where � and x are the mass density and the position, respectively. As the Mach
number increases from unity, the profile of the shock wave structure changes from Type A to Type
B, and then to Type C that consists of the thin layer � and the thick layer �

thickness in a rarefied monatomic gas is of the order of the mean free path. On
the other hand, owing to the slow relaxation process involving the internal modes,
the thickness of a shock wave in a rarefied polyatomic gas is several orders larger
than the mean free path. (2) As the Mach number increases from unity, the profile
of the shock wave structure in a polyatomic rarefied gas changes from the nearly
symmetric profile (Type A) to the asymmetric profile (Type B), and then changes
further to the profile composed of thin and thick layers (Type C) [88–93]. Schematic
profiles of the mass density are shown in Fig. 1.1. Such change of the shock wave
profile with the Mach number cannot be observed in a monatomic gas.

In order to explain the shock wave structure in a rarefied polyatomic gas, there
have been two well-known approaches. One was proposed by Bethe and Teller [94]
and the other is proposed by Gilbarg and Paolucci [95]. Although the Bethe-Teller
theory can describe qualitatively the shock wave structure of Type C, its theoretical
basis is not clear enough. The Gilbarg-Paolucci theory, on the other hand, cannot
explain asymmetric shock wave structure (Type B) nor thin layer (Type C).

Recently it was shown that the 14-field RET theory can describe the shock wave
structure of all Types A to C in a rarefied polyatomic gas [78, 79]. In other words
the 14-field RET theory has overcome the difficulties encountered in the previous
two approaches. This new approach indicates clearly the usefulness of the RET
theory for the analysis of shock wave phenomena. These basic studies will be useful
for various practical applications, for example, the re-entry of a satellite into the
atmosphere of a planet.

1.6.4.3 Some Other Applications

Some of the possible applications of the ET14 theory of rarefied polyatomic gases
are as follows:

• Light scattering.
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• Heat conduction in a gas at rest confined between two infinite parallel plates, two
coaxial cylinders, and two concentric spheres.

• Fluctuation hydrodynamics.

These topics will be explained briefly in Chap. 9.

1.6.5 Molecular RET of Polyatomic Gases

For polyatomic gases, we can also consider the closure of the system with generic
number of moments. In this case, we use the same idea introduced in [84]. We
consider a distribution function depending on the additional parameter I that takes
into account the internal degrees of freedom of a molecule and adopt the generalized
hierarchy structure (1.30).

We can define a binary hierarchy of the moments in the following way [84, 96]:
We consider now the same binary hierarchy of 14moments but for a generic number
of moments truncated, for the F-series, at the index of truncation N and, for the G-
series, at the index M:

@tF C @iFi D 0;
@tFk1 C @iFik1 D 0;
@tFk1k2 C @iFik1k2 D Pk1k2 ; @tGkk C @iGikk D 0;
::: @tGkkj1 C @iGkkij1 D Qkkj1 ;

:::
:::

@tFk1k2:::kN C @iFik1k2:::kN D Pk1k2:::kN ;
:::

@tGkkj1j2:::jM C @iGkkij1j2:::jM D Qkkj1j2:::jM :

(1.32)

The truncation order N of the F-hierarchy (momentum-type hierarchy) and the order
M of the G-hierarchy (energy-type hierarchy) are a priori independent of each other.
It is worth noting that the first and the second equations of the F-hierarchy represent
the conservation laws of mass and momentum, respectively (P � 0;Pi � 0),
while the first equation of the G-hierarchy represents the conservation law of energy
(Qll � 0), and that, in each of the two hierarchies, the flux in one equation appears
as the density in the following equation—a feature in common with the single
hierarchy of monatomic gases.

The Euler 5-moment system is a particular case of (1.32) with N D 1;M D 0.
And the 14-moment system (1.27) is another particular case of (1.32) with N D
2;M D 1.
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It was proved that the truncation indices N and M of the two hierarchies are, in
reality, not independent of each other because of the physical reasons; (1) Galilean
invariance of field equations and (2) the fact that the characteristic velocities depend
on the degrees of freedom of a molecule. We have arrived at the conclusion that the
relation M D N � 1 should be satisfied [96].

The closure of the system is achieved by means of the maximum entropy
principle. And it was also proved that, in the present case, this closure is equivalent
to the closure by the entropy principle with concave entropy density. In this way,
the system becomes to be symmetric when it is written in terms of the main field
components, definition of which will be shown in Chap. 2.

The characteristic velocities in an equilibrium state are analyzed, which play an
important role in the following cases: the propagation of acceleration waves [97, 98],
the determination of the phase velocity of linear waves in the high-frequency limit
[99, 100], and the subshock formation [101].

With regard to this, it will be discussed how the characteristic velocities of the
system depend on the internal degrees of freedom and on the order of the truncation
of hierarchies. In particular, the two limit cases of monatomic gases and of a gas
with infinite internal degrees of freedom will be investigated.

Finally, using the convexity arguments and the sub-characteristic conditions for
the principal subsystems, the lower-bound estimate for the maximum characteristic
velocity was obtained as follows:

�E;max
.N/
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>

s
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5

�
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�
;
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r
5

3

kB

m
T

!
:

This is independent of the degrees of freedom of a molecule. Noteworthy point
is that this estimate is exactly the same as that for monatomic gases established
by Boillat and Ruggeri [61]. This is used recently by Slemrod in his analysis of
the hydrodynamic limit of the Boltzmann equation and Hilbert’s sixth problem [6].
Therefore, also for polyatomic gases, the maximum characteristic velocity tends to
be unbounded when the order of the hierarchies tends to infinity!

As in the case of 14 fields [81], it is possible to prove [102] that, in the limit D!
3, the solutions of the system for rarefied polyatomic gases, which is composed by
1
6
.N C 1/.N C 2/.2N C 3/ equations, converge to those of the system of rarefied

monatomic gases, which is composed by 1
6
.N C 1/.N2 C 8N C 6/ equations. In

fact, in this limit, the differences between the trace part of the F-hierarchy and the
G-hierarchy:

˘k1k2:::k˛ � lim
D!3

.Fkkk1k2:::k˛ �Gkkk1k2:::k˛ /; .0 6 ˛ 6 N � 2/ ;

are governed by the following balance equations:

@t˘k1k2:::k˛ C @i˘ik1k2:::k˛ D lim
D!3

.Pkkk1k2:::k˛ �Qkkk1k2:::k˛ / : (1.33)
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At least in the BGK approximation, it was proved in [102] that ˘ik1k2:::k˛ and
the right-hand side terms are linear combination of ˘k1k2:::k˛ and therefore the
system (1.33) composed by 1

6
.N � 1/N.N C 1/ equations admits only the zero

solution provided that the initial data are compatible with a monatomic gas, i.e.,
˘k1k2:::k˛ .x; 0/ D 0.

1.6.6 6-Field RET Theory and Comparison with the Meixner
Theory of Relaxation Processes

The 14-field RET theory (ET14) gives us a complete phenomenological model but
its differential system is rather complex. For this reason we construct a simplified
RET theory with 6 fields (ET6). This simplified theory preserves the main physical
properties of the more complex ET14 theory, when the bulk viscosity plays more
important role than the shear viscosity and the heat conductivity. This situation
is observed in many polyatomic gases at some temperature ranges. This model is
particularly interesting because, as seen later, it is also valid in a situation far from
equilibrium.

In the 14-field RET theory, there exist three relaxation times �S; �˘ , and �q

that characterize the relaxation of the shear stress, the dynamic pressure, and the
heat flux, respectively. The relaxation times depend on the mass density and the
temperature, and their magnitudes are usually comparable with each other. As
mentioned above, the shear and bulk viscosities and the heat conductivity in the
Navier-Stokes Fourier theory can be expressed in terms of the relaxation times.

It was revealed recently, however, by studying the dispersion relation of linear
harmonic waves [75] and the shock wave structure [78, 103] that, in an appropriate
temperature range of some polyatomic gases such as a hydrogen gas or a carbon
dioxide gas, the relaxation time �˘ is several orders larger than the other two
relaxation times �S and �q. In such a situation, the dynamic pressure relaxes very
slowly compared with the relaxation of the shear stress and the heat flux. And the
effect of the shear stress and the heat flux on the relaxation process is negligibly
small.

In order to focus our attention on such slow relaxation phenomena, a simplified
version of the 14-field RET theory, that is, a RET theory with six independent fields
of the mass density, the velocity, the temperature, and the dynamic pressure has been
proposed [104, 105]. It was shown that the well-known Meixner theory of relaxation
processes [106, 107] is equivalent to the 6-field RET theory.

Due to the relative simplicity of the RET6 theory, a theory that is valid also far
from equilibrium was constructed [108]. Details of the 6-field RET theory will be
presented in Chaps. 11–14.
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1.6.7 Nonequilibrium Temperature

If our study is restricted within nonequilibrium thermodynamics under the local
equilibrium assumption, there exists no conceptual difficulty in the temperature in
nonequilibrium. Therefore, TIP does no suffer from such a difficulty.

However, if we go beyond the local equilibrium assumption to study highly
nonequilibrium phenomena, we encounter an extremely difficult problem. The
establishment of a suitable definition of the nonequilibrium temperature in such
a situation has always been a big challenge. In RET (and also the kinetic theory)
of monatomic gases, the so-called kinetic temperature, which is defined by the
thermal average of the kinetic energy of a molecule, has usually been adopted as
a nonequilibrium temperature.3 While, in the papers by Barbera et al. [109] and Au
et al. [110] for example, the so-called thermodynamic temperature was also
introduced in the framework of RET. The thermodynamic temperature is defined
by the zeroth law of thermodynamics, that is, the continuity conditions of the heat
flux and of the entropy flux, especially, at the boundary of a system [3].

For a survey about the nonequilibrium temperature in more general context, see
the review paper [111].

In Chap. 15, we will study the temperature and also the chemical potential in
polyatomic gases in nonequilibrium. In addition to the kinetic temperature, we
introduce another well-defined nonequilibrium temperature and chemical potential
on the basis of the generalized Gibbs relation in ET where the main field plays
an essential role. And subsequently these quantities are examined explicitly in the
RET theories with 6 and 14 fields. In the 6-field RET theory, in particular, it will be
shown in Chap. 11 that their definitions correspond exactly to the definitions of the
temperature and chemical potential in the Meixner theory of relaxation processes
[106, 107]. An example in the case of shock waves will also be shown.

1.7 Mixture of Gases with Multi-Temperature

In Part VII, we will study some models of a mixture of compressible fluids. In
particular, we will discuss the most general model of a mixture in which each
constituent has its own temperature (multi-temperature, or MT).

We will firstly compare the solutions of this model with those with a unique
common temperature (single temperature or ST) [112]. In the case of Eulerian
fluids, it will be shown that the corresponding ST differential system is a principal
subsystem of the MT system [112]. Global behavior of smooth solutions for large
time for both systems will also be discussed by applying the Shizuta Kawashima
K-condition (see Sect. 2.6.2).

3In computer simulations by the molecular-dynamics method, the kinetic temperature has also been
exclusively adopted as the temperature in nonequilibrium.
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Secondly, we introduce the concept of the average temperature of a mixture based
on the consideration that the internal energy of a mixture with multi-temperature is
the same as that of a single-temperature mixture [113, 114].

As a consequence, it is shown that the entropy of a mixture reaches a local
maximum in equilibrium. Through the procedure of the Maxwellian iteration
new constitutive equations for nonequilibrium temperatures of the constituents are
obtained in a classical limit, together with Fick’s law for the diffusion flux.

In order to justify the Maxwellian iteration, we will present, for dissipative
fluids, a possible approach to a classical theory of a mixture with multi-temperature.
We will prove that the differences of the temperatures between the constituents
imply the existence of the dynamic pressure even if the fluids have zero bulk
viscosity [113]. Shock structure in a mixture is the subject of Chap. 17.

1.8 Qualitative Analysis

In RET, the differential system is closed by the universal principles: the objectivity
principle, the entropy principle, and the principle of causality and stability. This
permits an intimate connection between RET and the mathematical theory of
hyperbolic systems with convex extension. Then there exists a privileged field (main
field) such that the differential system becomes to be a symmetric hyperbolic system
with the well-posedness of the local (in time) Cauchy problem [115–117].

Moreover the requirement that the balance laws are invariant with respect to the
Galilean transformation permits to fix, in a unique way, the velocity dependence
in the field equations. The entropy principle becomes a constraint only for the
constitutive equations [117].

If the system is nonlinear and hyperbolic, global smooth solutions can exist
due to the interrelationship between the first five conservation laws and the
remaining dissipative ones. In fact, for generic hyperbolic systems of balance laws,
endowed with a convex entropy law and dissipation, the Kawashima-Shizuta
condition (K-condition) [118] becomes a sufficient condition for the existence
of global smooth solutions, provided that the initial data are sufficiently smooth
[119–122]. Recently Lou and Ruggeri [123] observed that there exists a weaker
K-condition that is a necessary (but unfortunately not sufficient) condition for the
global existence of smooth solutions. It was proved that the assumptions of the
previous theorems are fulfilled in both classical [124] and relativistic [125, 126]
monatomic RET, and also in the case of mixtures of gases with multi-temperature
[112]. The same property exists also in the case of polyatomic rarefied gases. Details
will be explained in Chap. 14 for polyatomic gas with six fields and in Chap. 16
for the model of mixture with multi-temperature. In Chap. 18, we will discuss the
parabolic limit of the ET theories via the Maxwellian iteration.
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1.9 About this Book

The book is composed of eight Parts I–VIII, with two additional chapters; “Intro-
duction” at the beginning and “Open Problems” at the end.

In Part I, we present the mathematical structure of RET and its intimate
connection with hyperbolic nonlinear system of first order. In particular, basing
on the entropy principle and the convexity of entropy, we can rewrite the original
system in a symmetric form using the main field. The main field is crucial also for
clarifying the nesting structure of RET. Moreover symmetric hyperbolic systems
have good properties concerning the well-posedness of the Cauchy problem. We
discuss recent theorems that guarantee the existence of global smooth solutions for
all time and, as is expected from a physical point of view, the asymptotic tendency
to an equilibrium state. The Galilean invariance dictates the explicit dependence of
the field equations on the velocity, while the entropy principle gives a selection rule
for admissible constitutive equations. One chapter is devoted to explain the general
properties of wave propagation phenomena like linear waves, acceleration waves,
shock waves, and shock wave structure. These are important to understand RET
deeply.

The Part II is a brief summary of the main results of ET of monatomic gases,
details of which are explained in the book of Müller and Ruggeri [11]. This Part is
necessary to understand the new progress that will be explained in the present book.

From Part III, we start to explain the newly obtained results after the book of
Müller and Ruggeri. In Part III, we study the ET theory of 14 independent fields
that is applicable to rarefied polyatomic gases and also to dense gases. The finding
that the system of field equations should have the structure of the binary hierarchy is
the main breakthrough in the new progress. We also study the molecular RET with
the maximum entropy principle. This is compared with the above phenomenological
approach, and the consistency between two approaches is shown.

Part IV deals with some applications of the ET14 theory. The linear waves and
shock waves are studied. Comparison of the theoretical results with experimental
data shows the remarkable superiority of the ET14 theory to the classical Navier-
Stokes Fourier theory. Some other possible applications are also briefly discussed.

In Part V, the molecular ET theory of rarefied polyatomic gases is explained. We
grasp the mathematical structure of the ET theory with binary hierarchy of arbitrary
number of independent densities. Nesting theory of many moments is studied.

Part VI is devoted to the study of the theory that is applicable to the phenomena
far from equilibrium within the ET6 theory. The correspondence relation between
the ET6 theory and the Meixner theory is established. Then the ET6 theory is
applied to the shock wave structure to solve the pending question about the change
of the shock profile with the Mach number. Acceleration waves are also studied in
this context. Lastly the concept of the nonequilibrium temperature is revisited on
the basis of the results obtained.
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In Part VII, multi-temperature mixture of Euler fluids is studied. Then we study
the shock structure in a mixture. We study, in particular, the temperature overshoot
in a shock wave,

In Part VIII, the parabolic limit of the hyperbolic ET systems obtained via
Maxwellian iteration is analyzed. In particular we study the question whether the
entropy principle is preserved in this limit and we discuss the range of validity of
the so-called regularized system.
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Chapter 2
Mathematical Structure

Abstract In this chapter, we give a survey on the mathematical structure of the
system of RET, which is strictly related to the mathematical problems of hyperbolic
systems in balance form with a convex entropy density. We summarize the main
results: The proof of the existence of the main field in terms of which a system
becomes symmetric, and several properties derived from the qualitative analysis
concerning symmetric hyperbolic systems. In particular, the Cauchy problem is
well-posed locally in time, and if the so-called K-condition is satisfied, there
exist global smooth solutions provided that the initial data are sufficiently small.
Moreover the main field permits to identify natural subsystems and in this way
we have a structure of nesting theories. The main property of these subsystems is
that the characteristic velocities satisfy the so-called sub-characteristic conditions
that imply, in particular, that the maximum characteristic velocity does not decrease
when the number of equations increases. Another beautiful general property is the
compatibility of the balance laws with the Galilean invariance that dictates the
precise dependence of the field equations on the velocity.

2.1 System of Balance Laws

The approach of RET [1] is basing on the assumption that the density F0, the flux
Fi and the production f in the balance-law system (1.2) depend locally on the field
variable u.x; t/ 2 RN , and that the quasi-linear dissipative system of balance laws:

@F0.u/
@t

C @Fi.u/
@xi

D f.u/ (2.1)

is hyperbolic with respect to the t-direction. The variable u.x; t/ is the unknown field
vector to be determined in a problem under consideration.

It is convenient to rewrite the system (2.1). The most compact form of the
hyperbolic system in the space-time is to use the relativistic notation: x0 D tI @˛ D
@=@x˛ .˛ D 0; 1; 2; 3/. Then we have

@˛F˛.u/ D f.u/: (2.2)
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36 2 Mathematical Structure

2.1.1 Hyperbolicity in the t-Direction

The system (2.2) is a particular case of the quasi-linear first order system of PDE’s:

A˛.u/@˛u D F.u/ with A˛ D @F˛

@u
: (2.3)

The system (2.3) is called hyperbolic in the t-direction, if it has the following two
properties:

• det A0 ¤ 0.
• For all unit vectors n � .ni/, the eigenvalue problem:

�
Aini � �A0

�
d D 0 (2.4)

admits only real eigenvalues �.i/ .i D 1; 2; : : :N/ and a set of linearly
independent right eigenvectors d.i/.

The �’s are called characteristic velocities and the polynomial

det
�
Aini � �A0

� D 0 (2.5)

is called characteristic polynomial. The left eigenvectors l.i/ .i D 1; 2; : : :N/ are
defined by

l
�
Aini � �A0

� D 0; (2.6)

and may be chosen in such a way that

l.i/ � d. j/ D ıij; for all i; j D 1; 2; : : :N: (2.7)

2.1.2 Symmetric Hyperbolic System

The system (2.3) is called symmetric hyperbolic (in the t-direction), or briefly
symmetric—by the definition of Friedrichs—, if:

• The matrices A˛ are symmetric.
• The matrix A0 is positive definite.

By linear algebra every symmetric system is hyperbolic, but the reverse statement
is not true.

Symmetric systems play an important role in extended thermodynamics, because
the theory uses hyperbolic equations, and the entropy principle, together with the
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convexity of the entropy density, ensures that they form a symmetric hyperbolic
system.

2.2 Axioms of Rational Extended Thermodynamics

The main axioms of RET are summarized as follows:

• The balance laws (2.2) must satisfy the relativity principle, i.e., the balance laws
are invariant under a Galilean transformation (or a Lorentz transformation in a
relativistic case) and the proper constitutive equations are invariant under any
change of observer.

• The entropy principle requires that constitutive equations must be selected
so that all thermodynamic processes are compatible with the second law of
thermodynamics, where a thermodynamic process is defined as a solution of
the total system (balance laws plus constitutive equations). More precisely, the
principle consists in the following axioms:

(i) There exists an additive and objective scalar, which we call entropy.
(ii) The entropy density and the flux of the entropy are constitutive functions to

be determined.
(iii) The entropy production is non-negative for all thermodynamic processes.

The axiom (i) says that the body possesses an additive quantity called entropy,
like mass and energy. As for any additive quantity, there exists a balance law of
entropy:

@˛h˛.u/ D ˙ .u/; (2.8)

where h0, hi and ˙ are, respectively, the entropy density, the entropy flux and
the entropy production. The entropy production depends also on u. The second
axiom (ii) says that both h0 and hi are constitutive quantities to be determined
as functions of the field variables. Finally, the third axiom (iii) requires that the
entropy production is non-negative for all thermodynamic processes:

˙ > 0: (2.9)

We have seen, in Sect. 1.3, the genesis of this entropy principle. In the context
of hyperbolic systems of conservation laws this formulation is due to Friedrichs
and Lax [2].

• The requirement of the causality and the thermodynamic stability, i.e., the
entropy density must be a convex function of the density fields. When u � F0,
we have the condition:

@2h0

@F0 @F0
W negative definite: (2.10)
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In the mathematical community, the sign of the entropy density h0 is usually
opposite to the one adopted in physics. Therefore following the tradition we still
use the word, convexity, instead of the more appropriate word, concavity.

2.3 Entropy Principle and Symmetric Systems

2.3.1 General Discussions

First we want to prove the following important theorem:

Theorem 2.1 (Symmetric Form) By selecting the main field u0 as the field
variables, the original system (2.2) can be written in a symmetric form with Hessian
matrices:

@˛

�
@h0˛

@u0

�
D f ” @2h0˛

@u0@u0 @˛u0 D f (2.11)

provided that h0 is a convex function of u � F0 (or equivalently the Legendre
transform h00 is a convex function of the dual field u0).

Proof The compatibility between (2.2) and (2.8), taking into account that both are
quasi-linear equations, implies the existence of a main field u0 � u0.u/ such that
[3]:

@˛h˛ �˙ � u0 � .@˛F˛ � f/ : (2.12)

As a consequence of this identity, we have

dh˛ D u0 � dF˛; ˙ D u0 � f > 0: (2.13)

Boillat [4] and later, in a covariant formulation, Ruggeri and Strumia [3] introduced
four potentials h0˛:

h0˛ D u0 � F˛ � h˛: (2.14)

By choosing u0 as a field, we obtain from (2.13)1 and (2.14):

F˛ D @h0˛

@u0 : (2.15)

Inserting (2.15) into (2.2) we obtain the form (2.11). As the density vector F0 is a
possible field then the change between the density F0 and the main field u0 is ensured
by the convexity condition of the entropy. In fact h00 is the Legendre transform of
h0 and the convexity condition (2.10) imply the convexity of h00 with respect the
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dual field u0. Therefore the system (2.11) is symmetric and the proof is given. It
is easy to verify that the vice versa is also true. Every system of the form (2.11)
satisfies automatically the entropy principle (2.8), (2.9) with (2.14) provided that
the production term f as the function of u0 satisfies the inequality (2.13)2.

We notice, from (2.15), that the convexity condition (2.10) can be rewritten as

Q D ıu0 � @h00

@u0@u0 ıu
0 D ıu0 � ıF0 < 0 8 ıu0 ¤ 0: (2.16)

Historical Remarks: The history concerning the symmetrization seems to be not
so clear and it sometimes does stir up debate. We here want to list some remarks on
it to our knowledge:

• In 1961, Godunov wrote a short paper “An interesting class of quasi-linear
systems” [5] in which he was able to prove, in the case of Euler fluids, that if we

choose, as variables,
��
�gC v2

2

	
=T;�v=T; 1=T

	
(g is the chemical potential),

the original system becomes symmetric. Moreover he proved that all systems that
come from a variational principle can be put in a symmetric form.

• In 1971, Friedrichs and Lax proved [2] that all systems that are compatible with
the entropy principle are symmetrizable. This means that, for an original system
that is not symmetric, a new one after a pre-multiplication of a matrix H.u/
becomes to be symmetric. As a consequence the symmetric system is different
with respect to the previous system. There is the disadvantage that weak solutions
of the original system are not weak solutions of the new one. It seems that they
ignored completely Godunov’s work!

• In 1974, Boillat [4] introduced the field u0 D @h0=@F0, and he realized that the
original system can be put in a symmetric form. Therefore, to our knowledge,
he is the first person who symmetrized the original hyperbolic system that is
compatible with the entropy principle. At that time, he did not know Godunov’s
paper, but after he discovered the paper of Godunov, he has called this system
Godunov system (and Godunov always quoted Boillat). The reader can find more
details in the Lecture Notes in Mathematics n. 1640 (1986) of a Cime Course
by Boillat, Dafermos, Lax and Liu. In the part written by Boillat [6], there are
several physical examples of symmetrization by using this technique: non-linear
elasticity, Born-Infeld non-linear electro-dynamics, magneto-fluid dynamics, etc.
in which the field introduced by Boillat was used to symmetrize these systems.

• In 1981, Ruggeri and Strumia [3] were interested in extending this technique
to a relativistic case by using a covariant formulation. But they realized that
it is impossible to define u0 in the same manner as before because h0 is the
temporal part of the four vector h˛ and therefore is not a scalar invariant. Also
F0 is not a vector. Therefore they introduced u0 as a multiplier such that if we
multiply the balance laws by u0 we obtain identically the supplementary entropy
law [see (2.12)]. This has a benefit that all components of u0 are tensors and,
in the classical case, reduce to the Boillat field. They realized the importance of
this change of variables and for this reason they proposed for the first time the
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name main field. The technique of Lagrange multipliers to explore the entropy
principle is similar to the one used by Ruggeri and Strumia and was given first
by I-Shi Liu [7]. However, it should be noticed that the Lagrange multipliers that
define the main field are obtained only when the system is written in a balance
form. While, if we use a differential system in a different form (for example, the
system expressed by using the material derivative), the Lagrange multipliers are
not independent variables (see for more details Sect. 2.7).

• In 1982, Boillat extended the symmetrization also to the case with constraints
[8]. This problem was considered also by Dafermos [9].

• In 1983, in the first tentative to construct ET, Ruggeri realized that it is possible
to construct a symmetrization also for parabolic systems and he wrote down for
the first time the expression of the main field for Navier-Stokes Fourier fluids
[10].

• In 1989, in the paper [11], it was proved that symmetrization is compatible with
the Galilean invariance.

• In a relativistic case, there is also a subtle point because the entropy depends on
the choice of the temporal congruence. In 1990, a discussion about the convexity
and the symmetrization and a choice of temporal congruence was the subject of
the paper [12].

2.3.2 Symmetric System of Euler Fluids

As an example of the previous general results, let us consider the simple case of
Euler fluids. We have

F0 D
0
@��vk

1
2
�v2 C �"

1
A ; Fi D

0
@�vi

�vivk C pıik

. 1
2
�v2 C �"C p/vi

1
A ; f D

0
@00k

0

1
A ;

(2.17)

.i; k D 1; 2; 3/. From (2.13), (2.14), and the Gibbs equation (1.7), we have the main
field, which coincides with the one derived by Godunov [5]:

u0 D 1

T

0
B@
�gC v2

2

�vk

1

1
CA ; (2.18)

and the potentials:

h00 D � p

T
; h0i D �vi

p

T
: (2.19)
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The convexity condition is always satisfied under the usual thermodynamic stability
condition, that is, the positivity of the specific heat and of the compressibility,

�
@"

@T

�
�

> 0;

�
@p

@�

�
T

> 0: (2.20)

2.4 Principal Subsystems

Importance of the main field was again recognized when Boillat and Ruggeri
discovered that this field permits to define nesting theories through the concept of
principal subsystems [13].

Let us split the main field u0 2 RN into two parts u0 � .v0;w0/; where v0 2
RM; w0 2 RN�M; .0 < M < N/, then the system (2.11) with f � .r; g/ reads:

@˛

�
@h0˛.v0;w0/

@v0

�
D r.v0;w0/; (2.21)

@˛

�
@h0˛.v0;w0/

@w0

�
D g.v0;w0/: (2.22)

Definition 2.1 (Principal Subsystem) Given some assigned constant value w0� of
w0, we call the system1:

@˛

�
@h0˛.v0;w0�/

@v0

�
D r.v0;w0�/ (2.23)

principal subsystem of (2.11). In other words, a principal subsystem (there are 2N�2
such subsystems) coincides with the first block of the system putting w0 D w0�.

The principal subsystems have two important properties: they admit also a
convex subentropy law and the spectrum of the characteristic velocities is contained
in the spectrum of the full system (subcharacteristic conditions). In fact it is possible
to prove the following theorems [13]:

Theorem 2.2 Solutions of a principal subsystem satisfy also a supplementary law
(subentropy law):

@˛h
˛ D ˙; (2.24)

1The definition and the properties remain valid for prescribed values of w0
� that depend on x˛ in an

arbitrary manner. In this case the principal subsystem is not autonomous [13].
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where the entropy four-vector h
˛
.v0;w0�/ and the entropy production ˙ are related

to the restrictions of the entropy four-vector h˛.v0;w0�/ and of the entropy production
˙.v0;w0�/ of the full system:

h
˛
.v0;w0�/ D h˛.v0;w0�/� w0� �

�
@h0˛

@w0

�
w0�w0

�

;

˙ D ˙.v0;w0�/� w0� � g.v0;w0�/:

The subentropy is convex and therefore every principal subsystem are also symmet-
ric hyperbolic.

Let �.k/.v0;w0;n/ and �
.k/
.v0;w0�;n/ be the characteristic velocities of the total

system and of the subsystem, respectively, where n is the unit normal to the wave
front. In general, solutions of the subsystem are not particular solutions of the
system (for w0 D w0�) and the spectrum of the �’s is not part of the spectrum of
the �’s. However let us define

�max D max
kD1;2;:::;N �

.k/; �max D max
kD1;2;:::;M

�
.k/

and similarly for the minima, then we have a theorem:

Theorem 2.3 (Subcharacteristic Conditions) Under the assumption that h0 is a
convex function, the following subcharacteristic conditions hold for every principal
subsystem:

�max.v0;w0�;n/ > �max.v0;w0�;n/I �min.v0;w0�;n/ 6 �min.v0;w0�;n/;
(2.25)

8 v0 2 RM and 8 n 2 R 3 W jj n jjD 1:
The proof of the theorems is given in [13].

2.5 Conservation and Balance Laws, and Equilibrium
Subsystem

A particular case of (2.21) and (2.22) is the case where the first M equations are
conservation laws, i.e., r � 0. This is the case of all extended thermodynamic
theories. Then the block of conservation laws is expressed by

@˛V˛ D 0; ” @˛

�
@h0˛.v0;w0/

@v0

�
D 0; (2.26)
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and a block of balance laws by

@˛W˛ D g; ” @˛

�
@h0˛.v0;w0/

@w0

�
D g.v0;w0/: (2.27)

In this case, it is possible to define, as in usual thermodynamics, the equilibrium
state:

Definition 2.2 (Equilibrium State) An equilibrium state is a state for which the
entropy production˙ jE vanishes and hence attains its minimum value.

It is possible to prove the following theorem [13, 14]:

Theorem 2.4 (Equilibrium Manifold) In an equilibrium state, under the assump-
tion of dissipative productions i.e., the assumption that

D D 1

2

(
@g
@w0 C

�
@g
@w0

�T
) ˇ̌
ˇ̌
ˇ
E

is negative definite; (2.28)

the production vanishes and the main field components vanish except for the first M
components. Thus

gjE D 0; w0jE D 0: (2.29)

Therefore, in an equilibrium state, all the components of the main field correspond-
ing to the Lagrange multipliers of the balance laws (2.27) vanish, and only the
Lagrange multipliers corresponding to the conservation laws (2.26) survive. This
confirms again the importance of the main field!

We have another important characteristic property of the equilibrium state [15,
16]:

Theorem 2.5 (Maximum of the Entropy) In equilibrium, the entropy density h0

is maximal, i.e.,

h0 < h0jE 8 u0 ¤ u0jE; where h0jE D h0
�
v0jE; 0

�
;

and v0jE denotes the restriction in equilibrium of the components of the main field
corresponding to the Lagrange multipliers of conservation laws.

Therefore we find also at this general level the well-known property of the entropy
in thermodynamics, i.e., the property of maximal entropy in equilibrium.

If we limit our study within one-dimensional space, the system (2.21) and (2.22)
assumes the form:

8<
:

Vt C
�
k0

v0

�
x
D 0;

Wt C
�
k0

w0

�
x
D �G .v0;w0/w0

(2.30)
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with V D h0
v0; W D h0

w0 and h0 D h00; k0 D h01. The matrix G is a positive definite
.N �M/ � .N �M/ matrix.

2.6 Qualitative Analysis

In this section, we discuss the importance of the entropy principle for the qualitative
analysis of the Cauchy problem.

2.6.1 Competition Between Hyperbolicity and Dissipation

In the general theory of hyperbolic conservation laws and hyperbolic-parabolic
conservation laws, the existence of a strictly convex entropy function is a basic
condition for the well-posedness. In fact, if the fluxes Fi and the production f are
smooth enough in a suitable convex open set 2 RN , it is well known that system (2.2)
has a unique local (in time) smooth solution for smooth initial data [2, 17, 18].

However, in a general case, even for arbitrarily small and smooth initial data,
there is no global continuation for these smooth solutions, which may develop
singularities, shocks, or blowup, in a finite time, see for instance [19, 20].

On the other hand, in many physical examples, thanks to the interplay between
the source term and the hyperbolicity, there exist global smooth solutions for a
suitable set of initial data. This is the case, for example, of the isentropic Euler
system with damping. Roughly speaking, for such a system, the relaxation term
induces a dissipative effect. This effect then competes with the hyperbolicity. If the
dissipation is sufficiently strong so as to dominate the hyperbolicity, the system
is dissipative, and we expect that the classical solution exists for all time and
converges to a constant state. While, if the dissipation and the hyperbolicity are
equally important, we expect that only part of the perturbation diffuses. In the latter
case the system is called of composite type by Zeng [21].

2.6.1.1 A Simple Example: Burgers’ Equation

The simplest example of the problem is represented by Burgers’ equation:

ut C uux D 0; u.x; 0/ D u0.x/; (2.31)

which, by using the method of characteristics, can be rewritten as

8̂
<
:̂

du

dt
D 0; u.0/ D u0.x0/;

dx

dt
D u; x.0/ D x0;
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and therefore admits the general solution:

�
u.x; t/ D u0.x0/;
x D x0 C u0.x0/t:

(2.32)

Here u is a function of .x; t/ through the parameter x0.
The invertibility for x0 as a function of .x; t/ is lost for each value of x0 at the

time

tc.x0/ D � 1

u0
0.x0/

:

The critical time is defined by the smallest positive value of tc.x0/:

tcr D inf
x0
ftc.x0/ > 0g :

If, instead of (2.31), we take into account a dissipative production term like

ut C uux D ��u; u.x; 0/ D u0.x/

with �=constant> 0, then we have

8̂
<
:̂

du

dt
D ��u; u.0/ D u0.x0/;

dx

dt
D u; x.0/ D x0;

which admits the solution:
8<
:

u.x; t/ D u0.x0/e
��t;

x D x0 C u0.x0/

�

�
1 � e��t

�
;

(2.33)

and we have

tc.x0/ D �1
�

log

�
1C �

u0
0.x0/

�
; tcr D inf

x0
ftc.x0/ > 0g :

Therefore if

� > �� (2.34)

with �� D maxx0 ju0
0.x0/j, the classical solution exists any time: the dissipation wins

over the hyperbolicity. While, if

� 6 �	;
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Fig. 2.1 Burgers’ equation: evolution of the profile from the initial time (left) to the critical time
(right) for � D 0, 0 < � 6 �� and for � > �� (respectively, from top to bottom)

the hyperbolicity dominates the dissipation and, in general, we do not have global
existence of a smooth solution. See for these cases Fig. 2.1.

2.6.2 Shizuta Kawashima K-Condition

In general, there are several ways to identify whether a hyperbolic system with
relaxation is of dissipative type or of composite type. One way, which is completely
parallel to the case of the hyperbolic-parabolic system, was discussed first by
Shizuta and Kawashima [22]. It is known in the literature as K- condition or genuine
coupling.

Definition 2.3 (K-Condition) A system (2.3) satisfies the K-condition if, in the
equilibrium manifold, any right characteristic eigenvectors d of (2.4) are not in the
null space of rf, where r � @=@u:

rf djE ¤ 0 8d: (2.35)
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2.6.3 Global Existence and Stability of Constant State

For dissipative one-dimensional systems (2.30) satisfying the K-condition, it is
possible to prove the following global existence theorem by Hanouzet and Natalini
[23]:

Theorem 2.6 (Global Existence) Assume that the system (2.30) is strictly dissipa-
tive (2.28) and the K-condition is satisfied. Then there exists ı > 0, such that, if
ku0.x; 0/k2 6 ı; there is a unique global smooth solution, which verifies

u
0 2 C0.Œ0;1/IH2.R/\ C1.Œ0;1/IH1.R//:

This global existence theorem was generalized to a higher-dimensional case by
Yong [24] and successively by Bianchini, Hanouzet and Natalini [25].

Moreover Ruggeri and Serre [16] proved that the constant equilibrium state is
stable:

Theorem 2.7 (Stability of an Equilibrium State) Under natural hypotheses of
strongly convex entropy, strict dissipativeness, genuine coupling and “zero mass”
initial for the perturbation of the equilibrium variables, the constant solution
stabilizes

ku .t/k2 D 0
�
t�1=2

�
:

In [23], the authors reported several examples of dissipative systems satisfying
the K-condition: the p-system with damping, the Suliciu model for the isothermal
viscoelasticity, the Kerr-Debye model in nonlinear electromagnetism, and the Jin-
Xin relaxation model. A recent paper of Dafermos proved the existence and long
time behavior of spatially periodic BV solutions [26].

2.6.3.1 An Example: Global Existence without the K-Condition

Zeng [21] considered a toy model of vibrational nonequilibrium gas in Lagrangian
variables. She proved that, if the system is of composite type, the global existence
holds. Therefore the K-condition is only a sufficient condition for the global
existence of smooth solutions.

An intriguing open problem is to make clear the following questions: Does a
weaker K-condition that is necessary to ensure global solutions exist? If such a
condition exists, does it have a physical meaning that gives a possible new principle
of extended thermodynamics in addition to the convexity condition of entropy?

Recently Lou and Ruggeri [27] observed that there indeed exists a weaker
K-condition that is a necessary (but unfortunately not sufficient) condition for
the global existence of smooth solutions. Instead of the condition that the right
eigenvectors are not in the null space of rf, they posed this condition only on the
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right eigenvectors corresponding to genuine non-linear eigenvalues. It was proved
that the assumptions of the previous theorems are fulfilled in both classical [28]
and relativistic [29, 30] RET theories of monatomic gases, and also in the theory of
mixtures of gases with multi-temperature [31].

2.7 Galilean Invariance

The compatibly of (2.2) and (2.8) with the Galilean invariance was studied
by Ruggeri [11]. It was proved that the Galileanity imposes the strict velocity
dependence of the density, flux, and production.

More precisely, if we split the field u � .v;w/, where v is the velocity 2 R3 and
w 2 RN�3 are the other objective fields, we have the following theorem:

Theorem 2.8 (Galilean Invariance) The system of balance laws (2.2) and the
entropy balance law (2.8) are invariant under the Galilean transformation if there
exists an N � N matrix X.v/ such that:

8̂
<
:̂

F0 .v;w/ D X.v/ OF0.w/;
˚ i .v;w/ D X.v/ O̊ i

.w/;
f .v;w/ D X.v/ Of.w/;

(2.36)

and

8<
:

h0 .v;w/ D Oh0 .w/ ;
hi .v;w/ D Oh0 .w/ vi C Ohi.w/;
˙ .v;w/ D Ȯ .w/ ;

(2.37)

where

˚ i D Fi � F0vi . (2.38)

X.v/ is an exponential matrix:

X.v/ D eArvr D IC Arvr C 1

2
ArAsvrvs C : : : (2.39)

with Ar being three .N � N/ constant matrices such that

ArAs D AsAr , 8 r; s D 1; 2; 3 . (2.40)
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The hat on a quantity indicates, here and hereafter, the corresponding quantity
evaluated at the zero velocity (intrinsic quantities):

bF0.w/ D F0 .0;w/ ; O̊ i
.w/ D ˚ i.0;w/; Of .w/ D f.0;w/; (2.41)

Oh0 .w/ D h0 .0;w/ ; Ohi .w/ D hi .0;w/ ; Ȯ .w/ D ˙ .0;w/ :

As the dependence on the velocity is prescribed by the Galilean invariance (2.36),
the natural question is whether (2.36) are compatible with the constraints (2.15)
arising from the entropy principle .

In [11], it was proved that the compatibility exists and that, as we expect, the
entropy principle becomes a constraint only for the objective quantities w: In fact, it
was proved that

u0 D Ou0X�1.v/ D Ou0X .�v/ (2.42)

and, by taking into account of (2.36), (2.37), (2.39) and (2.42), (2.13) becomes

Ou0�dbF0 D d Oh; Ou0� d OFi D d Ohi; (2.43)

together with the constraints:

Ou0�ArbF0 D 0; Ou0� Ar OFi D �Oh00ıir: (2.44)

While from (2.14) we obtain

bF0 � d Ou0 D d Oh00; OFi � d Ou0 D d Oh0i; (2.45)

h00 D Oh00; h0i D Oh00vi C Oh0i: (2.46)

The presence of the three constraints (2.44)1 is not surprising because, while
u0 is an RN field, Ou0 are not independent variables. There are only N�3 independent
components of Ou0, which, together with the three components of the velocity, forms a
field. Therefore the entropy principle is full compatible with the Galilean invariance
and becomes constraints for the proper constitutive functions [see (2.43)].

The convexity condition (2.16), in particular, implies (see for details [11]):

OQ D ı Ou0 � ı OF < 0: (2.47)

An alternative procedure to satisfy the Galilean invariance and the entropy
principle avoiding the constraints (2.44) was made in [32].
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2.7.1 Field Equations in Terms of Intrinsic Quantities

Since the velocity dependence of the quantities now becomes to be explicit, there is
a lot of redundancy in the field equations. It is possible to prove that, for classical
solutions, every solution of (2.2) is also the solution of

d OF0
dt
C OF0 @vi

@xi
C @ O̊ i

@xi
C Ar

�
OF0 dvr

dt
C O̊ i @vr

@xi

�
D Of: (2.48)

These equations are much more useful for practical purposes. However, for the study
of weak solutions, in particular, shock waves, we need the system of field equations
in balance form.

2.7.2 Diagonal Structure in RET

In the case of the moment theory, the density F0; the (non-convective or intrinsic)
flux ˚ i; and the production f are expressed as

F0 D

0
BBBBBB@

F
Fk1
Fk1k2
:::

Fk1k2:::kN

1
CCCCCCA
; ˚ i D

0
BBBBBB@

˚i

˚ik1
˚ik1k2
:::

˚ik1k2:::kN

1
CCCCCCA
; f D

0
BBBBBB@

f
fk1
fk1k2
:::

fk1k2:::kN

1
CCCCCCA
; (2.49)

where Fk1:::kj ; ˚ik1:::kj ; and fk1:::kj are symmetric tensors. Thus the system of balance
equations (2.2) has a natural order with increasing tensorial rank. Each block of
tensorial equations of rank j governs the evolution of a new quantity Fk1k2:::kj .

The field equations have the form:

@Fi1:::il

@t
C @.Fi1:::ilvi C ˚ii1:::il/

@xi
D fi1:::il .l D 0; 1; 2; : : : ;N/: (2.50)

We assume that all subsystems that result from (2.49) by ignoring the tensor
equation of rank N, or (N and N � 1), or (N, N � 1 and N � 2), etc. have the
Galilean invariance. Thus the matrix X.v/ must be a sub-triangular block matrix. It
is possible to prove (see [1, 11]) that the matrix X.v/ is a polynomial matrix in v of
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order N whose diagonal elements are blocks of Kronecker delta. It reads

X.v/ �

2
66666666666666664

1

vk1 ı
h1
k1

vk1 vk2 2ı
h1
.k1
vk2/ � � �

vk1 vk2 vk3 3ı
h1
.k1
vk2 vk3/ � � � ıh1

k1 ı
h2
k2 ı

h3
k3

:::
:::

:::
:::

vk1 vk2 : : : vkn

�
n
1

�
ı

h1
.k1
vk2 : : : vkn/ � � � :::

:::
:::

:::
:::

:::
:::

vk1 vk2 : : : vkN

�N
1

�
ı

h1
.k1
vk2 : : : vkN / � � � �N

3

�
ı

h1
.k1
ı

h2
k2 ı

h3
k3 vk4 : : : vkN / : : : ı

h1
k1 ı

h2
k2 : : : ı

hN
kN

3
77777777777777775

;

(2.51)

while the matrices Ar are nil-potent matrices: Ak1Ak2 : : :AkNC1 D 0 for all
k1; k2; : : : ; kNC1 over 1; 2; 3, and have the following expression:

ArD

2
6666664

0 0 0 0

ır
k1

0 0 0

0 2ı
.rh1/
.k1k2/

0 � � � 0

:::
:::

:::
:::

0 0 0 � � � Nı.rh1h2:::hN�1/

.k1k2:::kN /
0

3
7777775
: (2.52)

Thus we are able to decompose tensors of arbitrary rank into the velocity-
dependent and intrinsic parts. In particular, the decomposition of an arbitrary
tensorial density is given by

Fi1:::il D OFi1:::il C
�

l
1

� OF.i1:::il�1vil/ C
�

l
2

� OF.i1:::il�2vil�1vil/ C : : :
C �l

l�1
� OF.i1vi2:::vil/ C OFvi1:::vil :

(2.53)

The same decompositions can be made for ˚ i and f.
As an example we consider the Euler fluid. In this case from (2.17), (2.1)

and (2.38),

F0 D
0
@ ��vk

1
2
�v2 C �"

1
A ; ˚ i D

0
@0pıik

pvi

1
A ; f D

0
@00k

0

1
A : (2.54)

The matrices Ar and X.v/ in the present case read

Ar D
2
4 0 0 0

ır
k1
0 0

0 ır
h1
0

3
5 and X.v/ D

2
4 1 0 0

vk1 ı
k
k1
0

1
2
v2 vh1 0

3
5 : (2.55)
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Chapter 3
Waves in Hyperbolic Systems

Abstract Wave propagation phenomena give us an important mean to check the
validation of the nonequilibrium thermodynamics theory. In this chapter, we present
a short review on the modern theory of wave propagation for hyperbolic systems.

Firstly, we present the theory of linear waves emphasizing the role of the
dispersion relation. The high frequency limit in the dispersion relation is also
studied. Secondly, nonlinear acceleration waves are discussed together with the
transport equation and the critical time. Thirdly we present the main results
concerning shock waves as a particular class of weak solutions and the admissibility
criterion to select physical shocks (Lax condition, entropy growth condition, and Liu
condition). The chapter finishes with the discussion of traveling waves, in particular,
shock waves with structure. The sub-shock formation is particularly interesting. The
Riemann problem and the large time asymptotic behavior are also discussed.

3.1 Linear Wave

A typical method to test a theory of nonequilibrium thermodynamics is to study
plane harmonic waves and to compare the dispersion relation with the experimental
data. Let us consider here some fundamental properties of the solutions for a general
linear hyperbolic system. We therefore limit our analysis within the one-dimensional
problem.

3.1.1 Plane Harmonic Waves and the Dispersion Relation

Let us consider the quasi-linear system (2.3). Because of the hyperbolicity, we may
write it in the normal form:

@u
@t
C A.u/

@u
@x
D f.u/: (3.1)

We linearize this equation by setting

u D QuC Nu; (3.2)

© Springer International Publishing Switzerland 2015
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where Nu is a small perturbation of an equilibrium state Qu for which f. Qu/ D 0. Thus
we obtain the linearized equation:

@ Nu
@t
C QA@ Nu

@x
D QB Nu; where QA D A. Qu/; QB D .rf/Qu ; r �

@

@u
: (3.3)

We look for the solution of the form:

Nu D wei.!t�kx/; (3.4)

which represents a plane harmonic wave with real (angular) frequency !, complex
wave number k D kr C iki, and complex amplitude w travelling in the x-direction.

Substitution of (3.4) into (3.3) provides a homogeneous algebraic linear system
of the form:

�
I � z QAC i

!
QB
�

w D 0; (3.5)

where I is the unit matrix, and z stands for k=!.
For non-trivial solutions, the dispersion relation

det

�
I� z QAC i

!
QB
�
D 0 (3.6)

must be satisfied. The dispersion relation permits the calculation of the phase
velocity vph and of the attenuation factor ˛ in terms of the frequency !:

vph D !

Re.k/
D 1

Re.z/
; ˛ D �I m.k/ D �!I m.z/: (3.7)

For linear stability, ˛.!/ must be positive (negative) for waves travelling to the
right (left). When waves start at time t D 0 at x D 0, we have the linear stability
condition: ˛.!/x > 0: Since the path of the wave is given by x D Q�t, under these
circumstances, we may write the condition of linear stability as

˛.!/ Q� > 0: (3.8)

3.1.2 High Frequency Limit

Muracchini, Ruggeri and Seccia, in the case of simple characteristic eigenvalue �
[1], and Banach, Larecki and Ruggeri, in the case of multiple eigenvalue [2], gave
rigorous expressions of vph and ˛ in the limit of high frequency, i.e., for ! ! 1.
For this purpose these authors considered the formal power-series expansions of z
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and w with respect to 1=!, viz.

z D
X
˛>0

z˛
!˛

; w D
X
ˇ>0

wˇ

!ˇ
: (3.9)

Insertion of (3.9) into (3.6) provides a recurrence formula. It was proved, in the case
of multiplicity 1, that

lim
!!1 vph.!/ D � and lim

!!1˛.!/� D �l � B � d: (3.10)

The first equation says that the phase velocity coincides—in the limit of high
frequency—with the characteristic velocity. The second result in (3.10) furnishes
the condition of linear stability because, from (3.8), we have the condition:

l � B � d < 0: (3.11)

Later we shall see that the condition (3.11) guarantees non-linear stability as well.

3.2 Acceleration Wave

For a generic quasi-linear hyperbolic system, it is possible to consider a particular
class of solutions that characterizes the so-called weak discontinuity waves or, in
the language of continuum mechanics, acceleration waves. Let us study a moving
surface (wave front) � prescribed by the Cartesian equation �.x; t/ D 0 that
separates the space into two subspaces (see Fig. 3.1). Ahead of the wave front we
have a known unperturbed field u0.x; t/, and behind an unknown perturbed field
u.x; t/. Both the fields u0 and u are supposed to be regular solutions of (2.1) and to
be continuous across the surface � , but to be discontinuous in the normal derivative,
i.e.,

ŒŒu�� D 0;
��
@u
@�

��
D A ¤ 0; (3.12)

where the square brackets indicate the jump at the wave front1:

ŒŒ��� D .�/�D0� � .�/�D0C :

1For simplicity, we use the symbols g and g0 for the values of a generic quantity g evaluated at �
with the condition that � ! 0� and � ! 0C, respectively.
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Fig. 3.1 Acceleration wave

We have the following well-known results [3–5]:

1. The normal speed U D � �t

jr�j is equal to a characteristic speed evaluated in u0:

U D �.u0/:

2. The jump vector A is proportional to the right eigenvector d of the eigenvalue �
evaluated in u0:

A D A d.u0/: (3.13)

3. The amplitude A satisfies the Bernoulli equation along the characteristic line:

dA

dt
C a.t/A 2 C b.t/A D 0; (3.14)

where d=dt indicates the time derivative along the bicharacteristics lines, and a.t/
and b.t/ are known functions of the time through u0.
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For an example in the case of one space-dimension, we have [5]:

d

dt
D @t C �0@x;

dx

dt
D �0 .characteristic/; �0 D �.u0/

a.t/ D �x.r� � d/0; r D @
@u ;

b.t/ D
�

dj

�
dli
duj
� dlj

dui

�
dui

dt
C .l � ux/.r� � d/ � r.l � f/ � d

�
0

;

d�x

dt
C .r� � ux/0 �x D 0; �x.0/ D 1:

(3.15)

The solution of (3.14) is expressed as

A .t/ D A .0/exp
�� R t

0
b.�/d�

�
1CA .0/

R t
0

a.�/exp
�
� R �

0
b.�/d�

	
d�
: (3.16)

In order to make an analysis of the evolution of the amplitude, we recall that, in
the theory of hyperbolic systems, a wave associated to a characteristic velocity � is
called:

• genuinely non-linear, if

r� � d ¤ 0 8u: (3.17)

• linearly degenerate (or exceptional), if

r� � d � 0 8u: (3.18)

• locally linearly degenerate (or locally exceptional), if

r� � d D 0 for some u: (3.19)

If a wave is genuinely nonlinear, there exists, in general, a critical time tcr

such that the denominator of (3.16) tends to zero and the discontinuity becomes
unbounded. This instant usually corresponds to the emergence of a strong disconti-
nuity, i.e., a shock wave, and the field itself presents a discontinuity across the wave
front. If a wave satisfies (3.17), the coefficient a.t/ ¤ 0 and, without any loss of
generality, it can always be chosen to be positive by an appropriate choice of the
right eigenvector.

The qualitative analysis of the Bernoulli equation (3.14) was made by Ruggeri
[5]. In particular, the stability of the zero solution of (3.14) (�-stability) was proved
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under the conditions:

1Z

0

a.�/e
�

�R
0

b.�/d�
d� D K <1; (3.20)

9 a constant m such that
Z t

0

b.�/d� > m; 8 t > 0: (3.21)

In fact, if (3.20) and (3.21) are fulfilled and if

jA .0/j < Acr; Acr D 1=K; (3.22)

the solution A .t/ exists for all time and remains to be bounded. Moreover, if

Z 1

0

b.�/d� D C1; (3.23)

then limt!1 jA .t/j D 0 and the zero solution is asymptotically stable.
If (3.22) is not satisfied and

A .0/ < 0; jA .0/j > Acr; (3.24)

then from (3.16) there exists a positive critical time tcr given by

1CA .0/

Z tcr

0

a.�/exp

 
�
Z �

0

b.�/d�

!
d� D 0: (3.25)

When the unperturbed state is an equilibrium constant state: u0 D uE D constant,
we have

f.uE/ D 0;

�x D 1; a D .r� � d/E D const:; b D �.l � rf � d/E D const:; (3.26)

and (3.16) becomes

A .t/ D A .0/ e�bt

1 �A .0/ a
b .e

�bt � 1/ : (3.27)

In this case Acr D b=a and the conditions (3.20) and (3.23) reduce to

b D �.l � rf � d/E > 0: (3.28)
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This is a necessary and sufficient condition for the zero solution of the Bernoulli
equation to be asymptotically stable. From the definition of the K-condition (2.35),
we see that, for genuinely nonlinear waves, the K-condition must be satisfied in
order to satisfy (3.28) [6]. Moreover we see that linear and nonlinear �-stability
conditions, namely (3.11) and (3.28) coincide.

In the present case if the initial amplitude satisfies the inequalities (3.24) then we
have a critical time:

tcr D �1
b

log

�
1C b

aA .0/

�
: (3.29)

We notice that if the system is not dissipative and b D 0 the amplitude (3.16)
becomes

A .t/ D A .0/

1CA .0/ a t
; (3.30)

and if A .0/ < 0 the critical time exists always and is given by

tcr D � 1

aA .0/
: (3.31)

Instead, if a D .r� � d/E � 0 (linearly degenerate wave), the Bernoulli equation
becomes to be linear:

dA

dt
C bA D 0;

and it does not have the critical time. Furthermore, if b D 0, we have A .t/ D A .0/.
Hence the K-condition is not necessary in this case. Therefore, we have the weaker
Lou-Ruggeri K-condition:

Definition 3.1 (Weak K-Condition) A system (2.3) satisfies the weak K-condition
if, in the equilibrium manifold, the right characteristic eigenvectors d corresponding
to the genuinely nonlinear eigenvalues are not in the null space of rf.

This condition together with the dissipation condition (b > 0 if a ¤ 0) is a
necessary and sufficient condition such that the discontinuity wave solution exists
for all time for a small initial perturbation.

Finally we observe that if we introduce the operator ı D ŒŒ@=@��� ; the character-
istic velocities � and the right eigenvectors (2.4) can be obtained by the system (2.3)
with the operators chain rule:

@

@t
! ��ı; @

@xi
! niı; f! 0; (3.32)
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for which ıu _ d, and the weak K-condition reads

ıfjE D .rf � ıu/ jE / .rf � d/ jE ¤ 0 (3.33)

for all genuinely nonlinear waves. That is, the weak K-condition requires that,
if the production vanishes in equilibrium: fjE D 0, all the genuinely nonlinear
discontinuity waves transport the disturbance of the normal derivative of the
production: ıfjE ¤ 0.

Remark 3.1 This weak K-condition is, in general, only necessary for global exis-
tence of smooth solutions. In fact, it is satisfied for completely linearly degenerate
systems (all waves are exceptional) or for semi-linear systems. But we know that,
in general, smooth solutions of these cases cannot exist for all time. Therefore we
need to add more conditions to the weak K-condition in order to ensure the global
existence. This problem is, however, still open!

Nevertheless, it is important to have the necessary condition in order to select
physically admissible productions and also to know the possibility of the global
existence of the solution when the K-condition is violated. For example, for a
mixture of Euler fluids with single temperature, it was proved that the weak
K-condition is violated, while for a mixture with multi-temperature the condition
is satisfied [7]. This implies an important fact that the model with multi-temperature
is physically more realistic than the model with single temperature!

Remark 3.2 There exists a huge literature concerning physical applications of
acceleration waves. Interested readers can find some references in the papers quoted
in this chapter. Moreover, other interesting examples can be seen in [8] and in the
book of Sharma [9].

3.3 Shock Wave

3.3.1 Rankine-Hugoniot Relations

If the field u itself experiences a jump across the wave front instead of the jump of its
first derivative (see Fig. 3.1), we say that it is a shock wave. Shock waves are possible
only for systems of balance laws and they are a particular class of weak solutions.
In fact, it is well known that a shock wave solution is a weak solution of (2.1) if and
only if it satisfies the so-called Rankine-Hugoniot relations (RH relations, in short)
or Rankine-Hugoniot conditions (RH conditions) across the shock front:

� s


F0
��C Fi

��
ni D 0; (3.34)

where ŒŒg.u/�� D g.u1/�g.u0/ for a generic function g and .u1;u0/ are, respectively,
the values of the rear (perturbed) and the front (unpertubed) sides of the wave
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surface. And s stands for the normal speed of a shock wave with the unit normal
n � .ni/.

The set of all perturbed states u1 satisfying (3.34) for a given unperturbed state
u0 is called the Hugoniot locus for the point u0 and is denoted as H .u0/.

If the unperturbed field u0 is known and we consider plane shocks with n D
constant, the RH relations furnish a system of N equations for the N C 1 unknowns
u1 and s. Thus any one among the .NC1/�tuple .u1; s/may be chosen as the shock
parameter i.e., the quantity that characterizes the strength of the shock. Therefore,
as the shock parameter, we may choose the speed s, or any component of u1, or a
combination of these, which is generically denoted by � hereafter.

If we introduce the mapping:

� s.u/ D �sFo.u/C Fi.u/ni ;

the RH relations can be written as � s.u1/ D � s.u0/. Therefore the mapping � s.u/
must be locally non-invertible in the neighborhood of u0:

det

�
@�s

@u

�ˇ̌
ˇ̌
uDu0

D 0:

On the other hand, the Jacobian of the mapping:

det

�
@�s

@u

�ˇ̌
ˇ̌
uDu0

D det
�
Aini � sA0

�ˇ̌
uDu0

becomes singular for s D �.u0/ as seen from (2.5). Therefore the local non-
invertibility occurs when s is equal to the characteristic speed.

In a schematic way, we may represent the values u1 for a given value u0 as the
function of s. See Fig. 3.2, which indicates that shock solutions may be seen as
bifurcating curves from the trivial solution u1 D u0 of (3.34) at the points where s
is equal to the one of the unperturbed characteristic speeds �0.

3.3.2 Admissibility of Shock Waves

According to the theory of hyperbolic systems, not every solution of the RH
relations corresponds to a physically meaningful shock wave. Thus, we need a
criterion to select the perturbed states u1 that, together with u0, form admissible
shocks. Since admissible shocks propagate with no change in shape when they
evolve from the initial data of a Riemann problem, these solutions are sometimes
called stable shocks.

The issue of shock admissibility, when genuinely nonlinear and linearly degen-
erate waves are involved, has been largely and deeply investigated in the past
decades. For example, the hyperbolic system of an Euler ideal gas features only
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Fig. 3.2 Shocks as bifurcating branches of the trivial solution u1 D u0 with s being the shock
parameter

waves belonging to these two types. On the contrary, the Euler system of a van
der Waals fluid features linearly degenerate and locally linearly degenerate waves.
A comprehensive analysis of the shock admissibility in this kind of fluids was the
subject of a recent paper [10].

3.3.2.1 Lax, Entropy Growth, and Liu Admissibility Conditions

The selection rule useful to study the admissibility of shock waves depends on the
type of the nonlinear waves involved. Thus, it is necessary to discuss separately the
cases of genuinely non-linear, linearly degenerate, and locally linearly degenerate
waves.

• When we deal with genuinely non-linear waves, the selection rule is given by the
Lax condition [11], according to which a shock wave is admissible if the shock
velocity satisfy the inequality:

�0 < s < �1;

where �0 � � .u0/ and �1 � � .u1/ are the unperturbed and perturbed
characteristic velocities, respectively. Such a shock wave is called k-shock (being
� is the kth eigenvalue of the system). The Lax condition turns out to be
equivalent (at least for weak shock waves) to the condition of entropy growth
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Fig. 3.3 Shock speed s as a function of the shock parameter � and the range of the admissible
shocks (bold curve). � is the characteristic speed

across the shock:

� D sŒŒh0�� � ŒŒhn�� > 0; (3.35)

where hn D hini.
• When we deal with linearly degenerate waves, admissible k-shocks are called

characteristic shocks and they propagate with the speed s D �0 D �1. In this
case, there is no entropy growth across the shock, i.e., � D 0. The admissibility of
a characteristic shock may thus be studied by means of the so-called generalized
Lax condition:

�0 6 s 6 �1:

A characteristic shock depends on as many parameters as the multiplicity of
the eigenvalue � [12]; the system of equations of an Euler fluid in three space
dimensions, for example, exhibits an eigenvalue of multiplicity three, and the
shock wave associated to this eigenvalue is thus a characteristic shock depending
on three parameters.

• When the system features locally linearly degenerate waves, the selection rule is
given by the Liu condition [13, 14], stating that a shock wave is admissible if

s > s�; 8s� 2 fs� W s� .u� � u0/ D F .u�/� F .u0/ ; u� 2 H .u0/ between u0 and u1g:

This means that a shock is admissible if its speed, s, is not smaller than the
speed of any other shock with the same unperturbed state u0 and with perturbed
state u� lying on the Hugoniot locus for u0 between u0 and u1 (see Fig. 3.3).

The entropy growth in this case is not sufficient for the admissibility and we need
a superposition principle (see [15]).
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Concerning shock waves, we want to remark interesting phenomena, that is,
shock-induced phase transitions in real gases. For details, see [10, 16] for a van
der Waals gas, and [17–21] for a hard-sphere gas.

Moreover there exists also a general theory concerning the interaction between
shocks and discontinuity waves given in the work of Boillat and Ruggeri [22]
and interesting application to fluids due to Ruggeri [23], Pandey and Sharma [24]
and a complete analysis also with numerical simulation due to Mentrelli, Ruggeri,
Sugiyama and Zhao [25].

3.4 Shock Structure

A shock wave is, in reality, not a discontinuous surface but has a structure with sharp
but continuous transition from an unperturbed state to a perturbed state. Typically
both states are two different equilibrium states. As the shock profile depends on the
shock parameter, say, the unperturbed Mach number M0, the thickness of a shock
changes with this parameter. The experiments of Alsemeyer [26] in monatomic
gases show that the thickness decreases until M0 
 3:1 and then increases with the
Mach number. Several authors tried to explain this behavior of the shock thickness
[27–31]. The satisfactory results obtained by molecular dynamics simulations were
first presented by Bird [32] in 1970. But until now no complete satisfactory
phenomenological approach exists.

New interest on this subject was aroused by Ruggeri in 1993 [33]. The general
mathematical structure of RET [34] was recognized, and the problem of the shock
wave structure was analyzed in the context of hyperbolic systems of balance
laws. With this analysis, as mentioned above, Ruggeri noticed that a singularity
appears each time when the shock speed meets a characteristic eigenvalue. As a
consequence, the singularity, which occurred at M0 D 1:65 in the 13-moment
theory, moves closer and closer to M0 D 1 as the number of moments increases.
Therefore the sub-shock seems to appear sooner, and no smooth shock structure
could be expected or, at best, it exists only very close to M0 D 1. This interpretation
is, however, not correct. In fact Weiss [35], through a numerical approach, showed
that at least up to 35moments all but one of these singularities are regular ones. The
singular one corresponds to the highest characteristic speed evaluated in equilibrium
in front of the shock �.max/

0 . Thus he calculated smooth shock structures up to

s D �.max/
0 . Beyond this value of s, the sub-shock appears. This numerical evidence

of the sub-shock formation when s > �
.max/
0 was confirmed by a theorem due to

Boillat and Ruggeri [36]. Therefore, as the maximum characteristic speed increases
with the number of moments [37, 38], according to the Weiss conjecture, the
quantitative features of the shock structure improve with more and more moments.
In conclusion, RET with many moments is the natural theory that is able to
explain the shock wave structure. For a comprehensive survey on this topic, see,
for example, the book of RET by Müller and Ruggeri [34].
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As was explained in Chap. 1, the shock wave structure in polyatomic gases are
quite different from that in monatomic gases. This is one of the main topics to be
studied in the present book.

In this section, we summarize mathematical background knowledge on shock
structure solutions for a generic hyperbolic dissipative system of balance laws to
which the models of RET belong.

3.4.1 Shock Wave Structure and Sub-shock Formation

The shock wave structure is a regular solution depending on one variable:

u � u.'/; ' D xini � st; s D const., n � .ni/ D const.; (3.36)

and

lim
'!˙1 u.'/ D

�
u0
u1
I lim

'!˙1
du
d'
D 0; (3.37)

i.e., a plane wave solution connecting the two constant states.2

Substituting (3.36) into (2.1), we obtain the ordinary differential system:

d

d'

˚�sF0.u/C Fn.u/

 D f.u/ (3.38)

with the boundary conditions (3.37), where Fn D Fini. This system is equivalent to
the following ODE system:

��sA0 C An
� du

d'
D f.u/; (3.39)

(An D Aini). As was noticed by Ruggeri [33], when s approaches a characteristic
eigenvalue � [see (2.4)], the solution may have a breakdown.

In physics, typically in RET, M field equations are conservation laws and N �M
are balance laws, i.e., these have the structure given in (2.26) and (2.27). We rewrite
these by separating space and time as follows:

8̂
ˆ̂<
ˆ̂̂:

@V.u/
@t C @Pi.u/

@xi D 0;

@W.u/
@t C @Ri.u/

@xi D g.u/;

(3.40)

2As the balance laws satisfy the Galilean invariance, it is possible to adopt the frame moving with
the shock velocity. For such an observer the wave appears stationary: ' D x.
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where V;Pi 2 RM, while W;Ri and g are vectors of RN�M :

F0 �
�

V
W

�
; Fi �

�
Pi

Ri

�
; f �

�
0

g

�
; (3.41)

and the field u is expressed by a pair: u � .v;w/ with v 2 RM and w 2 RN�M .
On the other hand it was proved in [38] that the associated system

@V.v; 0/
@t

C @Pi.v; 0/
@xi

D 0; (3.42)

obtained from (3.40)1 putting w �0, is a principal sub-system of (3.40) (see
Sect. 2.4) and then satisfies the entropy principle together with the following sub-
characteristic conditions (see also [38])

max
kD1;2;:::;N �

.k/.v; 0/ > max
JD1;2;:::;M


.J/.v/ (3.43)

and similarly for the minimum. The �’s are the characteristic speeds of the total
system (2.1) while the 
’s are the ones of the equilibrium subsystem (3.42) (in ET
this system corresponds to the Euler fluid system).

Therefore (3.38) can be rewritten as:

8̂
<̂
ˆ̂:

d
d' f�sV.v;w/C Pn.v;w/g D 0;

�s d
d'W.v;w/C d

d'Rn.v;w/ D g.v;w/:

(3.44)

From (3.44)2 evaluated at ' ! ˙1 with the condition (3.37)2, we obtain

g.v0;w0/ D g.v1;w1/ D 0; (3.45)

which implies that the solutions at infinity on both sides are equilibrium solutions
(see [36, 38]):

w0 D w1 D 0: (3.46)

By (3.44)1, we have

� sV.v;w/C Pn.v;w/ D c D const. (3.47)

That is, the quantity on the left-hand side is conserved along the process. In
particular, for ' ! ˙1 [see (2.29)], we have

c D �sV.v0; 0/C Pn.v0; 0/ D �sV.v1; 0/C Pn.v1; 0/: (3.48)
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Equation (3.48) represents the Rankine-Hugoniot conditions for shocks of the
equilibrium sub-system (3.42), and therefore

v1 � v1.v0; s/: (3.49)

The problem now consists in finding a C1 solution of (3.38) connecting the two
equilibrium state u0 � .v0; 0/ and u1 � .v1.v0; s/; 0/ for increasing value of the
shock velocity s and the prescribed values v0 and n.

3.4.2 Non-existence of Smooth Shocks When s > �max.uo/

As any smooth solutions of (3.38) are also the solutions of (1.22), we must have the
condition for shock structure solutions:

d

d'

˚�s h0.u/C hn.u/

 D ˙.u/ > 0; (3.50)

where hn D hini. This implies that the bracketed term is a increasing function of '.
Therefore we have

�s h0.u1/C hn.u1/ 6 �s h0.u/C hn.u/ 6 �s h.u0/C hn.u0/:

In particular, the entropy grows across the shock (3.35). The entropy growth
condition (3.35) is equivalent, at least for moderately strong shocks, to the Lax
condition for admissibility of shocks. For a fixed eigenvalue 
 of the equilibrium
sub-system (3.42), a shock satisfies


.v0/ < s < 
.v1/I lim
s!
.v0/

v1.v0; s/ D v0: (3.51)

For a fixed eigenvalue 
.v0/ 2 
.J/.v0/; J D 1; 2; : : : ;M of the equilibrium
sub-system, we start from the trivial shock for which s D 
.v0/ and we increase
s satisfying the Lax condition (3.51). Boillat and Ruggeri was able to prove the
following theorem [36]:

Theorem 3.1 (Sub-shock Formation) Consider a system of N balance laws of
which M < N are conservation laws. Under the assumption that the system satisfies
the entropy principle with convex entropy, a C1 shock wave structure propagating
with the velocity s greater than the maximum characteristic speed evaluated in the
equilibrium state in front of the shock cannot exist, i.e., smooth solutions may exist
only if s 6 �max.u0/:
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The proof is based on the verification that smooth shock structure solutions
must satisfy the entropy inequality (3.50) and this inequality is violated when
s > �max.u0/.

Therefore after the shock speed exceeds the maximum characteristic eigenvalue
in the unperturbed state, a sub-shock arises necessarily. An open problem is to see
whether there exists a physical case for which a sub-shock arises at the eigenvalues
less than the maximum one. Until now, in all ET theories for any number of
moments, a shock is continuous until it reaches the maximum eigenvalue. If this
is a general property, it is very favorable because the increase of the number of
moments implies the increase of the maximum characteristic velocity and also the
increase of the critical shock velocity.

Concerning the existence of shock structure we would mention among others,
the classical paper by Gilbarg [39] in the context of parabolic continuum theory
of fluids, and by Yong and Zumbrun [40] for hyperbolic systems with relaxation.
Interesting analysis in the context of stability and bifurcation analysis of stationary
points was done by Simić [41, 42].

3.5 Riemann Problem for Balance Laws

Bernhard Riemann raised the famous question about the time-evolution of a gas
under the initial condition that the gas is divided into two regions by a thin
diaphragm. Each region is filled with the same gas, but with different values of
the thermodynamic quantities such as the pressure, the density, and the temperature.
This problem is of fundamental importance and still has many applications. An
experimental apparatus called shock tube has been used in a wide variety of
aerodynamic or ballistic topics like supersonic aircraft flight, gun performance,
asteroid impacts, shuttle atmospheric entry, etc.

From a mathematical view point, the Riemann problem consists of an initial value
problem associated to hyperbolic conservation laws. This problem, at least in one-
space dimension, has been completely solved (see e.g. [11, 43–47]).

3.5.1 Riemann Problem with Structure

Liu noticed that Riemann initial data [48] can be regarded as a rough approximation
of initial data containing sharp and rapid variations. Therefore this problem takes
into account the presence of shock thickness, oscillations, noises, and continuous
(although very steep) changes, since initial data coincide with the Riemann problem
only for large jxj (that is to say, they are constant equilibrium states for large jxj).
This problem is called Riemann problem with structure (see Fig. 3.4).
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Fig. 3.4 Riemann problem (left) and the Riemann problem with structure (right)

In the case of conservation laws of hyperbolic type, Liu [48] proved, roughly
speaking, that the solution of this problem converges, for large time, to the solution
of the corresponding Riemann problem.

3.5.2 Conjecture Concerning Large-Time Asymptotic Behavior
of Shock Structure

While, for balance laws, any mathematical theory of Riemann problem does not
exist because a system of balance laws cannot admit rarefaction wave solutions
depending on x=t. Recently Ruggeri and coworkers [49–51]—following Liu [52]—
proposed a conjecture about the large-time behavior of the Riemann problem and the
Riemann problem with structure for a system of balance laws. According to this con-
jecture, solutions of both Riemann problems with and without structure converge,
for large time, to a solution that represents the combination of shock structures (with
and without sub-shocks) and rarefactions of the equilibrium subsystem.

More precisely, let us consider Riemann data (or Riemann data with structure) for
the system of balance laws (3.40) between two equilibrium constant state .u0;u1/
with g.u1/ D g.u0/ D 0. We first study the corresponding Riemann problem
for the equilibrium subsystem (3.42). According with the general theory, we have
a combination of rarefactions R and shocks S plus contact discontinuities and
constant states. Now the conjecture is that the Riemann problem for the full system
converges, for large time, to the same rarefactions R of the equilibrium subsystem
and, instead of the shock S , we have a corresponding sub-shock of the full system
Sstruc (including sub-shock) corresponding to the same state of S . In particular, if
the Riemann initial data correspond to a particular shock family S , then for large
time the Riemann problem of the full system converges to the corresponding shock
structure. This means that the numerical study of the shock structure, instead of
using a complex mathematical solver of ODE, can be used as a Riemann solvers
[47] if we wait enough time after the initial time. This strategy seems to be useful
in ET as will be discussed in the following chapters.
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The conjecture was tested numerically for a Grad 13-moment system and a
mixture of fluids [49, 50]. In the followings, we explain the conjecture by studying
a simple 2 � 2 dissipative model considered by Mentrelli and Ruggeri [51] for
which we can calculate analytically the shock structures and the rarefactions of the
equilibrium subsystem. This toy model has all the properties of the ET systems:
convexity of the entropy, dissipative character, and satisfaction of the K-condition.
Its system of equations is given by

.uC v/t C
�
v2 C 2uv

�
x
D 0;

ut C
�
v2
�

x
D 1

�
.v � u/ :

(3.52)

This system has the characteristics eigenvalues:

�.1/ D u �
p

u2 C 4v2; �.2/ D uC
p

u2 C 4v2: (3.53)

The equilibrium subsystem of (3.52) and its eigenvalue 
 are given by

ut C 3uux D 0; 
 D 3u: (3.54)

It is not difficult to find analytically the shock structure of the full system and
the rarefaction of the equilibrium subsystem. Then, choosing the initial data corre-
sponding to the shock S of (3.54), we integrate numerically the full system (3.52)
by means of a numerical code based on the algorithms presented in [53]. We can see
that the solution converges, in accordance with the conjecture, to the shock structure
Sstruc. See Figs. 3.5, 3.6, 3.7 and 3.8.
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Fig. 3.5 Numerical solution of the Riemann problem with initial data (solid line) and analytical
continuous shock structure solution (dashed line) at different times t
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Fig. 3.6 Numerical solution of the Riemann problem (solid line) and analytical shock structure
solution with sub-shock (dashed line) at different times t. The symbol “asterisk” indicates the
point .U�;V�/ where the continuity of the analytical shock structure solution is lost
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Fig. 3.7 Numerical solution of the Riemann problem (solid line) and analytical continuous shock
structure solution (dashed line) at different times t
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solution with sub-shock (dashed line) at different times t. The symbol “asterisk” indicates the
point .U�;V�/ where the continuity of the analytical shock structure solution is lost

References

1. A. Muracchini, T. Ruggeri, L. Seccia, Dispersion relation in the high frequency limit and non
linear wave stability for hyperbolic dissipative systems. Wave Motion 15(2), 143 (1992)

2. Z. Banach, W. Larecki, T. Ruggeri, Dispersion relation in the limit of high frequency for a
hyperbolic system with multiple eigenvalues. Wave Motion 51, 955 (2014)

3. G. Boillat, La Propagation des Ondes (Gauthier-Villars, Paris, 1965)
4. G. Boillat, T. Ruggeri, On the evolution law of the weak discontinuities for hyperbolic quasi-

linear systems. Wave Motion 1(2), 149 (1979)
5. T. Ruggeri, Stability and discontinuity waves for symmetric hyperbolic systems, in Non-linear

Wave Motion, ed. by A. Jeffrey (Longman Press, New York, 1989), pp. 148–161
6. J. Lou, T. Ruggeri, Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend.

Circ. Mat. Palermo “Non Linear Hyperbolic Fields and Waves. A Tribute to Guy Boillat” 78,
187 (2006)
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Chapter 4
RET of Rarefied Monatomic Gas

Abstract In this chapter, we give a survey of the main results of RET concerning
rarefied monatomic gases, some of which are explained in the Müller–Ruggeri book
of RET (Müller and Ruggeri, Rational Extended Thermodynamics, Springer, New
York, 1998). We start from the phenomenological RET theory with 13 fields and
prove that the closure of RET coincides with the one obtained by Grad using
kinetic arguments and with the MEP procedure. The theory with N-moments is
also presented with the proof of nesting theories that emerge from the concept of
principal subsystem. The problematic of bounded domain in RET is also considered,
and a simple example of heat conduction is explained to show a significant
difference of the results between RET and NSF.

A lower bound for the maximum characteristic velocity is obtained in terms of
the truncation tensor index N. This quantity increases as the number of moments
grows and it is unbounded when N !1.

The relativistic counterpart is also described briefly. In this framework, the
maximum characteristic velocity is bounded for any number of moments, and
converges to the light velocity from the below for N !1.

The chapter contains also comparison between the RET theory and experiments
in sound waves and light scattering.

4.1 Extended Thermodynamics with 13 Fields
and Subsystems

We saw, in Sect. 1.5.1, that RET of rarefied monatomic gases is intimately related to
the moment theory (1.18) associated with the Boltzmann equation. As emphasized
there, the 13-field RET theory is a purely phenomenological theory [1] in which the
system of field equations in balance type (1.24) is adopted and the closure of the
system with the use of the universal principles of physics is accomplished. We saw
also, in Sect. 1.5.2, the problem of closure of the 13-moment theory.

We have three closure methods by using the universal principles of macroscopic
ET [1], the perturbative method of Grad [2] at the kinetic level, and the maximum
entropy principle [3]. The vital point is that three different and apparently uncorre-
lated closure methods give the same system (1.25).

© Springer International Publishing Switzerland 2015
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The differential system (1.25) has been extensively studied. For example,
acceleration waves, shock waves, shock wave structure, and the hyperbolicity region
were studied (for details see [4] and references therein).

In this section we summarize the 13-moment system and its principal subsys-
tems.

The equations of ET with 13 fields are given in (1.25). The components of the
main field u0:

u0 � ��; �i; 
; �<ij>; 
i
�

have the following expressions [4, 5]:

� D � 1
T

�
g � v

2

2
C 1

2p
<ij> vi vj � �

5p2
qi vi v

2

�
;

�i D � 1
T

�
vi � 1

p
<ij> vj C �

5p2
�
v2qi C 2qj vj vi

�� qi

p

�
;


 D 1

2T

�
1 � 2�

3p2
qkvk

�
; (4.1)

�<ij> D 1

T

�
1

2p
<ij> C �

5p2

�
vi qj C vj qi � 2

3
vk qk ıij

��
;


i D � �

5Tp2
qi:

The maximum characteristic velocity in equilibrium is �max D 1:65c0 (c0 is the
sound velocity for a monatomic gas).

Let us consider possible principal subsystems following the general theory
presented in Sect. 2.4.

4.1.1 10-Field Principal Subsystem

The 10-field system is a principal subsystem of the 13-field system when


i D 0 ! qi D 0:

Neglecting the last block of the corresponding equation of (1.25) and inserting qi D
0 in the previous equations, we have

@�

@t
C @

@xk
.�vk/ D 0;

@�vi

@t
C @

@xk

˚
�vivk C pıik � hiki


 D 0;
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@

@t
.�v2 C 2�"/C @

@xk

˚
�v2vk C 2.�"C p/vk � 2hklivl


 D 0; (4.2)

@

@t

˚
�vivj C pıij � hiji


C
@

@xk

�
�vivjvk C p.viıjk C vjıki C vkıij/ � hijivk � hjkivi � hkiivj

�
D hiji

�S
:

In this case �max D 1:34c0.

4.1.2 Euler 5-Field Principal Subsystem

The Euler system is the 5-field principal subsystem of the 13- and 10-field systems
when


i D 0; �<ij> D 0 ! qi D 0; <ij> D 0:

Neglecting the last block of the corresponding equation of (4.2), and inserting
hiji D 0, in the previous equations, we have

@�

@t
C @

@xk
.�vk/ D 0;

@�vi

@t
C @

@xk
.�vivk C pıik/ D 0; (4.3)

@

@t
.�v2 C 2�"/C @

@xk

˚
�v2vk C 2.�"C p/vk


 D 0:

The maximum velocity is now �max D 1 c0.

4.1.3 4-Field Principal Subsystem

The so called p-system is the 4-field subsystem of the Euler system (4.3) with


i D 0; �<ij> D 0; 
 D const: ! qi D 0; <ij> D 0; T D T� D const:
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The system of field equations is given by

@

@t
�C @

@xi
.�vi/ D 0;

@

@t

�
�vj
�C @

@xi

�
�vivj C p�ıij

� D 0;
where

p� � p.�;T�/ and �max D 0:7746 c0 .

4.1.4 1-Field Principal Subsystem

Finally, the transport equation:

@

@t
�C @

@xi

�
�v�

i

� D 0
is a 1-field principal subsystem of all the previous ones:


i D 0; �<ij> D 0; 
 D const:; �j D const: !
qi D 0; <ij> D 0; T D T� D const:; vi D v�

i D const:

and we have �max D 0.
According with the general result, the maximum characteristic velocity increases

with the number of fields [6].

4.2 Bounded Domain: Heat Conduction and Problematic
Boundary Data

Up to here, we have considered phenomena evolving in an unbounded domain and
we have seen that ET is successful because (1) it satisfies explicitly the universal
principles of physics, (2) it has a desired mathematical structure of symmetric
hyperbolic systems, (3) it is perfectly consistent with the kinetic theory, and (4) the
results derived from it are in good agreement with experimental data. The analysis
of phenomena in a bounded domain is, however, not quite satisfactory when the
number of moments is more than 13 as we will see below.

In this section, we summarize the problems encountered in the study of nonequi-
librium phenomena in a bounded domain. Let us start with the heat-conduction



4.2 Bounded Domain: Heat Conduction and Problematic Boundary Data 83

problem by using the 13-moment ET theory. We will see that the results in non-
planar geometry are very different from the results predicted by the classical
Navier-Stokes Fourier theory.

4.2.1 Heat Conduction Analyzed by the 13-Moment ET Theory

Müller and Ruggeri [7] studied one-dimensional heat conduction in a gas at rest in
planar, cylindrical and spherical geometries by using the 13-moment ET theory. It
turns out that, in the radially symmetric cases, the stress tensor does not reduce to
a scalar pressure and that the heat flux depends on the normal components of the
deviatoric stress tensor. As a result, the singularities of temperature on the axis of
the cylinder and in the center of the sphere—which are characteristic for the Navier-
Stokes Fourier solution—disappear. In this section, we explain this result.

For the present argument the nature of the molecular interaction is quite
irrelevant. Therefore we choose the simplest model and consider the system of
equations based upon the BGK model. Furthermore, we spread out the covariant
derivatives by using the Christoffel symbols. Then we obtain a more specific, but
more complex version of the field equations (1.25), which in a stationary case
becomes [7]:

gik @p

@xk
� @

<ik>

@xk
� � i

kl 
<kl> � � k

kl 
<il> D 0;

@qk
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kl ql D 0;

2

5
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kl ql

!
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!

D �2
�

qi:

Here gik is the metric tensor, � i
jk are the Christoffel symbols appropriate to the

coordinates xk.
For the planar case with rectangular Cartesian coordinates, gik is the Kronecker

tensor and all Christoffel symbols vanish. In the cylindrical case with coordinates
.x1; x2; x3/ D .r; #; z/ we have

gik D
0
@ 1 0

1
r2

0 1

1
A and � 1

22 D �r; � 2
21 D � 2

12 D
1

r
; � m

kn D 0 else. (4.5)
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And in the spherical case with .x1; x2; x3/ D .r; #; '/ we have

gik D

0
B@
1 0

1
r2

0 1

r2 sin2 #

1
CA and � 3

31 D � 3
13 D � 2

21 D � 2
12 D 1

r ; �
1
22 D �r,

� 1
33 D �r sin2 #; � 3

32 D � 3
23 D ctg #;

� 2
33 D � sin# cos#;

� m
kn D 0 else:

(4.6)

Note that, in all three cases, the coordinate lines are orthogonal so that the metric
tensors are diagonal.

4.2.1.1 One Dimensional Solutions and Their Comparison
with the Solutions Derived from the Navier-Stokes Fourier Theory

We investigate solutions, in which all fields depend on x1 only and in which q1 is the
only non-vanishing component of the heat flux. In such a case, the Eq. (4.4) readily
imply that all shear stresses vanish and that the deviatoric normal stresses are related
to q1 by

<11> D �4
5
� k

k1�q1; <22> D 4

5
g22� 2

21�q1; <33> D 4

5
g33� 3

31�q1: (4.7)

We also obtain

dq1

dx1
D �� k

k1q
1: (4.8)

We conclude from (4.4) that p D const: holds and the 1-component provides a
relation between the heat flux and the temperature gradient, viz.

q1 D �	
�
1 � 7

5

<11>

p

�
dT

dx1
; (4.9)

where 	 is the heat conductivity related to the relaxation time � by

	 D 5

2

kB

m
�p:

From (4.7), we conclude that, in spherical coordinates, the physical components
of the shear stress are not zero. This result is particular to extended thermodynamics,
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because with the Navier-Stokes constitutive equations we have <ij> D 0 in any
geometry. Thus we conclude, from (4.7), that in the planar case, where <11>

vanishes, Fourier’s law with a constant heat conductivity is recovered, because the
heat flux is proportional to the gradient of the temperature. In the other cases, the
cylindrical and the spherical ones, Fourier’s law is not valid because of the second
term on the right hand side of (4.7).

We now solve the system of equations and obtain the fields <11>; q1; and T. The
only geometric quantity left in that system is � k

k1 which reads

� k
k1 D

j

x1
with j D

2
4 0 planar
1 for the cylindrical
2 spherical

case. (4.10)

The general integral is easily obtained. In the planar case we have the simple
solution

q1 D c1I <11> D 0; T D c2 � c1
	

x1 (4.11)

with a linear temperature profile which is also predicted by the Fourier theory (c1;c2
are integration constants). For j D 1; 2 we have (we write now for evident reasons
r; qr; <rr> instead of x1; q1; <11>)

qr D c1
rj

and <rr> D � 8j

25

m

kB

	

p

c1
rjC1 ;

and (4.9) becomes

dT

dr
D �c1

	

r
56
125

j m
kB

	
p2

c1 C rjC1 : (4.12)

The first term in the denominator is absent in the Navier-Stokes Fourier theory,
because <rr> D 0 in that theory.

Thus we can see a first difference between ET and the Fourier theory: The
derivative of the temperature tends to zero for r ! 0, while in the Fourier case
it diverges. The general solution of (4.12) reads
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Fig. 4.1 The behavior of the
general integral of the
temperature in the spherical
symmetry. The divergent
curve represents the solution
of the Fourier theory while
the bounded one represents
the 13-moment solution

0     

T

r

in the cylindrical case, i.e., for j D 1

T D c2 � c1
2	

log.bC r2/;

in the spherical case, i.e., for j D 2

T D c2 C c1
3 2

1
3 b

1
3 	

�p
3 arctan

�
b
1
3 �2 23 rp
3 b

1
3

�
C

C log
�
2 b

1
3 C 2 23 r

	
� 1

2
log

�
2 b

2
3 � 2 23 b

1
3 rC 2 13 r2

	o
;

(4.13)

while according to the Fourier law we have

T D c2 � c1
	

log r for j D 1 and T D c2 C c1
	

1

r
for j D 2: (4.14)

For abbreviation we have set b D 56
125

m
kB

	
p2

c1.
Figure 4.1 illustrates the difference between these solutions in the spherical case

for c1 arbitrarily assigned and c2 such that the temperature vanishes for large values
of r. We see that the temperature is finite in ET, while it diverges in the Fourier
theory. We also observe that the solutions coincide when the gradient is small, while
they differ significantly where the curves becomes steeper. As a matter of course,
ET becomes relevant when gradients are large.
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4.2.1.2 Solution of a Boundary Value Problem

In the planar case, the result from the Fourier theory is identical to the one
from ET. Indeed, from (4.11)3, we conclude that the temperature is linear in x1:
More interesting are the radially symmetric cases, in particular, the cylindrically
symmetric one.

We consider a gas between two co-axial cylinder or between two concentric
spheres with inner radius ri and outer radius re. We heat the gas at the inner radius
with a prescribed heat flux q and the temperature at the outer radius is kept to a value
Te: Thus we solve the boundary value problem:

qr .ri/ D q and T .re/ D Te: (4.15)

In the cylindrical case we obtain the solution:

qr D qri

r
;  rr D 8

25

m

kB

	

p

qri

r2
; T D Te� qri

2	
log

 
56
125

m
kB

	
p2

qri C r2

56
125

m
kB

	
p2

qri C r2e

!
: (4.16)

Figure 4.2 shows this solution for T in the case of argon with the relative atomic
mass M D 40 and for the data:

ri D 10�3 m; re D 10�2 m; p D 102 N

m2
;

� D 10�5 s; q D 104 W

m2
; Te D 300K: (4.17)

Fig. 4.2 The behavior of the
temperatures in the
cylindrical case with the
boundary data (4.17). Fourier
theory (stars); 13-moment
theory (circles)
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The curve marked by circles in Fig. 4.2 represents the solution of ET and the one
marked by stars is the solution of the Fourier theory. At the inner cylinder, the values
of the two theories differ by 7:17K.

In the spherical case we obtain with b D 56
125

m
kB

	
p2

qr2i :

qr D q r2i
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Both solutions (4.16) and (4.18) hold in the interval ri 6 r 6 re.
The case of co-axial cylinders should be easy to set up experimentally. Indeed,

the inner cylinder could be realized by a wire and the heating may be effected by
letting an electric current run through that wire. On the other hand the corresponding
case of two concentric spheres may be quite difficult to realize experimentally.

4.2.2 Difficulty in the ET Theory in a Bounded Domain When
the Number of Fields is More Than 13

In the above subsection, we have seen that the 13-moment ET theory predicts the
new and interesting results that show an appreciable difference from the results
predicted by the Navier-Stokes Fourier theory. We understand that, when there
exists a steep gradient (and/or a rapid change), the ET theory is superior to the
conventional classical TIP theory. Therefore it was natural that several authors tried
to understand more deeply nonequilibrium phenomena in a bounded domain by
using the ET theory with more than 13 moments. However, in such studies, the
authors encountered a conceptually difficult problem. This is the problem of the
boundary conditions.

All quantities in the 13-moment theory have concrete physical meanings and are
observable. However, the quantities expressed by higher moments have not definite
physical meanings and are, in general, impossible to be measured in experiments.
Therefore we cannot pose the values of these quantities at the boundary of a domain,
that is, we cannot pose the boundary conditions for the ET theory with more than
13 moments appropriately.

We may have a question: Is it really necessary to know all the boundary values?
Indeed let us consider, for example, heat conduction in a gas filled in between two
parallel plates. In this case, we need not know all boundary values except for, say, the
temperatures at the two plates in order to study the phenomena experimentally. This
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consideration seems to lead us to the following conjecture: if the temperature are
fixed at the both sides, the other quantities adjust by themselves and have appropriate
boundary values that are consistent with the experimental data. Such quantities are
sometimes called uncontrollable quantities.

If this conjecture is true, we further want to know the mechanism of the self-
adjustment. Several studies have been done. Struchtrup and Weiss [8] proposed
the minimax principle for the entropy production, according to which the boundary
values of the uncontrollable quantities are fixed. Barbera et al. also studied this
problem [9]. They assume that the uncontrollable quantities fluctuate around the
most probable values, and then they assume that the boundary values of the
quantities are given by these most probable values.

Another strategy was proposed by Ruggeri and Lou [10]. Their approach is
purely phenomenological. Let us consider the heat conduction problem again as
an example with a mixture of gas. In order to obtain the temperature profile, they
impose not only the boundary conditions but also some conditions inside a gas
that should be given by experiments. The latter conditions are, for example, the
temperatures at several points inside a gas. (See Sect. 16.6.2.)

Moreover, as pointed out by Brini and Ruggeri [11], there is another subtle
problem. They proved that, if nonequilibrium variables have small values of the
same order, then some derivative of these variables (critical derivatives) are not
necessarily of the same order. As a consequence, the solutions violate the entropy
principle and the system becomes to be inconsistent with the near-equilibrium
approximation adopted.

Kinetic-theoretical study by using the concept of the accommodation factor may
be helpful to solve this problem (see, for example, [12–16]). The accommoda-
tion factor is defined as the ratio between the effects of specular reflection and
thermalized (diffuse) reflection of an incident molecule at the boundary wall. The
introduction of this factor implies that the interaction between a gas and a boundary
wall should be properly taken into consideration in order to fix the boundary
conditions.

In conclusion, except for the 13-moment ET theory, the problem of the boundary
conditions in ET in general still remains as a big issue to be solved even in the case
of monatomic gases.

4.3 Molecular RET for Large Number of Moments

For rarefied gases, we have discovered that, in highly nonequilibrium phenomena
such as sound waves with high frequencies, light scattering with large scattering
angle, shock waves with large Mach number, predictions of the 13-moment theory
are sill not quite satisfactory when compared with experimental data although the
13-moment theory gives us better results compared with the Navier-Stokes Fourier
theory. For such phenomena, we need a theory with more moments. In these cases, it
is too difficult to proceed within a purely macroscopic theory like the 13-field RET
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theory. Therefore let us recall that the fields F0s can be regarded as the moments of a
distribution function f . In order to explain this approach by using the moments F0s,
we first rewrite the hierarchy of balance laws in more compact notation:

@tFA C @iFiA D PA; (4.19)

with

FA D
Z

R3
mfcAdc; FiA D

Z
R3

mfci cAdc; (4.20)

PA D
Z

R3
QcAdc; (4.21)

where

cA D
�
1 for A D 0;
ci1ci2 � � � ciA for 1 6 A 6 N;

and

FA D
�

F for A D 0;
Fi1i2���iA for 1 6 A 6 N;

FiA D
�

Fi for A D 0;
Fii1i2���iA for 1 6 A 6 N:

(4.22)

The indices i and i1 6 i2 6 � � � 6 iA are defined over 1; 2; 3. In the followings,
similar notations will be adopted.

Definition 4.1 A system of moments (4.19) truncated at the tensorial index N is
called .N/-system. The (4.19) is called .N�/-system if, for the last balance equation,
we consider only the trace with respect to the two indexes, Fk1k2:::kN�2ll, instead of
the full N-order tensor Fk1k2:::kN�2kN�1kN . If, instead of two indexes, we have the
contraction with respect to two couples of two indexes, we add another minus:
.N��/.

According with this definition (that does not include all possible moment systems)
the Euler fluid is a .2�/-system and the Grad system is a .3�/-system. Taking into
account that all tensors are symmetric, the number n of moments, for an .N/-system,
is given by

nN D 1

6
.N C 1/.N C 2/.N C 3/; (4.23)

and, for an .N�/-system, is given by

nN� D 1

6
N.N2 C 6N � 1/: (4.24)
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4.3.1 Closure via the Entropy Principle

We require the compatibility of the truncated system (4.19) with the entropy law,
i.e., all solutions of (4.19) must satisfy also the supplementary entropy balance
law (1.22) where h0; hi and ˙ are functionals of f [see (1.21)] through the
moments (4.20) with A D 0; : : : ;N. This is a strong restriction on the distribution
function f , and now the problem to be solved is as follows: Determine the
distribution function fN under the condition that any classical solution of (4.19)
with (4.20) and (4.21) is also the solution of (1.22).

For a generic entropy functional, which is valid not only for classical gases but
also for degenerate gases such as Bose and Fermi gases, the following theorem was
proved by Boillat and Ruggeri [17]:

Theorem 4.1 Necessary and sufficient condition such that the truncated system of
moments (4.19) satisfies an entropy principle (1.22) is that the truncated distribution
function fN depends on .x; t; c/ only through a single variable:

fN � fN.�N/;

where

�N D
NX

AD0
u0

A.x; t/c
A

is a polynomial in c with the coefficients u0
A:

u0
A D

�
u0 for A D 0;
u0

i1i2���iA for 1 6 A 6 N:

The entropy density, flux and production have the following expressions:

h0 D m
Z

R3

�
�N˝

0.�N/�˝.�N/
�

dc; (4.25)

hi D m
Z

R3
ci
�
�N˝

0.�N/�˝.�N/
�

dc; ˙ D m
Z

R3
Q�N dc;

where the partition function˝.�N/ satisfies the relation:

˝ 0 D d˝

d�N
D fN.�N/:
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The system (4.19) becomes symmetric in the form (2.11) with the main field u0
A and

potentials

h00 D m
Z

R3
˝.�N/ dc; h0i D m

Z
R3
˝.�N/ci dc; (4.26)

provided˝ 00.�N/ < 0.

The proof can be made by the following general symmetrization Theorem 2.1. In
fact (2.15) becomes in this case

FA D @h0 0

@u0
A

; FiA D @hi0

@u0
A

;

then

dh00 D
NX

AD0
FAdu0

A D m
Z

R3
f

NX
AD0

cAdu0
Adc D m

Z
R3

fd�Ndc D d
Z

R3
m˝.�N/dc;

and (4.26)1 hold. From (2.14) follows the (4.25). Analogous considerations are
given for h0i and hi.

Then the original system of the moments becomes to be closed and to be
symmetric hyperbolic in terms of the main-field components (2.11) (we omit now
the summation on the repeated index B):

JAB@tu
0
B C JiAB@iu

0
B D PA.u

0
C/; A D 0; : : : ;N (4.27)

where

JAB.u
0
C/ D

@2h0 0

@u0
A@u0

B

D
Z

R3
m˝ 00.�N/c

AcBdc;

JiAB.u
0
C/ D

@2h0
i

@u0
A@u0

B

D
Z

R3
m˝ 00.�N/ci cAcB dc:

Here and hereafter, the summation symbol with respect to A and/or B is omitted for
simplicity. Indeed, the matrix JAB is negative definite provided that ˝ 00.�N/ < 0

holds, since

JABXAXB D
Z

R3
m˝ 00 �cAXA

�2
dc < 0 8XA ¤ 0:

If we require that h0 is the usual entropy density for non-degenerate gases, viz.

h0 D �kB

Z
R3

fN ln f N dc;
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we obtain from (4.25)
�
�N C kB

m
ln˝ 0

�
˝ 0 �˝ D 0;

and by differentiation we obtain

fN.�N/ D e�1�m�N=kB : (4.28)

In the present case we have

JAB
�
u0

C

� D �m2

kB

Z
R3

fNcAcB dc; JiAB
�
u0

C

� D �m2

kB

Z
R3

fNcicAcB dc: (4.29)

In an equilibrium state, (4.28) reduces to the well-known Maxwellian distribution
function. We observe that fN is not a solution of the Boltzmann equation. But we
have the conjecture (open problem) that, for N ! 1; fN tends to a solution of the
Boltzmann equation.

4.3.2 Closure via the Maximum Entropy Principle

Instead of the method of the entropy principle, there is an alternative in the ET
theory of moments for the determination of the phase density fN . This is the method
of maximization of the entropy under some constraints.

We have discussed the MEP in Sect. 1.5.5. In this section, we summarize the
results in the case of monatomic gases (see [17] for more details). Let us treat firstly
a general case where the entropy h0 is a generic functional of f :

h0 D
Z

R3
 .f /dc : (4.30)

We ask for the phase density fN that provides the maximum of h0 under the
constraints of fixed values FA for the moments:

FA D
Z

R3
mfcAdc:

With the Lagrange multipliers �A, we form the expression:

L D
Z

R3
 .f /dcC �A

�
FA �m

Z
cAfdc

�
; (4.31)

and obtain the relation:

ıL D
Z

R3

�
d 

df
� m�AcA

�
ıfdc D 0:
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Thus we have

d 

df
D m�AcA

as a necessary condition for an extremum. Hence it follows that f is a function of

� D �AcA;

and that  .f / has the form:

 .f / D m

�
�f �

Z
fd�

�
: (4.32)

Insertion of (4.32) into (4.30) gives exactly the same result as that from the entropy
principle (4.25). Thus we conclude that the maximization of the entropy leads to the
same result as that from the entropy principle in molecular RET of moments [17].
In particular, the Lagrange multipliers �A are identical to the main field components
u0

A.

4.4 Maximum Characteristic Velocity in the Classical Theory

Characteristic velocities �, in the propagation direction with the unit vector n �
.ni/, of the symmetric hyperbolic system (4.27) with (4.28) are eigenvalues of

KAB D JiABni � �JAB D �m2

kB

Z
R3

f .�/.c � n � �/cAcB dc: (4.33)

In particular, the wave speeds for disturbances propagating in an equilibrium state
are eigenvalues of

Z
R3

fM.c � n � �/cAcB dc; (4.34)

where fM is the Maxwellian distribution function. As the integrals in (4.34) are
known, it is easy to evaluate the maximum eigenvalues for increasing N.

Numerical results were obtained by Weiss [18] who obtained increasing value
of the maximum characteristic velocity for increasing number of moments n that
depends on the truncation index N through (4.23). For instance, for n D 20, �max D
1:8c0 and for n D 15:180,�max D 9:36c0;where �max is the maximum characteristic
velocity in equilibrium in units of the sound wave velocity. Therefore an interesting
problem is: what is the limit of �max as N !1?
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4.4.1 Lower Bound Estimate and Characteristic Velocities
for Large Number of Moments

In the previous examples, we have seen the validity of the subcharacteristic
conditions. Now we are able to prove the behavior of �max when N ! 1. The
.kC 1/.kC 2/=2 components of order k of the main field:

u0
i1i2:::ik ; i1 6 i2 6 � � � 6 ik

can be mapped in the corresponding variables

u0
pqr; pC qC r D k;

where p, q, r are, respectively, the number of indices over 1; 2; 3. With this notation

� D
X
p;q;r

u0
pqrc

p
1c

q
2c

r
3; 0 6 pC qC r 6 N:

Theorem 4.2 (Boillat and Ruggeri [17]) For any N we have the lower bound
condition:

�max

c0
>

s
6

5

�
N � 1

2

�
(4.35)

where c0 is the sound velocity. Therefore, �max becomes unbounded when N !1.

Sketch of the Proof By the use of the variable u0
pqr, the components of the matrix

(4.34) are given by

Z
R3

fM.cin
i � �/cpCs

1 cqCt
2 crCu

3 dc:

The matrix is negative semi-definite, if � is the largest eigenvalue �max. As the
elements aij of a semi-definite matrix satisfy the inequalities:

aiiajj > a2ij; (4.36)

we have
Z

R3
fM.cin

i � �max/c
2p
1 c2q

2 c2r
3 dc

Z
R3

fM.cin
i � �max/c

2s
1 c2t

2 c2u
3 dc

>
�Z

R3
fM.cin

i � �max/c
pCs
1 cqCt

2 crCu
3 dc

�2
: (4.37)
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Fig. 4.3 The behavior of the
maximum characteristic
velocity versus the truncation
number N and the lower
bound estimate (4.35)
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In this case (4.37) reduces to

�2max

Z
R3

fMc2p
1 c2q

2 c2r
3 dc

Z
R3

fMc2s
1 c2t

2 c2u
3 dc

>
�Z

R3
fM.cin

i � �max/c
pCs
1 cqCt

2 crCu
3 dc

�2
: (4.38)

With the choice p D N; s D N�1; q D r D t D u D 0;n � .1; 0; 0/; this inequality
becomes

�2max >
R

R3 fMc2N
1 dc1R

R3 fMc2.N�1/
1 dc1

D 1

b

� .N C 1=2/
� .N � 1=2/ D

6

5
c20

�
N � 1

2

�

and the proof is completed. Therefore

lim
N!1�max D1:

In Fig. 4.3, we compare the numerical values of �max=c0 given by Weiss [18] with
our lower bound in the right-hand side of (4.35).

This is a surprising result because the first motivation of ET was to repair
the paradox of infinite velocity of the Navier-Stokes Fourier classical approach.
Therefore, for any finite N, we have symmetric hyperbolic systems with finite
characteristic velocities. But when we take infinite moments we have a parabolic
behavior.
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Instead, in the relativistic context, it was proved that the limit of the maximum
characteristic velocity for N !1 is the light velocity [19–21] (see Sect. 4.7.1.1).

4.5 Convergence Problem and a Theory Near Equilibrium
State

All results explained above are valid also for a case far from equilibrium provided
that the integrals in (4.20) and (4.21) are convergent. The problem of the conver-
gence of the moments is one of the main questions in a far-from-equilibrium case.
In particular, as we will see, the index of truncation N must be even. This implies, in
particular, that a theory with 13moments is not allowed when far from equilibrium!

Moreover, if the conjecture that the distribution function fN , when N !1, tends
to the distribution function f that satisfies the Boltzmann equation is true, we need
another convergence requirement.

These problems were studied by Boillat and Ruggeri in [17]. As before, �N is
expressed as

�N D
X
p;q;r

u0
pqrc

p
1c

q
2c

r
3; 0 6 pC qC r 6 N: (4.39)

Since
ˇ̌
ˇ̌
ˇ
X
p;q;r

u0
pqrc

p
1c

q
2c

r
3

ˇ̌
ˇ̌
ˇ 6 aNcN

with

aN D max
jtjD1

�N.t/; �N.t/ D
X
p;q;r

u0
pqrt

p
1t

q
2t

r
3;

when pC qC r D N ! 1, the series is absolutely convergent for any c provided
that

u0
pqr ! 0;

aNC1
aN
! 0:

Hence the components of the main field become smaller and smaller when N
increases. This justifies the truncation of the system. On the other hand, when
N is finite, the integrals of moments must also be convergent. When c is large,
�N ' jcjN�N . Therefore it is easy to see, by using the spherical coordinates, that
the integrals of moments converge provided that �N.t/ < 0 for any unit vector
t. But, as �N.�t/ D .�1/N�N.t/, we can conclude that N must be even and
maxjtjD1 �N.t/ < 0.
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Now, the distribution function (4.28) obtained as the solution of the variational
problem is expanded in the neighborhood of a local equilibrium state:

fN � fM

�
1 � m

kB
Qu0

AcA

�
; Qu0

A D u0
A � u0E

A ; (4.40)

where u0E
A are the main field components evaluated in the local equilibrium state

and fM is the Maxwellian equilibrium distribution function. Taking into account
the fact that all the equilibrium components of the main field vanish except those
corresponding to the first five moments [see (2.29)] and plugging (4.40) into (4.20)1,
we obtain a linear algebraic system that permits to evaluate the main field Qu0

A in terms
of the densities FA:

JMAB Qu0
B D FA � FE

A ;

where FE
A denotes the moments FA evaluated in the equilibrium state and

JMAB D �
m2

kB

Z
R3

fMcAcB dc: (4.41)

And, by inserting Qu0
A just obtained above into (4.20)2 and (4.21), the explicit

dependence of the truncated fluxes and source terms on the densities is obtained.
Finally, the truncated .N/-system becomes a closed system for the densities FA.

The generalization of this procedure to higher order expansions of the distribu-
tion function has been given in [11] and as we will see in Chap. 12 there exists an
interesting model in which we can close the system also far from equilibrium. This
is the case of the 6-moment theory of polyatomic gases [22].

4.6 Comparison with Experimental Data: Sound Waves
and Light Scattering

The ET theory is successful when the results are compared with experimental data,
in particular, the results of sound waves with high frequencies and light scattering. In
Fig. 4.4, taken from the book [4], we can see that the so-called dynamic factor S.x; y/
obtained by the ET theory fits very well the experimental data on light scattering
(represented in the figure by dots) when N is sufficiently large.
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Fig. 4.4 Dynamical factor: the perfect agreement between the ET theory and the experimental
data [4]

4.7 Relativistic Theory and the Limit of Maximum
Characteristic Velocity

In the relativistic kinetic theory of rarefied gases, the phase density f .x˛; p˛/ .˛ D
0; 1; 2; 3/ satisfies the Boltzmann-Chernikov-Lichnerowicz-Marrot equation:

p˛@˛f D Q; (4.42)

where x˛ and p˛ are the space-time coordinates and the four-momentum of an atom,
respectively. We have p˛p˛ D .p0/2�p2 D m2c2; p2 D .p1/2C.p2/2C.p3/2;where
m is the atomic rest mass and c the speed of light. The right-hand side of (4.42) is
due to collision between the atoms. Upon multiplication by pA .A D 0; 1; 2; : : : /
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and integration, (4.42) provides an infinite system of balance equations:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

@˛F˛ D 0;

@˛F˛˛1 D 0;

@˛F˛˛1˛2 D P˛1˛2 ;

@˛F˛˛1˛2˛3 D P˛1˛2˛3 ;
:::

@˛F˛˛1:::::˛n D P˛1˛2:::::˛n ;
:::

(4.43)

or briefly:

@˛F˛A D PA; A D 0; 1; 2; : : : (4.44)

for the moments F˛A and productions PA given by

F˛A.xˇ/ D
Z

p˛pA f dp; (4.45)

PA.x
ˇ/ D

Z
QpA f dp; (4.46)

where A is a multindex:

pA D
�
1 for A D 0
p˛1p˛2 : : : p˛A for A > 1

(4.47)

F˛A D
�

F˛ for A D 0
F˛˛1:::˛A for A > 1

(4.48)

PA D
�
0 for A D 0
P˛1:::˛A for A > 1

(4.49)

and 0 6 ˛1 6 ˛2 6 � � � 6 ˛A 6 3. We recall that the first five equations of (4.44)
are the conservation laws of mass, momentum and energy, according to which the
first five productions vanish: PA D 0 for A D 0; 1. The volume element of the
momentum space is given by dp D p�g dp1dp2dp3=p0 and the integrals, which are
supposed to be convergent, are taken over the whole p-space.

We introduce the quantity:

h˛ D �kB

Z
p˛
˚
.s2 � 1C ln f /fCs.1 � s f / ln.1 � s f /



dp (4.50)
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where s D 0;�1; 1 correspond, respectively, to the non-degenerate gas, the Fermi
gas and the Bose gas. It is well known that we obtain, from (4.42), the supplementary
inequality:

@˛h˛ D ˙ > 0: (4.51)

This expression suggests the balance of entropy when we identify h˛ and˙ with the
four-entropy vector and the entropy production, respectively. Then (4.51) expresses
the famous H-theorem in the relativistic framework.

4.7.1 Finite System of Moment Equations and Its Closure

We now consider a finite system of moment equations with the tensorial index A D
0; : : : ;N. In this case, as in the classical case, we can accomplish the closure of the
system by using the entropy principle or the variational method of the maximum
entropy principle (Boillat and Ruggeri [19, 20]). We obtain

fN D 1

e��=kB C s
; (4.52)

where

� D u0
ApA: (4.53)

The system is closed in terms of the main field components u
0

A:

H˛AB.u0
C/@˛u0

B D PA.u
0
C/; A D 0; 1 : : :N (4.54)

with the symmetric matrices

H˛AB D
Z

exp.��=kB/

kB .1C s exp.��=kB//
2

p˛pApBdp: (4.55)

H˛AB�˛ is negative definite for any timelike vector (�˛�˛ > 0). This implies that the
system (4.54) is a symmetric hyperbolic system (in the sense of Friedrichs) and is
local in time. Its Cauchy problem is well-posed.

4.7.1.1 Propagation in an Equilibrium State and the Maximum
Characteristics Velocity

The wave surface �.x˛/ D 0 is a solution of the characteristic equation:

det.H˛AB@˛�/ D 0:
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As a consequence, the four gradient @˛� cannot be timelike and therefore the
velocities of waves cannot exceed the velocity of light, i.e., �max 6 c: When the
number of equations increases, as was already shown, the maximum wave velocity
cannot decrease. Now a question is: Does this velocity tend to c when N tends to
infinity?

A thermodynamic equilibrium state is defined as the state for which the
productions gA vanish and the entropy production ˙ reaches its minimum value,
i.e., zero. According with the general result, all the main-field variables except for
the first five variables are zero:

u0 D � g

T
; u0̨ D u˛

T
; (4.56)

where g;T and u˛ are, respectively, the chemical potential, the absolute temperature,
and the four-velocity. Therefore, for any truncation index N, the � given by (4.53)
reduces to �=kB D .�gCu˛p˛/=.kBT/ in an equilibrium state. And, in a case at rest
where ui D 0; u0 D c; p0 D pm2c2 C p2 we have

�

kB
D �aC �

s
1C p2

m2c2
;

where a D g=kBT; � D mc2=kBT. In this case, the distribution function reduces to
the well-known Jüttner equilibrium distribution. We recall that for a Fermi gas a can
assume all real values while for a Bose gas aC � > 0:

The wave velocity � in the direction of the normal n to the wave front is an
eigenvalue of

det.HiABni � �H0AB/ D 0: (4.57)

The matrix in (4.57) is negative semidefinite for the maximum eigenvalue, that is, if
we take n � .1; 0; 0/, the components of the matrix:

H1AB � �maxH0AB D
Z

df

dx
pApB.p1 � �p0/dp

satisfy the inequalities in the form aiiajj � a2ij > 0 [see (4.36)]. Therefore, choosing
pA D .p1/n; pB D .p1/n�1; we have

�2max

c2

Z
df

d�

�
p1
�2n

d3p
Z

df

d�

�
p1
�2.n�1/

d3p >
�Z

df

d�

�
p1
�2n d3p

p0

�2
; (4.58)

since the integrals of odd functions vanish.
By introducing the spherical coordinates, the above inequality, after some

straightforward calculations, yields

�2max

c2
> 2n � 1
2nC 1

J2nC1
InInC1

; (4.59)
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where

In D
Z 1

0

�.r/r2ndr; Jn D
Z 1

0

�.r/r2n

p
1C r2

dr;

�.r/ D e .r/

.1C se .r//2
;

 .r/ D �e

kB
D �a � �

p
1C r2; s D 0;˙1:

Therefore we conclude that: For any type of gas including the degenerate gases
of fermions and bosons, the largest wave velocity has the lower and upper bounds.

In the case of a non-degenerate gas, the previous integrals can be written in terms
of the Bessel function of second kind and read

�2max

c2
> .2N � 1/

�

KNC1.�/
KNC2.�/

; (4.60)

where � D mc2=.kBT/. Using the recurrence relation for Bessel functions KNC2 �
KN D 2.N C 1/KNC1=� , we obtain that, for N ! 1, the limit value of �max

in (4.59) is the light velocity c; since it has already been proved that it cannot be
larger than c. Thus, when the number of moments tends to infinity, the maximum
velocity in equilibrium tends to the light velocity.

This result can be proved also for degenerate gases because our proof is
completely independent of the interaction term Q of (4.42).

In the ultrarelativistic case corresponding to small � , taking the properties of the
Bessel functions into account when � ! 0, we obtain the simple inequality:

�2max

c2
> .2N � 1/
2.N C 1/ :

4.7.2 The Macroscopic Relativistic 14-Field Theory

The most interesting case is the relativistic 14-moment ET theory developed by Liu
et al. [23]. The system in this case coincides with the system obtained by kinetic
considerations by C. Marle [24], which are similar to the ones of Grad:

8<
:
@˛F˛ D 0;
@˛F˛ˇ D 0;
@˛F˛ˇ� D Pˇ� :

(4.61)
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The field variables in this case are the number of particle vector F˛ and the
full energy-momentum tensor F˛ˇ D T˛ˇ , while F˛ˇ� and Piˇ� are constitutive
functions of the field variables. By using the familiar variables (n particle number,
e the energy density, t<˛ˇ> the deviatoric viscous stress tensor, ˘ the dynamic
pressure and q˛ the heat flux four-vector), the following expressions are obtained
[23]:

F˛ D nmu˛;

F˛ˇ D t<˛ˇ> C .pC˘/h˛ˇ C 1

c2
.u˛qˇ C uˇq˛/C e

c2
u˛uˇ;

F˛ˇ� D .C1 C C2˘/u
˛uˇu� C

c2

6
.nm � C1 C C2˘/

�
g˛ˇu� C gˇ�u˛ C g˛�uˇ

�C
C3
�
g˛ˇq� C gˇ�q˛ C g˛�qˇ

�C C4
�
t<˛ˇ>u� C t<ˇ�>u� C t<˛�>uˇ

�
:

The main field becomes

u0 D � g

T
� �0˘;

u0̨ D u˛
T
� �1˘u˛ � �2q˛;

u0̨
ˇ D ��3t<˛ˇ> � �4˘h˛ˇ � 1

c2
�5.u˛qˇ C uˇq˛/ � 3

c2
�6˘u˛uˇ;

where h˛ˇ is the projector and we omit the long expressions of the coefficients that
appear in the previous equations.

If we put

u0̨
ˇ D 0 (4.62)

then we have:

t<˛ˇ> D 0; q˛ D 0; ˘ D 0; (4.63)

and we obtain the equilibrium principal subsystem, i.e., the Euler relativistic fluid
system:

8<
:
@˛F˛ D 0;

@˛F˛ˇ D 0
(4.64)

with

F˛ D nmu˛ ; F˛ˇ D ph˛ˇ C e

c2
u˛uˇ: (4.65)
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4.7.2.1 Remark on the Einstein Equation

From the viewpoint of ET, we can see the Einstein equation in a different way.
In fact, in the classical approach, the number of balance laws is usually five.
Only one component (for example, the internal energy) in the energy-momentum
tensor is considered as a field variable, and the remaining ones are prescribed by
the constitutive equations. While, in ET, it is assumed that all the components of
the energy-momentum tensor are field variables. Therefore, in ET, the Einstein
equation:

R
� � 1
2

g
�R D �8�G

c4
T
�

becomes a universal equation, independent of the constitution of the material [25].
For more details concerning RET of monatomic gases, interested readers can

consult the book [4] and the survey papers [26, 27].
Finally we want to recall that many applications of ET not only to rarefied

gases but also to other similar fields such as fluid-dynamic models in semiconductor
physics (see for example [28–30]) have been made.
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RET of Polyatomic Gas and Dense Gas

with 14 Fields



Chapter 5
RET 14-Field Theory of Polyatomic Gas
and Dense Gas

Abstract The objective of the present chapter is to explain in detail the new ET
theory of rarefied polyatomic gases and dense gases with 14 independent fields
(ET14), that is, the mass density, the velocity, the temperature, the shear stress,
the dynamic pressure, and the heat flux. We adopt the system of field equations
with a binary hierarchy structure. We show that the constitutive equations can
be determined explicitly by the caloric and thermal equations of state as in the
monatomic ET13 theory. We also analyze physically important systems, that is,
a rarefied polyatomic gas, a gas with the virial equations of state, a hard-sphere
system, and a van der Waals gas. Lastly we show that the ET13 theory of rarefied
monatomic gases is derived from the ET14 theory as a singular limit.

5.1 Previous Tentatives

The Navier-Stokes Fourier theory comes out from ET, as a limiting case, by carrying
out the Maxwellian iteration [1, 2]. In this respect, the Navier-Stokes Fourier theory
can be seen as an approximation of ET where the relaxation times of dissipative
fluxes (viscous stress and heat flux) are negligibly small. We call this Navier-Stokes
Fourier limit.

On the other hand, within its validity range, the classical Navier-Stokes Fourier
theory is applicable to any fluids that are not necessarily limited to rarefied gases nor
to monatomic gases. Therefore, after the successful establishment of ET for rarefied
monatomic gases, there appeared many studies of ET for rarefied polyatomic gases
[3–5] and also for dense gases [6–11]. In such gases in nonequilibrium, the dynamic
pressure ˘ does not vanish identically. And, in general, no simple relationship
between the pressure p and the specific internal energy " exists.

Previous authors tried to establish ET of dense gases by postulating single
hierarchy structure similar to (1.24), but with 14 densities by introducing a new
fourth-rank tensorial density such as Fkkll [8, 10, 11]. However, in their theories,
the other important feature of the system of field equations—a flux in an equation
becomes a density in the next equation—was abandoned. Because of this generality,
constitutive equations could not be fully determined from the knowledge of the
equilibrium properties of gases. There remain many phenomenological constants
in the constitutive equations that are impossible to be evaluated experimentally

© Springer International Publishing Switzerland 2015
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or theoretically. Moreover, when the Navier-Stokes Fourier limit is taken, the
postulation of the fourth-rank tensorial density seems to be not well justified because
such a density does not have any straightforward counterpart in the Navier-Stokes
Fourier theory.

5.2 Binary Hierarchy in ET of Polyatomic Gas and Dense
Gas: Heuristic Viewpoint

In order to grasp the structure of the basic system appropriate for ET of polyatomic
gases and dense gases, first of all, let us reconsider the structure of the classical
Navier-Stokes Fourier system where, in addition to the usual conservation laws of
mass, momentum, and energy (1.3), we have the constitutive equations (1.10). We
observe that the Eq. (1.10) can be rewritten in the following form [12]:

@

@xk

�
viıjk C vjıik � 2

3
vkıij

�
D hiji



;

@vk

@xk
D �˘

�
;

@T

@xk
D �qk

	
:

(5.1)

The system composed of Eqs. (1.3) and (5.1) can be seen as a system of 14 equations
for the 14 unknown variables: �, vi , ", qi, hiji and ˘ . Its mathematical structure is
in the form of balance type, but, in Eq. (5.1), we have no term with time derivative.
Therefore the system is not hyperbolic but parabolic.

It is, therefore, natural to assume that the mathematical structure of balance laws
in ET of dense gases is of the following type [13]:

@F

@t
C @Fk

@xk
D 0;

@Fi

@t
C @Fik

@xk
D 0;

@Fij

@t
C @Fijk

@xk
D Pij;

@Gll

@t
C @Gllk

@xk
D 0;

@Glli

@t
C @Gllik

@xk
D Qlli;

(5.2)

where F is the mass density, Fi is the momentum density, Gii is the energy density,
Fij is the momentum flux, and Glli is the energy flux. And Fijk and Gllik are the
fluxes of Fij and Glli, respectively, and Pij and Qlli are the productions with respect
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to Fij and Glli, respectively. In order to justify this structure, we admit that Eq. (1.3)
correspond to (5.2)1;2;4 with the condition that Fll is different from Gll because, as
mentioned before, no simple relation exists between the pressure and the internal
energy in polyatomic gases or dense gases. Equation (5.2)3 can be split into the
deviatoric and trace parts that have the mathematical structure of (5.1)1;2 when the
terms with time derivatives are neglected. While Eq. (5.2)5 in a steady case has the
mathematical structure of the type of the Fourier law (5.1)3.

We can see that the structure of (5.2) is much more restrictive than that adopted
in the previous works, and moreover the system does not have the fourth-rank tensor
in the set of densities.

To sum up, for the new ET theory, we adopt 14 independent densities:

mass density: F;

momentum density: Fi;

energy density: Gii;

momentum flux: Fij;

energy flux: Glli:

(5.3)

And we adopt also the system (5.2) that is composed of two parallel hierarchical
series: The one is the series starting from the mass and momentum balance equations
(F-series) and the other is from the energy balance equation (G-series). In each
series, the flux in an equation becomes the density in the next equation.

This binary hierarchy will be justified also from the kinetic considerations in the
next Chap. 6 at least in the case of rarefied polyatomic gases.

This chapter describes the results obtained in the paper by Arima et al. [13].

5.3 ET 14-Field Theory

In this section, we construct the ET 14-field theory (ET14) by imposing the universal
physical principles explained in Sect. 2.2.

We assume that the closure quantities at one point and time depend on the
independent fields at that point and time, i.e., local and instantaneous. Therefore
we have

 D  .F; Fi; Fij; Gll; Glli/; (5.4)

where  is one of the quantities fFijk; Gllik; Pij; Qig. The entropy density h0 and the
entropy flux hk.D hvkC'k/ are also assumed to be in the form of (5.4). Hereafter, for
simplicity, we use the notation h instead of h0 and 'k instead of Ohk as no confusion
is caused.
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5.3.1 Exploitation of the Galilean Invariance

The matrices X and Ar of the Galilean invariance [see (2.36) and (2.39)] are given
by

X D

0
BBBBB@

1 0 0 0 0

vi ı
h1
i 0 0 0

vivj 2ı
h1
.i vj/ ı

h1
i ı

h2
j 0 0

v2 2vi 0 1 0

v2vi 3v.lvlı
h1
i/ 2ı

.h1
i vh2/ vi ı

h1
i

1
CCCCCA

(5.5)

and

Ar D

0
BBBBB@

0 0 0 0 0

ır
i 0 0 0 0

0 2ı
h1
.i ı

r
j/ 0 0 0

0 2ır
h1

0 0 0

0 0 2ı
.h1
i ı

h2/
r ır

i 0

1
CCCCCA
; .r D 1; 2; 3/: (5.6)

Therefore, the velocity dependence is completely prescribed by the Galilean
invariance as follows:

F0 D

0
BBBBB@

F
Fi

Fij

Gll

Glli

1
CCCCCA
D

0
BBBBB@

�

�vi

�vivj C OFij

�v2 C OGll

�v2vi C 2 OFlivl C OGllvi C OGlli

1
CCCCCA
;

˚k D

0
BBBBB@

˚i

˚ik

˚ijk

�k

�ik

1
CCCCCA
D

0
BBBBB@

0
OFik

2 OFk.ivj/ C OFijk

2 OFklvl C OGllk

3 OFk.ivlvl/ C 2 OFiklvl C OGllkvi C OGllik

1
CCCCCA
; (5.7)

f D

0
BBBBB@

0

0

Pij

0

Qlli

1
CCCCCA
D

0
BBBBB@

0

0
OPij

0

2 OPlivl C OQlli

1
CCCCCA
;

where we recall O̊ k D OFk.
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As the balance equations of F, Fi and Gll represent the conservation laws of mass,
momentum and energy, the intrinsic quantities OFij; OGll and OGlli have the following
conventional meanings:

stress tensor: tij D �OFij .D � .pC˘/ ıij C hiji/; (5.8)

specific internal energy: " D 1

2�
OGll; (5.9)

heat flux: qi D 1

2
OGlli; (5.10)

where the pressure p depends only on � and ". hiji is symmetric because we deal
with non-polar materials. Therefore OPij is symmetric and OFijk is symmetric a priori
only with respect to the first two indices.

Then the constitutive equations of ET14 are expressed by the Galilean objective
variables in the form [see the closure equations (5.4)]:

O D O .�; "; ˘; hiji; qi/: (5.11)

The entropy density h.D h0/ and the intrinsic entropy flux 'i.D Ohi/ do not depend
on the velocity [see (2.37)]. They are expressed as follows:

h D h.�; "; ˘; hiji; qi/;

'k D 'k.�; "; ˘; hiji; qi/:
(5.12)

The dependence of the Lagrange multipliers on the velocity is dictated by the
relation (2.42). In the present case with

�
� �i �ij 
 
i

�
as seen in (5.14) below, it is

expressed as

� D O� � O�ivi C O�ijvivj C O
v2 � O
iv
2vi;

�i D O�i � 2 O�ilvl � 2 O
vi C O
iv
2 C 2 O
lvivl;

�ij D O�ij � 2 O
.ivj/;


 D O
 � O
lvl;


i D O
i:

(5.13)
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5.3.2 Exploitation of the Entropy Principle

The entropy principle requires the following relations [see (2.13)]:

dh D �dF C �idFi C �ijdFij C 
dGll C 
idGlli;

dhk D �dFk C �idFik C �ijdFijk C 
dGllk C 
idGllik;

˙ D �ijPij C 
iQlli:

(5.14)

u0 D �� �i �ij 
 
i
�

is the main field.
Therefore, taking (2.43) into account, we have

dh D O�d�C O�ijd OFij C O
d OGll C O
id OGlli;

d'k D O�id OFik C O�ild OFilk C O
d OGllk C O
id OGllik;

˙ D O�ij OPij C O
i OQlli:

(5.15)

The constraints (2.44) due to the fact that the entropy density and the intrinsic
entropy flux are independent of the velocity are now expressed by

O�i D �1
�

� OGll O
i C 2 OFil O
l

	
;

� O��C O�kj OFkj C O
 OGll C O
k OGllk � h
	
ıir C 2 O�rl OFil

C 2 O
 OFir C 2 O
lFlri C O
r OGlli D 0:

(5.16)

5.3.2.1 Equilibrium State

From Definition 2.2 of an equilibrium state, which says that the entropy production
˙ becomes minimum and vanishes in equilibrium, we notice that the productions
OPii, OPhiji and OQlli must vanish together with all Lagrange multipliers corresponding
to the balance laws [see (2.29)]:

O�E
ll D 0; O�E

hiji D 0; O
E
i D 0; (5.17)

where superscript E indicates equilibrium. Since the Lagrange multipliers O�ll,O�hiji and O
i are non-zero only in nonequilibrium, these are called nonequilibrium
variables. Taking the representation theorem for isotropic vectors and tensors into
account, we can show that the requirement that the intrinsic productions and the
intrinsic nonequilibrium Lagrange multipliers vanish implies that qi; hiji; ˘ must
also vanish in equilibrium.
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5.3.2.2 Entropy

Let us rewrite the entropy density in the form:

h D �sC �k; (5.18)

where s.�; "/ is the specific entropy density in equilibrium and k.�; ";˘; hiji; qi/

denotes the nonequilibrium part of the entropy and therefore satisfies the condition:

k.�; "; 0; 0; 0/ D 0: (5.19)

The equilibrium entropy density s obeys the Gibbs equation (1.7).
From (5.15)1, we obtain

O� D � g

T
C kC �k� � "k" � .�p� � "p"/k˘;

O
 D 1

2T
C 1

2
k" � 1

2
p"k˘;

O�ll D �k˘;

O�hiji D ��khiji ;

O
i D �

2
kqi ;

(5.20)

where a subscript denotes a partial differentiation with respect to the quantity, for
example, k˘ D @k

@˘
. In an equilibrium state we have

O�E D � g

T
; O
E D 1

2T
;

O�E
ll D 0; O�E

hiji D 0; O
E
i D 0:

(5.21)

5.3.2.3 Constitutive Equations Near Equilibrium

As usual in ET, we consider only processes not far from equilibrium, which,
however, may be out of local equilibrium, in such a way that the constitutive
equations are linear with respect to the nonequilibrium variables .˘; hiji; qi/.
From (2.15), we notice that we need to represent the potentials h0˛ and therefore
the entropy and the entropy flux [see (2.14)] in an expansion form with respect
to the nonequilibrium fields at least until second order. However, as we will see
below, in order to fix all the expansion coefficients, we need to represent them up to
third order. Then, as all derivatives of k with respect to the nonequilibrium variables
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vanish in equilibrium due to the identity (5.19), we have the expansion of k and 'k

as follows:

k Dk1˘
2 C k2hijihiji C k3qiqi C k4˘

3 C k5˘hijihiji C k6hijihniihjni
C k7˘qiqi C k8hijiqiqj C O.4/; (5.22)

'k D.ˇ1 C ˇ2˘/qk C ˇ3hkiiqi C O.3/; (5.23)

where the coefficients k1; � � � ; k8 and ˇ1; ˇ2; ˇ3 are functions of � and ". Moreover,
within this approximation, we have

OFijk D f1qkıij C f2qhiıjik C O.2/;

OGllij D .g1 C g2˘/ıij � g3hiji C O.2/;
(5.24)

where f1; f2; g1; g2 and g3 are functions of � and ".
From (5.22), we obtain

dk D˘2dk1 C hijihijidk2 C qiqidk3 C˘3dk4

C˘hijihijidk5 C hijihinihnjidk6 C˘qiqidk7 C qiqjhijidk8

C �2k1˘ C 3k4˘
2 C k5hijihiji C k7qiqi

�
d˘

C �2k2hiji C 2k5˘hiji C 3k6hnhiihjini C k8qhiqji
�

dhiji

C �2k3qi C 2k7˘qi C 2k8hijiqj
�

dqi C O.4/: (5.25)

Therefore, by substituting (5.25) into (5.20), we obtain the Lagrange multipliers
as follows:

O� D � g

T
� 2k1

�
�p� � "p"

�
˘ C ˚k1 C �k1� � "k1" � 3k4

�
�p� � "p"

�

˘2

C ˚k2 C �k2� � "k2" � k5
�
�p� � "p"

�

hijihiji

C ˚k3 C �k3� � "k3" � k7
�
�p� � "p"

�

qiqi C O.3/;

O
 D 1

2T
� p"k1˘ C 1

2
.k1" � 3p"k4/˘

2 C 1

2
.k2" � p"k5/ hijihiji

C 1

2
.k3" � p"k7/ qiqi C O.3/;

O�ll D 2�k1˘ C 3�k4˘
2 C �k5hijihiji C �k7qiqi C O.3/;

O�hiji D �2�k2hiji � 2�k5˘hiji � 3�k6hnhiihjini � �k8qhiqji C O.3/;

O
i D �k3qi C �k7˘qi C �k8hijiqj C O.3/:
(5.26)
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Let us determine the coefficients k1; � � � ; k8 by using the constraint (5.16)2 and
the expressions of the Lagrange multipliers (5.26). The constraint (5.16)2 can be
decomposed into the trace part, traceless part and antisymmetric part as follows:

h D � O�C 5

3
.pC˘/ O�ll � 5

3
O�hijihiji C 2.�"C pC˘/ O
C 8

3
qi O
i C 2

3
O
l OFppl;

2 O�lhr
OFiil � 2 O
hiri C 2 O
l OFlhrii C 2 O
hrqii D 0;

2 O�lŒr OFi�l C 2 O
Œrqi� C 2 O
l OFlŒri� D 0
(5.27)

where the brackets [ ] stand for the antisymmetry with respect to the suffixes inside
the brackets. From (5.27)1;2 we obtain

k1 D � 1

2�T�
;

k2 D � 1

4�Tp
;

k4 D � 1

3�

��
10

3
� 2p"

�

�
k1 C �k1� C p

�
k1"

�
;

k5 D � 1
�

�
10

3
k2 C �k2� C p

�
k2"

�
;

k5 D �1
p

��
1

3
� p"
2�

�
k1 C k2

�
;

k6 D � 1

6�Tp2
;

k7 D � 1
�

�
2

3
.4C 3f1/ k3 C �k3� C p

�
k3"

�
;

k8 D 1

p
.1C f2/k3;

(5.28)

where � is a function of � and " expressed by

� D 5

3
p � �p� � p

�
p": (5.29)

We notice two expressions of k5 in (5.28)4;5 are identically equivalent.
From the antisymmetric part of the constraint (5.16), i.e., (5.27)3, we obtain

OFlri D OFlir: (5.30)
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Since OFlri is symmetric with respect to l and r, OFlri is symmetric with respect to all
indices. Therefore instead of our linear approximation (5.24)1, it is possible to adopt

OFijk D OFhijki C 3

5
OFll.iıjk/ (5.31)

with

OFhijki D O.2/; and OFlli D 3f1qi C O.2/: (5.32)

This concludes, from (5.24)1, that

f1 D 5

6
f2: (5.33)

Next we analyze the entropy flux. From (5.23), we have

d'k Dqkdˇ1 C˘qkdˇ2 C hkiiqidˇ3 C ˇ2qkd˘ C ˇ3qidhkii

C ˚.ˇ1 C ˇ2˘/ıki C ˇ3hkii



dqi CO.3/: (5.34)

On the other hand, d'k is expressed as (5.15)2 with (5.16)1. By comparing these
expressions in terms of the derivatives of �, ", ˘ , hiji and qi with each other,
following relations are derived:

ˇ1� D �
�

g1� � 2
�
"C p

�

�
p�

�
k3;

ˇ2� D �
�
2k1f1� C k3

�
g2� � 2

p�
�

�
C k7

�
g1� � 2

�
"C p

�

�
p�

��
;

ˇ3� D ��
�
2k2f2� C k3

�
g3� � 2

p�
�

�
� k8

�
g1� � 2

�
"C p

�

�
p�

��
;

ˇ1" D �
�

g1" � 2
�
"C p

�

�
p"

�
k3;

ˇ2" D �
�
2k1f1" C k3

�
g2" � 2

p"
�

�
C k7

�
g1" � 2

�
"C p

�

�
p"

��
;

ˇ3" D ��
�
2k2f2" C k3

�
g3" � 2

p"
�

�
� k8

�
g1" � 2

�
"C p

�

�
p"

��
; (5.35)

ˇ1 D 1

T
;

ˇ2 D �k3

�
g2 � 2

�
"C p

�

��
;
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ˇ3 D ��k3

�
g3 � 2

�
"C p

�

��
;

f1 D ˇ2

2�k1
C p"
�
;

f2 D � ˇ3

2�k2
:

In particular, from (5.35)1;2;��� ;7 and (5.28), we obtain

dg1 D� 1

�k3T2
dT C 2

�
"C p

�

�
dp;

d.T� g2/ D�
�
2

�
"C p

�

�
C k7

T�k23

�
dT

C 2
�
"C p

�

�
Td� C 2T�

�
dpC 1

�k3
d

�
p"
�

�
;

d.pg3/ D2
�
"C 2 p

�

�
dpC 1

T

�
pg3 � 1

T�k3
� 2p

�
"C p

�

��
dT:

(5.36)

Using the integrability condition for g1 and the relation

g2 D 1

�

�
5

3
pg3 C p"

�2Tk3
C 2

�
"C p

�

��
� � 5

3
p

��
; (5.37)

which comes from (5.33), we can prove that (5.36)2 and (5.36)3 are equivalent.

5.3.2.4 Productions

The productions are also expanded with respect to the nonequilibrium variables
{˘; hiji; qi} around an equilibrium state. In the linear approximation, we have

OPll D � 3

�˘
˘; OPhiji D 1

�S
hiji; OQlli D � 2

�q
qi; (5.38)

where �˘ , �S and �q are the expansion coefficients, meaning of which will be
understood in Sect. 5.3.5. Then we obtain

˙ D 1

T� �˘
˘2 C 1

2pT�S
hijihiji � 2�k3

�q
qiqi = 0: (5.39)

There are three conditions for the coefficients:

T� �˘ > 0; pT�S > 0;
�q

k3
< 0: (5.40)
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5.3.2.5 Linear Constitutive Equations Expressed by the Usual Fields

It is usually more convenient to take f�, Tg as independent variables instead of
f�, "g. Let us first recall the following well-known relations:

f� D
�
@f

@�

�
"

D
�
@f

@�

�
T

� 1

cv

�
@"

@�

�
T

�
@f

@T

�
�

; f" D
�
@f

@"

�
�

D 1

cv

�
@f

@T

�
�

;

where cv is the specific heat at constant volume defined by

cv D
�
@"

@T

�
�

: (5.41)

Then, the coefficients are rewritten as follows:

k1 D � 1

2�T�
;

k2 D � 1

4�Tp
;
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3�

( 
10

3
� 2
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�
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�
�

!
k1 C �

�
@k1
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�
T

C T
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�
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�
@k1
@T

�
�

)
;

k5 D 1

4�Tp2
C 1

4�Tp�

(
2

3
� 1

�cv

�
@p

@T

�
�

)
;

k6 D � 1

6�Tp2
;

k7 D � 1
�

(
1

3
.8C 5f2/ k3 C �

�
@k3
@�

�
T

C T

�cv

�
@p

@T

�
�

�
@k3
@T

�
�

)
;

k8 D 1

p
.1C f2/ k3;

(5.42)

with

� D 5

3
p � �

�
@p

@�

�
T

� T

�cv

�
@p

@T

�2
�

¤ 0: (5.43)

From (5.36)1 we obtain

�
@g1
@�

�
T

D 2
�
"C p

�

��
@p

@�

�
T

: (5.44)
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Moreover we can obtain

1

k3
D 2�T2

�
"C p

�

��
@p

@T

�
�

� �T2
�
@g1
@T

�
�

: (5.45)

We will show in Sects. 5.4 and 5.5 that, by using the relations (5.35), (5.42), and the
equations of state (" D ".�;T/, p D p.�;T/), we can derive uniquely the explicit
expressions of k3 except for an integration constant. Similarly g3 are obtained from
(5.36)3, in particular, from the following relations

�
@pg3
@�

�
T

D 2
�
"C 2 p

�

��
@p

@�

�
T

; (5.46)

�
@pg3
@T

�
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D pg3
T
� 1

T2�k3
C 2

�
"C 2 p

�

��
@p

@T

�
�

� 2p

T

�
"C p

�

�
; (5.47)

except for an integration constant. g2 is also obtained from (5.36)2 or (5.37). Finally,
the coefficient f2 (or f1) can be determined by the following relation:

f2 D �2�Tp

�
g3 � 2

�
"C p

�

��
k3: (5.48)

And ˇ2 and ˇ3 are determined from (5.35)8;9 as

ˇ2 D �k3

�
g2 � 2

�
"C p

�

��
;

ˇ3 D ��k3

�
g3 � 2

�
"C p

�

��
:

(5.49)

5.3.3 Convexity of the Entropy Density

The entropy density (5.18) with (5.22) and entropy flux (5.23) with (5.28) and (5.35)
are summarized as follows:

h D �s� 1

2T�
˘2 � 1

4pT
hijihiji C �k3qiqi CO.3/;

'k D 1

T
qk C ˇ2˘qk C ˇ3qihiki C O.3/:

(5.50)

The convexity condition (2.47) evaluated in an equilibrium state becomes

OQE D OQ5E �
1

2T�
.ı˘/2 � 1

4pT
ıhijiıhiji C �k3ıqiıqi < 0; (5.51)
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where OQ5E is the corresponding quantity for Euler fluids. From the condition OQ5E <

0, we obtain the usual thermodynamic inequalities, that is, the positivity of the heat
capacity and the compressibility [see (2.20)]. Therefore the following inequalities
must be fulfilled:

� > 0; k3 < 0: (5.52)

Moreover from (5.40) and (5.52), we obtain

�˘ > 0; �S > 0; �q > 0: (5.53)

Remark The function � can be rewritten neatly in terms of f�; sg as follows:

� D 5

3
p� �

�
@p

@�

�
s

> 0: (5.54)

5.3.4 Main Field

From (5.26), the intrinsic Lagrange multipliers in the linear approximation are
obtained as follows:

O� D � g
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C 1
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�
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� 1
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�
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�
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�
k3qi;

O�hiji D 1

2pT
hiji;

O�ll D � 1

T�
˘;

O
 D 1

2T
C 1

2�Tcv�

�
@p

@T

�
�

˘;

O
i D �k3qi:

(5.55)

Taking into account (5.13), we can evaluate the main field components for which
the differential system becomes symmetric hyperbolic. The potential h0:

h0 D � O�C 2�" O
C .pC˘/ O�ll � hiji O�hiji C 2qi O
i � h (5.56)

is a convex function with respect to the main field under the same inequalities (5.52).
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5.3.5 Field Equations

Summarizing all the results above, we have the linear constitutive equations:

OFijk D 3

2
f2q.iıjk/ C O.2/;

�
OFllk D 5

2
f2qk C O.2/; OFhijik D f2qhiıjik CO.2/

�

OGllij D .g1 C g2˘/ıij � g3hiji C O.2/;

(5.57)

where the coefficients f2, g1, g2 and g3 are determined from the following relations:
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:

(5.58)

The closed system of field equations is obtained by substituting these constitutive
equations into the system (5.2) with (5.7):

@�

@t
C @

@xk
.�vk/ D 0;

@�vi

@t
C @

@xk

˚
�vivk C .pC˘/ıik � hiki


 D 0;
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@t
.�v2 C 2�"/C @

@xk

˚
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@t

˚
�vivj C .pC˘/ıij � hiji


C



124 5 RET 14-Field Theory of Polyatomic Gas and Dense Gas

C @

@xk

�
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(5.59)
If we want to use the material derivative, the balance equations can be rewritten as
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D � 1
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qi: (5.60)

We now understand that �˘ , �S and �q can be regarded as the relaxation times of the
dynamic pressure, the shear stress and the heat flux, respectively.

5.3.6 Relationship Between ET and Navier-Stokes Fourier
Theories

We carry out the Maxwellian iteration (for more detail see Chap. 18, Sects. 18.2.1
and 18.3) in the system (5.60): The first iterates ˘.1/, .1/hiji and q.1/i are obtained by

the substitution of the 0th iterates˘.0/ D 0, .0/hiji D 0 and q.0/i D 0 into the left hand
side of (5.60)4;5;6. Then we obtain

˘.1/ D ��˘� @vk

@xk
; 

.1/

hiji D 2p�S
@vhi

@xji
; q.1/i D

1

2T2�k3
�q
@T

@xi
: (5.61)

On the other hand, we have the laws of Navier-Stokes and Fourier expressed
by (1.10). Their comparison reveals that

� D � �˘ ; 
 D p�S; 	 D � 1

2T2�k3
�q: (5.62)

We can therefore estimate the values of the relaxation times �˘ ; �S, and �q from the
experimental data of the coefficients �, 
, and 	.

The second iterates are obtained by substituting the first iterates into the left hand
side of (5.60)4;5;6, and higher iterates are obtained in a similar way.

In conclusion, the system can be certainly closed by the universal principles
except for some nonessential constants, provided that we know the thermal and
caloric equations of state and the viscosity and heat conductivity coefficients.
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5.4 Rarefied-Gas Limit

It is important to study the rarefied-gas limit of the present theory in order to check
its consistency with the results from the kinetic theory of gases explained in Chap. 6.
The dependence of the relations in a rarefied gas on the degrees of freedom of a
molecule is also made clear.

5.4.1 Non-polytropic Gas

From the ideal gas law, the thermal and caloric equations of state for a non-
polytropic rarefied gas are expressed as

p D kB

m
�T; " D ".T/: (5.63)

In this case the specific heat depends only on the temperature:

cv D cv.T/: (5.64)

The coefficients f2; g1; g2; g3, ˇ2; ˇ3 in this case are easily obtained from the
relations (5.49) and (5.58). We assume that the integration constants in g1 and pg3
vanish. This assumption is reasonable because of the fact that our results below are
consistent with those of the kinetic theory in Chap. 6. The coefficients of the linear
constitutive equations are given by

f2 D 2

1C Ocv ; g1 D 2
�
"C kB

m
T

�
p; g2 D g3 D 2

�
"C 2kB

m
T

�
;

k3 D � 1

2Tp2.1C Ocv/ ;
(5.65)

where Ocv is the dimensionless specific heat:

Ocv D cv
kB=m

: (5.66)

The closed system of field equations with material derivative is obtained as
follows:
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D 0;
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 D � 1
�q

qi: (5.67)

The relaxation times �S, �˘ and �q are related to the shear and bulk viscosities
and the heat conductivity:


 D p�S; � D 2Ocv � 3
3Ocv p�˘ ; 	 D

�
"C kB

m
T

�
p

T
�q: (5.68)

The entropy density and the entropy flux are expressed as

h D �s � 3Ocv
2.2Ocv � 3/pT

˘2 � 1

4pT
hijihiji � �

2p2T .1C Ocv/qiqi C O.3/;

(5.69)

'k D 1

T
qk � 1

pT .1C Ocv/˘qk C 1

pT .1C Ocv/qihiki C O.3/: (5.70)

The convexity condition is satisfied when

2Ocv � 3 > 0: (5.71)

This condition is always satisfied for a polyatomic gas Ocv > 3=2. However, as will
be discussed in Sect. 5.6, we should be careful in the case of monatomic gases with
Ocv D 3=2.
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In the present case, the intrinsic Lagrange multipliers (5.55) have the simplified
form:

O� D � g

T
� 3."� Ocv

kB
m T/

pT.2Ocv � 3/ ˘;

O�i D
�."C kB

m T/

p2T.Ocv C 1/qi;

O�hiji D 1

2pT
hiji;

O�ll D � 3Ocv
pT.2Ocv � 3/˘;

O
 D 1

2T
C 3

2pT.2Ocv � 3/˘;

O
i D � �

2p2T.Ocv C 1/qi:

(5.72)

5.4.2 Polytropic Gas

For a polytropic rarefied polyatomic gas, the equations of state are given by (1.28).
Therefore the dimensionless specific heat is expressed as

Ocv D D

2
: (5.73)

The coefficients of the constitutive equations are expressed as follows:

f2 D 4

DC 2; g1 D kB

m
T.DC 2/p; g2 D g3 D kB

m
T.DC 4/;

k3 D � 1

Tp2.DC 2/ :
(5.74)

With these coefficients, we obtain the closed system of field equations which is
already given in (1.29). If we want to use the material derivative, we have
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(5.75)

Then relaxation times are related to the phenomenological coefficients:


 D p�S; � D 2.D � 3/
3D

p�˘; 	 D DC 2
2

p2

�T
�q: (5.76)

In this case the entropy density and the entropy flux are expressed as

h D hE � 3D

4.D � 3/pT
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.DC 2/p2T qiqi C O.3/;
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qihiki C O.3/:

(5.77)

The convexity condition is satisfied if D > 3.
The intrinsic Lagrange multipliers (5.72) have the form:

O� D � g

T
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O�i D 1

pT
qi;

O�hiji D 1

2pT
hiji;

O�ll D � 3D
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O
i D � �

p2T.DC 2/qi:

(5.78)
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A remarkable point is that O� is independent of the dynamic pressure and coincides
with the equilibrium value.

We will see in the next Chap. 6 that the system (5.75) is complete equivalent
to the ones obtained via MEP. Moreover for diatomic gases with D D 5, field
equations (5.75) coincide with those derived by Mallinger using a Grad procedure
[14] except for the expressions of the relaxation times.

5.5 Models of Dense Gas

As the next step, it is interesting to study explicitly the applicability of the ET14
theory to dense gases. In this section, the ET14 theory is applied to three physically
important systems: (1) a gas with the virial equations of state, (2) a hard-sphere
system, and (3) a van der Waals fluid.

5.5.1 Gas with the Virial Equations of State

The thermal and caloric equations of state are given in the form of virial expansion:

p D kB

m
�T
�
1C B2.T/�C B3.T/�

2 C � � � � ;

" D D

2

kB

m
T � kB

m
T2�B0

2.T/ �
1

2

kB

m
T2�2B0

3.T/C � � � ;
(5.79)

where B2.T/, B3.T/, � � � are the second and third virial coefficients, and so on. Here
a prime means a derivative with respect to the temperature T. For simplicity, we
have assumed that, in the rarefied-gas limit, above equations of state tend to (1.28).

Using the equations of state (5.79), we can obtain the explicit expressions of
the coefficients in the constitutive equations in the following way: We obtain
k1; k2; k4; � � � ; k8 except for k3 from (5.42). Integrating g1 with respect to �, we
obtain g1 as follows:
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Z �
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�2
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˚
.DC 3/B2 � TB0

2




CO
�
�3
�C C2.�0;T;T0/;

where C1;2.�0;T;T0/ are integration functions, and �0 and T0 are, respectively, the
mass density and temperature in a reference state. As g1 at an arbitrary value of T
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must asymptotically approaches
� kB

m

�2
.DC2/T2� in the rarefied-gas limit discussed

in Sect. 5.4, we obtain C2.�0;T;T0/ D 0. As g1 has been determined within the
approximation adopted here, we get the explicit form of k3 from (5.58)3. g2 and g3
can be determined in a similar way.

For simplicity, we show the constitutive equations up to the first correction with
respect to �:

f2 D 4

DC 2 C
2.DC 2/TB0

2 C 4T2B00
2

.DC 2/2 �CO
�
�2
�
; (5.80)

g1 D
�

kB

m

�2
�T2

˚
.DC 2/C .DC 3/B2 � TB0

2

�
�C O.�2/



; (5.81)

g2 D kB

m
T

�
DC 4C 4.D � 3/B2 � 5DTB0

2 � 6T2B00
2

2.D � 3/ �C O
�
�2
��
; (5.82)

g3 D kB

m
T
˚
DC 4C �2B2 � TB0

2

�
�C O

�
�2
�

: (5.83)

As can be seen above, the first correction depends on both the virial coefficients
B2 and the degrees of freedom D. The closed system of field equations can be
easily obtained by using above constitutive equations. We omit its expression for
simplicity.

The relaxation times are related to the shear and bulk viscosities and the heat
conductivity:


 DkB

m
�T
�
1C B2.T/�C O

�
�2
��
�S;

� D 1

3D

kB

m
�T f2.D� 3/� Œ.DC 12/B2

C 12

D
.DC 2/TB0

2 C
12

D
T2B00

2

�
�C O

�
�2
��
�˘ ;

	 D1
2

�
kB

m

�2
�T

DC 2C .DC 2/B2 � T2B00

2

�
�C O

�
�2
�

�q:

(5.84)

5.5.2 Hard-Sphere System

The thermal and caloric equations of state are given by

p D kB

!
T�H.�/;

" D D

2

kB

m
T;

(5.85)
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where � is the packing fraction related to the mass density � by

� D �!

m
; (5.86)

and H.�/ is a function of � determined explicitly by computer experiments [15].
Here ! is the volume of a hard sphere. We use � instead of �.

The coefficients in the constitutive equations derived in the same way as above
are given by

f2 D 4
R �
0

H2. N�/d N�
D�H C 2 R �0 H2. N�/d N�;

g1 D k2B
m!

�T2
�

DH C H2 C 1

�

Z �

0

H2. N�/d N�
�
;

g2 D kB

m
T

(
DC 2H �

6DH2 C 2
�
.�5DC 6H/

R �
0

H2. N�/d N�
2DH � 6H2 � 3D�H0

)
;

g3 D kB

m
T

�
DC 2H C 2

�H

Z �

0

H2. N�/d N�
�
;

(5.87)

where H0 D dH.�/=d�. The closed system of field equations can be obtained by
using the constitutive equations obtained. We omit its expression for simplicity.

The relaxation times are related to the shear and bulk viscosities and the heat
conductivity:


 D p�S;

� D 1

3D

kB

!
�T
�
2DH � 6H2 � 3D�H0� �˘ ;

	 D
�

kB

m

�2 m

!
�

T

2

�
DH C 2

�

Z �

0

H2. N�/d N�
�
�q:

(5.88)

The convexity condition of the entropy density in this case can be expressed by
only one inequality:

�H

3
C H2

D
C �H0

2
< 0: (5.89)

Then we find that there is a critical packing fraction �C such that the above condition
is satisfied in the region 0 < � < �C. In the case of D D 5, for example, we can
estimate �C D 0:0447 by adopting the following functional form of H [16]:

H.�/ D 1C �C �2 � �3
.1 � �/3 : (5.90)
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Fig. 5.1 Dependence of the
critical packing fraction �C

on the degrees of freedom D
of a molecule

3 5 10 15
0.00
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Ch
The dependence of �C on D is shown in Fig. 5.1. It is remarkable that �C D 0 in the
case of D D 3.

5.5.3 van der Waals Fluid

Let us study a gas with the thermal and caloric equations of state given by

p D kB

m

T�

1 � b�
� a�2;

" D D

2

kB

m
T � a�;

(5.91)

where the material-dependent constants a and b represent, respectively, a measure
of the attraction between the constituent molecules and the effective volume (or
exclusion volume) of a molecule.

The constitutive equations are obtained by using the same procedure as above:

f2 D 4
kB
m T C a

b2�
.1 � b�/fb�C log.1 � b�/g

.DC 2/ kB
m T � D.1 � b�/a�

;

g1 D kB

m
T

(
.DC 2/pC kB

m
T

b�2

.1 � b�/2
� 2a�2

1C b�

1� b�
C 8

3

a2�3

kB
m T

)
;

g2 D
nkB

m
T
2.D� 3/.DC 4/� .7D2 C 18D � 12/b�C 5D.DC 2/b2�2

1 � b�

C a

b


D.1 � b�/2.10C Db�/C 12b�.2C Db�/

� � 4D
a2�2

kB
m T

.1 � b�/2
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C 10D
a

b2�
.1�b�/2 log.1�b�/

o.nkB

m
T Œ2.D�3/�5Db��CDa�.1� b�/2

o
;

g3 D kB

m
T
nkB

m
T

DC 4 � .DC 2/b�
1 � b�

C a

b
Œ2 � .DC 8/b�C Db2�2�

C 4a2�2

kB
m T

.1 � b�/C 2 a

b2�
.1 � b�/ log.1 � b�/

o.� kB

m
T � a�.1� b�/

�
:

(5.92)

The relaxation times are related to the shear and bulk viscosities and the heat
conductivity:


 D p�S;

� D
�

kB

m

�T

3D.1� b�/2
Œ2.D � 3/� 5Db��C a�2

3

�
�˘ ;

	 D 1

2

(�
kB

m

�2 DC 2
1 � b�

�T � kB

m
Da�2

)
�q:

(5.93)

We now study the convexity condition of the entropy density (5.52). For later
convenience, we introduce the dimensionless variables:

Op D p

pcr
; O� D �

�cr
; OT D T

Tcr
; (5.94)

where �cr D 1=.3b/; pcr D a=.27b2/ and Tcr D 8a=.27 kB
m b/ are, respectively, the

mass density, the pressure and the temperature at the critical point. Then the thermal
and caloric equations of state are rewritten in the reduced form:

Op D 8 OT O�
3 � O� � 3 O�

2;

O" D �cr

pcr
" D 4D OT

3
� 3 O�:

(5.95)

As the inequality (5.52)2 is always satisfied, the convexity condition is now
expressed as

8 OT O�
3 � O� � 3 O�

2 > 0;
8 OT

.3 � O�/2 � 2 O� > 0;

18C D.5 O� � 6/
D. O� � 3/2

OT2 O� � 3
8
OT O�2 < 0; 8.DC 2/ OT C 3D. O� � 3/ O�

. O� � 3/
OT2 O� < 0:

(5.96)
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Fig. 5.2 Convexity condition is satisfied in the shaded region. The degrees of freedom: D D 5

(left) and 8 (right). The curve represents the coexistence curve

This convexity condition is satisfied in the shaded regions in Fig. 5.2 for D D 5

and 8. We notice that the condition is violated in the liquid phase.

5.5.4 Remark

From the results of the hard-sphere system and the van der Waals fluid, we found
that the convexity condition is not always satisfied, but its region is limited up to
a critical value of the mass density. Therefore, we understand that the ET14 theory
developed above is applicable only to moderately dense polyatomic gases. Further
developments of the ET14 theory are highly expected in order to study more dense
gases.

5.6 Singular Limit from Polyatomic to Monatomic Gas

In this section, we show that a rarefied monatomic gas, where there exists no
dynamic pressure, can be identified as a singular limit of a rarefied polyatomic
gas. We confine our discussion within the singular limit from ET14 of a rarefied
polyatomic gas to ET13 of a rarefied monatomic gas [17]. The gas is assumed to be
polytropic.

Let us discuss the limiting process in the system (1.29) from polyatomic to
monatomic rarefied gases when we let D approach 3 from above, where D is
assumed to be a continuous variable. The limit is singular in the sense that the
system for a rarefied polyatomic gas with 14 independent fields needs to converge
to the system with only 13 independent fields for a rarefied monatomic gas.
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The singularity can be seen also by the inequalities required for the symmetric
hyperbolicity in equilibrium (5.52). This requirement is always satisfied in the ET13
theory of monatomic gases, while, in the present ET14 theory, it is expressed by the
inequality D > 3. The condition is obviously satisfied only for polyatomic gases
with D > 3, and the case of monatomic gases with D D 3 is not admissible.
Therefore only the limit of D toward 3 from above is meaningful.

In the present case, the relaxation times �S; �˘ and �q are, respectively, related
to the shear viscosity 
, the bulk viscosity � and the heat conductivity 	 as seen
in (5.76). We observe that the bulk viscosity vanishes when D! 3 as is consistent
in monatomic gases.

Let us take the limit D ! 3 of the system (1.29), that is, the limit from
polyatomic to monatomic rarefied gases. Then we immediately notice that the limit
of the system exists, but it still has 14 equations. However, we also notice the
following three points (I)–(III):

(I) The limit of the equation for ˘ , (1.29)5, is given by

P̆ D �
�
1

�˘
C @vk

@xk

�
˘;  !

�
˘

�

��
D � 1

�˘

˘

�
: (5.97)

This is the first-order quasi-linear partial differential equation with respect to
the dynamic pressure˘ .

As the limit case is the case of monatomic gases, the initial condition for
(5.97) must be compatible with monatomic gases. We therefore should impose
the following initial condition:

˘.0; x/ D 0: (5.98)

Then, by assuming the uniqueness of the solution, the only possible solution
of (5.97) under the initial condition (5.98) is given by

˘.t; x/ D 0 8 t > 0: (5.99)

Therefore the dynamic pressure in a monatomic gas vanishes identically for
any time once we impose the initial condition (5.98).

(II) If we insert the solution (5.99) into the remaining equations in (5.75) with
D ! 3, we confirm that the resulting equations are the same as the ones
of ET13 for rarefied monatomic gases. This means that the solution of the
limiting system with 14 equations is essentially equivalent to the solution of
ET13 of monatomic gases.

(III) The violation of the symmetric hyperbolicity condition (D > 3) disappears
because this inequality comes out from the non-vanishing dynamic pressure.
Therefore the condition for the symmetric hyperbolicity is the same as the one
in the ET13 theory, which is always satisfied in equilibrium.
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To sum up, we may conclude that the ET14 theory is applicable also to
rarefied monatomic gases if we impose the initial or boundary condition of
zero dynamic pressure. In [17], two illustrative numerical results in the process
of the singular limit, that is, the linear waves and the shock waves are shown in
order to grasp the asymptotic behavior of the physical quantities, in particular,
of the dynamic pressure.
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Chapter 6
Maximum Entropy Principle for Rarefied
Polyatomic Gas

Abstract In this chapter, we prove, in the case of polyatomic rarefied gases, that
the maximum entropy principle (MEP) gives the same closure of the system as that
obtained in the phenomenological ET theory with 14 fields discussed in Chap. 5.
The main idea is to consider a generalized distribution function depending not only
on the velocity but also on an extra variable that connects with the internal degrees
of freedom of a constituent molecule. On the basis of MEP, we again obtain the same
binary hierarchy introduced in the previous chapter: the one is the usual momentum-
type, F-series, and the other is the energy-type, G-series. The extra variable plays
a role in the G-series. Thus we prove the perfect agreement between the ET theory
and the molecular ET theory at least within 14-field theories. The agreement for any
number of moments will be proved in Chap. 10.

6.1 Generalized Distribution Function for Rarefied
Polyatomic Gases

We have seen that one of the most important results in the case of rarefied
monatomic gases is that the closure of the system obtained by the macroscopic
principles of ET is exactly same as the closures of MEP and also of the Grad
procedure. Therefore, a question naturally arises: is the above statement for
monatomic gases still valid for polyatomic gases? To answer to this question is the
main purpose of this chapter. As seen below, the answer is affirmative. The essential
contents of this chapter were firstly shown in the paper of Pavić, Ruggeri and Simić
[1].

A crucial step in the developments of the kinetic theory of rarefied polyatomic
gases was made by Borgnakke and Larsen [2]. It is assumed that the distribution
function depends on, in addition to the velocity, a continuous variable representing
the energy of the internal modes of a molecule in order to take into account the
exchange of energy between translational modes and internal modes. This model
was initially used for Monte Carlo simulations of polyatomic gases, and later it has
been applied to the derivation of the generalized Boltzmann equation by Bourgat,
Desvillettes, Le Tallec and Perthame [3].

The distribution function f .t; x; c; I/ is defined on the extended domain Œ0;1/ �
R3�R3� Œ0;1/. Its rate of change is determined by the Boltzmann equation which

© Springer International Publishing Switzerland 2015
T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics beyond
the Monatomic Gas, DOI 10.1007/978-3-319-13341-6_6
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has the same form as the one of monatomic gases (1.16) but the collision term Q.f /
now takes into account the existence of the internal degrees of freedom through the
collisional cross section.

6.2 Equilibrium Distribution Function for Polyatomic Gases
and the Euler System

Our first aim is to recover the equilibrium distribution function and appropriate
field equations for macroscopic variables at the hydrodynamic stage (i.e., transfer
equations for moments) via MEP. We shall, therefore, briefly describe the kinetic
model for polyatomic gases and point out the important consequences related to the
internal energy density.

To this end, let us study the conservation laws of momentum and energy during
a collision between two molecules:

c0 C c0� D cC c�; (6.1)

1

2
mjc0j2 C 1

2
mjc0�j2 C I0 C I0� D

1

2
mc2 C 1

2
mjc�j2 C I C I�;

where jcj D .cici/
1=2. The post-collisional quantities, denoted with the prime, are

described by the so-called Borgnakke-Larsen procedure, based on a repartition of
the kinetic and internal energies [2–4]. We now adopt the center of mass frame and
write the total energy of the incoming molecules, which is, by virtue of (6.1), the
same as the one of the outgoing molecules:

" D 1

4
mjc � c�j2 C I C I� D 1

4
mjc0 � c0�j2 C I0 C I0�:

Then, with a help of a parameter R 2 Œ0; 1�, we attribute a part of total energy of the
outgoing molecules to their kinetic energy, and the rest to their internal energy:

R " D 1

4
mjc0 � c0�j2; (6.2)

.1 � R/ " D I0 C I0�:

To distribute the internal energy itself between the two outgoing molecules, we
introduce a new parameter r 2 Œ0; 1� and write

I0 D r .1 � R/ "; I0� D .1 � r/.1 � R/ ":
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Finally, as collisions between molecules are assumed to be of specular reflection
type, we parameterize (6.2) by a unitary vector ! 2 S2:

c0 � c0� D
r
4R"

m
T!

�
c � c�
jc � c�j

�
;

where T! is the symmetry operator with respect to the plane f!g? defined by

T!z D z � 2.! � z/!; 8z 2 R3:

Coming back into the laboratory reference frame, we end up with expressions for
post-collisional velocities:

c0 D cC c�
2
C
r

R"

m
T!

�
c � c�
jc � c�j

�
; c0� D

cC c�
2
�
r

R"

m
T!

�
c � c�
jc � c�j

�
:

The collision invariants in this model form a 5-vector:

m

�
1; ci; c

2 C 2 I

m

�T

; (6.3)

which leads to hydrodynamic variables in the form:

0
@ �

�vi

�v2 C 2�"

1
A D

Z
R3

Z 1

0

m

0
@ 1

ci

c2 C 2I=m

1
A f .t; x; c; I/'.I/ dI dc; (6.4)

where the non-negative measure '.I/ dI is introduced so as to recover the classical
caloric equation of state for polyatomic gases in equilibrium. The entropy is defined
by the following relation:

h D �kB

Z
R3

Z 1

0

f log f'.I/ dI dc: (6.5)

By introducing the peculiar velocity Ci D ci � vi, we rewrite (6.4) as follows:

0
@ �

0i

2�"

1
A D

Z
R3

Z 1

0

m

0
@ 1

Ci

C2 C 2I=m

1
A f .t; x;C; I/'.I/ dI dC: (6.6)
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Note that the internal energy density " can be divided into the translational part "T

and the part of the internal degrees of freedom "I:

�"T D
Z

R3

Z 1

0

1

2
mC2f .t; x;C; I/'.I/ dI dC;

�"I D
Z

R3

Z 1

0

If .t; x;C; I/'.I/ dI dC: (6.7)

The energy "T is related to the kinetic temperature T:

"T D 3

2

kB

m
T: (6.8)

The maximum entropy principle is expressed in terms of the following variational
problem: Determine the distribution function f .t; x;C; I/ such that h! max, under
the constraints (6.4), or equivalently, due to the Galilean invariance, under the
constraints (6.6). The result is summarized as follows [1]:

Theorem 6.1 The distribution function that maximizes the entropy (6.5) under the
constraints (6.6) has the form:

fE D �

m A.T/

�
m

2�kBT

�3=2
exp

�
� 1

kBT

�
1

2
mC2 C I

��
; (6.9)

where

A.T/ D
Z 1

0

exp

�
� I

kBT

�
'.I/ dI: (6.10)

The proof of the theorem is accomplished with the use of the Lagrange
multiplier method. Introducing the vector of the multipliers .�; �i; 
/, we define
the functional:

L D �
Z

R3

Z 1

0

kBf log f'.I/ dI dcC �
�
� �

Z
R3

Z 1

0

mf'.I/ dI dc
�

C�i

�
�vi �

Z
R3

Z 1

0

mfci'.I/ dI dc
�

C

�
�v2 C 2�"�

Z
R3

Z 1

0

m

�
c2 C 2 I

m

�
f'.I/ dI dc

�
:

As this is a functional of the distribution function f and we want to maximize it with
respect to f with the given macroscopic quantities, the previous functional can be
substituted by the following one:

L D
Z

R3

Z 1

0

�
�kBf log f �m

�
�C �ici C 


�
c2 C 2 I

m

��
f

�
'.I/ dI dc:

(6.11)
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Since L is a scalar, it must retain the same value in the case of zero hydrodynamic
velocity v D 0 due to the Galilean invariance. Therefore

LD
Z

R3

Z 1

0

�
�kBf log f�m

�
O�C O�iCiC O


�
C2C2 I

m

��
f

�
'.I/dI dC:

(6.12)

Comparison between (6.11) and (6.12) yields the relations (2.42) (with matrix X
given by (2.55)):

� D O� � O�ivi C O
v2; �i D O�i � 2 O
vi; 
 D O
; (6.13)

which dictate the velocity dependence of the Lagrange multipliers in accordance
with the general results of the Galilean invariance.

The Euler-Lagrange equation ıL =ıf D 0 leads to the following form of the
distribution function:

fE D exp

�
�1 � m

kB

�
O�C O�iCi C O


�
C2 C 2 I

m

���
:

Plugging this into the constraints (6.6), with the help of (6.8), one determines the
zero velocity Lagrange multipliers in terms of the hydrodynamic variables:

exp

�
�1 � m

kB

O�
�
D �

m A.T/

�
m

2�kBT

�3=2
; O�i D 0; O
 D 1

2T
; (6.14)

with A.T/ defined by (6.10). The proof is completed.
Notice that, using (6.13) and (6.14), we can have the explicit form of the

Lagrange multipliers (i.e., the main field) that symmetrize the system. These exactly
coincide with the Godunov variables (2.18):

� D 1

T

�
�gC 1

2
v2
�
; �i D �vi

T
; 
 D 1

2T
:

The distribution function (6.9) is the generalization of the classical Maxwellian
equilibrium distribution in the case of polyatomic gases. It was derived in [3, 4] by
means of the H-theorem.

The weighting function '.I/ is determined in such a way that it recovers the
caloric equation of state for polyatomic gases. If D is the degrees of freedom of a
molecule, it can be shown that '.I/ D I˛ leads to the caloric equation of state in
equilibrium provided that the relation (1.31) holds.

Statement 1 In equilibrium, the internal energy "I has the following form:

"IjE D
1

m

B.T/

A.T/
; B.T/ D

Z 1

0

I'.I/ exp

�
� I

kBT

�
dI: (6.15)
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Moreover, if weighting function is chosen to be '.I/ D I˛, internal energy of a
polyatomic gas reads

" D
�
5

2
C ˛

�
kB

m
T; ˛ > �1: (6.16)

To prove (6.15) one just has to put the equilibrium distribution (6.9) into (6.7)2.
Furthermore, choosing '.I/ D I˛ , we have:

A.T/ D .kBT/1C˛� .1C ˛/; B.T/ D .kBT/2C˛� .2C ˛/; (6.17)

with overall restriction ˛ > �1. With the help of the relation for the Gamma
function � .zC 1/ D z� .z/ one obtains B.T/=A.T/ D .1 C ˛/kBT, which in turn
leads to (6.16) by combining with the translational energy (6.8).

The relation between ˛ and D (1.31) follows directly from comparison
between (6.16) and the well-known caloric equation of state for polyatomic gases:

" D D

2

kB

m
T: (6.18)

Observe that the model for a monatomic gas (D D 3) cannot be recovered from
the one with the continuous internal energy, since the value of the parameter ˛ in
monatomic case violates the overall restriction ˛ > �1.

Remark From (6.15) we notice that, in principle, this approach seems to be valid
also for nonpolytropic gases for which the specific heat is not constant and " is not
linear in the temperature. A challenge is to find a measure '.I/ ¤ I˛ such that the
specific heat have the physical meaning in a nonpolytropic gas. For the rest of this
chapter, we will study only polytropic gases for which (6.18) is true with '.I/ D I˛

and ˛ is related to D through (1.31).

Now we can prove the following theorem:

Theorem 6.2 If (6.9) is the local equilibrium distribution function with � � �.t; x/,
v � v.t; x/ and T � T.t; x/, then the hydrodynamic variables �, v and T satisfy the
Euler system

@

@t
�C @

@xi
.�vi/ D 0;

@

@t

�
�vj
�C @

@xi

�
�vivj C pıij

� D 0; (6.19)

@

@t

�
�"C �v

2

2

�
C @

@xk

��
�"C �v

2

2
C p

�
vk

�
D 0

with p D .kB=m/�T and " given by (6.18).
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Proof The Euler system (6.19) is the simplest example of the binary hierarchy
postulated in (5.2):

@F

@t
C @Fk

@xk
D 0;

@Fi

@t
C @Fik

@xk
D 0;

@Gll

@t
C @Gllk

@xk
D 0;

(6.20)

with
�

F
Fi

�
D
�
�

�vi

�
D
Z

R3

Z 1

0

m

�
1

ci

�
fEI˛ dI dc (6.21)

and

Gll D �v2 C 2�" D
Z

R3

Z 1

0

m.c2 C 2I=m/fI˛ dI dc: (6.22)

In the present case we obtain as closure:

Fij D
Z

R3

Z 1

0

mcicjfEI˛ dI dc D �vivj C kB

m
�Tıij; (6.23)

and

Glli D
Z

R3

Z 1

0

m.c2 C 2I=m/cifEI˛ dI dc D ��v2 C 2�"C p
�
vi; (6.24)

with " given by (6.18), and this completes the proof.

6.3 Justification of the Binary Hierarchy
of the Moment-Equations for Polyatomic Gases

In the case of the Euler equation (6.20), we have noticed two different kinds of
moments: the moment F’s in (6.21), and the moment G in (6.22) where the variable
I of the internal modes plays a role. Therefore it is appropriate to justify the 14-
moment theory with the binary hierarchy (5.2) from the kinetic theory. Indeed we
have (5.2) with

0
@ F

Fi1

Fi1i2

1
A D

Z
R3

Z 1

0

m

0
@ 1

ci1

ci1ci2

1
A f .t; x; c; I/ I˛ dI dc; (6.25)
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�
Gpp

Gppk1

�
D
Z
R3

Z 1

0

m

�
c2 C 2 I

m�
c2 C 2 I

m

�
ck1

�
f .t; x; c; I/ I˛ dI dc: (6.26)

6.3.1 MEP for the 14-Moment System for Polyatomic Gases

We now want to use the MEP in the case of the binary hierarchy with 14 fields.
For the entropy defined by (6.5), the MEP poses the following variational problem:
Determine the distribution function f .t; x; c; I/ such that h ! max under the
constraints (6.25) and (6.26). The solution of the problem is given by the following
theorem [1]:

Theorem 6.3 The distribution function, which maximizes the entropy (6.5) under
the constraints (6.25) and (6.26) and under the assumption that processes are not
so far from equilibrium, has the form:

f D fE

�
1 � �

p2
qiCi C �

p2

�
�hiji C

�
5

2
C ˛

�
.1C ˛/�1˘ıij

�
CiCj (6.27)

� 3

2.1C ˛/
�

p2
˘

�
1

2
C2 C I

m

�
C
�
7

2
C ˛

��1
�2

p3

�
1

2
C2 C I

m

�
qiCi

)
;

where fE is the equilibrium distribution (6.9) with A.T/ being the auxiliary
function (6.17)1.

The functional for the constrained variational problem reads

L D
Z

R3

Z 1

0

˚�kBf log f �m

�C �ici C �ijcicj

C.
C 
ici/

�
c2 C 2 I

m

��
f

�
'.I/ dI dc: (6.28)

By the Galilean invariance, the functional is the same for the case with zero
hydrodynamic velocity (v D 0). Therefore, we have

L D
Z

R3

Z 1

0

n
�kBf log f � m

hO�C O�iCi C O�ijCiCj

C. O
C O
iCi/

�
C2 C 2 I

m

��
f

�
'.I/ dI dC: (6.29)

The comparison between (6.28) and (6.29) gives the velocity dependence of the
Lagrange multipliers according with the Galilean invariance (2.42). This coincides
exactly with the velocity dependence for the main field in the macroscopic
theory (5.13). This is in agreement with the general result given in Sect. 4.3.
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From (6.29), the solution of the Euler-Lagrange equation ıL =ıf D 0 is given
by:

f D exp.�1 � �=kB/; � D O�C O�iCi C O�ijCiCj C . O
C O
iCi/

�
C2 C 2 I

m

�
:

As in a monatomic gas, there is the problem of the convergence of moments. We,
therefore, try to obtain the approximate solution in the form of expansion around
the local equilibrium:

f D fE

�
1 � m

kB

�
Q�C Q�iCi C Q�ijCiCj C . Q
C Q
iCi/

�
C2 C 2 I

m

���
; (6.30)

where fE is the equilibrium distribution (6.9) and

Q� D O� � O�E; Q�i D O�i � O�iE; Q�ij D O�ij � O�ijE; Q
 D O
 � O
E; Q
i D O
i � O�iE;

where subscript E indicates the values of the Lagrange multipliers at a local
equilibrium state.

Inserting (6.30) into the densities (6.25) and (6.26), one obtains the following
algebraic linear system:

Q� D 0;
Q�ii C .5C 2˛/ Q
 D 0;
Q�i C .7C 2˛/ p

�
Q
i D 0;

2
p2

�
Q�ij �

�
k

m
p � 2p2

�
Q

�
ıij D � k

m
pij; (6.31)

�
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2
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Q�ii C

�
15

2
C 2.1C ˛/.5C ˛/

�
Q
 D 0;

�
7

2
C ˛

�
p2

�
Q�i C

�
35

2
C 2.1C ˛/.7C ˛/

�
p3

�2
Q
i D � k

m
qi:

Then the following solution is obtained:

Q� D 0;
Q�i D kB

m

�

p2
qi;

Q�ij D �kB

m

�

2p2

�
�hiji C

�
5

2
C ˛

�
.1C ˛/�1˘ıij

�
;
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Q
 D kB

m

3

4.1C ˛/
�

p2
˘;

Q
i D � kB

2m

�
7

2
C ˛

��1
�2

p3
qi;

which give the same intrinsic Lagrange multipliers of the phenomenological theory
in the case of rarefied polyatomic gases (5.78).

Inserting these expressions into (6.30), we obtain the nonequilibrium distribution
function (6.27), and the theorem is proved.

6.3.2 Non-convective Fluxes and Productions

Now, as we have the the non-equilibrium distribution function (6.27), we can
evaluate the fluxes and the productions that are not in the list of density variables,
and we can close the system. The non-convective fluxes OFijk and OGllij defined as

OFijk D
Z

R3

Z 1

0

mCiCjCkf .t; x;C; I/ '.I/ dI dC;

OGllij D
Z

R3

Z 1

0

�
1

2
mC2 C I

�
CiCjf .t; x;C; I/ '.I/ dI dC

become, with the use of the distribution function (6.9),

OFijk D
�
7

2
C ˛

��1 �
qiıjk C qjıki C qkıij

�
; (6.32)

OGllij D
�
9

2
C ˛

�
p

�
pij � p2

�
ıij: (6.33)

In this way we can see that the differential closed system is completely equivalent
to the ones obtained by the macroscopic approach (1.29) or (5.75) as far as the
principal part of the operator (left-hand side of the system) is concerned.

In reality the MEP has an advantage over the phenomenological theory. At least
in principle, we can derive the explicit expressions of the production terms, while
in the phenomenological approach we know only the sign of the production terms
appearing in the second member (right-hand side) of (1.29). In fact we have the
expressions:

Pij D
Z

R3

Z 1

0

mcicjQ.f / I˛ dI dc;

Qlli D
Z

R3

Z 1

0

m

�
c2 C 2 I

m

�
ciQ.f / I˛ dI dc:
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The main problem is, however, that, in order to have explicit expressions for the
productions, we need a model for the collision term, to obtain which is, in general,
quite difficult in the case of polyatomic gases

A first tentative was done in [1] in which the authors assumed the structure of the
collision term given in [3, 4]:

Q.f /.c; I/ D
Z

R3�RC�Œ0;1�2�S2


f .c0; I0/ f .c0�; I0�/ � f .c; I/ f .c�; I�/

��

�B.c; c�; I; I�; r;R;!/.1 � R/ jc � c�j 1

'.I/
d! dr dR dI� dc�;

where r 2 Œ0; 1� and R 2 Œ0; 1� are parameters (see Sect. 6.2) describing the
exchange of internal energy during molecular collision and ! 2 S2 is a unit sphere
vector. As in the classical case, the model of interaction between molecules is
reflected on the collision cross section B. Here, we assume the following form of
the cross section:

B D R1=2 jc � c�j
ˇ̌
ˇ̌! � c � c�
jc � c�j

ˇ̌
ˇ̌ ;

which resembles the variable in the hard-sphere model. Furthermore, they assumed
that a state of the gas during processes is not far from local equilibrium. Therefore,
products of non-equilibrium distribution functions which appear in the collision
term may be linearized with respect to the moments of the distribution functions,
i.e., viscous stress tensor ij and heat flux qi.

For this particular toy model Pavić, Ruggeri and Simić [1] obtained the following
expressions for the production terms:

Pij D � 4
15
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A2.T/

p2
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�
�hiji C 4
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�
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2
C ˛

�
.1C ˛/�1˘ıij
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; (6.34)
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�
vj

C10
7
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2
C ˛

��1
qi

)
: (6.35)

Comparing these expressions with the production terms of the phenomenological
theory (see left side of (5.75)), we obtain the following explicit expressions for the
relaxation times:

1

�S
D 4

15

m�

A2.T/

p2

�
;
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1
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�q
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��1 m�

A2.T/
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�
:

Taking into account the relationship between the relaxation times and the phe-
nomenolgical coefficients (5.76), we can also evaluate the viscosities and the heat
conductivity as follows:


 D 15

4

� 2.1C ˛/
�

.kBT/1C2˛;

� D 35

8
.1C ˛/2

�
5

2
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��2
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.kBT/1C2˛; (6.36)

	 D 21
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�
7

2
C ˛

�2 kB

m

� 2.1C ˛/
�

.kBT/1C2˛:

6.3.3 Entropy and Entropy Flux

If we insert the nonequilibrium distribution function (6.27) into the expressions of
the entropy density and the intrinsic entropy flux:

h0 D �kB

Z
R3

Z 1

0

f log f '.I/ dI dc;

'j D �kB

Z
R3

Z 1

0

Cjf log f '.I/ dI dc;

we obtain the same expressions obtained in the phenomenological approach (5.77).
In this way we have now proved the perfect matching between the phenomeno-

logical ET and the molecular ET of rarefied polyatomic gases.

6.3.4 Remark

As seen above, for polyatomic gases, the system of field equations should properly
describe the nonequilibrium processes involving the internal (rotational and/or
vibrational) modes of a molecule. Concerning their importance, see [5–9]. If we
adopt more moments than 14, we can study more details of such processes.
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Part IV
Applications of the ET14 Theory



Chapter 7
Linear Wave in a Polyatomic Gas

Abstract In this chapter, we study a linear sound wave in a rarefied polyatomic gas
in equilibrium with the aim of clarifying the validity and the features of the ET14
theory established in Chap. 5. We derive the dispersion relations on the basis of the
ET14 theory and of the classical Navier-Stokes Fourier (NSF) theory. Comparison
of these relations with experimental data reveals clearly the superiority of the
ET14 theory to the NSF theory. We confine our analysis within sound waves in
some rarefied diatomic gases (hydrogen, deuterium, and hydrogen deuteride gases)
because suitable experimental data are scarce and are mainly restricted to rarefied
gases. We also evaluate the relaxation times, and the shear and bulk viscosities and
the heat conductivity of the gases.

7.1 Basic Equations

We study a linear sound wave in a rarefied polyatomic gas in equilibrium with
the thermal and caloric equations of state given by (5.63). We assume that a
nonequilibrium state can be characterized by the 14 independent field variables
u � .�; vi;T; ˘; hiji; qi). Let u0 � .�0; 0;T0; 0; 0; 0/ be an equilibrium state, then,
from (5.59) and (5.65), the linearized system in the neighborhood of u0 for the
perturbed field u is given by

@�

@t
C �0 @vk

@xk
D 0;

�0
@vi

@t
C kB

m
T0
@�

@xi
C kB

m
�0
@T

@xi
� @hiji

@xj
C @˘

@xi
D 0;

kB

m
�0 Ocv @T

@t
C kB

m
�0T0

@vk

@xk
C @qk

@xk
D 0;

(7.1)
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@xi
D � 1

�q
qi:

The dimensionless specific heat Ocv (see (5.66)) and the relaxation times �S; �˘ and �q

in (7.1) are evaluated at the equilibrium state. The relations between the relaxation
times and the shear viscosity 
, the bulk viscosity �, and the heat conductivity 	 are
given by (5.68).

Let us confine our study within a one-dimensional problem, that is, a plane
longitudinal wave. Therefore, by considering the symmetry of the wave, we assume

vi �
0
@v0
0

1
A ; hiji �

0
@ 0 0

0 � 1
2
 0

0 0 � 1
2


1
A ; qi �

0
@q
0

0

1
A : (7.2)

Then, the linearized basic field equations (7.1) are neatly written as

@u
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@u
@x
D B0u; (7.3)

where u is now redefined as u � .�; v;T; ˘; ; q/, and A0 and B0 are given by
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(7.4)
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B0 D
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 � 1

�˘
0 0

0 0 0 0 � 1
�S

0

0 0 0 0 0 � 1
�q

1
CCCCCCCCCCCCA

: (7.5)

7.2 Dispersion Relation for Sound

In this section, using the general theory of linear wave in Sect. 3.1, we derive the
dispersion relation, and then obtain the high-frequency limit of the phase velocity
and the attenuation factor.

7.2.1 Dispersion Relation, Phase Velocity and Attenuation
Factor

We study a plane harmonic wave propagating in the positive x-direction. From Eq.
(7.3), the dispersion relation is expressed by (see (3.6))

det

�
I � zA0 C i

!
B0

�
D 0; (7.6)

where z � k=! and I is the unit matrix. Then the phase velocity vph and the
attenuation factor ˛ are calculated as the functions of the frequency ! by using the
relation (3.7). In addition, it is useful to introduce the attenuation per wavelength:

˛�.!/ D ˛� D 2�vph˛

!
D �2�I m.z/

Re.z/
;

where� is the wavelength.
By introducing the dimensionless parameters defined by

˝ D �S!; �qs D �q

�S
; �ps D �˘

�S
; (7.7)
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the dispersion relation (7.6) is expressed explicitly as

Ocv.c0z/4
3˝2 .1C Ocv/2 �ps
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(
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C9Ocv .1C Ocv/ �ps C Ocv .13C 8Ocv/ �qs�ps
� � 3˝3Ocv .7C 4Ocv/ �ps�qs

)

C .˝ � i/.�ps˝ � i/.�qs˝ � i/

˝3�ps�qs
D 0 (7.8)

with c0 being the sound velocity in an equilibrium state:
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D
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kB

m
T0�.T/; (7.9)

where the suffix 0 indicates the values at the equilibrium state and

�.T/ D .1C Ocv.T//=Ocv.T/ (7.10)

is the ratio of the specific heats. Therefore, for given Ocv, �qs and �ps, the quantity
c0z.D c0k=!/ is calculated from (7.8) as the function of ˝ .D �S!/. Hereafter in
this chapter, we will confine our study within the fastest sound wave because the
experiments give us the data on this wave.

7.2.2 High Frequency Limit of the Phase Velocity
and the Attenuation Factor

From (3.10), we have the relations:

v
.1/
ph � lim

!!1 vph.!/ D �0; ˛.1/�0 � lim
!!1˛.!/�0 D �l0 � B0 � d0; (7.11)

where the characteristic velocity �0 is the largest eigenvalue of A0, and l0 and d0 are
the corresponding left and right eigenvectors of A0. Then we obtain the limits:

v
.1/
ph D

s
kB
m T0.4Ocv C 7C F/

2.1C Ocv/ ; (7.12)
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Fig. 7.1 Dependence of the phase velocity in the high frequency limit v.1/
ph on the dimensionless

specific heat Ocv . Rarefied monatomic gases correspond to the case with Ocv D 3=2. The dotted line
is the asymptote

˛.1/ D
p
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F .4C Ocv/ � 22 � 11Ocv C 2Oc2v
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4Ocv C 3Ocv .8C 2Ocv � F/
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C �3C 2Ocv

�ps

�
; (7.13)

where F is given by

F D
q
37C 32Ocv C 4Oc2v: (7.14)

The dependence of the phase velocity v.1/
ph on Ocv is shown in Fig. 7.1. In a

rarefied monatomic gas with Ocv D 3=2, the phase velocity v
.1/
ph is given by

2:13051
p

kBT0=m [1]. For large Ocv , it approaches
p
3kBT0=m. On the other hand,

the attenuation factor ˛.1/ depends not only on Ocv but also on the relaxation
times. In a rarefied monatomic gas, the attenuation factor ˛.1/ is given by�
0:0951852C 0:0931368=�qs

�
=.�S

p
kBT0=m/ [1]. For large Ocv , it approaches .1C

2�ps/=.9
p
3�ps�S

p
kBT0=m/.

7.3 Comparison with Experimental Data

The dispersion relation obtained above, in particular, the phase velocity vph, the
attenuation factor ˛ and the attenuation per wavelength ˛� as the functions of
the frequency ! are compared with the experimental data on normal hydrogen (n-
H2), para hydrogen (p-H2), normal deuterium (n-D2), ortho deuterium (o-D2) and
hydrogen deuteride (HD) gases at temperatures from 77.3 to 1073.15 K [2–5]. The
comparison is also made with the predictions by the classical NSF theory.
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Before discussing the subject, we need to make preliminary calculations for
determining the values of Ocv , �qs and �ps defined in (5.66) and (7.7)2;3 at the
equilibrium state.

7.3.1 Preliminary Calculations

7.3.1.1 Specific Heat

We calculate the specific heat Ocv of hydrogen, deuterium and hydrogen deuteride
gases on the basis of statistical mechanics [6, 7]. We assume that the translational
mode satisfies the equipartition law of energy. Then Ocv is expressed as

Ocv D 3

2
C Ocv;rot C Ocv;vib;

Ocv;rot D ˇ2 @
2 log Zrot

@̌ 2
; Ocv;vib D ˇ2 @

2 log Zvib

@̌ 2
; .ˇ � 1

kBT
/ (7.15)

where Ocv;rot, Zrot and Ocv;vib, Zvib are the specific heat and the partition function due
to the rotational and vibrational modes, respectively.

For gases composed of heteronuclear diatomic molecules (HD), the partition
function of rotational motion is given by

Zrot D
1X

lD0
.2lC 1/ exp Œ�ˇBl.lC 1/� ; (7.16)

where l is the quantum number of the orbital angular momentum and B D „2=2I
with I and „ being the moment of inertia of a molecule and the Planck constant
divided by 2� , respectively. While, for gases composed of diatomic homonuclear
molecules (H2 and D2), the partition function of rotational motion is given by

Zrot D Z
gg
g Zgu

u ;

Zg D
X

lDeven

.2lC 1/ exp Œ�ˇBl.lC 1/� ;

Zu D
X

lDodd

.2lC 1/ exp Œ�ˇBl.lC 1/� ;
(7.17)

where gg and gu are defined by

H2

(
normal �H2 W gu D 3=4; gg D 1=4
para � H2 W gu D 0; gg D 1 ; D2

(
normal �D2 W gu D 1=3; gg D 2=3
ortho �D2 W gu D 0; gg D 1 :

(7.18)
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For the vibrational modes, we assume the harmonic oscillator model. Then the
partition function of the vibrational modes is obtained as follows:

Zvib D e� „!vˇ
2

1 � e�„!vˇ ; (7.19)

where !v is the characteristic frequency.
Numerically calculated values of Ocv are shown in Table 7.1 and in Fig. 7.2. The

values of B of H2, D2 and HD adopted are 12:09 � 10�22 [J], 6:047� 10�22 [J] and
9:068 � 10�22 [J], respectively, and the values of !v are 6332kB=„ [Hz], 4483kB=„
[Hz] and 5486kB=„ [Hz], respectively [8].

Table 7.1 Values of the temperature T0, dimensionless specific heat Ocv , sound speed in equilib-
rium c0, shear viscosity 
 [4, 9–12], heat conductivity 	 [4, 9–12] and the ratio of the relaxation
times of the heat flux and the deviatoric part of the viscous stress �qs adopted in the present analysis.
And the values of the parameter ', bulk viscosity �, and the ratio of the relaxation times of the
bulk viscosity and the deviatoric part of the viscous stress �ps evaluated by the present analysis

Gas T0.K/ Ocv c0 .m=s/ 
 .�Pa s/ 	 .mW=m K/ �qs ' � .�Pa s/ �ps

n-H2 77.3 1:57 723 3.50 49.8 1:34 27.2 95.2 960
273 2:42 1260 8.33 173 1:47 41.9 349 165
295.15 2:45 1310 8.95 187 1:47 33.1 296 128
873.15 2:54 2240 18.7 403 1:48 36.8 685 135
1073.15 2:60 2480 21.0 462 1:49 40.3 846 143

p-H2 77.3 1:76 707 3.50 52.7 1:33 75.0 263 773
90.2 1:99 748 3.97 63.6 1:30 83.6 332 512
170 2:96 968 6.10 113 1:14 54.8 334 166
293 2:61 1290 8.82 192 1:46 28.8 254 101

n-D2 77.3 2:54 472 4.82 45.6 1:30 35.7 172 131
273.15 2:50 888 11.8 136 1:60 24.7 291 92.6
295.15 2:50 923 12.6 141 1:55 20.9 264 78.3
773.15 2:60 1490 24.2 260 1:45 30.9 747 109
1073.15 2:78 1740 30.4 337 1:42 35.9 1092 117

o-D2 77.3 2:93 463 4.82 49.4 1:26 45.4 219 140
90.2 2:96 499 5.50 55.6 1:24 33.6 185 102
293 2:50 920 12.3 131 1:47 22.6 278 84.7

HD 77.3 2:55 544 4.21 51.9 1:26 1.84 7.75 6.72
293 2:50 1060 10.8 149 1:43 2.27 24.5 8.51
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Fig. 7.2 Dependence of the dimensionless specific heat Ocv for n-H2 and p-H2 (left), n-D2 and o-D2

(center), and HD (right) on the temperature T

7.3.2 Relaxation Times

From (5.68), we have the following relations for the ratios �qs and �ps:

�qs D .1C Ocv/�1 	
kB
m 


; (7.20)

�ps D
�
2

3
� 1

Ocv
��1

�



: (7.21)

Therefore, in principle, with the help of the experimental data on 
, 	 and �, we can
estimate the values of �qs and �ps. However, at present, as we have the reliable data
only on 
 and 	 [4, 9–12], we adopt, in the analysis below, an adjustable parameter:

' D �



: (7.22)

We summarize the adopted values of Ocv, c0, 
, 	, �qs, and the evaluated values of '
and �ps in Table 7.1, details of which will be discussed in the next subsection.

7.3.3 Experimental Data and Theoretical Predictions
for the Dispersion Relation

7.3.3.1 Hydrogen Gases: n-H2 and p-H2

For n-H2, the dimensionless phase velocity, vph=c0, the dimensionless attenuation
factor, c0�S˛, and the attenuation per wavelength, ˛�, are shown as the functions
of the dimensionless frequency ˝ in Fig. 7.3. We see the experimental data on the
phase velocity at T0 = 295.15 and 296.8 K by Winter and Hill [2] and Rhodes [3], on
the attenuation factor at T0 D 293K by Sluijter et al. [4] and on the attenuation per
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Fig. 7.3 Dependence of the
dimensionless phase velocity
vph=c0 , the attenuation factor
c0�S˛ and the attenuation per
wavelength ˛� on the
dimensionless frequency ˝
for n-H2. The circles, squares
and triangles in the figures
are, respectively, the
experimental data at 293K by
Sluijter et al. [4], those at
295.15 K by Winter and Hill
[2] and those at 296:8K by
Rhodes [3]. The solid and
dashed lines are predictions
at 295:15K by the ET14 and
NSF theories, respectively.
We adopt ' D 33:1

wavelength at T0 D 295:15K by Winter and Hill [2] accompanied by the theoretical
results at T0 D 295:15K predicted by the ET14 theory and the NSF theory.

Noticeable points in Fig. 7.3 are summarized as follows: (1) In the region with
small ˝ , as is expected, the predictions by the two theories coincide with each
other. The value of the parameter ' is determined to be 33:1 as the best fit with the
experimental data in this region. This procedure of determining ' will be adopted
throughout the present chapter. (2) When we go into the ultrasonic frequency region
with larger ˝ , the prediction by the ET14 theory is evidently superior to that by
the NSF theory. The difference between the two theories emerges around ˝ D
!�S D 10�3. We will evaluate �S, which depends on T0 and p0, later. (3) The ET14
theory seems to be valid at least up to the experimental data with the maximum
dimensionless frequency ˝ D 10�1. (4) The large value of ' means that � >> 
.
We will discuss its physical meaning below.

At other temperatures, there exists the experimental data of ˛ at T0 D 77:3K by
Sluijter et al. [4], those of vph and ˛� at around 273K, respectively, by Rhodes [3]
(at T0 D 273:5K) and Stewart and Stewart [5] (at T0 D 273:15K) and those of vph

and ˛� at T0 D 873:15; 1073:15K by Winter and Hill [2]. The comparison of the
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Fig. 7.4 Dependence of the dimensionless phase velocity vph=c0 , the attenuation factor c0�S˛

and the attenuation per wavelength ˛� on the dimensionless frequency ˝ for n-H2. The
circles, squares, triangles and crosses in the figures are, respectively, the experimental data
by Sluijter et al. [4] at 77:3K, Winter and Hill [2] at 873:15; 1073:15K, Rhodes [3] at
273:5K and Stewart and Stewart [5] at 273:15K. The solid and dashed lines are predictions
at T0 D 77:3; 273; 873:15; 1073:15 K by the ET14 and NSF theories, respectively. We adopt
' D 27:2; 41:9; 36:8; 40:3, respectively, for T0 D 77:3; 273; 873:15; 1073:15 K

theoretical predictions with these experimental data are shown in Fig. 7.4. We see
again that the ET14 theory can describe the experimental data very well. The values
of the parameter ' are selected to be 27.2, 41.9, 36.8 and 40.3, respectively.

For p-H2, we compare the theoretical predictions with the experimental data on
the phase velocity at T0 = 273.8, 298.4 K by Rhodes [3] and on the attenuation factor
at T0 D 77:3; 90:2; 170; 293K by Sluijter et al. [4, 9].

We have a similar result as shown in Fig. 7.5, where the selected value of the
parameter ' is 75.0, 83.6, 54.8, 28.8, respectively, for T0 D 77:3; 90:2; 170; 293K.
Remarkable points in this case are qualitatively the same as in the case of n-H2

above.
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Fig. 7.5 Dependence of the dimensionless phase velocity vph=c0 and the attenuation factor c0�S˛

on the dimensionless frequency ˝ for p-H2 . The circles and empty triangles in the figures are,
respectively, the experimental data by Sluijter et al. [4, 9] at T0 D 77:3; 90:2; 170; 293K and
by Rhodes [3] at T0 D 298:4K. As a reference the experimental data by Rhodes [3] at T0 D
273:8K are on the figure as the filled triangles. The solid and dashed lines are predictions at
T0 D 77:3; 90:2; 170; 293K by the ET14 and NSF theories, respectively. We adopt '=75.0, 83.6,
54.8, 28.8, respectively, for T0 D 77:3; 90:2; 170; 293K

7.3.3.2 Deuterium Gases: n-D2 and o-D2

Comparisons are also made for n-D2 at T0 = 295.15 K with '=20.9 in Fig. 7.6,
and it shows the superiority of the prediction by the ET14 theory to that by the
NSF theory in high frequency region. Also comparisons at other temperatures T0 D
77:3; 273:15; 773:15 and 1073:15K with '= 35.7, 24.7, 30.9 and 35.9, respectively,
are shown in Fig. 7.7 and for o-D2 at T0 = 77.3, 90.2 and 293 K with '=45.4, 33.6
and 22.6 are shown in Fig. 7.8. From these figures, we have qualitatively the same
observations as those in the case of hydrogen gases.

7.3.3.3 Hydrogen Deuteride Gases: HD

Lastly we show the results of HD gases at T0 D 77:3 and 293 K in Fig. 7.9.We
notice the following points: (1) The difference between the two theories is small
and the theoretical predictions are consistent with the experimental data in the range:
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Fig. 7.6 Dependence of the dimensionless phase velocity vph=c0 , the attenuation factor c0�S˛ and
the attenuation per wavelength ˛� on the dimensionless frequency ˝ for n-D2 . The circles and
squares in the figures are, respectively, the experimental data by Sluijter et al. [4] at 293K and
Winter and Hill [2] at 295:15K. The solid and dashed lines are predictions at 295:15K by the
ET14 and NSF theories, respectively. We adopt ' D 20:9

˝ 6 10�1.This means that the local equilibrium assumption holds well up to ˝ ;
10�1, while, for the other gases analyzed above, the assumption holds until ˝ ;
10�3. (2) The values of ' adopted here are 1.84 and 2.27.These values are O.1/,
that is, � 
 
, and are very small compared with those obtained for the other gases
discussed above.We will discuss this interesting fact below.

7.3.4 Remarks

Remarks (A)–(C) are made.
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Fig. 7.7 Dependence of the dimensionless phase velocity vph=c0 , the attenuation factor c0�S˛ and
the attenuation per wavelength ˛� on the dimensionless frequency˝ for n-D2 . The circles, squares
and crosses in the figures are, respectively, the experimental data by Sluijter et al. [4] at 77:3K,
Winter and Hill [2] at 773:15; 1073:15K and Stewart and Stewart [5] at 273:15K. The solid and
dashed lines are predictions by the ET14 and NSF theories, respectively. We adopt '=35.7, 24.7,
30.9 and 35.9, respectively for T0 D 77.3, 273.15, 773.15 and 1073.15 K

(A) We have seen clearly that the ET14 theory is consistent with the experimental
data even in the high frequency range where the local equilibrium assumption is no
longer valid. There are potentially many research fields where the ET14 theory may
play a crucial role, for example, fields of acoustics [13] and gas dynamics [14].

(B) From the values of the ratios �qs and �ps in Table 7.1, we have noticed an
interesting fact that, except for HD gases, �˘ is much larger than �S, while �S and
�q are comparable with each other. This fact was reported also in some kinetic
theoretical studies [15, 16]. By using the result summarized in Table 7.2, the
relaxation times for given T0 and p0 can be estimated. For example, the relaxation
times in a n-H2 gas at p0 D 103 [Pa] and T0 D 77:3 [K] can be calculated:
�S D 3:50 � 10�9 [s], �˘ D 3:36 � 10�6 [s] and �q D 4:70 � 10�9 [s].
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Fig. 7.8 Dependence of the dimensionless attenuation factor c0�S˛ on the dimensionless fre-
quency ˝ for o-D2 at T0 D 77:3K, 90:2K and 293K. The circles are the experimental data
by Sluijter et al. [4]. The solid and dashed lines are predictions by the ET14 and NSF theories,
respectively. We adopt ' D 45:4; 33:6 and 22:6 from 77.3 K to 293 K

Fig. 7.9 Dependence of the dimensionless attenuation factor c0�S˛ on the dimensionless fre-
quency ˝ for HD at T0=77.3 K and 293K. The circles are the experimental data by Sluijter et
al. [4]. The solid and dashed lines are predictions by the ET14 and NSF theories, respectively. We
adopt ' = 1.84 at 77.3 K and 2.27 at 293 K

In the paper [17], it was pointed out that the relaxation time �˘ is in the same
order of magnitude as the relaxation time of the energy exchange between the
molecular translational mode and the internal modes. The results obtained above
suggest that the sharp temperature change of the specific heat due to the rotational
modes Ocv;rot depicted in Fig. 7.2 is somehow related to the emergence of the large
value of �˘ . The detailed study of this subject is, however, beyond the scope of the
present phenomenological study, and its statistical-mechanical or kinetic-theoretical
study by taking into account the realistic collision processes between the constituent
molecules is required.

(C) From the values of ' in Table 7.1, we have also noticed a similar fact that,
except for HD gases, the bulk viscosity � is much larger than the shear viscosity

. The similarity is natural because there are relations between the viscosities and
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Table 7.2 Relaxation times of the deviatoric part of the viscous stress �S, dynamic pressure �˘
and heat flux �q multiplied by the pressure p0 for several values of T0 in H2, D2 and HD gases

Gas T0 .K/ �Sp0 .s �Pa/ �˘p0 .s �Pa/ �qp0 .s �Pa/

n-H2 77.3 3.50 3360 4.70
273 8.33 1380 12.2
295.15 8.95 1150 13.1
873.15 18.6 2510 27.6
1073.15 21.0 3000 31.2

p-H2 77.3 3.50 2710 4.64
90.2 3.97 2030 5.16
170 6.10 1010 6.93
293 8.82 894 12.9

n-D2 77.3 4.82 632 6.25
273.15 11.8 1090 18.8
295.15 12.6 990 20.0
773.15 24.2 2640 35.0
1073.15 30.4 3560 43.2

o-D2 77.3 4.82 673 6.09
90.2 5.50 562 6.81
293 12.3 1040 18.1

HD 77.3 4.21 28.3 5.32
293 10.8 91.9 15.5

the relaxation times as shown in (5.68). A point to be emphasized here is that,
as the direct experiments to measure the bulk viscosity are usually difficult, the
method for the evaluation of the bulk viscosity utilized here through analyzing the
dispersion relation on the basis of the ET14 theory is quite useful. The values of �
thus evaluated are summarized in Table 7.1. See also the recent studies of the bulk
viscosity [18–22].

7.4 Conclusion

Some remarks are made as follows:

1. There is a phenomenological theory of the dispersion relation for sound, the
basic equations of which are composed of the relaxation equations for some
nonequilibrium parameters and the Euler (or NSF) equations for the conservation
laws [23, 24]. One crucial point is that the theory is based on the local equilibrium
assumption. In this respect, this may be regarded as a theory in the framework of
thermodynamics of irreversible processes [23]. Because of this, in the present
chapter, we have compared the ET theory only with the NSF theory as a
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representative one. In Chap. 11, the relationship between the simplified ET theory
with six fields and the theory with one relaxation equation was studied in detail.

2. It is shown that the ET14 theory is applicable in a unified way to ultrasonic
waves in rarefied polyatomic gases in a wide temperature range and also in a wide
frequency range where the rotational and/or vibrational modes in a molecule play
a role. It is expected that the theoretical predictions presented in this chapter will
be useful in future when the ultrasonic waves with much higher frequencies are
available in experiments.

3. In order to study the effect of the large value of the relaxation time �˘ on
various nonequilibrium phenomena such as shock wave phenomena, it seems
to be appropriate to adopt a simpler model than the one adopted here. The theory
with only 6 independent field variables (�; vi;T; ˘ ), which will be explained in
Chap. 11, play an important role in such studies. See also Chap. 13. The results
of this chapter are obtained in the papers [25] and [26].
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Chapter 8
Shock Wave in a Polyatomic Gas

Abstract In this chapter we study the shock wave structure in a rarefied polyatomic
gas by using the ET14 theory. We show how the ET14 theory can overcome
the difficulties encountered in the previous approaches: Bethe-Teller approach and
Gilbarg-Paolucci approach.

Firstly, the predictions derived from the ET14 theory are shown and compared
with the results from the NSF theory. Secondly, the Bethe-Teller theory is reex-
amined in the light of the ET14 theory. Lastly, comparison between the theoretical
predictions derived from the ET14 theory and the experimental data is made, where
we show a very good agreement. We are able to explain in a unified manner the
three different shock wave profiles Types A, B and C for increasing Mach number.

8.1 Introduction

In Sect. 1.6.4.2, characteristic features of the shock wave structure in a rarefied
polyatomic gas have been briefly explained. In order to understand such structure,
two different approaches by Bethe-Teller and by Gilbarg-Paolucci were proposed
many years ago and are still in activity.

(I) Bethe-Teller approach [1]: In their celebrated theory, at the very beginning,
the internal degrees of freedom of a molecule are assumed to be classified into
two parts; the one part is composed of the “active” degrees of freedom that relax
instantaneously, and the other part is composed of the “inert” degrees of freedom
that relax slowly with a finite relaxation time. Except for a hydrogen gas, the
translational and rotational modes are regarded as the “active” degrees of freedom
but the vibrational modes are considered as “inert” degrees of freedom. In order
to analyze the thin layer � shown in Fig. 1.1, the system of the Euler equations is
adopted. The Rankine-Hugoniot relations [see (3.34)] of the system for the jumps of
the physical quantities at� are derived under the following assumption: The internal
energy due to the “inert” degrees of freedom is unchanged in the thin layer �

© Springer International Publishing Switzerland 2015
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because only “active” degrees of freedom are able to adjust to such an instantaneous
change. Therefore, the thin layer in this theory is just the jump discontinuity with no
thickness. While, in order to analyze the relaxation process in the thick layer � in
Fig. 1.1, a variant of the Euler system with an additional linear relaxation equation
for the internal vibrational modes is adopted.

This approach can describe the shock wave structure of Type C. The jumps of
the physical quantities at the thin layer � can be calculated without using any
adjustable parameters. The agreement between the theoretical predictions and the
existing experimental data seems to be well.

It should be emphasized, however, that the basis of the Bethe-Teller theory is
not clear enough. The assumption of the classification of the internal degrees of
freedom should be regarded as a rough approximation even though it seems to be
plausible intuitively. As the classification is not so much clear-cut in reality, it may
introduce some arbitrariness into the theory. And furthermore two different systems
of equations are adopted in their theory for analyzing the thin and thick layers
separately. The compatibility between the two systems is, however, unclear from
both mathematical and physical points of view. It is highly preferable, of course,
to have one unified system of equations from which all Types A, B and C can be
derived in a fully consistent way.

(II) Gilbarg-Paolucci approach [2]: This is basing on the system of the Navier-
Stokes Fourier (NSF) equations. They studied, as a typical example, the shock wave
structure in a rarefied carbon dioxide (CO2) gas by adopting a very large value of the
bulk viscosity. Although they could predict a thick shock wave structure, the shock
profiles are always symmetric (Type A). No asymmetric shock wave structure (Type
B) nor thin layer (Type C) could be explained by this theory.

One crucial point to be noted is that, because the NSF theory is constructed with
the assumption of the local equilibrium (see Sect. 1.1.3), the theory is, in general,
unsatisfactory for analyzing highly nonequilibrium phenomena such as shock wave
phenomena.

Fortunately we have alternative theories as discussed below:
For rarefied monatomic gases, there already exist theories which can describe

the phenomena out of local equilibrium, that is, the kinetic theory with the use
of the Boltzmann equation (the Chapman-Enskog method [3] and the moment
method [4]), and the theories of extended thermodynamics (ET) [5] and of molecular
extended thermodynamics with the closure by the maximum entropy principle [6, 7].
These theories can indeed describe the structure of strong shock waves in a rarefied
monatomic gas [5, 8]. Numerical techniques for solving the Boltzmann equation,
such as the Direct Simulation Monte Carlo (DSMC) method [9], have also been
developed, and their usefulness has been confirmed through the comparison between
their predictions and the experimental data.
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For rarefied polyatomic gases, the kinetic theory (the Chapman-Enskog method
[3] and the moment method [10–13]) has been developed. Numerical methods for
solving the Boltzmann equation have also been developed [9]. However, as the
appropriate modeling of the collision term in the Boltzmann equation between
two polyatomic molecules is very complicated, some simplifications are usually
introduced into the modeling. It is therefore not self-evident that the numerical
results thus obtained is compatible with the second law of thermodynamics (the
entropy principle).

However, we know well that there is still another theory, that is, the ET14 theory
of polyatomic gases explained in Chap. 5. It is remarkable that the ET theory is
totally free from the difficulties mentioned just above [21].

8.2 Basic Equations

In this section, we summarize the basic equations for the present analysis.

8.2.1 Equations of State, Internal Energy, and Sound Velocity

We study a shock wave in a rarefied polyatomic gas with thermal and caloric
equations of state given by (5.63). The functional form of the specific internal energy
" is determined through the specific heat cv:

".T/ D kB

m

Z T

TR

Ocv.�/ d�; (8.1)

where Ocv � .m=kB/cv is the dimensionless specific heat and TR is an inessential
reference temperature. The velocity of sound is expressed as (7.9).

8.2.2 Balance Equations

As we analyze one-dimensional (plane) shock waves propagating along the x-
axis, the vectorial and tensorial quantities are expressed in the form (7.2). Then,
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from (5.59) and (5.65), the system of equations in the present problem is given by
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(8.2)

From (2.5), characteristic velocities � of the hyperbolic system (8.2) evaluated in
an equilibrium state are given by
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(8.3)
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As is explained in Sect. 3.3, these velocities play an essential role in the study
of shock wave propagation. The ET theory gives a differential system of hyperbolic
type and, as a consequence, it predicts the shock wave structure with discontinuous
part when the Mach number becomes large. According to the Theorem 3.1 (Sub-
shock formation) of Boillat and Ruggeri in Sect. 3.4, a sub-shock emerges when the
shock velocity s exceeds the maximum characteristic velocity �max of the hyperbolic
system.

8.3 Setting of the Problem

In this section, conditions that we adopt for the present analysis are summarized.
The parameters are fixed and the numerical method for the computation is explained.

As the differential system is Galilean invariant we can consider, without loss
of generality, that the shock wave is stationary using the coordinate system moving
with the shock wave, that is, the co-moving coordinate system. Both the unperturbed
state (the state at x D �1 before and far from a shock wave) and the perturbed state
(the state at x D 1 after and far from a shock wave) are assumed to be in thermal
equilibrium.

8.3.1 Dimensionless Form of the Field Equations

For convenience we introduce the following dimensionless quantities:

O� � �

�0
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c0
; OT � T

T0
;
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�0
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; O�q � �q.�;T/

�˘.�0;T0/
;

(8.4)

where the quantities with subscript 0 represent the quantities in the unperturbed
state. The balance equations (8.2) are now rewritten in terms of the dimensionless
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quantities as follows:
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(8.5)

where �0 � �.T0/. As the conservation laws (8.5)1�3 can be easily integrated, we
can simplify the balance equations as follows:
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where M0 represents the Mach number in the unperturbed state expressed by

M0 � v0

c0
: (8.7)

8.3.2 Boundary Conditions: Rankine-Hugoniot Conditions
for the System of the Euler Equations

The boundary conditions for the basic system of equations expressed above are
determined as follows: Inserting Ŏ D 0, O D 0 and Oq D 0 into (8.6)1�3, we obtain
the expressions for the quantities in the perturbed state:
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(8.8)

where the quantities with subscript 1 are those in the perturbed state. These
relations express the Rankine-Hugoniot (RH) conditions for the system of the Euler
equations.

8.3.3 Parameters

In order to compare the theoretical predictions with experimental data, we will focus
our study on the experimental data for the shock wave structure in a rarefied CO2

gas at T D 295K and p D 69mmHg in the unperturbed state [15].
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Fig. 8.1 Dependence of the
dimensionless specific heat of
a rarefied CO2 gas on the
temperature [16]

Table 8.1 Experimental values of the dimensionless specific heat Ocv [16], sound velocity c0 [16],
heat conductivity 	 [17] and shear viscosity 
 [17] of a rarefied CO2 gas at T D 295K and
p D 69mmHg

Ocv c0 (m/s) 	 (W/(m K)) 
 (Pa s)

CO2 3.45 269 1:68 � 10�2 1:5� 10�5

We have determined the dependence of the specific heat (8.1) on the temperature,
which is shown in Fig. 8.1, by inserting the data on the temperature dependence
of the sound velocity [16] into (7.9). The values of the dimensionless specific
heat Ocv , sound velocity c0, heat conductivity 	 [17] and shear viscosity 
 [17] in
the unperturbed state are summarized in Table 8.1. We note that the rotational
modes are completely excited and the vibrational modes are partially excited at
this temperature. From (8.3), the maximum characteristic velocity at T D 295K is
estimated as �max=c � 1:74. Therefore we recognize that, from the Theorem 3.1
(Sub-shock formation), the shock wave structure predicted by the present analysis
is continuous up to M0 � 1:74.

For a rarefied CO2 gas, the temperature dependence of the phenomenological
coefficients was already estimated by both the kinetic theoretical considerations and
the experimental data [2] as follows:


 / Tn; � / Tn; 	 / Tn Ocv.T/; (8.9)

where the exponent n was estimated as n D 0:935. We adopt the same temperature
dependence in the present analysis. We have confirmed that the shock wave structure
studied below depends weakly on the value of the exponent n.
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Table 8.2 Relaxation times for a CO2 gas at T D 295K and p D 69mmHg. The relaxation times
�S and �q are obtained from the experimental data shown in Table 8.1. Only the relaxation time for
the dynamic pressure �˘ is remained as a fitting parameter

�S.�0; T0/ (s) �q.�0; T0/ (s) �˘.�0; T0/ (s)

CO2 1:6� 10�9 2:2� 10�9 2:2� 10�5

By substituting (8.9) into the relations (5.68), we have the following dependence
of the relaxation times on the mass density and the temperature:

O�˘ D 1
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5 � 3�.T/ ;
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;
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1

O� OT1�n

�0

�.T/
:

(8.10)

Inserting the values of the phenomenological coefficients in Table 8.1 into the
relations (5.68), we obtain the values of the relaxation times �S and �q for the shear
stress and the heat flux in the unperturbed state as shown in Table 8.2. The remaining
undetermined parameter is only the relaxation time �˘ for the dynamic pressure,
which is proportional to the bulk viscosity �. Because of the lack of knowledge
of reliable data on � due to the difficulty in its experimental measurements, as
was already done in Chap. 7, we will use �˘ in the unperturbed state as a fitting
parameter. As will be explained below, the value of �˘ in the unperturbed state is
determined by the comparison of the theoretical prediction with the experimental
data for M0 D 1:47. See also Figs. 8.5 and 8.6 below. It is noticeable that the value
of �˘ is larger, with different order of magnitude, than the other two relaxation
times.

8.3.4 Numerical Methods

We solve numerically the system of balance equations (8.6) under the boundary
conditions (8.8) by adopting the methods proposed by Weiss [5, 18].

We introduce the N C 1 grid points such that the range Œ�OL=2; OL=2� in the Ox-axis
is discretized with constant intervals �Ox D OL=N as follows:

Oxi D �
OL
2
C
OL
N

i for i D 0; 1; � � � ;N; (8.11)

where superscript i represents the number of the grid point.
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Because the mass density O� is already expressed by other variables in (8.6)1, we
need to solve the system (8.6)2�6 for u D . Ov; OT; Ŏ ; O; Oq/. The boundary conditions
(8.8) give

u0 D u0;

uN D u1;
(8.12)

where ui represents ujxDxi , u0 D .M0; 1; 0; 0; 0/ and u1 D . Ov1; OT1; 0; 0; 0/. For the
conservation laws (8.6)2;3 expressed as F.u/ D F.u0/ with F being the general flux,
we have

F.ui/ D F.u0/ for i D 1; 2; � � � ;N � 1: (8.13)

Replacing the differentiation in the balance equations (8.6)4�6, which we express
as dF.u/=dOx D P.u/ briefly with P being the general production, by the central
difference, we get

F.uiC1/ � F.ui�1/
2�Ox D P.ui/ for i D 1; 2; � � � ;N � 1: (8.14)

The nonlinear algebraic equations (8.13) and (8.14) with the condition (8.12)
may be solved with the help of numerical solvers equipped with softwares for
numerical computations. In the present analysis, we have constructed numerical
codes by adopting the numerical solver implemented in the Mathematica based on
the Newton’s method. The computation starts from an appropriate initial guess, e.g.,

ui D
(

u0 for i D 0; 1; � � � ; N
2
;

u1 for i D N
2
C 1; N

2
C 2; � � � ;N; (8.15)

and the iterative calculations are repeated until the numerical solution converges
to the one that satisfies the system (8.6) and the boundary conditions (8.8) within
the appropriate accuracy we have set; eight digits of the precision in the present
analysis. We have chosen�Ox small enough and have confirmed that the dependence
of the profiles in Figs. 8.2, 8.3, 8.4, 8.5, and 8.6 on �Ox is negligibly small.
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Fig. 8.2 Type A: Profiles of the dimensionless mass density, velocity, temperature, dynamic
pressure, shear stress and heat flux predicted by the ET theory (solid curves). Profiles of the
dimensionless mass density, the dimensionless velocity and the temperature predicted by the NSF
theory (dashed curves) are also shown. M0 D 1:04. The conditions for the numerical calculations
are OL D 100 and N D 100
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Fig. 8.3 Type B: Shock wave structure predicted by the ET theory (solid curves) and by the NSF
theory (dashed curves). M0 D 1:12. The numerical conditions are OL D 50, N D 5000 for the ET
theory and N D 100 for the NSF theory
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Fig. 8.4 Type C: Shock wave structure predicted by the ET theory (solid curves) and by the NSF
theory (dashed curves). M0 D 1:15. The numerical conditions are OL D 40, N D 10;000 for the ET
theory and N D 100 for the NSF theory
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Fig. 8.5 Type C: Shock wave structure predicted by the ET theory (solid curves) and by the NSF
theory (dashed curves). The experimental data [15] in the thick layer are also shown by circles.
M0 D 1:47. The numerical conditions are OL D 20, N D 60;000 for the ET theory and N D 100

for the NSF theory
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Fig. 8.6 Profile of the mass
density difference O�1 � O�
predicted by the ET theory
(solid curve) and the
experimental data (circles)
[15]. The dotted line shows
the exponential decay

8.4 Navier-Stokes Fourier Theory

As both results obtained by the ET14 theory and by the NSF theory are compared
with each other in the next section, we here summarize also the NSF system of
equations. It is obtained as the first approximation of the ET14 system (5.59) by
using the Maxwellian iteration (see Sect. 5.3.6):
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From Eq. (8.16)4�6, we obtain the relationship between relaxation times and the
phenomenological coefficients (5.68). Note that the system (8.16) is of parabolic
type although the original ET system (5.59) is hyperbolic.
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The dimensionless form of the conservation laws are the same as (8.6)1�3. While
the dimensionless constitutive relations are expressed by
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(8.17)

8.5 Shock Wave Structure

In this section, we show and emphasize that all of the three types of the shock wave
structure, Types A, B, and C, can be described naturally within the ET14 theory.

8.5.1 Type A: Nearly Symmetric Shock Wave Structure

The nearly symmetric shock wave structure appears in a small Mach number region
just above unity. The typical example of the shock wave structure of Type A is
obtained at M0 D 1:04 as shown in Fig. 8.2. We have depicted the profiles of all
independent variables; the mass density, the velocity, the temperature, the dynamic
pressure, the shear stress and the heat flux. We can confirm that the shock wave
structure is indeed nearly the same as the one predicted by the NSF theory.

We notice that the thickness of a shock wave is very large even at several cen-
timeters order because of the large characteristic length estimated as �˘.�0;T0/c0 D
0:60 cm. And the dimensionless dynamic pressure is also several orders larger than
the dimensionless shear stress and heat flux. These features are, of course, due to the
fact that the relaxation time for the dynamic pressure �˘ , which is proportional to
the bulk viscosity �, is much larger than the other two relaxation times �S and �q that
are, respectively, proportional to the shear viscosity 
 and the heat conductivity 	.

Because of the large thickness and the small Mach number, i.e., small gradients
of physical quantities, a shock wave is not so much far from local equilibrium.
Therefore the predictions from the ET14 theory and the predictions from the NSF
theory are similar to each other. It is this Type A that Gilbarg and Paolucci [2]
studied.
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8.5.2 Type B: Asymmetric Shock Wave Structure

When the Mach number increases further, the gradient of the physical quantities in
the shock wave structure near the unperturbed state becomes much steeper than the
gradient near the perturbed state. The shock wave structure now becomes evidently
asymmetric. The NSF theory cannot describe such asymmetric profiles. Typical
shock wave structure of Type B is shown in Fig. 8.3 where M0 D 1:12.

From Fig. 8.3, we can see that the dimensionless shear stress and the heat flux are
still several orders smaller than the dimensionless dynamic pressure in the whole
range of the shock wave structure. Therefore we may conclude that the dynamic
pressure plays much more important role in the global structure of a shock wave of
Types A and B than the shear stress and the heat flux.

8.5.3 Type C: Shock Wave Structure Composed of Thin
and Thick Layers

When the Mach number increases further more, the shock wave structure changes
from a single-layer asymmetric structure (Type B) to a structure composed of thick
and thin layers (Type C). Typical examples of Type C are shown in Fig. 8.4 with
M0 D 1:15 and Fig. 8.5 with M0 D 1:47. It is this Type C that Bethe and Teller
mainly studied. The NSF theory again cannot describe such shock wave structures
with two layers.

We notice from Figs. 8.4 and 8.5 clearly that the thickness of the thin layer is
finite although it is still much smaller than that of the thick layer, the thickness of
which is at several centimeters order. Therefore we can analyze the detailed structure
in the thin layer, which is impossible to be addressed by the Bethe-Teller theory. For
example, as shown in Figs. 8.4 and 8.5, we understand the detailed profiles of the
dissipative quantities in the thin layer.

We see that the shear stress and the heat flux are negligibly small everywhere
except for the thin-layer region. On the other hand, the dynamic pressure is large
in both the thick and thin layers. Therefore we may say that, in the thin layer with
finite thickness, all dissipative quantities together play a crucial role, while, in the
thick layer, only the dynamic pressure seems to be essential.

Within the present theory, as is pointed out above, the continuous shock wave
structure is obtained until M0 � 1:74. If we want to study the shock wave structure
at larger Mach numbers than 1.74, we need the ET theory with more independent
variables, which will be discussed in Chap. 10.
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8.5.4 Critical Mach Numbers for the Transitions Between
the Types A-B and B-C

We have estimated numerically the critical Mach numbers for the transition of the
type of the shock wave structure: The asymmetric character of Type B becomes
evident when the Mach number is around 1.08. And, for the transition between Type
B and Type C, we have the critical Mach number M0 � 1:14. Note that these values
of the Mach number are merely rough indications because the boundary between
two different types cannot be clearly defined.

In the Bethe-Teller theory, from the stability analysis of the discontinuous part of
the shock wave structure [nowadays known as the Lax condition (see Sect. 3.3.2.1)],
the critical Mach number between Type B and Type C was estimated as M0 � 1:04.
This value does not agree with the value mentioned above, but is not so far from it.

8.5.5 Reexamination of the Bethe-Teller Theory

Let us summarize the features of the Bethe-Teller theory in the light of the ET14
theory.

(A) As explained above, the Bethe-Teller theory describes the shock wave structure
of Type C by adopting the two systems of equations under the assumption that
the internal degrees of freedom of a molecule can be divided into two parts, that
is, “inert” part and “active” part. One system is applied to analyze a thin layer
and the other system to a thick layer. The compatibility of the two system of
equations is, however, not self-evident. In the ET14 theory, on the other hand,
a single system of equations can describe all Types A, B and C without any
ambiguity. There is no compatibility problem.

(B) The thin layer is a jump discontinuity with zero thickness. While, in the ET14
theory, the thin layer has a structure with finite thickness.

(C) The thick layer is described essentially by a relaxation equation with a
finite relaxation time. If necessary, the theory may be generalized so as to
have several relaxation equations with different relaxation times. Usually the
relaxation equation is assumed to be linear. The ET theory includes, in a
natural way, the relaxation mechanism of the internal degrees of freedom. In
this respect, see also Chap. 11.

(D) The critical Mach number between Type B and Type C can be estimated by the
stability analysis. Its predicted values by the Bethe-Teller theory and by the ET
theory are not far from each other.

(E) There is a qualitative difference between the Bethe-Teller theory and the ET
theory in the temperature profile. The temperature just after the discontinuous
jump derived from the Bethe-Teller theory may have the possibility to be
larger than the temperature in the perturbed state (i.e., so-called temperature
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overshoot), while the temperature profile derived from the ET theory is always
smaller than the perturbed temperature.

Experiments to observe the temperature profile, however, seem to be extremely
difficult because a shock wave has a very steep and rapid change in space and time.
There is another difficulty from a theoretical point of view. We should be careful
about the definition of the temperature in nonequilibrium. We will discuss this point
later in Sect. 13.5 and Chap. 15.

8.6 Comparison with Experimental Data

The experiments of the shock wave structure in a CO2 gas at the room temperature
and the atmospheric pressure indicate that the shock profiles with no thin layer are
obtained at least in the range 1 < M0 < 1:04 [19]. The present result is consistent
with this.

The experimental results at M0 D 1:134 and M0 D 1:16 are available
[20, 21]. We have confirmed that our theoretical predictions shown in Fig. 8.4
are qualitatively the same as the shock profiles obtained by the experiments.
Quantitative comparison is, however, impossible because only the interferograms
are shown in the papers.

The experimental data on the mass density profile [15] and the theoretical mass
density profile derived from the ET14 theory at M0 D 1:47 are shown in Fig. 8.5.
Note that only the experimental data in the thick layer are reported in the paper,
in which the authors said that the accurate measurement in the region near the thin
layer was impossible because the change of physical quantities is so steep. In order
to study in more detail, Fig. 8.5 is shown in a different way: the single logarithmic
plot of the profile of the mass density difference O�1� O� as shown in Fig. 8.6. We can
see that the agreement between the theoretical prediction and the experimental data
is excellent. It is also remarkable that the ET theory seems to explain the deviation
of the experimental data O�1 � O� from the the dotted line in Fig. 8.6, i.e., from the
purely exponential decay.

Unfortunately, only the experimental data of the mass density profile at M0 D
1:47 are available at present. More detailed experimental studies of the shock wave
structure are highly expected.

8.7 Conclusion

We have shown that the ET14 theory can describe the shock wave structure in a
polyatomic gas excellently. We have found the fact that the dynamic pressure ˘ is
essentially important in the shock wave structure but the shear stress and the heat
flux are not so important everywhere except for the inside of a thin layer. Therefore
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it is natural to expect that, by neglecting all dissipative fluxes but the dynamic
pressure, we can study the shock wave structure properly. In fact, in Chap. 13, we
will show that the ET theory with 6 independent fields (ET6) can describe the shock
wave structure of Types A to C reasonably well.
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Chapter 9
Light Scattering, Heat Conduction,
and Fluctuation

Abstract In this chapter, we discuss briefly some other interesting applications
of the ET14 theory: light scattering, stationary heat conduction, and fluctuating
hydrodynamics. However, since these studies have just begun recently and is still
quite primitive, this chapter should be read as an outline of these promising research
fields.

9.1 Light Scattering

Experiments of light scattering in a gas afford us with precise information about
irreversible processes in a gas even out of local equilibrium. These are a good test
for checking the validity of a nonequilibrium thermodynamic theory.

In this section, light scattering in a rarefied polyatomic gas is studied by the
ET14 theory [1]. The results obtained are compared with the results derived from
the Navier-Stokes Fourier theory and also with some experimental data.

9.1.1 Introduction

Light scattering occurs due to the fluctuations in the mass density � through the
dielectric constant �.�/. The intensity of scattered light is directly related to the
dynamic structure factor [2]:

S.q; !/ D 1

�

�
@�

@�

�2
<hı��.q; 0/ı O�.q; s/isDi!; (9.1)

where q is the scattering vector, magnitude of which is jqj D .4�=�/ sin.�=2/ with
� and � being the wavelength of the incident light and the scattering angle, ! is the
shift in angular frequency, and hı��.q; 0/ı O�.q; s/i is the Laplace transform of the
autocorrelation of the density fluctuations hı��.q; 0/ı�.q; t/i where h i denotes the
thermal average and ı�.q; t/ is the Fourier transform of the mass density fluctuation
ı�.x; t/.
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Usually the dynamic structure factor has been studied theoretically by means
of two approaches: the hydrodynamic approach [3–5] based on the Navier-Stokes-
Fourier (NSF) theory, and the kinetic theory of gases based on a special model
[6–12].

The analyses of light scattering in monatomic gases on the basis of the RET
theory were also made in detail [2, 13]. The RET theory is shown to be a better
theory to describe light scattering than the NSF theory. The analysis of the light
scattering in polyatomic gases by using the RET theory is, however, not well
developed until now [1].

9.1.2 Basic Equations

9.1.2.1 ET14 Theory

The basic equations for the present analysis are given by the linearized system of
equation (7.1) with the thermal and caloric equations of state given by (5.63). This
linear system can be decomposed into two uncoupled systems with independent
variables:

system-L �;  D @vi
@xi
; T;  D @2hiji

@xi@xj
; ˘; Q D @qi

@xi
,

system-T rot v; �ijk
@2hjni

@xk@xn
, rot q,

where �ijk is the Levi-Civita symbol. Here and hereafter, we denote the fluctuations
ı� and ıT simply as � and T.

For the present purpose, we adopt the system-L because only this system affects
the density fluctuations. The system-L is expressed as follows:

@�

@t
C �0 D 0;

@ 

@t
C p0
�20
��C kB

m
�T � 1

�0
 C 1

�0
�˘ D 0;

@T

@t
C T0
Ocv  C

T0
p0 Ocv Q D 0;

@˘

@t
C
�
2

3
� 1

Ocv
�

p0 C 2Ocv � 3
3Ocv.1C Ocv/Q D � 1

�˘
˘;

@

@t
� 4
3

p0� � 4

3.1C Ocv/�Q D � 1
�S
;

@Q

@t
C .1C Ocv/ kB

m
p0�T � p0

�0
 C p0

�0
�˘ D � 1

�q
qi:

(9.2)
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The Fourier (space) and Laplace (time) transformed basic equations provide an
algebraic system:

0
BBBBBBBBBBBBBBBB@

s �0 0 0 0 0

�q2
p0
�20

s �q2 kB
m �q2

�0
� 1
�0

0

0
T0
Ocv s 0 0

T0
p0 Ocv

0

�
2

3
� 1

Ocv
�

p0 0 sC 1

�˘
0

2Ocv � 3
3Ocv.1C Ocv/

0
4

3
q2p0 0 0 sC 1

�S

4q2

3.1C Ocv/
0 0 �q2.1C Ocv/ kB

m
p0 �q2

p0
�0

�p0
�0

sC 1

�q

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBB@

O�.q; s/
O .q; s/
OT.q; s/

O.q; s/

Ŏ .q; s/
OQ.q; s/

1
CCCCCCCCCCCCCCCCCA

D

0
BBBBBBBBBBBBBBBBB@

�.q; 0/

 .q; 0/

T.q; 0/

.q; 0/

˘.q; 0/

Q.q; 0/

1
CCCCCCCCCCCCCCCCCA

; (9.3)

where OX.q; s/ denotes the Fourier and Laplace transform of a generic quantity
X.x; t/, and X.q; 0/ denotes the initial value of spatial Fourier transform of X.x; t/.

Denoting the coefficient matrix of (9.3) as A, we obtain the density as

O�.q; s/ D.A�1/11�.q; 0/C .A�1/12 .q; 0/C .A�1/13T.q; 0/

C .A�1/14˘.q; 0/C .A�1/15.q; 0/C .A�1/16Q.q; 0/: (9.4)

When we consider the adiabatic system with volume VG which contains the
scattering volume V , we obtain

h��.q; 0/ O�.q; s/i D .A�1/11�2kBT	TVQ0; (9.5)
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where 	T is the isothermal compressibility and the function Q0 is defined as follows:

Q0 D 1 � 1

VVG

�Z
V

e�iq�xdx
�2
: (9.6)

It is useful to introduce the following dimensionless quantities:

x D !

v0q
; y D p0


qv0
; (9.7)

where v0 D
p
2kBT0=m. Usually the case of large y is referred to as the

hydrodynamic region and the case of small y as the kinetic region. By using x and
y, the relative intensity of S.q; !/ can be expressed as a function of x; y; Ocv; �qs and
�ps, where �qs D �q=�S and �ps D �˘=�S. In fact, the essential part of S.q; !/ is
obtained as follows:

S.q; !/

�2kBT	TVQ0
1
�

�
@�
@�

	2 D <
�

N

D

�
;

where

N.x; y/ D� 12ix5Ocv.Ocv C 1/�˘S�qS � 12x4yOcv.Ocv C 1/.�˘S�qS C �˘S C �qS/

C x3
˚
18iOcv.Ocv C 2/�˘S�qS C 12iy2Ocv.Ocv C 1/.�˘S C �qS C 1/
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9.1.2.2 Navier-Stokes Fourier Theory

In the case of the NSF theory, the Fourier-Laplace transformed field equations are
as follows:

0
BBBBB@

s �0 0
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m

q2T0
�0

sC 1

�0

�
4


3
C �
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q2 �kB

m
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CCCCCA
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BBBBBB@
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O .q; s/

OT.q; s/

1
CCCCCCA
D

0
BBBBBB@

�.q; 0/

 .q; 0/

T.q; 0/

1
CCCCCCA
:

(9.8)

The dynamic structure factor can be derived from this equation in a similar way.

9.1.3 Comparison with Experimental Data for CO2

For polyatomic gases (both rarefied and dense), there are many experiments of
Rayleigh-Brillouin Scattering basing on the traditional (called spontaneous) [14–
21] and new (called coherent) scattering techniques [22–24].

Here we compare the theoretical prediction of ET14 with the laser scattering
experiment of Greytak and Benedek [14, 15] in a carbon dioxide gas. The exper-
iments were achieved under an approximately fixed pressure p0.D kB

m �0T0/ D 1

[atm], and the parameter y is set as y D 11:1 (hydrodynamic region) and y D 1:01

(kinetic region) by changing the detecting angle. The wavelength of the laser
is � D 6328 [Å]. As thermodynamic parameters, we use 
 D 1:46 � 10�5
[kg m�1 s�1] and 	 D 1:31 [W K�1 m�1] which are adopted in [23] with Eucken
relation, therefore �qS D 1:36.

In the present comparison, the instrumental function finst.!/ is approximated by
the Lorentzian with a full-width at half-maximum of about 28 MHz for the case
of y D 11:1 and 210 MHz for the case of y D 1:01, and is convolved with the
theoretical predictions:

Sconvolved.!/ D
Z 1

�1
S.q; !0/finst.!

0 � !/d!: (9.9)

As indicated in [15, 16, 23, 24], since the frequencies in light scattering
experiments are much larger than the characteristic frequency of the vibrational
modes, the modes seem to freeze. Therefore, in contrast with the study of shock
waves in Chap. 8, the effect of the relaxation time of the dynamic pressure (or the
bulk viscosity) is not considerably larger than that of the shear stress and the heat
flux. This consideration indicates that we need to adopt the specific heat without the
vibrational modes, i.e., Ocv D 2:5. Here we adopt these assumptions as a working
hypothesis, although further study of these is evidently necessary.
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Fig. 9.1 Comparison of the theoretical prediction of relative intensity of the dynamic structure
factor derived from ET (solid line) and NSF (dashed line) with the experimental data (circle)
[14, 15]. Left and right figures show the cases with y D 11:1 and 1:01, respectively

In Fig. 9.1, we show the comparison of S.q; !/ derived from ET14 and NSF with
experimental data. The theoretical predictions are regularized to be 1 at x D 0.

In the hydrodynamic region, the experiment was made at scattering angle � D
10:6 [ı] (therefore y D 11:1), T D 297:9 [K] and p0 D 770 [mmHg]. In this region,
the predictions by ET14 and NSF give almost no difference from each other and
show good agreement with experimental data. The ratio of the relaxation times is
estimated as �˘S D 0:8 in such a way that the difference between the experiment
and theories becomes minimum. Then the relaxation time of the dynamic pressure
is 1:9 � 10�10 [s] and the bulk viscosity in this case is 5:2 � 10�6 [kg m�1 s�1].

For the kinetic region, the experiment was made at scattering angle � D 169:4

[ı] (therefore y D 1:01), T D 298:1 [K] and p0 D 750 [mmHg]. The relaxation
time of the dynamic pressure is same as the one estimated in hydrodynamic region.
From Fig. 9.1, also for the kinetic region, the ET14 theory shows better agreement
with experimental data than NSF except for small x. To study more details of the
kinetic region, as is expected, the theory with more moments [25] (see Chap. 10)
will be useful.

9.2 Heat Conduction

In this section, the effect of the dynamic pressure on stationary heat conduction
in a rarefied polyatomic gas at rest confined in a bounded domain in planar or
radial (cylindrical and spherical) geometry is studied by the ET14 theory [26]. The
effect is observable only in a polyatomic gas because the dynamic pressure vanishes
identically in a monatomic gas and is intrinsically related to the internal degrees of
freedom of a polyatomic molecule. The effect in the case of a para-hydrogen gas (p-
H2) is explained briefly as a typical example. As discussed in Sect. 4.2.1, we know
that, for monatomic gases, the ET and NSF theories carry mutually different results
in such a heat transfer problem [27–32].

The present analysis is a typical example in the problem of a bounded domain
discussed in Sect. 4.2.2.
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9.2.1 Basis of the Present Analysis

The basic system of field equations is given by (5.59) and (5.65) with the thermal
and caloric equations of state (5.63). We study the one-dimensional heat conduction
problem in the planar, radially symmetric cylindrical and spherical cases. All the
quantities will be described in the physical components [33].

9.2.1.1 Basic System of Equations

For convenience, we use the following dimensionless quantities:

Ox D x

L
; Oc0

v D T0
dOcv
dT
; OT D T

T0
; Op D p

p0
;

Ohiji D hiji
p0
; Ŏ D ˘

p0
; Oq D q1

p0
p

kBT0=m
;

O�S D �S

p
kBT0=m

L
; O�˘ D �˘

p
kBT0=m

L
; O�q D �q

p
kBT0=m

L
;

(9.10)

where x represents the position along the axis normal to the plates in the planar case
or the radius in the radial geometry, L is the distance between the two boundaries,
and the index 0 denotes the value at a reference state.

The basic system of equations can be rewritten as follows, in which the mass
conservation law is identically satisfied:

d

dOx .OpC
Ŏ � Oh11i/� j.jC 1/

2Ox Oh11i � j.j� 2/
Ox Oh22i D 0;

dOq
dOx C

j

Ox Oq D 0;

2

1C Ocv
dOq
dOx �

4

3

Oc0
v

.1C Ocv/2 Oq
d OT
dOx D

Oh11i
O�S
;

2.1 � ıj0/

1C Ocv
Oq
Ox C

2

3

Oc0
v

.1C Ocv/2 Oq
d OT
dOx D

Oh22i
O�S
;

5

3

Oc0
v

.1C Ocv/2 Oq
d OT
dOx D

Ŏ
O�˘ ;

n
.1C Ocv/OpC .2C Ocv/. Ŏ � Oh11i/

o d OT
dOx �

OT dOp
dOx D �

Oq
O�q
;

(9.11)

where the index j is 0; 1 and 2, respectively, for the planar case, the cylindrical case
and the spherical case, and ı denotes the Kronecker symbol.
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9.2.1.2 Reduced Basic System of Equations

From the basic system (9.11), several relations are obtained:

Oq D Q0

Oxj
;

Oh11i D � 2j

1C Ocv
Q0 O�S

OxjC1 �
4

5

O�S

O�˘
Ŏ ;

Oh22i D jC ıj1

1C Ocv
Q0 O�S

OxjC1 C
2

5

O�S

O�˘
Ŏ ;

(9.12)

where Q0 is a constant determined by the boundary condition. We note that, in the
planar and spherical cases, h22i D h33i.

Hereafter, in order to set apart the effect of the dynamic pressure, we neglect
the T dependence of the relaxation times assuming that these have constant values
determined by the temperature range under consideration. Essential features in the
present analysis are not changed by this assumption, which was also adopted in
Sect. 4.2.1. Then, the following relation is obtained form (9.11)1 and (9.12):

OpC
�
1C 4

5

O�S

O�˘
�
Ŏ D P0; (9.13)

where P0 is a constant determined by the boundary condition. The quantities
Ŏ ; Oh11i; Oh22i and Oq are determined by the solution of the differential equations

for OT and Op:

.A � Op/d OT
dOx �

OT dOp
dOx D �

Q0

O�q Oxj
;

�
1C 4

5

O�S

O�˘
�
Oc0
v

d OT
dOx D B .P0 � Op/ ;

(9.14)

where

A D .2C Ocv/
�

P0 C 2j

1C Ocv
Q0 O�S

OxjC1

�
;

B D 3

5
.1C Ocv/2 Ox

j

Q0 O�˘ :
(9.15)
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9.2.1.3 Navier-Stokes Fourier Theory

For reference, we write down the NSF basic equation:

.1C Ocv/Opd OT
dOx D �

Oq
O�q

(9.16)

with Op D P0 and Oq D Q0=Oxj. The viscous stress <ij> and the dynamic pressure ˘
vanish identically.

9.2.2 Boundary Conditions

We assume, for simplicity, a permeable plate at Ox D 0 and an impermeable one
at Ox D 1. At the permeable plate, we can impose both the density �0 and the
temperature T0. While, at the impermeable plate, a fixed heat flux Q0 is applied.

Although these boundary data are sufficient to determine completely the solution
of the NSF system, we need one more condition for the ET system of equations. This
is the so-called “non-controllable boundary data problem” and several approaches
have been introduced to overcome it. See the discussions in Sect. 4.2.2.

In the present study we have determined it as follows: We tried to assign different
values of <11> at one plate. We found that the corresponding solutions of <11>
exhibit, in general, thin boundary layers near the plate. We then adopt, as an
appropriate boundary value, the one for which no boundary layer is observed. A
similar phenomenon was also observed in a different context [34]. We remark that
different boundary values for <11> create minimally different solutions for T and
˘ , but create significant differences for q and for p.

9.2.3 Effect of the Dynamic Pressure

From (9.11)5, we notice that

Oc0
v D 0 �! Ŏ D 0; (9.17)

therefore the polyatomic effect ( Ŏ ¤ 0) is observable only in the case with Oc0
v ¤ 0,

which is the case that we can not see in rarefied monatomic gases. From (9.13), the
pressure Op is no more constant but depends on Ox.

Let us divide this case into the following two cases:

(a) Planar case: It is evident that, even in the planar case, the ET theory predicts the
existence of the polyatomic effect.

(b) Cylindrical and spherical cases: From the numerical analysis [26], we see that
the radial geometry enhances the polyatomic effect significantly.
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Two remarks are made below:

Remark 9.1 Two quantities Oc0
v and Ŏ have qualitatively different characters from

each other: Oc0
v is, by definition, an equilibrium quantity, while Ŏ is a nonequilibrium

one. However, both quantities are intrinsically related to the internal degrees of
freedom of a polyatomic molecule. In stationary heat conduction in a rarefied
polyatomic gas, we have found that both quantities play an important role simul-
taneously.

Remark 9.2 In the NSF theory (9.16), the dynamic pressure˘ vanishes identically
even in the case with Oc0

v ¤ 0. From an extended thermodynamics point of view, this
fact reveals an inconsistency in the NSF theory of a rarefied polyatomic gas.

Before closing this subsection, we discuss the case with Oc0
v D 0 for the sake of

completeness. When the specific heat Ocv is constant, we have

˘ D 0; Op D P0 (9.18)

in all geometries. There is no polyatomic effect. Then, (9.14)2 is identically satisfied,
and the temperature profile is governed by

d OT
dOx D �

Q0

.A � P0/ O�q Oxj
: (9.19)

We discuss this case further as follows:

(i) Ocv D 3=2: This case corresponds to a monatomic gas or a polyatomic gas in a
low temperature range where no internal degrees of freedom of a molecule are
excited. Equation (9.19) is exactly the same as that studied in Sect. 4.2.1, where
it was shown that the temperature profiles in the planar case predicted by the
ET theory and the NSF theory coincide with each other, and that unphysical
singularities of the temperature on the axis of the cylinder and at the center of
the sphere predicted by the NSF theory can be removed by the ET theory.

(ii) Ocv D constant > 3=2: This case corresponds to a polyatomic gas with excited
internal degrees of freedom. However, except for the value of Ocv , the analytical
expression of the temperature profile is the same as that of the case (i) above.

9.2.4 An Example: Polyatomic Effect in a Para-Hydrogen Gas

By taking the importance of the dynamic pressure Ŏ and the relationship (9.17)
into consideration, the numerical study of the polyatomic effect in a para-hydrogen
(p-H2) gas was made as a typical example. See its temperature dependence of the
specific heat in Fig. 7.2, where Oc0

v ¤ 0 except for one special point.
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It is shown that, both in the planar case and in the radial case, the polyatomic
effect due to the presence of the dynamic pressure ˘ appears. The presence
of ˘ affects both the heat flux and the mass density, which may be detected
by the experimental techniques described in [35]. The radial geometry enhances
significantly the difference between the ET and NSF predictions although the
difference of the temperature profile is still small. For details of the numerical
results, see [26].

9.3 Fluctuating Hydrodynamics of ET14

9.3.1 Introduction

Landau and Lifshitz developed the theory of fluctuating hydrodynamics for viscous,
heat-conducting fluids with constitutive equations of Navier-Stokes and Fourier type
[36–38] basing on thermodynamics of irreversible processes (TIP). They introduced
additional stochastic flux terms (generalized random forces) into the constitutive
equations of the viscous stress and the heat flux by applying the fluctuation-
dissipation theorem [39–41]. See also review articles on fluctuating hydrodynamics
[42–44].

In recent years, the Landau-Lifshitz (LL) theory has been applied to, in particular,
nano-technology [45, 46] and molecular biology [47, 48]. Numerical analyses of
the fluctuations by using the theory have been made extensively [49–55]. The
fluctuating-hydrodynamic approach can also contribute to the study of fluctuations
in nonequilibrium states [44, 56, 57]. However, as TIP rests essentially on the local
equilibrium assumption, it is highly probable that TIP may no longer be valid for
highly nonequilibrium cases such as the cases where nanoflows are involved, or the
cases where rarefied gases play a role.

The purpose of the present section is to summarize briefly the theory of
fluctuating hydrodynamics based on ET through the study of the ET14 theory as
a representative case. See also [58, 59] for fluctuating hydrodynamics based on ET
with 13-field theory of rarefied monatomic gases.

9.3.2 Theory of Fluctuating Hydrodynamics Based on ET

The basic equations in the present study are the linearized equations of ET14 for a
rarefied polyatomic gas (7.1) but in a polytropic case with Ocv D D=2.
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Let us now try to introduce the random forces into ET. Following the general
theory [60], we can have the expressions for the productions Pjj, Phiji and Qi in
terms of ˘ , hiji, qi and the Gaussian white random forces r, rhiji, si (see (5.38)):

Pjj D � 3

�˘
˘ C r; (9.20)

Phiji D 1

�S
hiji C rhiji;

Qi D � 2
�q

qi C si:

The means of the random forces r, rhiji and si vanish. And their correlations are
given by

hr.x; t/r.x0; t0/i D kB
12D�3

D
kB
m �0T

2
0

�˘
ı.x � x0/ı.t � t0/;

hrhiji.x; t/rhmni.x0; t0/i D kB
2 kB

m �0T
2
0

�S

�.ıimıjn C ıinıjm � 2
3
ıijımn/ı.x� x0/ı.t � t0/; (9.21)

hsi.x; t/sj.x0; t0/i D kB
4.DC 2/ � kB

m

�2
�0T30

�q
ıijı.x � x0/ı.t � t0/;

hr.x; t/rhiji.x0; t0/i D hr.x; t/sm.x0; t0/i D hrhiji.x; t/sm.x0; t0/i D 0;

where brackets h i in the left-hand side stand for the statistical average at the
reference equilibrium state.

Field equations (7.1) with (9.20) and (9.21) constitute the basic system of
equations for fluctuating hydrodynamics based on ET14. The relaxation times can
be evaluated by experiments or kinetic-theoretical analyses.

9.3.3 Two Subsystems of the Stochastic Field Equations

The system of equations obtained above may be decomposed into two uncoupled
subsystems, that is, the subsystem composed of longitudinal modes (System-L) and
the subsystem of transverse modes (System-T). (See also Sect. 9.1.2.1.)
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9.3.3.1 System-L

The relevant quantities of the system are given by

�; T;  

�
� @vi

@xi

�
; ˘; �

�
� @2hiji
@xi@xj

�
; '

�
� @qi

@xi

�
;

u

�
� 1

3
r

�
; v

�
� � @

2rhiji
@xi@xj

�
; and w

�
� 1

2

@si

@xi

�
:

(9.22)

The spatial Fourier transform of the system is the system of the rate-type differ-
ential equations in the space of the wave number k and time t (kt-representation) as
follows:

@�.k; t/
@t

C �0 .k; t/ D 0;

@ .k; t/
@t

�
kB
m T0
�0

k2�.k; t/ � kB

m
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�0
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�0
�.k; t/ D 0;

@T.k; t/
@t

C 2

D
T0 .k; t/C m

kB

2

D�0
'.k; t/ D 0;

@˘.k; t/
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C 4.D � 3/
3D.DC 2/'.k; t/C

2.D � 3/
3D
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m
�0T0 .k; t/ D � 1

�˘
˘.k; t/C u.k; t/;

@�.k; t/
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C 8

3.DC 2/k2'.k; t/C 4
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m
�0T0k

2 .k; t/ D � 1
�S
�.k; t/C v.k; t/;

@'.k; t/
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� kB

m
T0k
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m
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�
kB

m

�2
�0T0k

2T.k; t/

D � 1
�q
'.k; t/Cw.k; t/; (9.23)

where �.k; t/ is the spatial Fourier transform of �.x; t/.
From Eq. (9.21), the quantities v.k; t/ and w.k; t/ are the Gaussian white random

forces with null means and correlations:

hu.k; t/u.k0; t0/i D kB

D�3
D

kB
m �0T

2
0

6�3�˘
ı.kC k0/ı.t � t0/;

hv.k; t/v.k0; t0/i D kB

kB
m �0T

2
0

3�3�S
k4ı.kC k0/ı.t � t0/;

hw.k; t/w.k0; t0/i D kB
.DC 2/ � kB

m

�2
�0T30

8�3�q
k2ı.kC k0/ı.t � t0/;

hu.k; t/v.k0; t0/i D hu.k; t/w.k0; t0/i D hv.k; t/w.k0; t0/i D 0: (9.24)
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9.3.3.2 System-T

The relevant quantities of the system are given by

!i .� .rotv/i/ ; i

�
� �ijk

@2hkni
@xj@xn

�
; �i.� .rotq/i/;

xi

�
� ��ijk

@2rhkni
@xj@xn

�
; and yi

�
� 1

2
.rots/i

�
:

(9.25)

The field equations in the kt-representation are as follows:

@!i.k; t/
@t

� 1

�0
i.k; t/ D 0;

@i.k; t/
@t

C 2

DC 2k2�i.k; t/C kB

m
�0T0k

2!i.k; t/ D � 1
�S
i.k; t/C xi.k; t/;

@�i.k; t/
@t

� kB

m
T0i.k; t/ D � 1

�q
�i.k; t/C yi.k; t/: (9.26)

Note that, for given xi and yi, the equations for the set of variables (!i; i; �i) with
the same suffix i can be solved separately from those with the different suffix j.¤ i/.
In view of Eq. (9.21), xi and yi are the Gaussian white random forces with null means
and correlations:

hxi.k; t/xm.k0; t0/i D kB

kB
m �0T

2
0

4�3�S
k4
�
ıim � kikm

k2

�
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�2
�0T30

8�3�q
k2
�
ıim � kikm

k2

�

�ı.kC k0/ı.t � t0/;
hxi.k; t/ym.k0; t0/i D 0:

(9.27)

9.3.4 Relationship to the Landau-Lifshitz Theory

In what follows, we adopt the coarse-graining approximation where the fast modes
are eliminated [58], and show explicitly the coarse-grained solutions for the System-
L and System-T. We will see that these solutions are just the ones in the LL theory.
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9.3.4.1 System-L

We have the following relation up to the leading term with respect to �˘ , �S and �q

2
4˘.k; t/�.k; t/
'.k; t/

3
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2
666664

�2.D� 3/
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DC 2
2

�
kB

m
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�0T0�qk2T.k; t/C h.k; t/

3
777775
: (9.28)

The Gaussian white random forces g and h have null means and correlations:
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˛ D ˝f.k; t/h.k0; t0/
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(9.29)

9.3.4.2 System-T

We obtain the following relations in a similar way as above

�
i.k; t/
�i.k; t/

�
D
�� kB

m �0T0�Sk2!i.k; t/C ki.k; t/
li.k; t/

�
: (9.30)

Note that there is no deterministic part in �i.k; t/, therefore, only the random force
plays a role. The correlations between the zero-mean Gaussian white random forces
are given by

˝
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0 �Sk4
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�ı.kC k0/ı.t � t0/;
˝
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ıim � kikm

k2

�

�ı.kC k0/ı.t � t0/;˝
ki.k; t/lm.k0; t0/

˛ D 0:

(9.31)

The Relationship Between the Present Theory and the LL Theory We can
now confirm that the expressions in (9.28), (9.29), (9.30) and (9.31) are exactly
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the same as those derived from the LL theory where the viscosities �, 
 and the
heat conductivity 	 are identified by the relations (5.76). Thus we have proved that
the LL theory can be derived from the ET14 theory by using the coarse-graining
approximation, and that the LL theory is included in the present theory as a limiting
case.

The ET14 theory and the LL theory belong to the two different levels of descrip-
tion of fluctuating hydrodynamics. As we analyzed above, the rapidly changing
deterministic modes (fast modes) in ET have been consistently re-normalized into
the random forces in the LL theory. Therefore, from a physical point of view, the
delta functions appeared in the correlations have their own validity range depending
on the spatio-temporal resolution of their description level.

9.3.5 Conclusion

In the present section, we have summarized the theory of fluctuating hydrodynamics
based on ET. And we have made clear the link between the two levels of description
of fluctuating hydrodynamics, that is, the ET14 theory and the LL theory.

Generally speaking, there are many such levels. As explained in Sect. 2.4, Boillat
and Ruggeri found the hierarchy structure of ET and the important concept called
principal subsystem of field equations. Each subsystem gives us one level of
description with different resolution from each other. And, in a similar way as
above, we can develop the corresponding fluctuating hydrodynamics basing on a
given subsystem. Detailed discussions are omitted here for simplicity.
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Theories of Many Moments



Chapter 10
Molecular ET Theory of Rarefied Polyatomic
Gas

Abstract Molecular extended thermodynamics of rarefied polyatomic gases is
characterized by the system composed of two hierarchies of balance equations
for the moments of a distribution function. The internal degrees of freedom of
a molecule are properly taken into account in the distribution function. By the
reasoning of physical relevance, the truncation orders of the two hierarchies are
proved to be not independent of each other. And the two closure procedures based
on the maximum entropy principle (MEP) and on the entropy principle are also
proved to be equivalent to each other.

Characteristic velocities of a hyperbolic system of the balance equations for a
polyatomic gas are compared to those obtained for a monatomic gas. The lower
bound estimate for the maximum equilibrium characteristic velocity established for
a monatomic gas is proved to be valid also for a rarefied polyatomic gas, that is, the
estimate is independent of the degrees of freedom of a molecule. As a consequence,
also for polyatomic gases, when the number of moments increases the maximum
characteristic velocity becomes unbounded.

10.1 Introduction

We discussed, in Sect. 1.5.5, the role of the MEP and, in Sect. 4.3, we gave a
survey of molecular ET. We proved the equivalence of the closures via MEP
and via the entropy principle in the case of monatomic gases. In Chap. 6, we
described the closure via MEP of the 14-field theory of the new ET valid for
rarefied polyatomic gases following the results given in [1]. We proved that the
binary hierarchy of moment equations obtained with the distribution function is
consistent with the binary hierarchy presented in Chap. 5. In particular, it was shown
that the momentum-like hierarchy is related to the usual moments of the distribution
function, and the energy-like hierarchy is related to the moments of an additional
continuous variable representing the internal energy of a molecule.

The purpose of the present chapter is to give a contribution to the development
and understanding of the new ET theory of rarefied polyatomic gases for any number
of moments. These results are based on the papers of Arima et al. [2, 3].

© Springer International Publishing Switzerland 2015
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In particular, by the physical arguments (namely, Galilean invariance and the
requirement that the characteristic velocities depend on the degrees of freedom of a
molecule), the relation between the orders of truncation of the momentum-like and
energy-like hierarchies are investigated, leading to the conclusion that once the order
of truncation of one hierarchy is chosen, the order of truncation of the other one is
automatically prescribed.

The closure of the system is achieved by means of MEP, and it is proved that,
also in the present general case, this MEP approach is equivalent to the approach
with the requirement that the truncated system satisfies the entropy principle with
the convex entropy density. In this way, it is shown that the system is symmetric
when written in terms of the main field components.

And the characteristic velocities in an equilibrium state are analyzed. These
velocities play an important role in processes such as the propagation of acceleration
waves [4, 5] (see Sect. 3.2), the determination of the phase velocity of linear waves
in the high-frequency limit [6, 7] (see Sect. 3.1), and the subshock formation [8]
(see Theorem 3.1). With regard to this, it will be discussed how the characteristic
velocities of the system depend on the internal degrees of freedom and on the orders
of the truncation of hierarchies. In particular, the two limit cases of monatomic gases
and of a gas with infinite internal degrees of freedom are investigated.

Finally, using convexity arguments and sub-characteristic conditions for princi-
pal subsystems (see Theorem 2.3), we prove that the lower bound estimate for the
maximum characteristic velocity established for monatomic gases by Boillat and
Ruggeri [9] [see (4.35)] still holds and is independent of the degrees of freedom
of a molecule. Therefore, also for polyatomic gases, the maximum characteristic
velocity tends to be unbounded when the orders of the hierarchies tend to infinity!

10.2 MEP Closure for Rarefied Polyatomic Gases with Many
Moments

The discussion is focused on gases characterized by the thermal and caloric
equations of state (1.28), that is, rarefied polytropic and polyatomic gases.

We consider now the same binary hierarchy of the 14-moment theory but for a
generic number of moments truncated for the F-series at the index of truncation N
and for the G-series at the index M:

@tF C @iFi D 0;
@tFk1 C @iFik1 D 0;
@tFk1k2 C @iFik1k2 D Pk1k2 ; @tGkk C @iGikk D 0;
::: @tGkkj1 C @iGkkij1 D Qkkj1 ; (10.1)
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:::
:::

@tFk1k2:::kN C @iFik1k2:::kN D Pk1k2:::kN

:::

@tGkkj1j2:::jM C @iGkkij1j2:::jM D Qkkj1j2:::jM :

Definition 10.1 ((N;M)-System) The above system can be rewritten in a simple
form by using the multi-index notations defined below:

@tFA C @iFiA D PA;

.0 6 A 6 N/ @tGllA0 C @iGlliA0 D QllA0 ; (10.2)�
0 6 A0 6 M

�

which we call .N;M/-system.

The moments of the F-series are the usual ones:
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(10.3)

while the moments of the G-series are expressed with the additional variable I as
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c2 C 2I

m

�
cA0I˛ dIdc;

GlliA0 D
Z

R3

Z 1

0

mf

�
c2 C 2I

m

�
cicA0I˛ dIdc;

QllA0 D
Z

R3

Z 1

0

mQ.f /

�
c2 C 2I

m

�
cA0I˛ dIdc:

(10.4)

The following multi-index notations are introduced for the sake of compactness:

FA D
�

F for A D 0
Fi1���iA for 1 6 A 6 N

; FiA D
�

Fi for A D 0
Fi i1���iA for 1 6 A 6 N

;

PA D
8<
:
0 for A D 0
0 for A D 1
Pi1���iA for 2 6 A 6 N . with Pll D 0/

;
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GllA0 D
�

Gll for A0 D 0
Glli1���iA0 for 1 6 A0 6 M

; GlliA0 D
�

Glli for A0 D 0
Gllii1 ���iA0 for 1 6 A0 6 M

;

QllA0 D
�
0 for A0 D 0
Qlli1 ���iA0 for 1 6 A0 6 M

;

and

cA D
�
1 for A D 0
ci1 � � � ciA for 1 6 A 6 N

;

where the indices i and i1 6 i2 6 � � � 6 iA assume the values 1; 2; 3. The truncation
order N of the F-hierarchy (momentum-like hierarchy) and the order M of the
G-hierarchy (energy-like hierarchy) are a priori independent of each other. It is
worth noting that the first and second equations of the F-hierarchy represent the
conservation laws of mass and momentum, respectively (P � 0;Pi � 0), while the
first equation of the G-hierarchy represents the conservation law of energy (Qll � 0),
and that, in each of the two hierarchies, the flux in one equation appears as the
density in the following equation—a feature in common with the single hierarchy
of monatomic gases.

The Euler 5-moment system (4.3) is a particular case of (10.2) with N D 1; M D
0. And the 14-moment system (5.2) is another particular case of (10.2) with N D
2; M D 1.

Instead of the .N;M/-system that includes all tensors of FA and GllA0 , it is
possible to construct the system that includes all the tensors except that the last
ones, i.e., N-order and/or M-order tensorial equations, are replaced by the part of
them as independent variables. Then similarly to the Definition 4.1, we have the
following:

Definition 10.2 A system (10.1) is called .N�;M/-system if, for the last balance
equation in the F-hierarchy, we consider only the trace with respect to the two
indexes, Fk1k2:::kN�2ll, instead of the full N-order tensor Fk1k2:::kN�2kN�1kN . Similar
definition is valid for the G-hierarchy and we have an .N;M�/-system. If, instead
of 2 indexes, we have the contraction with respect to the 2 couples of 2 indexes, we
add another �: .N��;M/ etc.

For example, in the classical kinetic approach for rarefied polyatomic gases, the 17-
moment theory is proposed [10, 11]. This theory corresponds to the ET theory with
the densities; F;Fi;Fij;Gll;Flli;Glli. In this case, in the last tensor of F-hierarchy,
only the trace is adopted as an independent field, and therefore all components of
the G-hierarchy have the corresponding components in the F-hierarchy. As this 17-
moment system adopts the trace with respect to the indexes iN�1 and iN of the N-
order tensorial equation with N D 3, the 17-moment system is denoted as .3�; 1/-
system. Similarly, the monatomic 13-moment system is denoted as .3�/-system.



10.2 MEP Closure for Rarefied Polyatomic Gases with Many Moments 217

Remark Definition 10.2 does not cover all possible cases of physically plausible
systems. For example, the system that adopts the traceless part of the highest order
tensor of F- and/or G-hierarchies is also possible. Another possibility is that the
system adopts the trace part not only of the highest-order tensor of F- and/or G-
hierarchies but also of the second-highest-order tensor. However, in the present
study, we skip such systems and pay attention solely to the .N;M/-system with
or without �, because, in our opinion, these systems are most interesting from
a physical point of view. From (4.23) and (4.24), the number of moments for an
.N;M/-system is given by

n.N;M/ D 1

6
.N C 1/.N C 2/.N C 3/C 1

6
.M C 1/.M C 2/.M C 3/; (10.5)

and, for an .N�;M/-system,

n.N�;M/ D 1

6
N.N2 C 6N � 1/C 1

6
.M C 1/.M C 2/.M C 3/: (10.6)

10.2.1 Galilean Invariance

An important issue to be addressed concerns the relation between the orders N
and M of the two hierarchies (10.2). In the treatment outlined above, the orders
N and M have been considered to be independent of each other. However, from
the physical point of view, one should clarify whether some restrictions on the
truncation procedure of the two hierarchies exist or not.

In the spirit of ET, the application of the universal principles—in the present
case, the Galilean invariance—suggests that in order to have a physically acceptable
model, the orders of truncation N and M cannot be chosen independently. Indeed,
we can prove the following theorem that gives the first restriction on the relation
between the two indexes N and M:

Theorem 10.1 In order to be Galilean invariant for the .N;M/-system (10.2), it
must be M 6 N � 1.

Proof Recalling the definition of the peculiar velocity Ci D ci�vi, and defining the
velocity-independent internal moments (so-called Galilean tensors) OFA and OGllA0 as
follows:

OFA D
Z

R3

Z 1

0

mf CAI˛ dIdc;

OGllA0 D
Z

R3

Z 1

0

mf

�
C2 C 2I

m

�
CA0I˛ dIdc;
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we can write

FA D
AX

kD0

 
A

k

!
OF.i1���ikvikC1

� � �viA/;

D XAB OFB;

(10.7)

where XAB is a component of the matrix (2.51), and

GllA0 D
A0X

kD0

 
A0

k

!� OGll.i1���ikvikC1
� � �viA0 / C 2vl OFl.i1���ikvikC1

� � �viA0 /

Cv2 OF.i1���ikvikC1
� � �viA0 /

	
;

D XA0B0

� OGllB0 C 2vl OFlB0 C v2 OFB0

	
:

(10.8)

It is noticeable that GllA0 depends not only on the Galilean tensors of the G-
hierarchy, but also on those of the F-hierarchy. Similarly, the fluxes FiA, GlliA0 and
the productions PA, QllA0 are expressed, respectively, by these internal quantities OFiA,
OGlliA0 and OPA, OQllA0 , which are evaluated by imposing vik D 0 for all k.

The structure of the terms (10.7) and (10.8) guarantees that the results proved
in [12] can be extended to the present case and, when M > N � 1, unknown
moments of the F-hierarchy appear in a higher order moment of the G-hierarchy. For
example, in the case M D N, Glli1���iN , which is the highest-order moment of the G-
hierarchy, includes OFli1���iN , and the corresponding moment Fli1���iN is not included in
the F-hierarchy. Therefore we conclude that the system cannot be Galilean invariant
whenever M > N � 1. The 14 moment theory, namely .2; 1/-system and the Euler
.1; 0/-system are of course Galilean invariant.

It should be noted that the requirement of the Galilean invariance for .N;M/-
system; M 6 N � 1 is satisfied also for .N�;M/, .N;M�/ and .N�;M�/ except for
.N�;N � 1/-system.

10.2.2 Closure of the .N; M/-System via the Maximum
Entropy Principle

To close the .N;M/-system (10.2) with M 6 N� 1, the maximum entropy principle
is applied: The actual distribution function f.N;M/ is the one that maximizes the
entropy h0 defined by

h0 D �kB

Z
R3

Z 1

0

f log f I˛ dIdc; (10.9)

under the constraints that the moments FA and GllA0 are given by (10.3)1 and (10.4)1.
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The variational problem from which the distribution function f.N;M/ is obtained is
connected to the functional:

L.N;M/ .f / D

�kB

Z
R3

Z 1

0

f log f I˛ dIdcC
NX

AD0
�A

�
FA �

Z
R3

Z 1

0

mfcAI˛ dIdc
�
C

C
MX

A0D0

A0

�
GllA0 �

Z
R3

Z 1

0

mf

�
c2 C 2I

m

�
cA0I˛dIdc

�
;

where �A and 
A0 are the Lagrange multipliers. Then the distribution function is
obtained as follows [2, 3]:

Theorem 10.2 The distribution function f.N;M/ that maximizes the functional
L.N;M/ is (we omit from now the symbol of summation in A and in A0):

f.N;M/ D exp

�
�1 � m

kB
�.N;M/

�
; �.N;M/ D �AcA C

�
c2 C 2I

m

�

A0cA0 :

(10.10)

By inserting (10.10) into (10.3)1 and (10.4)1, the Lagrange multipliers �A and 
A0

are evaluated in terms of the densities FA and GllA0 . Finally, plugging (10.10) into the
last flux and production terms, the system can be closed. We will give more details
in the following sections.

10.2.3 Closure of the .N; M/-System via the Entropy Principle

As discussed above, an alternative approach to achieve the closure of the system
makes use of the entropy principle. In this case, it is required that all the solutions of
(10.2) satisfy the entropy principle (2.8). The condition (2.12) can now be written
as

@th
0 C @ih

i � u0
A .@tFA C @iFiA � PA/� v0

A0 .@tGllA0 C @iGlliA0 �QllA0/ D ˙ > 0;

where u0
A and v0

A0 are the main field components. Treating h0, hi and ˙ as
constitutive functions of FA and GllA0 , we obtain [see (2.13)]

dh0 D u0
AdFA C v0

A0dGA0 ; dhi D u0
AdFiA C v0

A0dGiA0; ˙Du0
APA C v0

A0QllA0 > 0:
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Recalling (10.3) and (10.4), we can write

dh0 D
Z

R3

Z 1

0

m�.N;M/I
˛ df dIdc; dhi D

Z
R3

Z 1

0

mci �.N;M/I
˛ df dIdc;

˙ D
Z

R3

Z 1

0

m�.N;M/ Q.f / I˛ dIdc; �.N;M/ D u0
AcA C

�
c2 C 2I

m

�
v0

A0cA0 :

(10.11)

On the other hand, recalling that the entropy density h0 is expressed as (10.9) by
using the distribution function, and similarly the entropy flux and production can be
expressed as

hi D �kB

Z
R3

Z 1

0

cif log f I˛ dIdc; ˙ D �kB

Z
R3

Z 1

0

Q.f / log f I˛ dIdc;

(10.12)

we can write the quantities dh0 and dhi as

dh0 D �kB

Z
R3

Z 1

0

.log f C 1/ I˛ df dIdc;

dhi D �kB

Z
R3

Z 1

0

ci.log f C 1/ I˛ df dIdc:

(10.13)

By comparing (10.11)–(10.13) it is easy to have:

Theorem 10.3 The distribution function f.N;M/ that satisfies the entropy principle is
given by

f.N;M/ D exp

�
�1 � m

kB
�.N;M/

�
: (10.14)

As a consequence of Theorems 10.2 and 10.3, it is concluded that:

Statement 2 The MEP and the entropy principle are equivalent with respect to the
closure also for rarefied polyatomic gases. In addition, the Lagrange multipliers of
MEP coincide with the main field of the entropy principle: u0

A � �A and v0
A0 � 
A0 .

For the case of a generic entropy functional h0 D h0.f / valid for any gas
including degenerate gas, the equivalence of the entropy principle and MEP was
proved in [3] in a similar way in the case of monatomic gases (see Sect. 4.3).
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10.2.4 Closure and Symmetric Hyperbolic Form

As discussed in Sect. 4.3 in the case of rarefied monatomic gases, the system (10.2)
can be written in a symmetric hyperbolic form in terms of the main field

�
u0

A; v
0
A0

�
.

In fact:

Theorem 10.4 The system (10.2) may be written as follows:

 
J0AB J1AB0

J1A0B J2A0B0

!
@t

 
u0

B

v0
B0

!
C
 

J0iAB J1iAB0

J1iA0B J2iA0B0

!
@i

 
u0

B

v0
B0

!
D
 

PA

QllA0

!
: (10.15)

The coefficient matrix of time-derivatives of the fields is negative-definite, and all
other matrices are symmetric. Therefore the system is symmetric hyperbolic.

Proof From (10.14) dropping the subscript .N;M/ for simplicity, we have

@tf D �m

kB
f @t� D �m

kB
f

�
cA@tu

0
A C

�
c2 C 2I

m

�
cA0@tv

0
A0

�
;

and then

@tFA D J0AB@tu
0
B C J1AB0@tv

0
B0 ; @tGllA0 D J1BA0@tu

0
B C J2A0B0@tv

0
B0 ;

(10.16)

@iFiA D J0iAB@iu
0
B C J1iAB0@iv

0
B0 ; @iGlliA0 D J1iBA0@iu

0
B C J2iA0B0@iv

0
B0 ;

where

J0AB D �
m2

kB

Z
R3

Z 1

0

fcAcBI˛ dIdc;

J0iAB D �
m2

kB

Z
R3

Z 1

0

fcicAcBI˛ dIdc;

J1AB0 D �m2

kB

Z
R3

Z 1

0

fcAcB0

�
c2 C 2I

m

�
I˛ dIdc;

J1iAB0 D �m2

kB

Z
R3

Z 1

0

fcicAcB0

�
c2 C 2I

m

�
I˛ dIdc;

J2A0B0 D �m2

kB

Z
R3

Z 1

0

fcA0cB0

�
c2 C 2I

m

�2
I˛ dIdc;

J2iA0B0 D �m2

kB

Z
R3

Z 1

0

fcicA0cB0

�
c2 C 2I

m

�2
I˛ dIdc:

(10.17)

Inserting (10.16) into (10.2), we obtain (10.15), and this completes the proof.
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10.3 Closure in the Neighborhood of a Local Equilibrium
State and Principal Subsystems

As seen in the monatomic gas case (Sect. 4.5), we have also in this case the
problem of the convergence of the moment integrals. Therefore the distribution
function (10.10) obtained as a solution of the variational problem is expanded in
the neighborhood of a local equilibrium state:

f � fE

�
1 � m

kB

�
Qu0

AcA C
�

c2 C 2I

m

�
Qv0

A0cA0

��
; Qu0

A D u0
A � u0E

A ; Qv0
A0 D v0

A0 � v0E
A0 ;

(10.18)

where u0E
A and v0E

A0 are the main field components evaluated in the local equilibrium
state. The equilibrium distribution function fE , obtained by Pavić et al. [1] (see also
[13]), is given by (6.9).

All the Lagrange multipliers (main field) in equilibrium vanish except those
corresponding to the hydrodynamic variables �; vi; ". By inserting (10.18) into
(10.3)1 and (10.4)1, a linear algebraic system that permits to evaluate the main field�
u0

A; v
0
A0

�
in terms of the densities FA and GllA0 is obtained:

 
J0jEAB J1jEAB0

J1jEA0B J2jEA0B0

! Qu0
B

Qv0
B0

!
D
 

FA � FE
A

GllA0 � GE
llA0

!
; (10.19)

where the superscript “E”denotes the quantities evaluated in an equilibrium state
by using the local equilibrium distribution function fE given by (6.9). Plugging (6.9)
into (10.17), we obtain the following useful relations that express the quantities J0jEAB ,

J1jEAB0 and J2jEA0B0 by the corresponding quantities JMAB of the monatomic gas case defined
in (4.41) and the parameter ˛ (the degrees of freedom of a molecule):

J0jEAB D JMAB ; J1jEAB0 D JMiiAB0 C 2c2s .1C ˛/JMAB0 ;

J2jEA0B0 D JMiijjA0B0 C 4c2s .1C ˛/
�
JMiiA0B0 C c2s .2C ˛/JMA0B0

�
;

(10.20)

where

cs D
r

kB

m
T :

Once
�Qu0

B; Qv0
B0

�
is calculated as a solution of (10.19) in terms of the densities

FA and GllA0 , the main field
�
u0

A; v
0
A0

�
is obtained from (10.18)2 by considering

the fact that, from the general Theorem 2.4, all the components of main field
in equilibrium vanish except for the first five components corresponding to the
Lagrange multipliers of the conservation laws of mass, momentum and energy
.u0; u0

i; v
0
ll/. Then inserting the solution of (10.19)

�Qu0
B; Qv0

B0

�
into (10.18)1, we obtain
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all the fluxes (10.3)2;3 and the productions (10.4)2;3 in terms of the densities. Thus
the closure is completed.

10.3.1 14-Moment System and Its Principal Subsystems

In the case of the 14-moment system (N D 2, M D 1), the results coincide with
the ones described in Chap. 6 and the closed system in physical variables is given
in (1.29).

According to the theory of principal subsystems by Boillat and Ruggeri [14] pre-
sented in Sect. 2.4, the following systems can be obtained as principal subsystems
of the 14-moment system:

The 11-moment system (N D 2, M D 0): Setting qi D 0 and neglecting the
equation of qj in (1.29), the following principal subsystem is obtained

@t�C @i .�vi/ D 0;
@t
˚
�vj

C @i

˚
�vivj C .pC˘/ıij � hiji


 D 0;
@t
˚
�v2 C 3.pC˘/
C @i

˚
�v2vi C 5vi.pC˘/� 2vlhlii


 D �3˘
�˘

;

@t
˚
�vhjvki � hjki


C @i
˚
�vhjvkivi C 2vhjıkii.pC˘/� 2vhjkii � vihjki


 D hjki
�S
;

@t
˚
�v2 C 2�"
C @i

˚
.�v2 C 2�"C 2pC 2˘/vi � 2hliivl


 D 0:
(10.21)

This is the system in which F, Fi, Fij and Gll are retained as field variables.
The 6-moment system (N D 2�, M D 0): Setting hiji D 0 and neglecting the

equation of hiji in (10.21), the following principal subsystem is obtained

@t�C @i .�vi/ D 0;
@t
˚
�vj

C @i

˚
�vivj C .pC˘/ıij


 D 0;
@t
˚
�v2 C 3.pC˘/
C @i

˚
�v2vi C 5vi.pC˘/


 D �3˘
�˘

;

@t
˚
�v2 C 2�"
C @i

˚
.�v2 C 2�"C 2pC 2˘/vi


 D 0:

(10.22)

This is the system in which F, Fi, Fll and Gll appear as field variables.
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The 5-moment system (N D 1, M D 0): The 5-moment system (well-known as
the Euler system), which retains F, Fi, and Gll as field variables, is obtained as a
principal subsystem of the 14-moment system by setting ˘ D 0 in the 6-moment
principal subsystem. The system reads as follows:

@t�C @i .�vi/ D 0;
@t
�
�vj
�C @i

�
�vivj C pıij

� D 0;
@t
�
�v2 C 2�"�C @i

�
.�v2 C 2�"C 2p/vi

� D 0:

10.3.2 Closure for Higher-Order Systems

As examples of the higher order system than 14-moment system, the closed system
with 17, 18 and 30 moments are shown. For simplicity, the one-dimensional
variables are displayed with the following notation1:

Fp;q D
Z

R3

Z 1

0

mf .c1/
p.c2/qI˛ dIdc;

Gp0;q0 D
Z

R3

Z 1

0

mf

�
c2 C 2I

m

�
.c1/

p0

.c2/q
0

I˛ dIdc;

(10.23)

where the indexes p, q, p0, and q0 are the non-negative integers satisfying:

0 6 pC 2q 6 N; 0 6 p0 C 2q0 6 M .M 6 N � 1/:

In these systems, the first 14 moments (F0;0;F1;0;F2;0;F0;1;G0;0;G1;0) are com-
mon, and these moments have the following form:

F0;0 D �; F1;0 D �v; F2;0 D pC˘ �  C �v2; F0;1 D 3.pC˘/C �v2;
G0;0 D 2�"C �v2; G1;0 D 2qC v..DC 2/pC 2˘ � 2/C �v3:

In the following, we show the explicit form of the remaining densities and fluxes.
The nonequilibrium parts of the Galilean tensors of higher order are denoted as
QFp;q D OFp;q � OFp;qjE and QGp0;q0 D OGp0;q0 � OGp0 ;q0 jE.

1Upon inspection it can be seen that in the one-dimensional case, for any N and M, fFi1 i2:::iA ,
0 6 A 6 Ng is mapped into fFp;q, 0 6 p C 2q 6 Ng, and fGlli1i2:::iA0 , 0 6 A0 6 Mg is mapped
into fGp0 ;q0 , 0 6 p0 C 2q0 6 Mg.
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10.3.2.1 17-Moment System (N D 3�, M D 1)

The independent variables are F0;0, F1;0, F2;0, F0;1, F1;1, G0;0, G1;0 and the
constitutive functions are F3;0;F2;1;G2;0. The densities and fluxes are obtained as
follows:

F3;0 D 3

5
QF1;1 C 3v.pC˘ � /C �v3;

F1;1 D QF1;1 C v.5pC 5˘ � 2/C �v3;

F2;1 D p

�
.5pC 10˘ � 7/C 16

5
v QF1;1 C v2.8pC 8˘ � 5/C �v4;

G2;0 D p

�
f.DC 2/pC .DC 4/.˘ � /g C v

�
6

5
QF1;1 C 4q

�

C v2 f.DC 5/pC 5˘ � 5g C �v4:

10.3.2.2 18-Moment System (N D 3�, M D 2�)

The independent variables are F0;0, F1;0, F2;0, F0;1, F1;1, G0;0, G1;0, G0;1 and the
constitutive functions are F3;0;F2;1;G2;0;G1;1. The densities and fluxes are obtained
as follows:

F3;0 D 3

5
QF1;1 C 3v.pC˘ � /C �v3;

F1;1 D QF1;1 C v.5pC 5˘ � 2/C �v3;

F2;1 D
10 QG0;1 C 3 p

�
f5.DC 7/pC 30˘ � 7.DC 7/g

3.DC 7/

C 16

5
v QF1;1 C v2.8pC 8˘ � 5/C �v4;

G2;0 D 1

3
QG0;1 C v

�
6

5
QF1;1 C 4q

�

C p

�
f.DC 2/p � .DC 4/g C v2 f.DC 5/pC 5˘ � 5g C �v4;

G0;1 D QG0;1 C 3.DC 2/p2

�
C 2v. QF1;1 C 2q/C v2 f.DC 7/pC 7˘ � 4g C �v4;
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G1;1 D p

�

˚
.DC 6/ QF1;1 C 10q




C v
5.DC 11/ QG0;1 C 3 p

�
f5.DC 7/.DC 4/pC 60˘ � 2.DC 7/.DC 11/g

3.DC 7/

C v2
�
27

5
QF1;1 C 6q

�
C v3 f.DC 11/pC 11˘ � 8g C �v5:

The 18 fields system from phenomenological point of view was studied in [15].

10.3.2.3 30-Moment System (N D 3, M D 2)

The independent variables are F0;0, F1;0, F2;0, F0;1, F3;0, F1;1, G0;0, G1;0, G2;0, G0;1

and the constitutive functions are F4;0, F2;1, G3;0, G1;1. The densities and fluxes are
obtained as follows:

F3;0 D QF3;0 C 3v.pC˘ � /C �v3;
F1;1 D QF1;1 C v.5pC 5˘ � 2/C �v3;

F4;0 D
6
˚
.DC 7/ QG2;0 � QG0;1


C 3 p
� .DC 4/ f.DC 7/pC 6˘g

.DC 4/.DC 7/
C 4v QF3;0 C 6v2.pC˘ � /C �v4;

F2;1 D
.D� 3/ QG0;1 C 7.DC 7/ QG2;0 C 5 p

� .DC 4/ f.DC 7/pC 6˘g
.DC 4/.DC 7/

C 2v. QF1;1 C QF3;0/C v2.8pC 8˘ � 5/C �v4;

G2;0 D QG2;0 C .DC 2/p2

�
C 2v. QF3;0 C 2q/C v2 f.DC 5/pC 5˘ � 5g C �v4;

G0;1 D QG0;1 C 3.DC 2/p2

�
C 2v. QF1;1 C 2q/C v2 f.DC 7/pC 7˘ � 4g C �v4;

G3;0 D p

�

˚
.DC 6/ QF3;0 C 6q




C 3v
.DC 7/.DC 8/ QG2;0 � 4 QG0;1 C p

� .DC 4/ f.DC 4/.DC 7/pC 12˘g
.DC 4/.DC 7/

C v2.7 QF3;0 C 6q/C v3..DC 9/pC 9˘ � 9/C �v5;

G1;1 D p

�

˚
.DC 6/ QF1;1 C 10q




C v
.DC 11/ ˚.DC 2/ QG0;1 C 2.DC 7/ QG2;0
C 5 p

� .DC 4/ f.DC 4/.DC 7/pC 12˘g
.DC 4/.DC 7/

C v2.3 QF1;1 C 4 QF3;0 C 6q/C v3..DC 11/pC 11˘ � 8/C �v5:
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10.4 Characteristic Velocities of the .N; M/-System

The set of the characteristic velocities �.N;M/ of the system (10.15) in the propaga-
tion direction with a unit vector n � .ni/ is the set of the roots of the characteristic
polynomial T.N;M/:

T.N;M/ D det

" 
J0iAB J1iAB0

J1iA0B J2iA0B0

!
ni � �.N;M/

 
J0AB J1AB0

J1A0B J2A0B0

!#
D 0:

In particular, the wave velocities for disturbances propagating in an equilibrium state
are the solutions of the characteristic polynomial TE

.N;M/:

TE
.N;M/ D det

" 
J0jEiAB J1jEiAB0

J1jEiA0B J2jEiA0B0

!
ni � �E

.N;M/

 
J0jEAB J1jEAB0

J1jEA0B J2jEA0B0

!#
D 0:

Hereafter, the analysis is restricted to the one-dimensional case for the sake of
simplicity. Under this assumption, in the same manner as (10.23), the relations
(10.20) can be rewritten as

J0jEpCr;qCs D �
m2

kB

Z
R3

Z 1

0

f EcpCr
1 .c2/qCsI˛ dIdc

D JMpCr;qCs;

(10.24)

J1jEp0Cr0;q0Cs0 D �m2

kB

Z
R3

Z 1

0

f Ecp0Cq0

1 .c2/r
0Cs0

�
c2 C 2I

m

�
I˛ dIdc

D JMp0Cr0;q0Cs0C1 C 2c2s .1C ˛/JMp0Cr0;q0Cs0 ;

(10.25)

J2jEp0Cr0;q0Cs0 D �m2

kB

Z
R3

Z 1

0

f Ecp0Cr0

1 .c2/q
0Cs0

�
c2 C 2I

m

�2
I˛ dIdc

D JMp0Cr0;q0Cs0C2 C 4c2s .1C ˛/
�

JMp0Cr0;q0Cs0C1 C c2s .2C ˛/JMp0Cr0;q0Cs0

	
;

(10.26)

where

0 6 rC 2s 6 N; 0 6 r0 C 2s0 6 M .M 6 N � 1/;
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and

JMp;q D �
m2

kB

Z
R3

fM cp
1.c

2/q dc

D � m

kB
�

�
kBT

m

� pC2q
2 2

p
2Cq

pC 1�
�

pC 3
2
C q

�
1C .�1/pp

�
:

Introducing the notation

QJajE
p;q D ��JajE

p;q C JajE
pC1;q .a D 0; 1; 2/;

we rewrite the characteristic polynomial TE
.N;M/ in one-dimensional case as

TE
.N;M/ D det

 QJ0jEpCr;qCs
QJ1jEp0Cr;q0Cs

QJ1jEpCr0;qCs0
QJ2jEp0Cr0;q0Cs0

!
D

D det

 QJMpCr;qCs
QJMp0Cr;q0CsC1

QJMpCr0;qCs0C1 QJMp0Cr0;q0Cs0C2 C 4c4s .1C ˛/QJMp0Cr0;q0Cs0

!
D 0;

(10.27)

where we make use of the properties of the determinant and of the relations (10.24),
(10.25) and (10.26).

10.4.1 Characteristic Velocities of the 14-, 11-,
6- and 5-Moment Systems

For simplicity, the set O�E
.N;M/ of the dimensionless characteristic velocities is

introduced, starting from the set �E
.N;M/, as follows:

O�E
.N;M/ D

�
�

c0
; 8� 2 �E

.N;M/

�
;

where

c0 D
r
5

3

kB

m
T0

is the sound velocity of a monatomic gas at the temperature T0.
The explicit form of the dimensionless characteristic velocities in the case of the

14-, 11-, 6- and 5-moment systems are derived.
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14-moment system (N D 2, M D 1): The characteristic polynomial (10.27) is

TE
.2;1/ D detJ E D 0; J E D

0
BBBBBBBBBBB@

QJ0jE0;0 QJ0jE1;0 QJ0jE0;1 QJ0jE2;0 QJ1jE0;0 QJ1jE0;1
QJ0jE1;0 QJ0jE2;0 QJ0jE1;1 QJ0jE3;0 QJ1jE1;0 QJ1jE1;1
QJ0jE0;1 QJ0jE1;1 QJ0jE0;2 QJ0jE2;1 QJ1jE0;1 QJ1jE0;2
QJ0jE2;0 QJ0jE3;0 QJ0jE2;1 QJ0jE4;0 QJ1jE2;0 QJ1jE2;1
QJ1jE0;0 QJ1jE1;0 QJ1jE0;1 QJ1jE2;0 QJ2jE0;0 QJ2jE0;1
QJ1jE0;1 QJ1jE1;1 QJ1jE0;2 QJ1jE2;1 QJ2jE0;1 QJ2jE0;2

1
CCCCCCCCCCCA

; (10.28)

and the equilibrium characteristic velocities in one-dimensional case are calculated
as follows:

O�E
.2;1/ D

8<
:0 .multiplicity 2/; ˙

r
3

5

s
2DC 7˙pD2 C 16DC 37

DC 2

9=
; :

(10.29)

The 11-moment system (N D 2, M D 0): The characteristic polynomial of the
11-moment system is obtained as the determinant of the matrix J E after removing
the last row and the last column. The characteristic velocities are given by

O�E
.2;0/ D

(
0 .multiplicity 3/; ˙

r
9

5

)
: (10.30)

The 6-moment system (N D 2�, M D 0): In this case, the characteristic
polynomial is obtained as the determinant of the matrix J E after removing the
third and last row and column. In this case the characteristic velocities are given by

O�E
.2�;0/ D f0 .multiplicity 2/; ˙1g : (10.31)

The 5-moment system (N D 1, M D 0): The characteristic polynomial of the 5-
moment system (Euler system) is the determinant of the matrix J E after removing
the last three rows and columns. The characteristic velocities are given by

O�E
.1;0/ D

(
0; ˙

r
3

5

r
DC 2

D

)
: (10.32)
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10.4.2 Systems with D-Independent Characteristic Velocities

By analyzing the features of the matrix J E, by means of (10.20), it seems that, as
expected, the equilibrium characteristic velocities �E

.N;M/ depend on the parameter
˛, and thus on the degrees of freedom of a molecule D. Nonetheless, as seen, for
example, in (10.30) for the case of the 11-moment system and in (10.31) for the case
of the 6-moment system, this is not always the case. Upon inspection of the features
of the matrix J E, the following theorem holds:

Theorem 10.5 If M < N�1, the equilibrium characteristic velocities of an .N;M/-
system, �E

.N;M/, are independent of the degrees of freedom of a molecule D. More
specifically, the equilibrium characteristic velocities coincide with those of an .N/-
system, �E

.N/, and those of an .M/-system, �E
.M/ of monatomic gases (Fig. 10.1):

�E
.N;M/ D �E

.N/ [ �E
.M/:

In particular, the maximum equilibrium characteristic velocity of the .N;M/-system,
�

E;max
.N;M/ , is independent of the order M, and coincides with the one of the .N/-systems

for monatomic gases, i.e.,

�E;max
.N;M/ D �E;max

.N/ :

Proof In the characteristic polynomial TE
.N;M/ described as (10.27), all components

of QJMpCr0;qCs0C1 are included in QJMpCr;qCs since M < N � 1, therefore these are

subtracted from the determinant. Similarly, all components of QJMp0Cr0;q0Cs0C2 are

subtracted by QJMp0Cr;q0CsC1. Then, TE
.N;M/ may be manipulated as follows:

TE
.N;M/ D det

 QJMpCr;qCs 0p0Cr;q0CsC1
0pCr0;qCs0C1 4c4s .1C ˛/QJMp0Cr0;q0Cs0

!

D �4c4s .1C ˛/
�d

det
�QJMpCr;qCs

�
det

�QJMp0Cr0;q0Cs0

	
;

(10.33)

Fig. 10.1 Graphical representation of the collapse of the characteristic velocities derived from
.N;M/-system (left) into those derived from a .N/-system and a .M/-system (right) when
M < N � 1
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with

d D M C 1C mod.M C 1; 2/
2

D
(

MC1
2

if M is odd;
MC2
2

if M is even;

where 0 with indexes denotes the zero block matrix. From (10.33), it becomes
evident that all the characteristic velocities that are obtained as roots of the
polynomial TE

.N;M/ are independent of the degrees of freedom of a molecule D, and
these are identified as the characteristic velocities of .N/-system and of the .M/-
system of rarefied monatomic gases.

Finally, the claim that the maximum characteristic velocity coincides with those
of the .N/-system for the monatomic gas is a consequence of the subcharacteristic
conditions (2.25) (see Sect. 2.4) .

It is worth pointing out that Theorem 10.5 is true for the .N�;M/-system with
M < N � 1, since the proof comes from the corresponding relationship between
FllA0 and GllA0 (0 6 A0 6 M).

As already noticed, the equilibrium characteristic velocities of the 11-moment
and of the 6-moment systems do not depend on D. In these cases it is easily seen
that the set of the equilibrium characteristic velocities are obtainable according to
Theorem 10.5:

The .2; 0/-system (11-moment system): In this case the equilibrium characteristic
velocities of the .2/-system and of the .0/-system of monatomic gases are:

O�E
.2/ D

(
0 .multiplicity 2/; ˙

r
9

5

)
; O�E

.0/ D f0g ;

which, compared to (10.30), show that �E
.2;0/ D �E

.2/ [ �E
.0/ and �E;max

.2;0/ D �E;max
.2/ .

The .2�; 0/-system (6-moment system): Also in this case it is easy to see that the
equilibrium characteristic velocities (10.31) are those of the .2�/-system and those
of the .0/-system of monatomic gases, i.e., �E

.2�;0/ D �E
.2�/ [ �E

.0/ with

O�E
.2�/ D f0; ˙1g ; O�E

.0/ D f0g ;

and �E;max
.2�;0/ D �E;max

.2�/ .

Remark Theorem 10.5 is satisfied also for the system of .N;M�/, .N�;M/ and
.N�;M�/ because the proof of it is true when each G-moment has the correspon-
dence in F-moments. From the requirement of the Galilean invariance, the possible
.N�;M/-system has M < N � 1, therefore .N�;M/-system is always independent
of D.
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Remark When M < N � 1 and the trace part of the N-tensorial equation in the
F-series, i.e., Flli1���iN�2 is absent, the characteristic velocities can depend on D. The
10-moment system in which F, Fi, Fhiji and Gll are retained as field variables is an
example.

In the following, according with the physical case of 5 moments (Euler system)
and 14moments (hyperbolic counterpart of NFS system), the case in which the trace
part of the N-tensorial equation always exists is considered. Therefore the above-
remarked case is excluded, and combining the results of Theorems 10.1 and 10.5, it
is possible to draw the following conclusion:

Statement 3 The .N;M/-system satisfies the relevant features of Galilean invari-
ance and has equilibrium characteristic velocities depending on the degrees of
freedom D if and only if

M D N � 1: (10.34)

This conclusion is also true for the .N; .N�1/�/ and .N�; .N�1/�/-systems, while
the .N�; .N � 1//-system is excluded.

Taking into account (10.5) and (10.6) in this case the number of moments for an
.N;N � 1/-system, is given by

n.N;N�1/ D 1

6
.N C 1/.N C 2/.2N C 3/; (10.35)

and, for an .N; .N � 1/�/-system, is given by

n.N;.N�1/�/ D 1

6
.2N3 C 9N2 C N C 12/; (10.36)

and, for an .N�; .N � 1/�/-system, is given by

n.N�;.N�1/�/ D 1C 1

6
N.N � 1/.11C 2N/: (10.37)

As examples, we present some systems with the list of the densities, the number
of moments, and the dependence of O�E on D in Table 10.1.
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Table 10.1 Densities, number of moments, and the dependence of O�E on D for some .N;M/-
systems

.N;M/ Densities Number of moments Dependence of O�E on D

(1, 0) .F;Fi;Gll/ 5 Yes

.2�; 0/ .F;Fi;Fll;Gll/ 6 No

.2; 0/ .F;Fi;Fij;Gll/ 11 No

(2,1) .F;Fi;Fij;Gll;Glli/ 14 Yes

.3�; 1/ .F;Fi;Fij;Flli;Gll;Glli/ 17 No

.3�; 2�/ .F;Fi;Fij;Flli;Gll;Glli;Glljj/ 18 Yes

.3; 2�/ .F;Fi;Fij;Fijk;Gll;Glli;Glljj/ 25 Yes

(3,2) .F;Fi;Fij;Fijk;Gll;Glli;Gllij/ 30 Yes

10.5 Characteristic Velocities of the .N; N � 1/-System
and the Analysis of the Cases: D ! 3 and D ! 1

In this section, an analysis of the equilibrium characteristic velocities of the
physically relevant systems, i.e., .N;N � 1/-systems, is presented. In particular, the
equilibrium maximum characteristic velocity is discussed.

The maximum equilibrium characteristic velocity of an .N;N � 1/-system of
rarefied polyatomic gases is limited by those of monatomic gases, as shown below:

Theorem 10.6 For any truncation order N, the maximum equilibrium characteris-
tic velocity of an .N;N�1/-system of a rarefied polyatomic gas, �max

.N;N�1/, is bounded
by the maximum equilibrium characteristic velocity of the .N C 1�/-system and of
the .N/-system of a rarefied monatomic gas as follows:

�max
.N/ 6 �max

.N;N�1/ 6 �max
.NC1�/: (10.38)

In order to prove this theorem, it suffices to notice that both the upper and lower
bounds are obtained from Theorem 10.5 and the subcharacteristic conditions:

�max
.NC1�/ D �max

.NC1�;M/ D �max
.NC1�;N�1/ > �max

.N;N�1/; 8M < N

�max
.N;N�1/ > �max

.N;M/ D �max
.N/ ; 8M < N � 1:

Hereafter, the influences of the degrees of freedom of a molecule D on the
characteristic velocities are studied.
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10.5.1 Limit Case: D ! 3

It was proved [16] that, in the limit case D! 3, the solutions of the 14 moments of
polyatomic gas converge to those of the 13 moments system of a monoatomic gas
(see Sect. 5.6).

A similar proof can be done for a system with generic number of moments. In
[17], it was proved that the .N;N � 1/-system for a rarefied polyatomic gas (which
is composed by n.N;N�1/ D 1

6
.N C 1/.N C 2/.2N C 3/ equations) converges to

the system of order .N C 1/� for a rarefied monatomic gas (which is composed of
n.NC1�/ D 1

6
.N C 1/.N2 C 8N C 6/ equations).

In this limit, the differences between the trace part of F-hierarchy and
G-hierarchy,

˘˛ � lim
D!3

.Fll˛ � Gll˛/ .0 6 ˛ 6 N � 2/

are governed by the following balance equations:

@t˘˛ C @i˘i˛ D lim
D!3

.Pll˛ � Qll˛/ ; (10.39)

(composed of n.N�2/ D 1
6
.N � 1/N.N C 1/ D n.N;N�1/ � n.NC1�/ equations). At

least for BGK approximation, it was proved in [17] that ˘i˛ and the right-hand side
terms are linear combination of ˘˛ and therefore the system (10.39) admits only
the zero solution provided that the initial data are compatible with a monatomic gas,
i.e., ˘˛.x; 0/ D 0. Therefore the binary-hierarchy can be regarded as the single-
hierarchy of rarefied monatomic gases. A graphical representation of the collapse of
the .N;N � 1/-system into the .N C 1�/-system is presented in Fig. 10.2.

As a consequence of the convergence of the solutions of polyatomic gases
towards those of monatomic gases, the characteristic velocities follow the same rule.
It should be noted that when the characteristic polynomial (10.27) is calculated in
this limit, we may obtain the characteristic velocities that is composed of not only
those of the .N C 1�/-system but also those of the .N � 2/-system:

lim
D!3

�E
.N;N�1/ D �E

.NC1�/ [ �E
.N�2/: (10.40)

Fig. 10.2 Graphical representation of the collapse of the .N;N �1/-system (left) into a .N C1�/-
system (right) when D ! 3. The .N C 1�/-system is a .N/-system augmented by the trace part
of order N, i.e., augmented by the balance laws for the moments Flli1���iN�1
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However, the characteristic velocities of the .N�2/-system are related to the balance
equations (10.39), which vanish in this limit.

Moreover (see Theorem 10.5), it is noticeable that, in the limit case D ! 3, the
maximum characteristic velocity of the .N;N � 1/-system coincides with the one
of the .N C 1�/-system for rarefied monatomic gases, which in turn coincides with
that of the .N C 1�;M/-system for any M < N, i.e.,

lim
D!3

�max
.N;N�1/ D �max

.NC1�/ D �max
.NC1�;M/; 8M < N: (10.41)

It is easily proved that for the Euler system (10.32) and the 14-moment system
(10.29), the relations (10.40) and (10.41) are confirmed:

Euler system: For the Euler system, there is no IA. Therefore, in the limit case
D ! 3, it is enough to consider the Euler system for a monatomic gas, i.e., the
.2�/-system. This corresponds to the fact that the Euler system can be applicable
for any fluids. The characteristic velocities are given by

lim
D!3

O�E
.1;0/ D O�E

.2�/ D f0; ˙1g :

The 14-moment system: For the 14-moment system, in the limit case D ! 3,
the dynamic pressure ˘ / limD!3 .Fll �Gll/ D I0 vanishes, then the solutions of
14-moment system coincide with those of the 13-moment rarefied monatomic gas
system, i.e., the .3�/-system. The characteristic velocities, converging to those of
the 13-moment system of rarefied monatomic gases, are the following:

lim
D!3

O�E
.2;1/ D O�E

.3�/ [ O�E
.0/ D

8<
:0 .multiplicity 2/; ˙

r
3

5

s
13˙p94

5

9=
; ;

where

O�E
.3�/ D

8<
:0; ˙

r
3

5

s
13˙p94

5

9=
;

are the characteristic velocities of the 13-moment system of a monatomic gas.

10.5.2 Limit Case: D ! 1

On the other hand, for D!1, the following theorem holds:

Theorem 10.7 When D ! 1, the n.N;N�1/ D 1
6
.N C 1/.N C 2/.2N C 3/

characteristic velocities of the .N;N � 1/-system coincide with the n.N/ D 1
6
.N C
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1/.NC 2/.NC 3/ characteristic velocities of the .N/-system, and with the n.N�1/ D
1
6
N.N C 1/.N C 2/ characteristic velocities of the .N � 1/-system.

lim
D!1�E

.N;N�1/ D �E
.N/ [ �E

.N�1/:

In particular, the maximum characteristic velocity of the .N;N�1/-system coincides
with the one of the .N/-system for monatomic gases that is in turn coincident with
the one of the .N;M/-system for any M < N � 1, i.e.,

lim
D!1�max

.N;N�1/ D �max
.N/ D �max

.N;M/; 8M < N � 1: (10.42)

Proof The characteristic polynomial TE
.N;N�1/, as seen from (10.27), can be written

in the form:

TE
.N;N�1/ D

�
4c4s .1C ˛/

�d
det

0
@ QJMpCr;qCs

QJMp0Cr;q0CsC1QJM
pCr0 ;qCs0C1

4c4s .1C˛/
QJM

p0Cr0 ;q0Cs0C2

4c4s .1C˛/ C QJ
M
p0Cr0;q0Cs0

1
A D 0;

therefore

lim
˛!1

TE
.N;N�1/�

4c4s .1C ˛/
�d D det

 QJMpCr;qCs
QJMp0Cr;q0CsC1

0pCr0;qCs0 QJMp0Cr0;q0Cs0

!
D

D det
�QJMpCr;qCs

�
det

�QJMp0Cr0;q0Cs0

	
D 0:

(10.43)

From (10.43), it is shown that the characteristic velocities of the .N;N � 1/-system
are those of the .N/-system and of the .N � 1/-system of monatomic gases. Since
the .N�1/-system is a principal subsystem of the .N/-system, the subcharacteristic
conditions guarantee that the maximum characteristic velocity of the .N;N � 1/-
system coincides with the maximum characteristic velocity of the .N/-system.
Moreover, from the Theorem 10.5, the maximum characteristic velocity coincides
with that of the .N;M/-system for any M < N � 1. This means that, in the limit
D ! 1, the maximum characteristic velocity is determined only by the order of
truncation of the F-hierarchy.

The collapse of the characteristic velocities of the .N;N � 1/-system into those
derived from a .N/-system and a .N � 1/-system as D ! 1 is graphically shown
in Fig. 10.3.

For the Euler system (10.32) and the 14-moment system (10.29), in agreement
with Theorem 10.7, the following results are obtained:

The 14-moment system: The characteristic velocities of the 14-moment system
for rarefied polyatomic gases (10.29) converge to those of the .2/-system for
monatomic gases (i.e., the 10-moment system retaining F, Fi, and Fij as independent
fields), and those of the .1/-system (i.e., the 4-moment system retaining F and Fi as
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Fig. 10.3 Graphical representation of the collapse of the characteristic velocities derived from
.N;N � 1/-system (left) into those derived from a .N/-system and a .N � 1/-system (right) when
D ! 1

independent fields):

lim
D!1�E

.2;1/ D O�E
.2/ [ O�E

.1/ D
(
0 .multiplicity 2/; ˙

r
9

5

)
[
(
˙
r
3

5

)
D

(
0 .multiplicity 2/; ˙

r
3

5
; ˙

r
9

5

)
:

Euler system: The characteristic velocities of the Euler system for rarefied
polyatomic gases (10.32) converge to those of the .1/-system (i.e., the 4-moment
system retaining F and Fi as independent fields) and that of the .0/-system (i.e., the
system retaining only F as independent field):

lim
D!1�E

.1;0/ D O�E
.1/ [ O�E

.0/ D
(
˙
r
3

5

)
[ f0g D

(
0; ˙

r
3

5

)
:

10.5.3 The Case: 3 < D < 1

In the case: 3 < D < 1, as a corollary of Theorem 10.6, considering (10.41) and
(10.42), we obtain the following result:

Theorem 10.8 For any truncation order N, the maximum equilibrium characteris-
tic velocity of an .N;M)-system of polyatomic gases is bounded as follows:

lim
D!1�max

.N;N�1/ 6 �max
.N;N�1/ 6 lim

D!3
�max
.N;N�1/: (10.44)

In Fig. 10.4, dependence of �max
.N;N�1/ on D (in the one-dimensional case) for the

.1; 0/-system (5-moment Euler system), for the .2; 1/-system (14-moment system)
and for the .3; 2/-system (30-moment system) is plotted.



238 10 Molecular ET Theory of Rarefied Polyatomic Gas

3 10 20 30 40 50
D

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

λ̂m
ax

λ̂ max
(1 , 0)

λ̂ max
(2 , 1)

λ̂ max
(3 , 2)

λ̂ max
(2 - )

λ̂ max
(3 - )

λ̂ max
(4 - )

λ̂ max
(1)

λ̂ max
(2)

λ̂ max
(3)

30-moment system

14-moment system

Euler system

Fig. 10.4 Nondimensional maximum characteristic velocity (at equilibrium) of the .N;N � 1/-
system, O�max

.N;N�1/ D �max
.N;N�1/=c0 , for three different values of N (N D 1: Euler system; N D 2:

14-moment system; N D 3: 30-moment system) as a function of the degrees of freedom of a
molecule D. The limit value of the non-dimensional characteristic velocity for D ! 3 and D ! 1
(respectively, O�max

.NC1�/ D �max
.NC1�/=c0 and O�max

.N/ D �max
.N/ =c0) are indicated with dashed lines (c0

being the sound velocity in the monatomic gas)

10.6 Dependence of the Maximum Characteristic Velocity
on the Order N

In this section, dependence of the maximum equilibrium characteristic velocity of
.N;N�1/-system for rarefied polyatomic gases, �max

.N;N�1/, on the order of truncation
N is analyzed. From Theorem 10.5, the following result can be obtained:

Theorem 10.9 The maximum equilibrium characteristic velocity of the .N;N � 1/-
system has the same lower bound as that for the maximum characteristic velocity of
the .N/-system of monatomic gases, i.e.,

O�max
.N;N�1/ >

s
6

5

�
N � 1

2

�
: (10.45)

In particular, it can be observed that

lim
N!1�max

.N;N�1/ D 1: (10.46)

Dependence of the maximum equilibrium characteristic velocity on the order N
of the .N;N � 1)-system has been numerically calculated for various values of the
degrees of freedom of a molecule D and the results are shown in Table 10.2.
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D=10
D=50

D=3

D=

lower bound

¥

Fig. 10.5 Nondimensional maximum characteristic velocity (at equilibrium) of the .N;N � 1/-
system, O�max

.N;N�1/ D �max
.N;N�1/=c0 , for two different values of the degrees of freedom of a molecule

D (D D 10: line with circle-shaped markers; D D 50: line with star-shaped markers) as a function
of the order N. The limit value of the non-dimensional characteristic velocity for D ! 3 and
D ! 1 (respectively, O�max

.NC1�/ D �max
.NC1�/=c0 and O�max

.N;M/ D O�max
.N/ D �max

.N/ =c0 for M < N � 1)
are indicated with the thin upper and lower lines. The lower bound of the maximum characteristic
velocity, given by (10.45), is represented by the dots (c0 being the sound velocity in the monatomic
gas)

In Fig. 10.5 this dependence is shown for two representative values: D D 10 and
D D 50, together with the values obtained for the limit cases D ! 3 and D !1,
and the lower bound given by (10.45).

Remark In a special case, the systems characterized by M < N � 1 play an
interesting role. For example, the 6-moment theory [18–21], which adopts F, Fi,
Fll, and Gll as independent fields, can be identified as a good approximation of
14-moment theory when the effect of the dynamic pressure is larger than other
dissipative variables, and is the simplest thermodynamic theory of gases with the
dissipation. See the next Part IV.
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Chapter 11
Non-linear ET6 and the Role of the Dynamic
Pressure: Phenomenological Approach

Abstract In this chapter, we present ET of real gases with six independent fields,
i.e., the mass density, the velocity, the temperature and the dynamic pressure,
without adopting the near-equilibrium approximation. We prove its compatibility
with the universal principles (the entropy principle, the Galilean invariance and the
stability), and obtain the symmetric hyperbolic system with respect to the main field.
The correspondence between the ET 6-field (ET6) theory and the Meixner theory
of relaxation processes is discussed. The internal variable and the nonequilibrium
temperature in the Meixner theory are expressed in terms of the quantities of the
ET6 theory, in particular, the dynamic pressure. As an example, we present the case
of rarefied polyatomic gases and study the monatomic-gas limit where the system
converges to the Euler system of a perfect fluid.

11.1 Introduction

As discussed in Sect. 1.6, one of the limitations on the previous RET was that the
gas to which the theory can be applied is only the rarefied monatomic gas. With this
limitation in mind, in Part III, we have proved that this can be overcome by adopting
the binary hierarchy that takes into account the internal degrees of freedom of a
polyatomic molecule. The new RET is, therefore, applicable to the polyatomic gas,
and furthermore as seen from the discussion in Sect. 5.5, it may be applied at least
to the moderately dense gases.

However, there is another big limitation on RET. In fact, although RET goes
beyond the local equilibrium assumption and therefore beyond the NSF theory, the
RET theory has been developed only for processes not so far from equilibrium.
In the phenomenological RET theory with 14 variables, for example, we have
studied only constitutive equations that are linear with respect to the nonequilibrium
variables .hiji; ˘; qi/ because of the enormous difficulties in the analysis. While, in
the molecular RET approach, we have seen, in Chap. 6 for the case of 14 moments
and in Chap. 10 for the case of generic number of moments, that there exists the
problematic point about the convergence of the integrals as we discussed in Sect. 4.5.

As mentioned before modeling of polyatomic gases and of dense gases in
nonequilibrium is an active and urgent issue nowadays with several important

© Springer International Publishing Switzerland 2015
T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics beyond
the Monatomic Gas, DOI 10.1007/978-3-319-13341-6_11
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applications like the study of shock wave structure which is essentially important,
for example, for the atmospheric reentry problem of a space vehicle. Therefore it is
extremely interesting to have a theory that is valid also far from equilibrium. This
was done in [1].

The ET14 theory gives us a complete phenomenological model but its differential
system is rather complex. For this reason we have recently constructed a simplified
theory with 6 fields (referred to as the ET6 theory) [2, 3]: the mass density �, the
velocity v, the temperature T, and the dynamic (nonequilibrium) pressure ˘ . This
simplified theory preserves the main physical properties of the more complex theory
of 14 variables, in particular, when the bulk viscosity plays more important role than
the shear viscosity and the heat conductivity. This situation is observed in many
gases such as rarefied hydrogen gases and carbon dioxide gases at some temperature
ranges (see Chaps. 7 and 8) [4–6]. ET6 has another advantage to offer us a more
affordable hyperbolic partial differential system. In fact, it is the simplest system
that takes into account a dissipation mechanism after the Euler system of perfect
fluids

In this chapter we consider the ET6 theory in detail. The simplicity of the 6-field
model permits us to construct a full non-linear theory, the derivation of which is
the main goal of this chapter. From a mathematical point of view, the advantage to
have a full non-linear theory is that the hyperbolicity region exists, if an equilibrium
state is in it, not only in the neighborhood of an equilibrium state but everywhere
provided that the solutions exist and are bounded. For any bounded solutions, we
will see below that there exist upper and lower bounds of the dynamic pressure.

We firstly derive the nonlinear system of equations of the ET6 theory by proving
its compatibility with the universal requirements: the entropy principle, the Galilean
invariance, and the stability, that is, the convexity of the entropy density. As a
consequence of this, the differential system is symmetric hyperbolic with respect
to the main field.

Secondly, through studying real gases, we discuss the connection between the
ET6 theory and the Meixner theory more deeply by comparing these nonlinear
systems with each other. We prove that the internal variable and the nonequilibrium
temperature introduced in the Meixner theory can be expressed explicitly in terms
of the macroscopic variables of the ET6 theory, in particular, the dynamic pressure.
Meixner’s affinity and relaxation time are also evaluated by the macroscopic
variables of ET6.

In the last part we specialize the results for the case of an ideal polytropic gas both
in the linear and nonlinear approaches. We also clarify the monatomic-gas limit in
which the system of ET6 converges to the Euler system of a perfect fluid.
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11.2 ET Theory with Six Fields

We consider six independent field-variables .�; vi;T; ˘/, and we retain the general
structure of the binary hierarchy (F-series and G-series) (10.2) but assume only the
.2�; 0/-system (see Definition 10.2):

@F

@t
C @Fi

@xi
D 0;

@Fj

@t
C @Fji

@xi
D 0; (11.1)

@Fll

@t
C @Flli

@xi
D Pll;

@Gll

@t
C @Glli

@xi
D 0;

where (11.1)1;2;4 represent the conservation laws of mass, momentum and energy
provided that F D �; Fi D �vi; Fij D �vivj C .pC˘/ıij; Gll D �vlvl C 2�", and
Glli D .�vlvl C 2�" C 2p C 2˘/vi. The shear stress hiji and the heat flux qi are
neglected in this theory. While (11.1)3 is the new balance law corresponding to the
dynamic pressure˘ .

Therefore undetermined functions at the moment are only Flli;Pll, and the
functions h; ' i and ˙ in the entropy law (2.8), (2.46). These functions will be
determined by the universal principles in the following analysis.

11.2.1 Galilean Invariance

In the present case, the Galilean invariance (2.36) implies:

Flli D
�
5.pC˘/C �v2� vi; Pll D OPll; (11.2)

and

X D

0
BB@
1 0 0 0

vj ıjk 0 0

v2 2vj 1 0

v2 2vj 0 1

1
CCA ; (11.3)

Ar D
�
@X
@vr

�ˇ̌
ˇ̌
vjD0
D

0
BB@
0 0 0 0

ıjr 0 0 0

0 2ıjr 0 0

0 2ıjr 0 0

1
CCA :
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Then the system (11.1) is written in terms of the physical variables:

@�

@t
C @

@xi
.�vi/ D 0;

@�vj

@t
C @

@xi


.pC˘/ıij C �vivj

� D 0; (11.4)

@

@t
.2�"C �v2/C @

@xi

˚
2.pC˘/C 2�"C �v2� vi


 D 0;
@

@t


3.pC˘/C �v2�C @

@xi

˚
5.pC˘/C �v2� vi


 D OPll:

We see that, in this exceptional case of ET6, the Galilean invariance fixes completely
the structure of the undetermined flux Flli and we notice that the left-hand
side of (11.4) is linear in ˘ without assuming any approximations. Instead the
production term OPll can be completely nonlinear. Therefore the present theory is
valid for any nonequilibrium processes as far as the continuum description is valid.

11.2.2 Entropy Principle

We here study the compatibility with the entropy principle. Let us rewrite the
entropy density in the form:

h D �sC �k; (11.5)

where s.�; "/ is the specific entropy density in equilibrium and k.�; ";˘/ is the
nonequilibrium part with the condition:

k.�; "; 0/ D 0: (11.6)

Let us write the components of the main field u0 as

u0 � ��; �j; 
; �
�
; (11.7)

then we have, from (2.44),

O�j D 0; Oh00 D �2. O
C O�/.pC˘/: (11.8)

From (2.43)1, we obtain

O�d�C 2 O
d.�"/C 3 O�d.pC˘/ D .sC k/d�C �dsC �dk: (11.9)
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Taking into account the Gibbs equation for the equilibrium specific entropy
density (1.7) and choosing .�; ";˘/ as independents variables, we obtain, from
(11.9),

O� D � g

T
C kC �k� C " .p" k˘ � k"/ � p� �k˘;

O
 D 1

2T
C 1

2
.k" � p" k˘/ ; (11.10)

O� D 1

3
�k˘;

where the suffix indicates a partial differentiation with respect to the corresponding
variables, and g D "C p=� � Ts is the chemical potential. From (2.14) and (11.8)
we obtain

h D O� �C 2 O
.� "C pC˘/C 5 O�.pC˘/ D �.sC k/: (11.11)

Substituting (11.10) into (11.11), we obtain a linear first-order partial differential
equation for the function k � k.�; ";˘/:

�2k� C .pC˘/ k" C �
�
.pC˘/

�
5

3
� p"
�

�
� �p�

�
k˘ C ˘

T
D 0; (11.12)

with initial data given by (11.6).
The solution exists and is unique provided that the Eq. (11.12) is hyperbolic in

the ˘ -direction. This implies that the coefficient of k˘ in (11.12) must be different
from zero:

� D .pC˘/
�
5

3
� p"
�

�
� �p� ¤ 0: (11.13)

As this condition must be satisfied also for ˘ D 0, we obtain a particular condition
for an admissible thermal equation of state p � p.�; "/:

� 0 D p

�
5

3
� p"
�

�
� �p� ¤ 0: (11.14)

Changing the pairs of variables from .�; "/ to .�; s/ and taking into account the
well-known relations:

f� D
�
@f

@�

�
s

� p

�2T

�
@f

@s

�
�

; f" D 1

T

�
@f

@s

�
�

;
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we obtain

� D 5

3
.pC˘/ � �

�
@p

@�

�
s

� ˘

�T

�
@p

@s

�
�

¤ 0; (11.15)

and

� 0 D 5

3
p � �

�
@p

@�

�
s

¤ 0: (11.16)

We will see in the next subsection that � and � 0 must be positive.
Moreover, from (2.43), (2.14) and (2.13)2, we have

' i D 0; ˙ D 1

3
�k˘ OPll > 0: (11.17)

11.2.3 Convexity Condition and Stability

The convexity condition (2.47) becomes:

OQ D OQ5 C .ı�/2
�
2k� C �k�� � �p��k˘

�C �.ı"/2 .k"" � p""k˘/

C �.ı˘/2k˘˘ C 2�ı" ı˘ k"˘ C 2ı�ı˘
�
k˘ C �k�˘

�
(11.18)

C 2ı"ı� ˚�k�" � �p�"k˘ C p"k˘


< 0;

where OQ5 denotes the quadratic form for the Euler system. We want to prove now a
necessary condition for the convexity:

Statement 4 A necessary condition for the convexity of entropy is that the thermal
and caloric equations of state must obey the condition:

� 0 D �
�
5

3

p

�
�
�
@p

@�

�
s

�
> 0: (11.19)

Moreover, in nonequilibrium, the dynamical pressure must satisfy the inequality:

� D � 0 C˘
�
5

3
� p"
�

�
> 0: (11.20)

Proof From (11.6) we have:

k�.�; "; 0/ D k".�; "; 0/ D 0; (11.21)
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then from (11.12) follows

k˘.�; "; 0/ D 0: (11.22)

Taking into account that all successive derivatives of (11.21) and (11.22) with
respect to � or " are identically zero, differentiating (11.12) with respect to ˘ , and
taking the limit ˘ ! 0, we obtain;

k0˘˘ D k˘˘.�; "; 0/ D � 1

�T� 0
: (11.23)

On the other hand, from the convexity condition (11.18) evaluated at ˘ D 0, we
have:

Q0 D OQ5 C �.ı˘/2k0˘˘ < 0; (11.24)

then k0˘˘ < 0 and from (11.23) follows � 0 > 0. As � must be different from
zero and, in equilibrium, reduces to � 0, we conclude that also � must be positive.
(Q.E.D.)

11.2.4 Residual Inequality and Production Term

From the residual inequality (11.17)2, the simplest form of the production with only
one positive function ˛ is expressed by

OPll D ˛k˘; ˛ > 0; (11.25)

where ˛ is independent of ˘ : ˛ � ˛.�; "/. Hereafter, we will confine our study
within this simple, but physically interesting case. We can prove easily that the
function ˛ can be related to the relaxation time and to the bulk viscosity �. In fact,
as we assume that ˛ is independent of ˘ , the function remains the same even if we
evaluate OPll near equilibrium. For small˘ , the production term was evaluated in the
linear model in terms of the relaxation time � as follows [2]:

OPll D �3˘
�
; (11.26)

and, by using the Maxwellian iteration, the Eq. (11.4)4 becomes the Navier-Stokes
constitutive equation for the dynamic pressure [3, 7]:

˘ D �� div v (11.27)
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with the bulk viscosity � expressed by the relaxation time � [2]:

� D �� 0: (11.28)

When we expand (11.25) in Taylor series by taking into account (11.22) and (11.23),
we obtain

˛ D � 3

�k0˘˘
D 3�T� 0

�
D 3�T� 02

�
: (11.29)

Therefore we know explicitly the production term in nonlinear case in terms of the
relaxation time:

OPll D 3�T� 0

�
k˘; (11.30)

or in terms of the bulk viscosity:

OPll D 3�T� 02

�
k˘: (11.31)

As the bulk viscosity and the relaxation time can be evaluated by experimental
data such as dispersion relation of sound, we have the explicit expression of the
production term OPll.

11.2.5 Main Field and Symmetric Form

The main field (11.7) can be evaluated by (2.42), (11.10) and (2.51):

� D� g

T
C v2

2T
C kC �k� C

�
" � v

2

2

�
.p"k˘ � k"/C 1

3
�.v2 � 3p�/k˘;

�i D� vi

�
1

T
C .k" � p" k˘/C 2

3
�k˘

�
; (11.32)


 D 1

2T
C 1

2
.k" � p" k˘/ ;

� D1
3
�k˘:

The potentials (2.14) become

h00 D � p

T
C � ˚�k� C .p � �p� C˘/k˘



; h0i D h00vi: (11.33)
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According to the general theory, the system of field equations assumes the
symmetric form (2.11) if we use these variables.

We can summarize the result obtained as:

Theorem 11.1 The system (11.4) satisfies the entropy principle (2.8) if and only if
the nonequilibrium entropy density k is a solution of the differential equation (11.12)
with boundary data (11.6), and the flux of entropy and the production of entropy are
given by (11.17)1 and (11.30) or (11.31). Under the convexity condition (11.18) the
system (11.4) becomes symmetric hyperbolic with respect to the main field with the
components given by (11.32) and potentials given by (11.33).

Therefore all the universal principles are satisfied, and the closure is full
nonlinear and is valid, in principle, far from equilibrium.

To sum up, we notice that, in this nonlinear approach, the theory is explicitly
fixed by the knowledge of the function ˛ in (11.25) and of the thermal and caloric
equations of state that must satisfy the inequality (11.19). Inserting the equations
of state into (11.12) and taking into account (11.6), we can obtain uniquely k �
k.�; ";˘/. Then we need to verify whether the quadratic form (11.18) is negative
definite. Inserting k into (11.10) and into (11.25), we have the ET theory that fully
satisfies the universal principles.

11.2.6 Alternative Form of the Differential System

By subtracting the equation of the energy (11.4)3 from the equation of the dynamic
pressure (11.4)4 we can rewrite the system (11.4) in an equivalent form:

@�

@t
C @

@xi
.�vi/ D 0;

@�vj

@t
C @

@xi


.pC˘/ıij C �vivj

� D 0; (11.34)

@

@t
.2�"C �v2/C @

@xi

˚
2.pC˘/C 2�"C �v2� vi


 D 0;
@

@t
Œ3.pC˘/� 2�"�C @

@xi
fŒ3.pC˘/� 2�"� vig D ˛k˘ :

It is easy to verify from (2.13)1 that the corresponding main field
� N�; N�i; N
; N�

�
that

symmetrize the system (11.34) have the same components of the main field of the
system (11.4) except for the Lagrange multiplier N
 of the energy equation (11.34)3
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that is given by N
 D 
C �:

N� D� g

T
C v2

2T
C kC �k� C

�
" � v

2

2

�
.p"k˘ � k"/C 1

3
�.v2 � 3p�/k˘;

N�i D� vi

�
1

T
C .k" � p" k˘/C 2

3
�k˘

�
; (11.35)

N
 D 1

2T
C 1

2
.k" � p" k˘/C 1

3
�k˘;

N� D1
3
�k˘:

By introducing the material time derivative, the system (11.34) can be rewritten
as

P�C �@vk

@xk
D 0;

� Pvi C @

@xi
.pC˘/ D 0;

� P"C .pC˘/@vk

@xk
D 0;

�
pC˘
�
� 2
3
"

��
D ˛k˘

3�
:

(11.36)

We observe that any differentiable solution of (11.36) satisfies the entropy law
(2.8) that can be rewritten, from (11.5) and (11.17), as:

.sC k/� D ˛

3
k2˘ : (11.37)

11.2.7 Euler Fluid as a Principal Subsystem of the ET6 System
and Subcharacteristic Conditions

System of an Euler fluid is a principal subsystem of the ET6 theory according to
the definition given by Boillat and Ruggeri in Sect. 2.4. In fact, when ˘ D 0, k˘
vanishes as shown in (11.22) and the corresponding component N� of the main field
in the last equation of (11.35) vanishes. The remaining five components of the main
field in (11.35) converge to the symmetrizable variables, which were deduced first
by Godunov [8] for the Euler-fluid system:

N�! � g

T
C v2

2T
; N�i ! �vi

T
; N
! 1

2T
: (11.38)
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According to the result in Sect. 2.4, the convexity of a system implies automati-
cally the so-called subcharacteristic condition, i.e., the spectrum of the characteristic
velocities of the principal subsystem is contained in the spectrum of the full system
evaluated in the subspace of the subsystem. This implies, in particular, that the
maximum characteristic velocity of the subsystem is not greater than the one of
the full system. In the present particular case of ET6, the maximum characteristic
velocity is given by (see Sect. 14.1)

vini C
s
5

3

pC˘
�

(11.39)

with n � .ni/ being the unit normal to the wave front. While the maximum
characteristic velocity of the Euler fluid is:

vini C
s�

@p

@�

�
s

: (11.40)

We notice that the condition (11.19) corresponds exactly to the subcharacteristic
condition, i.e., the maximum characteristic velocity (11.39) evaluated in equilibrium
(˘ D 0) is greater than the corresponding one of the Euler fluid (11.40).

11.3 Comparison Between Nonlinear Systems of the ET6
Theory and of the Meixner Theory

In order to describe thermodynamic properties of a material with internal structures,
theories with internal variables were developed [9–11], and have been applied to
various phenomena like chemical reaction, sound wave and shock wave propagation
in a polyatomic gas, inelastic behavior of a solid, dynamics of a dielectric material,
and so on. See, for example, [12]. The Meixner theory [13, 14] may be regarded as
the prototype of the theories of internal variables, but it is still frequently applied
to various nonequilibrium phenomena. For a recent study, where dynamic degrees
of freedom and internal variables are discussed in a uniform way, see, for example,
[15].

In this section, we compare the ET6 theory with the Meixner theory, and discuss
the physical implications involved.

We assume the simplest version of the Meixner theory composed of the Euler
equations and only one relaxation equation for an internal variable �. In this case
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the system of field equations is summarized as follows [9, 13, 14]:

P�C �@vk

@xk
D 0;

� Pvi C @P

@xi
D 0;

� PE CP
@vk

@xk
D 0;

P� D �ˇA ;

(11.41)

where P , E and A are, respectively, the pressure, the specific internal energy and
the affinity of relaxation processes, and ˇ is a positive phenomenological coefficient.
The generalized Gibbs relation in the Meixner theory is assumed to be

T dS D dE � P

�2
d� �A d�; (11.42)

where T is the temperature and S is the specific entropy. Note that the quantities
T , S , P and A depend not only on the mass density � and the specific internal
energy E but also on the internal variable �. From (11.42), taking into account
(11.41), we obtain:

PS D ˇA
2

T
: (11.43)

Comparing the system of the ET6 theory (11.36) and (11.37) with the system
of the Meixner theory (11.41) and (11.43), we obtain the perfect correspondence
provided that

� D pC˘
�
� 2
3
";

P D pC˘;
E D ";
A D ��T k˘;

S D sC k;

ˇ D ˛

3 �2T
;

(11.44)

where T is given by

1

T
D 1

T
C
�

k" C
�
2

3
� � p"

�
k˘

�
: (11.45)
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Inserting the correspondence relations (11.44) into (11.35), we obtain the simple
expression of the main field in terms of the variables in the Meixner theory:

N� D � G

T
C v2

2T
;

N�i D � vi

T
;

N
 D 1

2T
;

N� D �1
3

A

T
;

(11.46)

where we define

G � E C P

�
� T S �A � (11.47)

as the chemical potential in the Meixner theory. The main field (11.46) makes the
system (11.48) below with Meixner’s variables be symmetric:
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@xi
.�vi/ D 0;

@�vj
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@xi
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Pıij C �vivj

� D 0; (11.48)
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.2�E C �v2/C @
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˚
2P C 2�E C �v2� vi


 D 0;
@3��

@t
C @

@xi
.3��vi/ D �3ˇ�A :

This system is equivalent to the system (11.34). It is interesting to compare the
expression of the main field (11.46) with the one for the Euler fluid (11.38).

To sum up, we have proved the following statement:

Statement 5 The system of ET6 is completely equivalent to the system of the
Meixner theory that is composed of the Euler system and a relaxation equation for
an internal variable, provided that the change of variables is given by (11.44). This
correspondence gives us the possibility to write explicitly the relationship between
the two kinds of the coldness (inverse of the temperature) as shown in (11.45).
Therefore a natural nonequilibrium temperature T appears. The Meixner system,
rewritten as a system of balance laws (11.48), becomes to be symmetric hyperbolic
by adopting the main field given by (11.46).
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Physical implications of this correspondence may be summarized as follows:
As stated above, the nonlinear system of the Meixner theory with one internal

variable has the same mathematical structure as the nonlinear system of the ET6
theory. However, physical contents of the ET6 theory are more precise than those of
the Meixner theory as explained (i)–(iii) below, although it is true that the Meixner
theory is more general than the ET6 theory of real gases in the following sense:
The internal variables may describe not only relaxation processes of the internal
degrees of freedom of molecules in a polyatomic gas but also many other kinds of
phenomena like chemical reactions [9, 16]. But, as is pointed out in the paper [2],
the theoretical basis of the Meixner theory has not been clear enough, in particular,
for phenomena out of local equilibrium. We will also discuss this point from the
view point of the ET theory with many fields in the concluding remarks.

(i) By using the correspondence relations (11.44), the affinity A , the entropy S
and the phenomenological coefficient ˇ in the Meixner theory can be explicitly
expressed in terms of the macroscopic variables of the ET6 theory. For an
example, the case of ideal polytropic gases will be shown below.

(ii) In the Meixner theory, it is usually a difficult task to identify a proper internal
variable. We notice, however, that the explicit dependence of the internal
variable � on the dynamic pressure ˘ is given by (11.44)1. The dynamic
pressure is identified as a suitable quantity that indicates the energy transfer
between the translational modes and the internal modes, such as molecular
rotation and vibration, in a polyatomic molecule.

(iii) The nonequilibrium temperature T of the Meixner theory is introduced
through the generalized Gibbs relation (11.42). This can be interpreted as the
temperature of a state in equilibrium with a constraint that the system is kept
at a given � by applying a suitable external field [17], which may be or may
not be virtual. We sometimes call such a field thermodynamic external field
or effective field. This technique has been frequently used, for example, in the
linear response theory [18, 19]. However, in applications, it is usually difficult
for the Meixner theory to specify the nonequilibrium temperature T in an
explicit and operational way.

On the other hand the temperature T of ET6 is defined in Chap. 5 as the
temperature of an equilibrium state with the same values of the mass density �
and the specific internal energy " in a nonequilibrium state under consideration.
This definition has been usually adopted, for example, in the kinetic theory [4,
20], in nonequilibrium statistical mechanics [18]. We may call this, in the case
of rarefied monatomic gases, kinetic temperature because it is proportional to
the thermal average of the kinetic (or translational) energy of a molecule. In this
respect, the analysis based on molecular ET from a view point of the kinetic
theory in Chap. 6 is helpful for understanding this definition. Hereafter we call
the nonequilibrium temperature of ET simply temperature.

In the present analysis, we have discovered the relation (11.45) that
discloses the new link between the nonequilibrium temperature T in the
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Meixner theory and the temperature T in ET6. We will discuss, in a general
way, the nonequilibrium temperature (and also chemical potential) in Chap. 15.

A survey on nonequilibrium temperatures is given in [21, 22]. See also [23]
for the analysis of the thermodynamic temperature in the ET theory.

11.4 ET6 Theory Near Equilibrium

In this section we study the system near equilibrium, where we can adopt linear
constitutive equations with respect to the dynamic pressure. The entropy density in
this case must be in the form:

h D �s � �.�; "/˘2; (11.49)

then we have

k D �1
�
�˘2: (11.50)

From (11.23) it follows that

� D 1

2T� 0
: (11.51)

The production term has the form expressed by (11.26), and all universal principles
are satisfied provided that the inequalities

� 0 > 0; � > 0 (11.52)

hold. The main field in this case becomes
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where we have neglected the second-order terms with respect to ˘ .
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The system of field equations is the same as (11.36) except that the last equation
is replaced by

�
pC˘
�
� 2
3
"

��
D �˘

��
: (11.54)

And the entropy law (11.37) in this case is given by

�
s � �

�
˘2

��
D 2�

��
˘2: (11.55)

11.4.1 Comparison Between the ET Theory Near Equilibrium
and the Meixner Theory

The correspondence between the ET6 theory and the Meixner theory is the same
as (11.44) except that the last three equations are replaced by

A D 2T �˘;

S D s � �
�
˘2;

ˇ D 1

2�T ��
;

(11.56)

where only the leading terms with respect to ˘ are retained. The temperature T in
the Meixner theory, within the present approximation, is given by

1

T
D 1

T
� 2

�
2

3
� p"
�

�
�˘: (11.57)

Noteworthy points are summarized as follows:

1. We can find explicit expressions of the quantities P;E ;A , and S in terms of
the internal variable �. In fact, eliminating˘ in (11.56), we obtain

P D pC �.� � �eq/;

E D ";
A D 2�T �.� � �eq/;

S D s � ��.� � �eq/
2;

(11.58)
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where �eq is given by

�eq � p

�
� 2
3
": (11.59)

We notice that, from (11.51) and (11.59), there exists a relation between � and
�eq:

� D � 1

2�2T
�
@�eq

@�

	
s

:

2. The relaxation time in the Meixner theory is defined by de Groot and Mazur [9]

�M � 1

ˇ

�
@�

@A

�
�; E

: (11.60)

From (11.56)3, (11.58)2;3 and (11.60), we can prove that this relaxation time
coincides with the relaxation time � in the ET6 theory:

�M D �: (11.61)

In the paper [2], the equality was confirmed only within the linear system of field
equations through studying the dispersion relation of the ultrasonic sounds. Now
we have the relation (11.61) in the nonlinear case.

3. As we have observed before, by using the Maxwellian iteration, the
Eq. (11.54) becomes the Navier-Stokes constitutive equation for the dynamic
pressure (11.27). The equivalence between the relaxation times (11.61) and the
relation (11.28) enables us to evaluate the value of the bulk viscosity from the
data on the relaxation time �M for the internal degrees of freedom, which are
accumulated in literature [24], in many kinds of polyatomic gases. See also
Sect. 11.5.2.

We observe that the shear viscosity and the heat conductivity come from the
evolution equations for the heat flux and the shear stress in the 14-field theory
with the use of the Maxwellian iteration. Therefore, in this simplified model ET6
in which we consider only the dynamic pressure, we cannot describe the cross
effects between the fundamental irreversible processes.

If we apply the Maxwellian iteration to (11.36)4 instead of (11.54), we have
a nonlinear constitutive equation for˘ with respect to the velocity gradient, that
is, the so-called non-Newtonian constitutive equation. Details are omitted here
for simplicity.

Lastly it is interesting to point out that there exist works [25–27] that, in
the parabolic Navier-Stokes framework, neglect the shear viscosity but take into
account the bulk viscosity expressed by the Eq. (11.27). And the qualitative
analysis of the system was made.
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11.5 Examples of an Ideal Polytropic Gas

In this section we present the case of ideal polytropic gases, i.e., ideal gases with the
constant heat capacity, where the equilibrium equations of state are expressed by

p D kB

m
�T and " D D

2

kB

m
T: (11.62)

It should be noted that, although the application of the ET6 theory to polytropic
gases is limited, the present example gives us theoretical features of ET6 explicitly.

11.5.1 Far-from-Equilibrium Case

After cumbersome calculation using the method of characteristics, we obtain as a
solution of (11.12) with (11.6):

k D kB

m
log
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1C ˘

p

� 3
2
�
1 � 3

D � 3
˘

p

� D�3
2

)
: (11.63)

We notice that k depends on .�; ";˘/ only through a single variable Z D ˘=p. For
D > 3, k exists and is bounded in the domain that contains an equilibrium state:

� 1 < Z <
D � 3
3

; (11.64)

in which k.Z/ < 0;8 Z ¤ 0 and k has a global maximum k.0/ D 0 at the
equilibrium state (see Fig. 11.1).

Therefore the convexity condition is satisfied in the range (11.64) and, according
with a theorem proved in [28], the entropy h has, as is expected, the maximum value
at the equilibrium state where h D �s.

The production term (11.30) becomes

OPll D � 3.D� 3/p2˘
f.D � 3/p � 3˘g .pC˘/� ; (11.65)

or equivalently in terms of the bulk viscosity (11.31):

OPll D �2
�

.D � 3/2p3˘
D.pC˘/..D � 3/p � 3˘/ : (11.66)
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Fig. 11.1 Nonequilibrium
entropy density k as the
function of Z for different
values of D

The main field (11.35) is given by
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while the potentials (11.33) become

h00 D � p

T
; h0i D � p

T
vi: (11.68)

The Meixner temperature (11.45) becomes

T D T
pC˘

p
: (11.69)

It is interesting to observe that, from (11.69), the ratio of the two temperatures is
equal to the ratio between the pressure in equilibrium and the total pressure:
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T

T
D p

P
: (11.70)

Furthermore, taking (11.62) into account, we obtain:

T D T C m

kB

˘

�
: (11.71)

It is evident that the dynamical pressure (or the internal variable of the Meixner the-
ory) is responsible for the difference between the two temperatures. Similar situation
occurs for the nonequilibrium chemical potential. In fact, from (11.67)1, (11.44)5
and (11.46)1, we have
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1C ˘
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�
: (11.72)

In the present particular case, the previous general results are rephrased as
follows:

Statement 6 In the case of ideal polytropic gases, the nonequilibrium entropy
density is given by the expression (11.63). Bounded entropic solutions satisfy the
following inequalities:

D > 3; �p < ˘ < p
D � 3
3

; � > 0: (11.73)

The entropy is convex and maximal in equilibrium. The system is symmetric
hyperbolic and is thermodynamically stable.

In fact, the first inequality is a consequence of (11.19) where � 0 and � are given by

� 0 D 2
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D � 3
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p; (11.74)
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1C 5D � 6

2.D � 3/
˘

p

�
: (11.75)

The second inequalities are (11.64) and the last inequality is a consequence of the
residual inequality (11.17) that requires ˛ > 0 (see (11.29)).
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11.5.2 Near-Equilibrium Case

In the case of ideal polytropic gases (11.62), the internal variable is given by

� D ˘

�
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3
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�
: (11.76)

The expressions of the other quantities are easily expressed by using the expression
of � :

� D 3D
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: (11.77)

The main field (11.67) becomes
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2T

D

D � 3
˘

p
:

If we know � from experimental data, we know, from (11.28) and (11.74), the
bulk viscosity:

� D 2

3
�

D � 3
D

p; (11.79)

and also we know the production term: (11.26).
By comparing (11.57) with (11.71), we notice that Meixner’s temperature far

from equilibrium has the same expression with the one near equilibrium for a ideal
polytropic gas.

11.5.3 Rarefied Monatomic-Gas Limit

As the convexity condition in this case is expressed by D > 3, the above
relation (11.77) is not valid in the case of monatomic gases where D D 3.
Nevertheless we have shown in [3] (see also Sect. 5.6 for the case of ET14 and
Sect. 10.5.1 for molecular ET) that the limit D ! 3 is a singular limit and that the
solutions of the system of field equations converge to the solutions of the Euler fluid
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provided that initial data are consistent with monatomic gases, i.e., ˘.x; 0/ D 0. In
fact equation (11.54) becomes, for D! 3, a homogeneous equation

�
˘

�

��
D �˘

��
(11.80)

that admits only the solution ˘.x; t/ D 0;8 t > 0 , while the system of the
remaining field equations becomes the Euler system. The first five components of
the main field (11.78) converge to the one of the Euler fluid (11.38) while the last
component of the main field, the Lagrange multiplier N� of the vanishing equation in
the system of ET6, remains undetermined. Then the convergence of the system of
ET6 to the Euler system when D! 3 is fully verified.

Remark We observe that, although, for D > 3, the two differential symmetric
systems (11.4) and (11.34) are equivalent to each other, only the main field (11.78)
of (11.34) converges to the main field of the Euler fluid. In fact, as we have noticed,
the difference between the main fields (11.32) and (11.35) of the two equivalent
systems consists only in the component of the energy equation, i.e., 
 and N
 with
the relation 
 D N
 � N�. Now N
 converges to the corresponding value of the Euler
fluids 1=.2T/, instead the limit of 
 is undetermined due to the indetermination of
N�. This indicates that, for the convergence in the polyatomic to monatomic limit, it
is preferable to use the system (11.34) instead of the system (11.4).

11.6 Conclusion

We have established the nonlinear ET6 theory valid also far from equilibrium of real
gases based on extended thermodynamics in a general and complete way. We have
obtained the main field explicitly, by using which the differential system becomes to
be symmetric hyperbolic. The correspondence between the fully nonlinear systems
of the ET6 theory and of the Meixner theory is discovered. The Meixner theory
is rewritten into the closed system of balance equations that satisfies the Galilean
invariance [29]. The internal variable and the nonequilibrium temperature in the
Meixner theory are related to the quantities of the ET6 theory, in particular, the
dynamic pressure and the temperature. The nonlinear theory includes, as a special
case, the results near equilibrium. An interesting example of rarefied polytropic
gases was presented. In this case the nonequilibrium entropy is explicitly derived
and all of the calculations are given in the closed form. The monatomic-gas limit in
which the system converges to the Euler system is also discussed.

Lastly we make four remarks:

(i) In our knowledge the ET6 theory is the only one that can address irreversible
processes far from equilibrium in RET.

(ii) We have found the relationship between the ET theory and the Meixner
theory within the simplest cases, namely, the ET6 theory and the Meixner



References 267

theory composed of the Euler equations with only one relaxation equation.
The following question may naturally arise: Is there a possibility that, by
establishing some correspondence relations like (11.56), the ET theory with
more fields (for example, 14 fields studied in Chaps. 5 and 6, many fields
in Chap. 10) has a counterpart in the Meixner theory with many internal
variables? This question is interesting because several authors have tried to
present models with internal variables to describe nonequilibrium processes
and shown its applicability (see, for example, [10, 15] and the review paper
[30]). In our opinion the answer is negative. In fact, only in the simplest
ET theory with 6 fields, that is, the ET6 theory, a combination of the balance
laws (11.4)3 and (11.4)4 gives us the possibility to have the equation in the
form (11.36)4 in which the spatial derivative exists only within the material
time derivative, which is typical in the internal variable equation (11.41)4.
When the number of independent fields is more than 6, however, we have a
system of balance laws (2.1) for the fields that is perfectly consistent with the
kinetic theory [31, 32]. In our opinion, this is the reason why the ET theory is
much more powerful than the other theories using internal variables in a similar
way to the Meixner theory.

(iii) In the case of rarefied polyatomic gases, there exists large literature on kinetic
models to explain relaxation processes and chemical reacting flows. See for
example [33].

(iv) One of the promising applications of the present nonlinear analysis is the
study of shock wave phenomena in a non-polytropic gas. This study is highly
expected to enrich the previous studies [6, 34] by using the concept of the
internal variable and the nonequilibrium temperature of the Meixner theory,
because some authors studied this subject by using these quantities [35]. We
will discuss this subject in Chap. 13 briefly.
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Chapter 12
Molecular Non-linear ET6 for Rarefied
Polyatomic Gas

Abstract We establish extended thermodynamics of rarefied polyatomic gases with
six independent fields via the maximum entropy principle. The distribution function
is not necessarily near equilibrium. The result is in perfect agreement with the
phenomenological ET theory explained in the previous Chap. 11. This is the first
example of molecular extended thermodynamics with a non-linear closure. The
integrability condition of the moments requires that the dynamical pressure should
be bounded from below and from above.

12.1 Introduction

We discussed the MEP procedure in Sect. 1.5.5, and in particular we put in evidence
the problem of the convergence of moments in a far-from-equilibrium case in
Sect. 4.5. All closures by the MEP procedure studied up to here are valid only
near equilibrium, including the 14-moment case of polyatomic gases discussed in
Chap. 6. One of the worse circumstances is that hyperbolicity exists only in some
small domain of the configuration space near equilibrium (see [1, 2] for monatomic
non-degenerate gas case and [3] for Fermi and Bose gases).

The aim of this chapter is to prove that, in the case of ET6 of rarefied polyatomic
gases, a theory can be established with the closure that is valid even far from
equilibrium in accord with the phenomenological theory presented in the previous
Chap. 11. We will show that this non-linear closure matches completely the previous
result obtained by using only the macroscopic method [4]. The result of this chapter
is presented firstly in the paper [5].

© Springer International Publishing Switzerland 2015
T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics beyond
the Monatomic Gas, DOI 10.1007/978-3-319-13341-6_12
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12.2 Nonequilibrium Distribution Function

We have deduced the equilibrium distribution function of any polyatomic gas in
Theorem 6.1 (see (6.9)). Now we consider 6 moments (11.1):

0
@ F

Fi

Fll

1
A D

0
@ �

�vi

�v2 C 3.pC˘/

1
A D

Z
R3

Z 1

0

m

0
@ 1

ci

c2

1
A fI˛ dI dc (12.1)

and

Gll D �v2 C 2�" D
Z

R3

Z 1

0

m.c2 C 2I=m/fI˛ dI dc: (12.2)

We want to prove the following theorem [5]:

Theorem 12.1 The distribution function that maximizes the entropy (6.5) under the
constraints (12.1) and (12.2) has the form:

f D �

m .kBT/1C˛� .1C ˛/
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C I
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˘
p

!!)
: (12.3)

All the moments are convergent provided that

� 1 < ˘

p
<
2

3
.1C ˛/; ˛ > �1: (12.4)

Proof The proof of the theorem is accomplished with the use of the Lagrange
multiplier method. Introducing the vector of the multipliers .�; �i; �; 
/, we define
the functional:
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As this is a functional of the distribution function f and we want to maximize it with
respect to f with the given macroscopic quantities, this functional can be substituted
by the following one:

L D �
Z

R3

Z 1

0

kBf log f I˛ dI dc � �
Z

R3

Z 1

0

mf I˛ dI dc

��i

Z
R3

Z 1

0

mfci I˛ dI dc � �
Z

R3

Z 1

0

mc2f I˛ dI dc (12.5)
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�
c2 C 2 I

m

�
f I˛ dI dc:

Since L is a scalar, it must retain the same value in the case of zero hydrodynamic
velocity v D 0 due to the Galilean invariance. Therefore, with ci D CiCvi, we have

L D �
Z

R3

Z 1

0

kBf log f I˛ dI dC � O�
Z

R3

Z 1

0

mf I˛ dI dC
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mC2f I˛ dI dC (12.6)
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Z
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Z 1

0
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�
C2 C 2 I

m

�
f I˛ dI dC:

Comparison between (12.5) and (12.6) yields the relations between the Lagrange
multipliers and the corresponding zero-velocity (or intrinsic) Lagrange multipliers
indicated by hat:

� D O� � O�ivi C . O� C O
/v2I �i D O�i � 2. O� C O
/viI � D O� 
 D O
; (12.7)

which dictate the velocity dependence of the Lagrange multipliers. We notice that
these relations are in accordance with the general results of the Galilean invariance
[6] (see (2.42)). The Euler-Lagrange equation ıL =ıf D 0 leads to the following
form of the distribution function in agreement with the general Theorem 10.2 valid
for any (N;M) system (see (10.10)) :

f D exp�1� m
kB
�
; (12.8)

where

� D O�C O�iCi C O�C2 C O

�

C2 C 2 I

m

�
:
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By introducing the following variables:

� D m

kB
. O� C O
/; �i D m

kB

O�i; ! D 2

kB
O
; ˝ D exp

�
�1 � m

kB

O�
�
; (12.9)

the distribution function can be rewritten as

f D ˝e�!Ie��C2��iCi : (12.10)

Inserting (12.10) into the second equation of (12.1) evaluated at the zero velocity,
we obtain immediately �i D 0. Then the remaining equations of (12.1) and (12.2)
evaluated at v D 0 become
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From the integrability condition, we have

! > 0; � > 0; ˛ > �1: (12.12)

From (12.11) and (11.62), we obtain
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We can invert these relations as follows:
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(12.14)

The integrability conditions (12.12) imply that, for a bounded solution, the ratio
˘=p must satisfy the same inequalities in the macroscopic approach (11.64).
Inserting (12.14) into the distribution function (12.10), we obtain (12.3) and the
proof is completed. When ˘ ! 0 (12.3) becomes the equilibrium distribution
function (6.9).

12.3 Closure and the Field Equations

Substituting (12.3) into the fluxes Fllk;Gllk and the production term Pll, we obtain
after some calculations

Fik D
Z

R3
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mcickfI˛ dI dc D �vivk C .pC˘/ıik;
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Z
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Pll D OPll D
Z

R3

Z 1
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mC2Q.f / I˛ dI dC:

(12.15)

From the balance equations of momentum and of energy in continuum mechan-
ics, we know that

Fik D �vivk � tik; Gllk D .�v2 C 2�"/vk � 2tikvi C 2qk;

where the stress tensor tik is given by (1.5). Comparing with the closure (12.15).1;3/,
we conclude that the closure gives the result that, in the 6-moment theory, <ik> D 0
and qk D 0. This is the expected result that there exist no shear viscosity and no
heat conductivity in the 6-moment theory. For what concerns (12.15)2, taking into
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account the Galilean invariance, we obtain the zero-velocity part of Fllk:

OFllk D
Z

R3

Z 1

0

mC2CkfI˛ dI dC D 0:

Concerning the production term (12.15)4, the main problem is that, in order to have
explicit expression of the production, we need a specific model for the collision
term, which is, in general, not easy to obtain in the case of polyatomic gases.

With (12.15) we obtain the same differential system of 6 moments as the one
obtained via macroscopic approach (11.4). This system (11.4) with the thermal and
caloric equations of state (11.62) is a closed system for the 6 unknowns (�; vi;T; ˘ )
provided that we know the collision term in (12.15)4.

We conclude that the results obtained via MPE is in perfect agreement with
the results derived from the phenomenological theory in Chap. 11 [4]. A possible
expression for the production term OPll is given in (6.34) for 14 moments putting
<ij> D 0 or, via phenomenological considerations, in (11.65) and (11.66) in terms
of the relaxation time of the bulk viscosity. In the case of the BGK approach we
obtain OPll D �3˘=� .

12.3.1 Entropy Density

Let us study the entropy density h with non-linear distribution function:

h D �kB
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with ˝ being given by (12.14)3. The equilibrium part of the entropy density hE is
expressed as
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Moreover we notice that the chemical potential g D "C p
�
� Ts is expressed as
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On the other hand, the nonequilibrium part of the entropy becomes
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Since

˝

˝E
D
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1C ˘
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�� 3
2
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D � 3
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p

�� D�3
2

; (12.19)

we find that k coincides with the one obtained by the phenomenological ET
approach (11.63). As we have seen in Sect. 11.5, k depends on a single variable
Z D ˘=p and has a global maximum at an equilibrium state.

12.4 Main Field and Symmetric System

From (12.14), (12.9) and (12.7), we obtain the full expression of the Lagrange
multipliers after some cumbersome calculations and they coincide exactly with the
one obtained by macroscopic approach (11.67). Notice that, in equilibrium where
˘ D 0, the first five components of the main field (11.67) coincide with those
obtained by Godunov for the Euler fluid [7]:

�jE D � 1
T

�
g � v

2

2

�
; �ijE D �vi

T
; 
jE D 1

2T
;

while �jE D 0 according to the fact that the Euler fluid is a principal subsystem of
the 6-moment system [8].

We observe that, if we apply the Maxwellian iteration, the last equation of (11.4)
with the production given by the BGK approximation reduces to the Navier-Stokes
law in the case of no shear stress [4, 9, 10]:

˘ D �� divv; with � D 2

3

D � 3
D

p�; (12.20)

where � is the bulk viscosity. The system (11.4) in which the last equation is
replaced by (12.20) was studied by Secchi [11] and by Frid and Shelukhin [12, 13].
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Chapter 13
Application of ET6: Shock Wave and Sub-shock
Formation

Abstract In this chapter, we show the usefulness of the ET6 theory for the analysis
of the shock wave structure in a rarefied polyatomic gas. We compare the theoretical
prediction derived from the ET6 theory with that from the ET14 theory. We see, in
particular, that the thin layer in Type C with finite thickness described by the ET14
theory is replaced by a discontinuous jump, the sub-shock. The strength and the
stability of a sub-shock is also discussed. Lastly the temperature overshoot at a sub-
shock in terms of Meixner’s temperature is shown.

13.1 Introduction

In Chap. 8, the shock wave structure in a rarefied polyatomic gas has been studied
on the basis of the ET14 theory. We found that the ET14 theory can describe three
types of the shock wave structure, Types A, B and C, in a rarefied polyatomic gas in
a unified and consistent way.

In the analysis of Chap. 8, we also found that the dynamic pressure ˘ plays
an essential role in the formation of the shock wave structure but the shear stress
and the heat flux are negligibly small everywhere except for the inside of a thin
layer. This is due to the fact that the relaxation time of the dynamic pressure is
much larger than the other relaxation times of the shear stress and the heat flux in
a rarefied polyatomic gas, such as H2 gas, CO2 gas [2, 3]. Therefore, it is natural to
expect that we may study the shock wave structure properly on the basis of the ET6
theory.

In this chapter, we study the same problem of Chap. 8, but with the use of the
ET6 theory [1].

13.2 Basis of the Present Analysis

13.2.1 Characteristic Velocities

Let us consider the problem of one space dimension. The characteristic velocities in
equilibrium � of the ET6 system have the following expression for any gas (see for
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the proof Sect. 14.1):

� D 0; 0; ˙
r
5

3

kB

m
T : (13.1)

Let us consider a non-polytropic gas. In this case it is convenient to write the ratio
with the sound velocity c given in (7.9) :

�

c
D 0; 0; ˙

s
5

3

1

�.T/
; (13.2)

where �.T/ is the ratio of specific heat given in (7.10). As in Chap. 8, we study the
shock wave structure in a CO2 gas at T D 295 [K] and p D 69 [mmHg] in the
unperturbed state. In this case, the maximum characteristic velocity is estimated as
�max=c � 1:137. Therefore, from Theorem 3.1, the continuous shock wave structure
may exist in the Mach number region: 1 < M0 < 1:137. It is interesting to notice
that, in the case of the ET14 system studied in Chap. 8, �max=c � 1:74.

13.2.2 Parameters

Figure 8.1 shows the dependence of the specific heat of a rarefied CO2 gas on the
temperature. The temperature and mass density dependence of the relaxation time
of the dynamic pressure is expressed by (see (8.10)1)

�˘.�;T/

�˘.�0;T0/
D 5 � 3�0
5 � 3�.T/

�0

�

�
T0
T

�1�n

; (13.3)

where T0 is the temperature in the unperturbed state and �0 � �.T0/. The exponent
n is, as before, given by n D 0:935 [4]. The values of the specific heat, the
sound velocity, and the relaxation time of the dynamic pressure are summarized
in Tables 8.1 and 8.2.

Remark The ET6 theory is also applicable to some other gases like rarefied
hydrogen and deuterium gases. In fact, the analysis of ultrasonic sounds in Chap. 7
reveals that �˘ of these gases is much larger than �S and �q. However, as there is
no suitable experimental datum on the shock wave structure in these gases, we take
only a CO2 gas as a typical example in the present chapter.
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13.2.3 Dimensionless Form of the Balance Equations

We hereafter study the structure of a stationary plane shock wave. For conve-
nience we again introduce the dimensionless quantities (8.4). Then the balance
equations (11.4) are rewritten as

d

dOx. O� Ov/ D 0;
d

dOx
�
1

�0

�
O� OT C Ŏ

	
C O� Ov2

�
D 0;

d

dOx
�
2

�0

�
. O� OT C Ŏ / Ov C O� Ov 1

T0

Z T

TR

Ocv.�/ d�

�
C O� Ov3

�
D 0;

d

dOx
�
5

�0
. O� OT C Ŏ / Ov C O� Ov3

�
D � 3

�0

Ŏ
O�˘ :

(13.4)

Here we have assumed the linear relation (11.26) for OPll. Compare these equations
with (8.5).

By integrating the conservation laws (13.4)1�3, the balance equations (13.4)
become as follows:

O� D M0

Ov ;

1

�0

 
M0
OT
Ov C Ŏ

!
CM0 Ov D 1

�0
CM2

0 ;

2

�0

�
M0
OT C Ŏ Ov C M0

T0

Z T

T0

Ocv.�/ d�

�
CM0 Ov2 D 2

�0
M0 CM3

0 ;

d

dOx
�
5

�0

�
M0
OT C Ŏ Ov

	
CM0 Ov2

�
D � 3

�0

Ŏ
O�˘ :

(13.5)

13.2.4 Boundary Conditions

The quantities in the perturbed state are derived from the Rankine-Hugoniot (RH)
conditions (8.8).
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13.2.5 RH Conditions for a Sub-shock in Type C

From the general conditions (3.34), we obtain the RH conditions for a sub-shock in
Type C:

O�� D M0

Ov�
;

1

�0

 
M0
OT�
Ov�
� 1C Ŏ�

!
CM0 . Ov� �M0/ D 0;

2

�0

�
M0
OT� C Ŏ� Ov� C M0

T0

Z T�

T0

Ocv.�/ d� �M0

�
CM0

� Ov2� �M2
0

� D 0;
5

�0

�
M0
OT� C Ŏ� Ov� �M0

	
CM0

� Ov2� �M2
0

� D 0:

(13.6)

The quantities with the subscript 	 mean the quantities in the state just after a sub-
shock. Note that the state 	 in Type C is different from the perturbed state 1. See the
shock profile of Type C in Fig. 1.1.

If we subtract (13.6)3 from (13.6)4, we obtain:

Ŏ�
O��
D 2

3

1

T0

Z T�

T0

�
Ocv.�/ � 3

2

�
d�

that gives the value of Ŏ�. If the gas is monatomic, we notice that Ocv D 3=2 and
then ˘ vanishes everywhere. Furthermore, from (13.6)2 and (13.6)4, we have

4M0 Ov2� � 5
�

M0 C 1

�0

�
Ov� C 5

�0
M0 CM3

0 D 0: (13.7)

Then we have

Ov� D M0 and
1

4M0

�
M2
0 C

5

�0

�
: (13.8)

The first solution is a trivial one, and the second one corresponds to the solution for
a sub-shock.

13.2.6 Numerical Methods

We solve numerically the system (13.5) under the boundary conditions by adopting
the numerical methods proposed by Weiss [5, 6]. Because the mass density is already
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expressed by the other variables (13.5)1, we need to solve the system (13.5)2�4 for
u D . Ov; OT; Ŏ /.

13.2.7 Case 1: M0 < �max=c0

In this case, no sub-shock appears. Therefore the numerical method explained in
Sect. 8.3.4 can be adopted also in this case.

13.2.8 Case 2: M0 > �max=c0

As a sub-shock appears in this case, which is assumed to be at x D 0, the boundary
condition is replaced by the RH conditions for a sub-shock (13.6). We introduce the
N C 1 grid points such that the range Œ0;L� in the x-axis is discretized with constant
intervals�x D L=N as follows:

xi D L

N
i for i D 0; 1; � � � ;N: (13.9)

The boundary conditions are given by

u0 D u�;

uN D u1;
(13.10)

where ui represents ujxDxi , u0 D .M0;T0; 0/ and u� D . Ov�;T�; Ŏ�/. We solve
numerically the basic equations in the same way as above.

13.3 Shock Wave Structure with and without a Sub-shock

13.3.1 Shock Wave Structure without a Sub-shock

Let us analyze the continuous shock wave structure in the Mach number region
1 < M0 < �max=c0. The profiles of the mass density, the velocity, the temperature
and the dynamic pressure at M0 D 1:04 is shown in Fig. 13.1. This is a typical
example of the shock wave structure of Type A. We also depict the shock wave
structure at M0 D 1:12 as an example of Type B in Fig. 13.2.

From these figures, we understand clearly that the ET6 theory can reproduce
nearly the same shock waves structures of Types A and B as those by the ET14
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Fig. 13.1 Type A: Profiles of the dimensionless mass density, the velocity, the temperature and
the dynamic pressure predicted by the ET6 theory (black thick curves) and by the ET14 theory (red
thin curves). M0 D 1:04. The black and red curves coincide with each other within the thickness
of the black curve

theory. Note that this conclusion is true only when the relaxation time of the dynamic
pressure is much larger than the other two relaxation times.

13.3.2 Shock Wave Structure with a Sub-shock

Figures 13.3 and 13.4 show the predictions of the shock wave structure at M0 D 1:15
and M0 D 1:47 by the ET6 and ET14 theories. These shock wave structures belong
to Type C.

We notice from Figs. 13.3 and 13.4 that the ET6 theory can describe the shock
wave structure quite well. Only the difference between ET6 and ET14 can be
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Fig. 13.2 Type B: Shock wave structures predicted by the ET6 theory (black thick curves) and by
the ET14 theory (red thin curves). M0 D 1:12. The black and red curves coincide with each other
within the thickness of the black curve

detected in the thin layer. See the magnifications shown in the sub-figures of
Figs. 13.3 and 13.4. The thin layer in the ET6 theory is represented by a sub-shock,
but, in the ET14 theory, it is represented by a thin layer with finite thickness. In other
words, the ET6 theory can describe the thin layer only as a discontinuous surface
because of the limited resolution inherent in the theory. On the other hand, owing
to its finer resolution, the ET14 theory can describe the fine structure of the thin
layer. In this respect, it is also interesting to note that the Bethe-Teller theory [7]
also regards the thin layer as a discontinuous surface.

In conclusion, the ET6 theory can describe also the shock wave structure of Type
C very well if we are not interested in the fine structure of the thin layer.
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Fig. 13.3 Type C: Shock
wave structures predicted by
the ET6 theory (black thick
curves) and by the ET14
theory (red thin curves).
M0 D 1:15

13.3.3 Discussions

(1) We have seen above that the ET6 theory can describe the shock wave structures
of all Types A, B, and C in a unified way within its resolution. We may use the
ET6 theory for analyzing the shock wave structure even at the Mach number
larger than �max=c0.

(2) The interpretation in (1) is consistent with the fact that the maximum char-
acteristic velocity monotonically increases with the increase of the number of
the independent variables in hyperbolic systems (see Sect. 4.4). The ET theory
can describe more and more fine shock wave structure as the number of the
independent variables increases.

(3) As pointed out before, in the ET14 theory, the continuous shock wave structure
is obtained up to the Mach number M0 � 1:74. Above this Mach number, the
ET14 theory describes the thin layer as the layer with a sub-shock. If we want
to analyze the continuous shock wave structure at a larger Mach number than
1.74, we need to adopt more independent variables.
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Fig. 13.4 Type C: Shock wave structures predicted by the ET6 theory (black thick curves) and by
the ET14 theory (red thin curves). M0 D 1:47

(4) We can define, without ambiguity, the critical Mach number at which the
transition between Types B and C occurs by using the characteristic velocity of
ET6 theory. We obtain M0 � 1:137, which is consistent with the experimental
data [8–13] although, at present, the experimental data are too few to determine
the definite value of the critical Mach number.
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13.4 Strength and Stability of a Sub-shock

13.4.1 Mach Number Dependence of the Strength
of a Sub-shock

We depict the Mach number dependence of the mass density, the velocity, the
temperature and the dynamic pressure in the state 	, that is, the state just after a
sub-shock in Fig. 13.5. We can see that the mass density, the temperature and the
dynamic pressure (and the velocity) increase (decreases) with the increase of the
Mach number. When M0 D �max=c0, the values of the quantities in the state 	
coincide with the values in the unperturbed state 0. It is interesting to note that the
values of the mass density and the temperature (and the velocity) in the state 	 are
always smaller (larger) than the values of those in the perturbed state 1. This means
that there is no overshoot of these quantities in a sub-shock.
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Fig. 13.5 Mach number dependence of the mass density, the velocity, the temperature and the
dynamic pressure in the state � just after a sub-shock (black curves). Similar dependence of the
quantities in the perturbed state 1 (blue curves) is also shown. Here O�0 is defined by O�0 � �max=c0
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Fig. 13.6 The dependence of
the characteristic velocitiesO�0 and O�� on the Mach
number for a sub-shock
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13.4.2 Stability of a Sub-shock

All solutions of the RH conditions for a sub-shock (13.6) are not necessarily stable
(admissible). In order to select a stable solution, we can utilize the Lax condition
(see Sect. 3.3.2.1), which , in the present case, is written by

O�0 < M0 < O�� (13.11)

with O�0 and O�� being

O�0 D
s
5

3

1

�0
and O�� D

s
5

3

1

�.T�/
c�
c0
CM0 � Ov�: (13.12)

The dependence of O�0 and O�� on the Mach number is shown in Fig. 13.6. We can
see that the Lax condition is satisfied when the Mach number is larger than the
dimensionless maximum characteristic velocity in the unperturbed state, that is,
M0 > O�0 � �max=c0. This is consistent with the theorem about the formation of
a sub-shock explained in Sect. 3.4. We conclude that all and only compressive sub-
shocks are admissible.

13.5 Meixner’s Temperature and the Temperature Overshoot

We discussed in Chap. 11 that we can also describe nonequilibrium phenomena in
terms of the quantities of the Meixner theory. Therefore, by using the correspon-
dence relation (11.44), the shock wave structure described by the ET6 theory can be
converted into the structure from the viewpoint of the Meixner theory.
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Fig. 13.7 Shock wave structure in the Meixner theory (black thick curves). The temperature profile
in the ET6 theory (blue thin curve) is also shown. M0 D 2:0

Comparison of the nonequilibrium temperatures in both theories is especially
interesting. Numerical analysis [14] reveals the following facts:

(i) When the Mach number M0 is small both temperatures behave in nearly the
same way.

(ii) When M0 increases, only the temperature of the Meixner theory overshoots.
One typical example is shown in Fig. 13.7.

These facts clearly show that the existence of the temperature overshoot in a shock
wave depends on the definition of the nonequilibrium temperature adopted.

In Chap. 15, we will propose a well-defined nonequilibrium temperature and
chemical potential, which, within the ET6 theory, coincide with the corresponding
quantities in the Meixner theory.

13.6 Conclusion

In this chapter, we have studied the shock wave structure by using the ET6 theory
with the linear constitutive equation (5.60) and we have restricted our analysis
within the cases with small Mach numbers. We can also analyze the shock wave
structure on the basis of the nonlinear ET6 theory (11.34), if we do not care about
the complications encountered in the analysis.

Numerical analysis with the use of the nonlinear ET6 theory [14] reveals that
difference in the shock wave structure between nonlinear and linear cases are not so
remarkable at least up to M0 
 5. This is not surprising because of the following
facts: As the left-hand side of the system of field equations is the same in both linear
and nonlinear cases, the strength of a sub-shock is the same in both cases. And, if the
Mach number is not so large, the relaxation after the sub-shock is not so large. This
finding also means that the reliability of the results derived from the linear theory in
the present chapter is quite high.
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Chapter 14
Acceleration Wave, K-Condition, and Global
Existence in ET6

Abstract We verify the K-condition for the non-linear ET6 model and show for any
gas the existence of global smooth solutions provided that initial data are sufficiently
small. As an example, in the case of polyatomic gases, we study acceleration waves.
We evaluate the Bernoulli equation for the amplitude of the wave. If the initial
amplitude of an acceleration wave is sufficiently small compared with the critical
amplitude, the acceleration wave exists for all time and decays to zero as the time
t becomes large. Vice versa, for large initial amplitude, there exists a critical time
at which we have the blow up of the solution and the formation of a shock wave.
We show the peculiarity of this model, that is, the velocity of a disturbance and the
critical time are universal: these are independent of the degrees of freedom of the
constituent molecule D.

14.1 Characteristic Velocities and the K-Condition

We discussed, in Sects. 2.6.2 and 2.6.3, the role of the K-condition (2.35) [1].
Together with the entropy convexity, it is a sufficient condition for the existence
of global smooth solutions. Lou and Ruggeri [2] noticed a connection between the
K-condition and the global existence of acceleration waves (see Sect. 3.2) and they
rewrote the condition (2.35) in the form (3.33). In this chapter, we study acceleration
waves and prove that the K-condition is satisfied for the ET6 model for any gas with
a convex entropy.

The system (11.36) in the BGK approximation is given by

P�C �@vk

@xk
D 0;

� Pvi C @

@xi
.pC˘/ D 0;

� P"C .pC˘/@vk

@xk
D 0;

�
pC˘
�
� 2
3
"

��
D �˘

��
:

(14.1)
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Using the chain rule (3.32) we obtain, from the differential system, characteristic
eigenvalues and right eigenvectors. In particular, for the material time derivative,
the chain rule is expressed by

� ! �Vı; V D � � vn; vn D vini:

In the present case, from the system (14.1), we obtain

� Vı�C �ıvn D 0;
� �VıvC nı.pC˘/ D 0;
� �Vı"C .pC˘/ıvn D 0;

� Vı

�
pC˘
�
� 2
3
"

�
D 0:

(14.2)

Taking into account the equations of state (11.62), we have:

1) V D 0  ! � D vn; contact waves; (14.3)

with ı�, ıvT , ıp arbitrary (multiplicity 4), and ıvn D 0, ı˘ D �ıp (vT denotes the
tangential velocity).

2) V D ˙
s
5

3

pC˘
�

 ! � D vn ˙
s
5

3

pC˘
�

; sound waves; (14.4)

with ı� arbitrary,

ıv D nV
ı�

�
; ı" D ı�

�

�
pC˘
�

�
; ı˘ D ı�

�
�; (14.5)

where � is given by (11.13). As only the last component of the production term f of
the generic system (2.1) is non-zero (see (14.1)), the K-condition (2.35) is satisfied
if ı˘ ¤ 0 in equilibrium (˘ D 0). This is true for both contact waves and for
sound waves because of (14.5) and the inequality �0 > 0 [see (11.19)] due to the
convexity condition. Therefore the K-condition is satisfied for any gas and, together
with the convexity of the entropy, we can conclude that, according to the general
theorems of Sect. 2.6.3, the 6-moment system has global smooth solutions for all
time, and the solution converges to the equilibrium one provided that the initial data
are sufficiently smooth. This proof was given in [3].

We notice that the sound velocity in (14.4) is independent of the degrees of
freedom of a molecule and that, in equilibrium, it coincides with the sound velocity
of a monatomic gas. In the case of polytropic polyatomic fluids this result is in
agreement with the Theorem 10.5. In fact for polytropic polyatomic gases, the
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6-moment system is a .2�; 0/ system and belongs to the class for which the
characteristic velocities are independent of D, see Sect. 10.4.2.

14.2 Time-Evolution of the Amplitude and the Critical Time

Let us consider the system (14.1) in the one-dimensional case for the field
u � .�; v; ";˘/T with v � .v; 0; 0/. We consider for simplicity a polytropic
fluid. We study time-evolution of the amplitude of an acceleration wave along
the characteristic line of the transport equation. We focus on the fastest wave
propagating in an equilibrium state at rest: u0 � .�0; 0; "0; 0/.

In the present case, the amplitude evolves according to (3.27) with a and b given
by (3.26). The system (14.1) can be rewritten as

PuC Aux D f (14.6)
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where we have put

c D
s
5

3

p

�
: (14.8)

The eigenvalues of A are given by

V D
(
0; 0;�
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s
5

3

pC˘
�

)
:

Therefore the fastest velocity is expressed in terms of the field u as

� D v Cp10�=.3D/C 5˘=.3�/: (14.9)

The gradient evaluated in equilibrium (we omit the index E) is given by

grad� D �@��; @v�; @��; @˘�� D
�
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3cD
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6c�

�
: (14.10)
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The orthonormal right and left eigenvectors in equilibrium are obtained as
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�3C D

5D

�
;

l D l4 �
�
3c2.�3C d/

25D
;

c.D � 3/�
5D

;
2.D� 3/�
5D2

;
�3C D

5D

�
:

Therefore from (3.26) we have

a D 10D

3c.D� 3/� ; b D 1

�
: (14.12)

The condition (3.12) with (3.13) becomes, in the present case,

0
BBBBBBB@

h
Œ@��

@x

i
h
Œ@v�

@x

i
h
Œ@"�

@x

i
h
Œ@˘�

@x

i

1
CCCCCCCA
D A

0
BBB@

5D
2c2.D�3/

5D
2c�.D�3/

3D
2.D�3/�
1

1
CCCA : (14.13)

Introducing the acceleration jump

G D
�
@v

@t

�
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and taking into account both the Hadamard condition and the second component
of (14.13), we obtain

A D �2�.D� 3/
5D

G:

Therefore the transport Bernoulli equation (3.14) becomes very simple:

dG

dt
� 4

3c
G2 C G

�
D 0: (14.14)

An interesting remark is that this equation is independent of D as is the sound
velocity (14.8)! The solution of (14.14) (see (3.27)) is

G.t/ D G.0/e� t
�

1CG.0/ 4�
3c

�
e� t

� � 1
	 : (14.15)

Therefore if the initial amplitude of the acceleration jump satisfies the condition:

G.0/ < Gcr D 3

4

c

�
; (14.16)

we have no critical time. The acceleration jump decays in agreement with the global
existence and the K-condition. Instead, if G.0/ is greater than the critical value Gcr,
we have the critical time (see (3.29)):

tcr D �� log

�
1 � 3c

4G.0/�

�
(14.17)

and blow-up arises with the formation of a shock wave.
It is interesting to observe that the Bernoulli equation for Euler monatomic fluids

is the same as (14.14) if the last term is absent. In the case of Euler fluids, any
compressive wave G.0/ > 0 has the critical time that, in the case of monatomic
gases, is given by [4]

t5M
cr D

3c

4G.0/
: (14.18)

We can rewrite (14.17) by using (14.18):

tcr

�
D � log

�
1 � t5M

cr

�

�
: (14.19)
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If w D t5M
cr =� � 1, then

tcr

�
D t5M

cr

�
C O.w2/: (14.20)

14.3 Conclusion

We have evaluated the time-evolution of an acceleration wave for the ET6 model.
And we have seen such peculiarity of this simple model that the velocity of
disturbance and the critical time are universal in the sense that these are independent
of the degrees of freedom of a constituent molecule D. This is probably due to the
fact that the model is oversimplified and more realistic model is the 14-moment
model.

Nevertheless, even though the model may be oversimplified, it has the advantage
that the system is the simplest dissipative system that corrects the classical Euler
fluid. The dissipation is enough to produce a competition with hyperbolicity.
Therefore, as the K-condition is satisfied and the entropy is convex, smooth
solutions exist for all time and they converge to the equilibrium state.

The acceleration wave is a good example to understand this situation. In fact,
if the initial acceleration amplitude is sufficiently small compared with the critical
amplitude (14.16), the acceleration wave exists for all time and decays to zero as the
time t becomes large as seen in (14.15).
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Chapter 15
Nonequilibrium Temperature and Chemical
Potential

Abstract In this chapter, we propose a natural definition of nonequilibrium tem-
perature and chemical potential. The main field, with which the generalized Gibbs
equation is expressed in a differential form, is the key quantity in the definition. In
the ET6 theory, in particular, the nonequilibrium quantities coincide exactly with
those in the Meixner theory explained in Chap. 11.

15.1 Generalized Gibbs Equation, Nonequilibrium
Temperature and Chemical Potential

As mentioned in Sect. 1.6.7, one of the most delicate and controversial questions in
nonequilibrium thermodynamics is the following one: What is the most appropriate
definition of the nonequilibrium temperature? This question has been considered
by many authors, but here is not a suitable place to discuss its history and many
tentatives to this intriguing problem. Some general discussions are summarized in
the paper [1]. See also a previous tentative in ET [2, 3]. Instead, we here want to
reconsider the idea that was proposed in [4] in a relativistic framework.

For this aim, let us firstly observe the structure of ET given in the case of
monatomic gases, by (2.13). For this structure, the temporal part of the differential
conditions (2.43)1 derived from the requirement of the entropy principle reads

dh0 D u0 � dF0 D Ou0 � d OF0 D
D Ou0d OF C Ou0

k1
d OFk1 C Ou0

k1k2
d OFk1k2 C � � � C Ou0

k1k2:::kn
d OFk1k2:::kn D

D Ou0d OF C Ou0
lld OFkk C Ou0

<k1k2>
d OF<k1k2> C � � � C Ou0

k1k2:::kn
d OFk1k2:::kn ;

(15.1)

where we write explicitly the components of the main field:

u0 � .u0; u0
k1 ; u

0
k1k2 ; : : : ; u

0
k1k2:::kn

/: (15.2)

By taking into account the general properties that, in equilibrium, all the
components of the main field corresponding to the balance laws vanish (2.29)2
and that the first five fields F;Fi;Fkk are equilibrium quantities (mass density,
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momentum, 2 times energy), the relation (15.1) reduces to

dh0E D Ou0
E � d OF0E D Ou0

Ed OF CCOu0
ElldFkk: (15.3)

This is nothing else the Gibbs equation (1.7) with non-vanishing components of the
main field. These components coincide with those of the main field of the Euler
equilibrium principal subsystem:

Ou0
E D �

g

T
; Ou0

Ell D
1

2T
: (15.4)

Therefore, firstly we may conclude that (15.1) represents the generalized Gibbs
equation in nonequilibrium. In this respect, we emphasize the fact that, in ET, we do
not adopt the local equilibrium assumption characterized by the equilibrium Gibbs
equation (15.3).

Secondly we can understand the physical meaning of the intrinsic Lagrange
multipliers in equilibrium corresponding to the mass conservation and the energy
conservation owing to the relation (15.4). They are, respectively, the ratios between
the chemical potential and the absolute temperature except for the sign, and the
coldness (the inverse of the temperature) except for the factor 1=2. It is therefore
natural that, also for a nonequilibrium state, we assume the following relations:

Ou0 D � G

T
; Ou0

ll D
1

2T
; (15.5)

where G and T are interpreted as the nonequilibrium chemical potential and the
nonequilibrium temperature. In other words, these nonequilibrium quantities are
defined through the relations (15.5).

Finally, an important remark is the following: in the old ET [5] or in the EIT
[6], the Gibbs equation (15.1) is the starting point and therefore is assumed as a
hypothesis, while, in RET, (15.1) is not assumed but is deduced. This means that,
as we saw and will see in several chapters, we are able to evaluate all the main
field components without any ambiguity. Therefore we are able to measure the
nonequilibrium temperature and the nonequilibrium chemical potential indirectly
through the relations:

T D 1

2 O
; G D �
O�
2 O
 (15.6)

where we have put O� D Ou0 and O
 D Ou0
ll for simplicity and also for uniformity with

previous chapters.
In the case of rarefied monatomic gases, among other ET theories, the ET

theory with 13 fields is the most interesting one in the sense that all fields have
concrete physical meanings. For such a theory, the definition (15.6) gives a simple
but non-trivial answer. In fact, from the expression of the main field of ET with



15.2 Nonequilibrium Temperature and Chemical Potential in ET with the. . . 301

13 fields (4.1), the definition (15.6) gives the relations:

T D T; G D g: (15.7)

In this case, two kinds of the nonequilibrium quantities coincide with each other.
We have to recall that the ET theory with 13 fields is valid only near equilibrium,

where we assume that all quantities are linear with respect to the nonequilibrium
quantities. Because of the two facts that (1) the scalar quantities T and G can
be influenced only by nonequilibrium scalars obtained from the tensor F0s and (2)
we do not have any nonequilibrium scalar in the first order, we have obtained the
relation (15.7). Here, the fact that the dynamical pressure vanishes identically in a
rarefied monatomic gas is essential.

In the case of ET with more fields than 13, however, other nonequilibrium scalars
may play a role. For example, in the ET theory of monatomic gases with 14 fields,
we adopt one more balance equation for the new independent variable Fllkk. Then
we have [7]

O� D � g

T
� �

8pT
; O
 D 1

2T

�
1C �

6p2
�

�
;

where� is the nonequilibrium part of Fllkk.
In the case of polyatomic gases and dense gases, the situation is quite different.

The nonequilibrium temperature T and chemical potential G are different from the
temperature T and chemical potential g due to the existence of the dynamic pressure
˘ . We will establish, in the following sections, an explicit relationship between (T ,
G ) and (T, g) in the cases of ET6, ET14, and ET with arbitrary number of fields.

15.2 Nonequilibrium Temperature and Chemical Potential in
ET with the Binary Hierarchy

In the case of ET of polyatomic gases and dense gases with the binary hierar-
chy (10.1), one important point concerning the Lagrange multiplier of the energy
equation should be made clear in order to define the nonequilibrium temperature
and chemical potential properly. We start to consider this point in the case of ET6.

In ET6, we already observed that we can write the system of field equations in
two different ways. The one is written in the form of F-series and G-series (1.27),
which corresponds to (11.4) and to the Lagrange multipliers .�; �i; 
; �/ given
by (11.32). The other one is written in the form (1.27) except that, instead of the
equation for Fll, we adopt the equation:

@t .Fll �Gll/C @i .Fill �Gill/ D Pll; (15.8)
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which is obtained by subtracting the energy equation from the equation of the
dynamical pressure (11.34). In this case, the Lagrange multipliers (11.35), indicated
by a bar, are the same of the former ones except that the Lagrange multiplier of the
energy equation is now given by

N
 D 
C �: (15.9)

As explained in the Remark in Sect. 11.5.3, the two possible forms of the system
of ET6 are completely equivalent to each other, but only the second form gives
the possibility to obtain the singular limit D ! 3 of a monatomic gas. In fact,
Eq. (15.8) coincides with the (11.80) and, in the limit, admits the solution ˘ D 0.
The Lagrange multipliers that converge to those of Euler fluids are the ones of the
second form.

Therefore, from the existence condition of the limit of the monoatomic case, the
correct intrinsic Lagrange multiplier of the energy equation must be ON
. And the
previous definition (15.6) for T and G should be expressed as

T D 1

2 ON
; G D �
ON�
2 ON
: (15.10)

Or equivalently, in terms of the intrinsic Lagrange multipliers of the F- and G-series,
we have

T D 1

2. O
C O�/ ; G D �
O�

2. O
C O�/ ; (15.11)

where O�; O�; O
; are, respectively, the Lagrange multipliers with respect to the
conservation equations for F;Fll;Gll. Above considerations are valid for ET with
any number of fields.

15.3 Nonequilibrium Temperature and Chemical Potential
in ET6 and ET14

In the case of ET6, from the main field (11.35) and (15.11), we obtain, as the
nonequilibrium temperature:

T D T

1C T.k" � p"k˘/C 2
3
�Tk˘

; (15.12)



15.3 Nonequilibrium Temperature and Chemical Potential in ET6 and ET14 303

and as the nonequilibrium chemical potential:

G D g� T.kC .�k" C k˘p"/"C k�� � k˘p��/

1C .k" � k˘p"/T C 2k˘T�
3

: (15.13)

Taking into account the condition for k (11.12), after some cumbersome cal-
culations, we prove that the above expressions are completely equivalent to
the temperature and the chemical potential of Meixner: (11.45) and (11.47)! In
Sect. 13.5, we have seen that the behavior of the nonequilibrium temperature T
can be quite different from the behavior of the temperature T in the shock wave
structure in a polyatomic gas.

In the case of polytropic gases, we can simplify above expressions a lot and
obtain:

T D T
pC˘

p
; G D .g � Tk/

�
1C ˘

p

�
; (15.14)

which are again equal to the ones for the Meixner theory (11.69) and (11.72). We
can see that the dynamic pressure plays a dominant role to cause the difference
between the kinetic temperature T and the nonequilibrium temperature T , and the
same is true for the chemical potential.

If we consider a theory near equilibrium, by using the expression of k given
by (11.50) and retaining only the linear part with respect to ˘ , we have

T D T

 
1 � p" � 2

3
�

��0
˘

!
; (15.15)

G D gC
�
3."p" � �p�/C g.2� � 3p"/

3��0

�
˘: (15.16)

In the case of nonpolytropic ideal gases, these expressions become

T D T
pC˘

p
; G D g

�
1C ˘

p

�
C 3 " � cvT

2Ocv � 3
˘

p
: (15.17)

Finally, in the case of polytropic ideal gases where " D cvT, we have

T D T
pC˘

p
; G D g

�
1C ˘

p

�
: (15.18)

In the case of ET14 within a linear approximation, as the nonequilibrium scalar
is only ˘ , we have no difference of the nonequilibrium temperature and the
nonequilibrium chemical potential from those of the ET6. Therefore, the same
expressions are valid: for generic gases, (15.15) and (15.16), for nonpolytropic ideal
gases (15.17), and for polytropic ideal gases (15.18).
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For a general N-moment system, the definition of the nonequilibrium quantities
are given by the general one, i.e., (15.11). As T and G are scalars, in order to have
a new nonequilibrium contribution to these quantities, it is necessary to consider
more moments such that there appear other scalars of the densities. For example,
we expect a new contribution in a .3�; 2�/-system.

15.4 Conclusion

We have proposed a natural definition of the nonequilibrium temperature and
chemical potential by comparing the generalized Gibbs equation and the classical
one. The component of the main field are the coefficients of the generalized
Gibbs equation in a differential form. In equilibrium, only the components that
are related to the mass density and the energy density remain to be non-zero. The
first one is strictly related to the chemical potential and the second to the coldness.
Therefore we can define the nonequilibrium coldness (or temperature) and chemical
potential by assuming that the coefficients do not change their meanings even in
nonequilibrium.

We have proved that, in the most interesting cases, that is, ET6 and ET14 theories
where all fields have concrete physical meanings, the dynamical pressure is respon-
sible for the difference between nonequilibrium quantities and the corresponding
kinetic ones. In the limit of monatomic gas, the difference disappears. This means
that the internal degrees of freedom in a polyatomic molecule play a crucial role to
cause the difference. Appropriateness of the definition is supported, in the case of
ET6, by the perfect coincidence of the nonequilibrium quantities with those in the
Meixner theory. See also the discussions made in Sect. 11.3.

Finally, in the case of ET with many moments, all nonequilibrium scalars
constructed by the tensors of the density-fields play roles in the nonequilibrium
quantities.
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Chapter 16
Multi-Temperature Mixture of Fluids

Abstract We present a survey on recent results concerning some different models
of a mixture of compressible fluids. In particular, we discuss the most realistic
case of a mixture where each constituent has its own temperature (MT). We first
compare the solutions of this model with the one with unique common temperature
(ST). In the case of Eulerian fluids, it will be shown that the corresponding ST
differential system is a principal subsystem of the MT system. Global behavior of
smooth solutions for large time for both systems will also be discussed through the
application of the Shizuta-Kawashima K-condition.

Then we introduce the concept of the average temperature of a mixture based on
the consideration that the internal energy of the mixture is the same as that in the
case of a single-temperature mixture. As a consequence, it is shown that the entropy
of the mixture reaches a local maximum in equilibrium. Through the procedure of
the Maxwellian iteration, a new constitutive equation for nonequilibrium tempera-
tures of constituents is obtained in a classical limit, together with the Fick law for
the diffusion flux.

Finally, in order to justify the Maxwellian iteration, we present, for dissipative
fluids, a possible approach to a classical theory of mixtures with the multi-
temperature. We prove that the differences of temperatures between the constituents
imply the existence of a new dynamic pressure even if fluids have zero bulk
viscosities.

16.1 Introduction

Modeling and analysis of mixtures is a challenging and stimulating problem. In
the case of gaseous mixtures, it can be successfully studied by using not only the
method of the kinetic theory of gases but also the method of the continuum theory of
fluids. In either case, appropriate macroscopic equations can be derived in order to
explain irreversible phenomena like diffusion, heat transfer and chemical reactions.
However, since there still remain many open problems, the study of mixtures is one
of the fields of active research.

In the classical theory of diffusion, although different concentrations of the
components in a mixture are taken into account, but only one common global
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velocity and one temperature are considered; the velocities of each components are
obtained through the constitutive equation, that is, the classical Fick law.

Then this classical model is followed by more sophisticated models that are
constructed on the basis of either the continuum theory or the kinetic theory of gases.
Among these, there appeared two main approaches with two constitutive theories.
They can be classified by the answer to the question: Should the constituents of
a mixture have a common temperature or not? Both of these approaches, i.e.,
single-temperature (ST) one and multi-temperature (MT) one, gained considerable
successes in modeling a behavior of the mixture.

The MT approach is naturally embedded into Maxwell’s kinetic theory of mix-
tures [1, 2]. This theory comes on its own especially in gases where atomic masses
of the constituents are different, for example, in plasmas where the constituents
are electrons, ions and neutral atoms. The relevance of the MT model is thus
put in evidence and can be further supported by the analysis of plasmas at high
temperatures. See for details the references by Kannappan and Bose [3, 4] and Bose
and Seeniraj [5]. Influence of electron and phonon temperature on the efficiency of
thermoelectric conversion was the subject of a recent paper of Sellitto et al. [6].

The idea of multiple temperatures thus reflects the physically justified intention
to get a deeper insight into nonequilibrium processes in mixtures, but this concept
seems to be mostly overlooked in the context of macroscopic theories. Nevertheless,
it was appreciated and naturally embedded in the kinetic theory of gases, which is
perfectly designed to monitor the processes far from equilibrium. For example, it
appeared as an efficient tool in nonequilibrium flow computations [7].

Apart from the physical reasons, these two theories are completely different from
each other from a mathematical point of view: In general, the MT system does not
admit the solution with single temperature T1 D T2 D : : : D T even if we pose this
condition initially.

The theory of homogeneous mixtures was developed within the framework
of rational thermodynamics by Truesdell [8] under the assumption that each
constituent obeys the same balance laws as a single fluid. A huge amount of
literature appeared after that in the context of continuum approach, see, for example,
[9–15].

The aim of this chapter is to present recent results of the theory of multi-
temperature at the continuum level [16–18]. A survey on these results can be seen
also in review papers [19–21].

16.2 Mixtures in Rational Thermodynamics

In the context of rational thermodynamics, the description of a homogeneous
mixture of n constituents is based on the postulate that each constituent obeys to
the same balance laws as those to which a single fluid obeys [8–10]. The laws
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express the balance equations of masses, momenta and energies:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

@�˛

@t
C div .�˛v˛/ D �˛;

@.�˛v˛/
@t

C div .�˛v˛ ˝ v˛ � t˛/ D m˛; .˛ D 1; 2; : : : ; n/

@
�
1
2
�˛v

2
˛ C �˛"˛

�
@t

C div

��
1

2
�˛v

2
˛ C �˛"˛

�
v˛ � t˛v˛ C q˛

�
D e˛:

(16.1)

On the left-hand side, �˛ is the density, v˛ is the velocity, "˛ is the specific internal
energy, q˛ is the heat flux and t˛ is the stress tensor of the constituent ˛. The stress
tensor t˛ can be decomposed into a pressure part �p˛I and a viscous part � ˛ as

t˛ D �p˛IC � ˛:

On the right-hand sides �˛ , m˛ and e˛ represent the production terms related to the
interactions between constituents. Due to the total conservation of mass, momentum
and energy of the mixture, the sum of the production terms over all constituents must
vanish

nX
˛D1

�˛ D 0;
nX

˛D1
m˛ D 0;

nX
˛D1

e˛ D 0: (16.2)

Global mixture quantities �; v; "; t and q are defined as

� D
nX

˛D1
�˛ total mass density;

v D 1

�

nX
˛D1

�˛v˛ mixture velocity;

" D "I C 1

2�

nX
˛D1

�˛u2˛ internal energy,

t D �pIC� I �
nX

˛D1
.�˛u˛ ˝ u˛/ stress tensor,

q D qI C
nX

˛D1
�˛

�
"˛ C p˛

�˛
C 1

2
u2˛

�
u˛ flux of internal energy;

(16.3)
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where

u˛ D v˛ � v;

 
nX

˛D1
�˛u˛ D 0

!
(16.4)

is the diffusion velocity of the component ˛,

p D
nX

˛D1
p˛

is the total pressure, and

"I D 1

�

nX
˛D1

�˛"˛; qI D
nX

˛D1
q˛; � I D

nX
˛D1

� ˛

are, respectively, the total intrinsic internal energy, heat flux and shear stress.
Summing up all the equations (16.1) and taking (16.2) into account, we obtain

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

@�

@t
C div .�v/ D 0;

@.�v/
@t
C div .�v˝ v � t/ D 0;

@
�
1
2
�v2 C �"�
@t

C div

��
1

2
�v2 C �"

�
v � tvC q

�
D 0;

(16.5)

which are the conservation laws of mass, momentum and energy of the mixture.
They are in the same form as for a single fluid.

In order to compare the balance equations of mixture and single fluid, we
rewrite (16.1), by taking into account that the production terms are not independent
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(see (16.2)), in the following equivalent form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
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ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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2
�v2 C �"�
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C div

��
1

2
�v2 C �"

�
v � tvC q

�
D 0;

@�b

@t
C div .�bvb/ D �b; .b D 1; : : : ; n � 1/

@.�bvb/

@t
C div .�bvb ˝ vb � tb/ D mb;

@
�
1
2
�bv

2
b C �b"b

�
@t

C div

��
1

2
�bv

2
b C �b"b

�
vb � tbvb C qb

�
D eb;

(16.6)

where the index b runs from 1 to n � 1.
In this multi-temperature model (MT), used in particular in plasma physics [22],

we have 5n independent field variables �˛; v˛ and T˛ .˛ D 1; 2; : : : ; n/, where
T˛ is the temperature of the constituent ˛. To close the system (16.6) of the field
equations of the mixture, we must write the constitutive equations for the quantities
p˛; "˛;q˛; � ˛ .˛ D 1; 2; : : : ; n/ and �b; mb; eb .b D 1; : : : ; n � 1/ in terms of the
field variables �˛; v˛ and T˛ .˛ D 1; 2; : : : ; n/.

16.2.1 Galilean Invariance of Field Equations

The system (16.6) is a particular case of the balance laws (2.1) with (2.38):

F0 D

0
BBBBBBB@

�

�vj

1
2
�v2 C �"
�cb

�cb.u
j
b C vj/

1
2
�cb.ub C v/2 C �cb"b

1
CCCCCCCA
; OF0 D

0
BBBBBBB@

�

0k

�"

�cb

�cbuk
b

1
2
�cbu2b C �cb"b

1
CCCCCCCA
; (16.7)
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˚ i D

0
BBBBBBBBB@

0i

�tij

�tikvk C qi

�cbui
b

�cbui
b.u

j
b C vj/ � tij

b� �
1
2
�cb.ub C v/2 C �cb"b

�
ui

b

�tik
b .u

k
b C vk/C qi

b

1
CCCCCCCCCA
; O̊ i D

0
BBBBBBBBB@

0i

�tik

qi

�cbui
b

�cbui
buk

b � tik
b� �

1
2
�cbu2b C �cb"b

�
ui

b

�tik
b uk

b C qi
b

1
CCCCCCCCCA
;

(16.8)

f D

0
BBBBBBB@

0

0j

0

�b

mj
b

eb

1
CCCCCCCA
; Of D

0
BBBBBBB@

0

0k

0

O�b

Omk
b

Oeb

1
CCCCCCCA
: (16.9)

Theorem 16.1 The linear operator X.v/ (see (2.51) and (2.36)), which assures the
Galilean invariance of the field equation (16.6), has the form:

X.v/ D

0
BBBBBBB@

1 0k 0 0 0k 0

vj ıjk 0j 0j 0jk 0j

v2

2
vk 1 0 0k 0

0 0k 0 1 0k 0

0j 0jk 0j vj ıjk 0j

0 0k 0
v2

2
vk 1

1
CCCCCCCA
: (16.10)

As a consequence, the following relations between the production terms and their
internal (intrinsic) counterparts are obtained:

�b D O�b;

mj
b D O�bv

j C Omj
b; (16.11)

eb D O�b
v2

2
C Omk

bvk C Oeb:

In (16.10), 0i; 0i and 0ik indicate, respectively, the zero column vector .3 � 1/, the
zero row vector .1 � 3/, and the .3 � 3/ null matrix, ıjk is the Kronecker delta and
only in this case we have difference between vk and vj that indicates the velocity
components in row or in column respectively.

The first part of the theorem can be proved by the direct application of
relations (2.36)1;2. Once the operator X.v/ is determined, the second part of the
statement can be derived from (2.36)3.
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16.3 Coarse-Grained Theories: Single Temperature Model
and Classical Mixture

Due to the difficulty to measure the temperature of each component, a common
practice among engineers and physicists is to consider only one temperature for the
mixture. When we use a single temperature (ST), (16.6)6 disappears and we get
a unique global conservation law of the total energy in the form (16.6)3 (see for
example [10]):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

@�

@t
C div .�v/ D 0;

@.�v/
@t
C div .�v˝ v � t/ D 0;

@
�
1
2
�v2 C �"�
@t

C div

��
1

2
�v2 C �"

�
v � tvC q

�
D 0;

@�b

@t
C div .�bvb/ D �b; .b D 1; : : : ; n � 1/

@.�bvb/

@t
C div .�bvb ˝ vb � tb/ D mb:

(16.12)

A further step to a coarse-grained theory is the classical approach of mixtures
(CT), in which the independent field variables are the density, the mixture velocity,
the single temperature of the mixture and the concentrations of constituents. In this
case, the last equation in (16.12) also disappears and the system reduces to the
system of equations:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

d�
dt C � div v D 0;

�dv
dt � divt D 0;

�d"
dt � t grad vC div q D 0;

�
dcb
dt C div Jb D 0; .b D 1; � � � n � 1/;

(16.13)

where

d

dt
D @

@t
C v� @

@x
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represents the material derivative of the mixture motion,

c˛ D �˛

�
;

 
nX

˛D1
c˛ D 1

!

are the components concentrations, and

J˛ D �˛u˛ D �˛ .v˛ � v/

 
nX

˛D1
J˛ D 0

!
(16.14)

are the diffusion fluxes of the components.
In the classical approach, the stress tensor—as in a single fluid—splits into the

pressure (isotropic part) and the viscous stress tensor (for Stokesian fluids this is a
deviatoric tensor)

t D �pIC � :

The system (16.13) determines the field variables �;T; v and cb .b D 1; � � � n � 1/.
Consequently, we need constitutive relations for "; � ;q and Jb .b D 1; � � �n � 1/.

The pressure p.�;T; cb/, the internal energy ".�;T; cb/, and the chemical poten-
tials g˛.�;T; cb/ (˛ D 1; � � � ; n) are assumed to be given by the equilibrium
equations of state. The Gibbs equation in the case of mixtures is given by

Tds D d" � p

�2
d� �

n�1X
bD1

.gb � gn/ dcb; (16.15)

where s is the entropy density of a mixture [9, 23]. Compare this relation to (1.7) for
a single-component fluid.

The entropy balance law is a consequence of equation (16.15) and
system (16.13). For dissipative fluids, by using similar arguments of the
thermodynamics of irreversible processes (TIP) presented in Chap. 1 (see also
[10, 24]), we obtain the classical constitutive equations of mixtures:

� D � .div v/ IC 2
DD;

q D L grad

�
1

T

�
C

n�1X
bD1

Lb grad
�gb � gn

T

	
; (16.16)

Ja D QLa grad

�
1

T

�
�

n�1X
bD1

Lab grad
�gb � gn

T

	
;
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where DD denotes the deviatoric part of the strain velocity tensor D D
1
2

�rvC .rv/T
�
. The phenomenological coefficients L;Lb; QLa and Lab .a; b D

1; � � � ; n � 1/ are the transport coefficients of heat conduction and diffusion.
Let us note that relation (16.16)1 is the classical Navier-Stokes equations of

a Newtonian fluid (1.10)1;2, while (16.16)2;3 are generalizations of the original
phenomenological laws of Fourier (1.10)3 and Fick according to which the heat flux
and the diffusion flux depend on the gradients of temperature and concentrations
respectively. While TIP permits the temperature gradient to influence the diffusion
fluxes and concentration gradients to influence the heat flux; both effects (cross
effects) are indeed observed and they are called, respectively, thermo-diffusion
effect and diffusion-thermo effect or Soret effect. Furthermore, the Onsager recip-
rocal theorem yields the following symmetries of coefficients [25]:

Lab D Lba ; QLb D Lb; .a; b D 1; � � � ; n � 1/

and the following inequalities must be satisfied

�
L Lb
QLa Lab

�
is a positive definite matrix

(16.17)

and 
; � > 0;

such that the entropy inequality can be satisfied.

16.4 Mixtures of Euler Fluids

We return to the general case of a mixture with multi-temperature (16.6). We observe
that, up to now, it was not necessary to introduce the constitutive equations in
order to close the system (16.6). Now, let us introduce the assumption that all
the constituents of the mixture are Eulerian fluids, i.e., neither viscous nor heat-
conducting:

t˛ D �p˛I; q˛ D 0 .˛ D 1; : : : ; n/: (16.18)
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As a consequence of this assumption the stress tensor and the heat flux (16.3) are
reduced to

t D �pIC
nX

˛D1
.�˛u˛ ˝ u˛/;

q D
nX

˛D1

�
�˛

�
"˛ C 1

2
u2˛

�
C p˛

�
u˛;

(16.19)

where p˛ is the partial pressure of the ˛-constituent and

p D
nX

˛D1
p˛ (16.20)

is the total pressure.

16.4.1 Entropy Principle and Its Restrictions

The existence of the linear operator (16.10) confirms the Galilean invariance of
field equation (16.6) and determines the velocity dependence of the production
terms (16.11). Another important restriction comes from the entropy inequal-
ity (2.8).

In the present case,

h0 D �S D
nX

˛D1
�˛s˛; (16.21)

where S is the total entropy density and s˛ are the entropy densities of each
constituent.

Statement 7 The entropy density h0 (16.21) of the mixture is a convex function with
respect to the densities u � .�˛; �˛v˛; 12�˛v

2
˛ C �˛"˛/.

The proof of the statement is almost trivial: since for every ˛ the entropy density
�˛s˛ is a convex function of the densities of the corresponding ˛-fluid, then the
entropy density of the mixture, being the sum of convex functions, is also a convex
function of the whole densities u .˛ D 1; : : : n/.

Let us recall that the main field components have to satisfy the relation (2.13)1.
For the balance-law system (16.1) in the case of Euler fluids, it reads

dh0 D d.�S/ D
nX

˛D1

�
Q��˛d�˛ C Q�v˛d.�˛v˛/C Q�"˛d

�
1

2
�˛v

2
˛ C �˛"˛

��
;

(16.22)
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where

Qu0 D . Q��˛ ; Q�v˛
; Q�"˛/; .˛ D 1; : : : ; n/ (16.23)

is the vector of the main field associated to the system (16.1).

Statement 8 The main field components for the mixture of Euler fluids described
by the system (16.1) have the form:

Q��˛ D �g˛ C 1
2
v2˛

T˛
I Q�v˛ D �v˛

T˛
I Q�"˛ D 1

T˛
; .˛ D 1; : : : ; n/; (16.24)

where

g˛ D "˛ � T˛S˛ C p˛
�˛

(16.25)

are the chemical potentials of the constituents.

This statement is a consequence of the fact that the system (16.1), for what concerns
the main parts of the differential operators, is constituted by uncoupled systems of
single fluid equations. Consequently, the Gibbs relation holds for each constituent
and the main field components (16.24) coincide, for each species, with the ones of
single fluid (2.18).

The main field components of the system (16.1) will be used for calculation of the
main field of the equivalent system (16.6). Let us denote this main field as follows:

u0 D .��;�v; �";��b ;�vb ; �"b/ .b D 1; : : : ; n � 1/: (16.26)

Equation (2.13)1 written in new variables reads

dh0 D d.�S/ D ��d�C�vd.�v/C�"d

�
1

2
�v2 C �"

�

C
n�1X
bD1

�
��b d.�b/C�vb d.�bvb/C�"b d

�
1

2
�bv

2
b C �b"b

��
:

(16.27)

The expressions (16.22) and (16.27) should be equivalent to each other and this
yields the relation between the main fields Qu0 and u0.

Statement 9 The main field components for the mixture of Euler fluids described
by the system (16.6) have the form:

�� D Q��n ; �v D Q�vn
; �" D Q�"n ;

��b D Q��b � Q��n ; �vb D Q�vb � Q�vn
; �"b D Q�"b � Q�"n

(16.28)
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for b D 1; : : : ; n � 1, i.e.,

�� D � 1
Tn

�
gn � 1

2
.un C v/2

�
;

�v D � 1
Tn
.un C v/ ;

�" D 1

Tn
; (16.29)

��b D � 1
Tb

�
gb � 1

2
.ub C v/2

�
C 1

Tn

�
gn � 1

2
.un C v/2

�
;

�vb D �ub

Tb
C un

Tn
C
�
1

Tb
� 1

Tn

�
v;

�"b D � 1
Tn
C 1

Tb
:

The main field permits to determine the production terms through the application of
the residual inequality (2.13)2. i.e.,

˙ D u0 � f D Ou0 � Of D
n�1X
bD1

� O��b O�b C O�vb � Omb C O�"b Oeb

	
> 0;

or explicitly

˙ D
n�1X
bD1

 
�gb � 1

2
u2b

Tb
C gn � 1

2
u2n

Tn

!
O�b C

�
ub

Tb
C un

Tn

�
� Omb C

�
1

Tb
� 1

Tn

�
Oeb > 0:

(16.30)

This inequality allows us to obtain the following structure of production terms.

Statement 10 The internal (intrinsic) parts of the production terms (16.9)2 are
chosen in such a way that the residual inequality (16.30) is actually a quadratic
form. In particular, in agreement with the kinetic theory [22],

O�b D
n�1X
cD1

'bc

 
gn � 1

2
u2n

Tn
� gc � 1

2
u2c

Tc

!
C

n�1X
cD1

ˇbc

�
1

Tc
� 1

Tn

�
;

Omb D
n�1X
cD1

 bc

�
un

Tn
� uc

Tc

�
; (16.31)

Oeb D
n�1X
cD1

�bc

�
1

Tc
� 1

Tn

�
C

n�1X
cD1

ˇbc

 
gn � 1

2
u2n

Tn
� gc � 1

2
u2c

Tc

!
;
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where

�
'bc ˇbc

ˇbc �bc

�
;  bc

are phenomenological symmetric positive definite matrices (b; c D 1; : : : ; n � 1).

For processes not far from equilibrium, the previous matrices depend only on the
equilibrium variables �˛ and T. In the sequel, our analysis will be restricted to a
model of non-reacting mixtures, for which �b D 0.

16.4.2 Symmetric Hyperbolic System and Principal Subsystems

The main field components for the mixture of Euler fluids (16.29) symmetrize the
system (16.6) according to Theorem 2.1.

Concerning the principal subsystems (see Sect. 2.4), taking into account (16.29)
and (16.6), we can recognize the following interesting principal subsystems:

Case 1 The single-temperature model is a principal subsystem of the multi-
temperature. Let us suppose that �"b D 0 for b D 1; : : : ; n � 1, then

T1 D : : : D Tn D T:

This principal subsystem contains only the energy conservation equation for the
mixture, while energy balance equations for the constituents are dropped. Thus,
one may conclude that single-temperature model naturally appears as a principal
subsystem of the multi-temperature system.

Case 2 The equilibrium subsystem. If we set

�"b D �vb D ��b D 0 8 b D 1; : : : ; n � 1;

i.e.,

Tb D T; ub D 0; gb D g 8 b D 1; : : : ; n � 1;

we have the equilibrium Euler subsystem (a single fluid system) with concentra-
tions cb being solutions of g1 D g2 D : : : D gn:
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16.4.3 Characteristic Velocities and Their Upper Bound
in the ST Model

The characteristic velocities for the MT model are simple to evaluate. Since, for
each constituent, they are the same as the ones of a single fluid, i.e.,

�.1/˛ D v˛n � cs˛I �.2;3;4/˛ D v˛nI �.5/˛ D v˛n C cs˛; (16.32)

where v˛n D v˛ �n are the normal component of the velocities at the wave front and

cs˛ D
s�

@p˛
@�˛

�
s˛

are the sound velocities. For an ideal gas, for example, we have

p˛ D kB

m˛

�˛T˛; "˛ D c.˛/v T˛; c.˛/v D
kB

m˛.�˛ � 1/ (16.33)

and

cs˛ D
s

kB

m˛

�˛ T˛: (16.34)

Instead, in the case of the ST model, the evaluation of the velocities is very
difficult even in an equilibrium state due to the fact that the characteristic polynomial
is, in general, irreducible (see e.g. [10, 26]). But thanks to the subcharacteristic
property (2.25) of principal subsystems, we are able to establish the following lower
and upper bounds for the characteristic velocities of the ST model:

min
˛
.v˛n � c�

s˛/ 6 �ST
minI max

˛
.v˛n C c�

s˛/ > �ST
max;

where now

c�
s˛ D

s
kB�˛

m˛

T :

16.4.4 Qualitative Analysis and K-Condition in the Mixture
Theories

We made, in Sect. 2.6, the qualitative analysis for a system of hyperbolic type that is
composed of two groups, as is usual in RET: one group is formed by conservation
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laws and the other group by balance laws. In this case, the coupling K-condition
given in Sect. 2.6.2 plays an important role.

For ST theory without chemical reactions, it was proved [27, 28] that the K-
condition is violated for some genuinely nonlinear eigenvalues. Therefore, from the
results in [29], global smooth solutions can not exist even though initial data are
small enough. Instead, for a MT system, it is possible to verify that the K-condition
is satisfied for all eigenvalues. Therefore we can conclude [16]:

Statement 11 If the initial data of the MT model are perturbations of equilibrium
state, smooth solutions exist for all time and tend to an equilibrium constant state.

This statement also shows clearly that the MT model is more realistic than the
ST model.

16.5 Average Temperature

The MT-mixture theory explained above is the most realistic theory, and is
consistent with the kinetic theory [30]. It is also a necessary theory in physics, in
particular, in plasma physics [22]. Nevertheless, from a theoretical point of view,
a serious problem still remains in it: How to measure the temperature of each
constituent?

In this section, instead of studying this difficult problem directly, we study the
problem about the macroscopic average temperature of a mixture. Let us consider
the definition of the average temperature firstly proposed by Ruggeri and co-workers
in [17, 18, 31, 32]. The main idea is to investigate the definition of internal energy
so as to introduce the (average) temperature T as a state variable of the mixture.
Then the intrinsic internal energy "I (see (16.3)3) of the MT mixture resembles the
structure of the intrinsic internal energy of a ST mixture.

Therefore, the following implicit definition of an average temperature is adopted:

Definition 16.1 The average temperature T is the one that corresponds to the
barycentric intrinsic internal energy, i.e., it is defined through the relation:

�"I.�ˇ;T/ D
nX

˛D1
�˛"˛.�˛;T/ D

nX
˛D1

�˛"˛.�˛;T˛/: (16.35)

By expanding this relation in the neighborhood of the average temperature we
have

T D
Pn

˛D1 �˛c.˛/v T˛Pn
˛D1 �˛c.˛/v

; (16.36)
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where

c.˛/v D
@"˛.�˛;T˛/

@T˛

ˇ̌
ˇ̌
T˛DT

is the specific heat at constant volume of constituent ˛. We observe that (16.36)
gives the exact value of the average temperature in the case of the mixture of ideal
gases for which the c.˛/v are constant.

This definition of the average temperature has some advantages over usual ones
used frequently in the literature. Firstly, as a consequence of the definition, the
conservation law of energy of a mixture (16.6)3 becomes an evolution equation for
the average temperature T as in the cases of ST and CT mixtures. So, in the case
of spatial homogeneous solution of the differential system (16.6) (solutions depend
only on time), T is constant and the nonequilibrium temperature of each constituent
T˛ converges to T for large time, as shown below.

The second advantage is related to the entropy of the whole mixture that, thanks
to the introduction of this average temperature, reaches its maximum value when
T˛ D T. In fact, Ruggeri and Simić introduced the diffusion temperature flux

�˛ D T˛ � T; (16.37)

and they proved in [18], using the Gibbs equation for each constituent, that the
entropy density near equilibrium becomes a negative definite quadratic form with
respect to the nonequilibrium variables�˛:

�S D
nX

˛D1
�˛s˛.�˛;T˛/ D

nX
˛D1

�˛s˛.�˛;T/ � 1

2T2

nX
˛D1

�˛c.˛/v �
2
˛ C O.�3

˛/:

(16.38)

Therefore in the present case the nonequilibrium entropy k (5.18) is given by

k D � 1

2�T2

nX
˛D1

�˛c.˛/v �
2
˛;

and the entropy density S has a maximum in equilibrium.

16.5.1 Alternative Form of the Differential System

It is convenient in the following analysis to rewrite the system (16.6) using the
material derivatives:

d

dt
D @

@t
C v � r; db

dt
D @

@t
C vb � r
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for b D 1; � � �n � 1. Taking into account the definition of the average temperature
given by (16.35), we have

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

d�
dt C � div v D 0;

�dv
dt � divt D 0;

�
@"I
@T

dT
dt D �2

@"I
@�

div vC
n�1X
bD1

@"I

@cb
div Jb C t grad v � div q;

db�b
dt C �b div vb D 0;

�b
dbvb
dt � divtb D Omb;

�b
db"b
dt � tb � r vb C div qb D Oeb:

(16.39)

The differential system of equations governs the evolution of �, v, T; �b, Jb and
�b, provided that we assign the constitutive equations of p˛; "˛ and, for dissipative
fluids, also the heat fluxes q˛ and the viscous stress tensors � ˛ .

16.6 Examples of Spatially Homogeneous Mixture and Static
Heat Conduction

In this section two simple examples are provided in order to support the previous
theoretical considerations, and to stress the main features of the multi-temperature
approach and the role of the average temperature.

16.6.1 Solution of a Spatially Homogenous Mixture

First we consider a non-reacting mixture of gases in spatially homogeneous fields,
i.e., a mixture with field variables depending solely on time [18, 33]. The governing
equation (16.39) can be written in the following form:

d�

dt
D 0; dv

dt
D 0;

dT

dt
D 0; (16.40)

d�b

dt
D 0; �b

dvb

dt
D Omb; �b

d"b

dt
D Oeb (16.41)
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where now d=dt D @=@t. From (16.40), (16.41), it is easy to conclude that

� D const:; v D const:; T D const:;

�b D const:; .b D 1; : : : ; n/;

and, due to the Galilean invariance, we may choose v D v0 D 0 without any loss of
generality. It is also remarkable that the average temperature of the mixture remains
constant during the process: T.t/ D T0.

In the sequel we shall regard only small perturbations from an equilibrium state,
v˛ D v0 D 0, T˛ D T0, .˛ D 1; : : : ; n/, and analyze their behavior. Therefore, the
right-hand side of (16.41)2;3 could be linearized in the neighborhood of equilibrium.
Taking into account (16.31), we obtain

�b
dvb

dt
D �

n�1X
cD1

 0bc

T0
.vc � vn/; (16.42)

�bc.b/v
dTb

dt
D �

n�1X
cD1

�0bc

T20
.Tc � Tn/; (16.43)

where  0bc and �0bc are entries of positive definite matrices evaluated in equilibrium.
Note that vb � vn D ub � un and Tb � Tn D �b ��n.

In the particular case of a binary mixture, the explicit solution of equa-
tions (16.42) and (16.43) can be obtained as

v1.t/ D v1.0/e
� t
�v ; T1.t/ D T0 C .T1.0/� T0/e

� t
�T ;

where �v and �T represent the relaxation times, which, for an ideal gas, assume the
expression:

�v D �1�2T0
 011�

; �T D k�1�2T20
�011.�1m2.�2 � 1/C �2m1.�1 � 1// : (16.44)

Starting from these solutions, other field variables can be obtained by using the
following equations:

�1v1 C �2v2 D �v D 0; (16.45)

�1c
.1/
v T1 C �2c.2/v T2 D .�1c.1/v C �2c.2/v /T
D .�1c.1/v C �2c.2/v /T0: (16.46)

It is obvious that, due to dissipative character of the system, all the non-equilibrium
variables exponentially decay and converge to their equilibrium values. In order
to compare the values of �v and �T for ideal gases, and also to compute the actual
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Fig. 16.1 Dimensionless velocities and diffusion temperature fluxes of the constituents versus
time

values of variables in numerical examples, the relations from kinetic theory has to
be recalled [22]:

�011 D
3m1m2

.m1 C m2/2
kT20�

0
12I  011 D

2m1m2

m1 C m2

T0�
0
12; (16.47)

where � 0
12 represents volumetric collision frequency, and the following estimate can

be obtained:

�T

�v
D 2

3

�.m1 C m2/

�1m2.�2 � 1/C �2m1.�1 � 1/ >
2

3.�max � 1/ > 1; (16.48)

(�max D maxf�1; �2g 6 5=3).
In Fig. 16.1, we present the graphs of normalized velocities and diffusion

temperature fluxes [18]. It can be observed that, due to inequality (16.48), the
mechanical diffusion vanishes more rapidly than the thermal one. This is in sharp
contrast with the widely adopted approach that ignores the influence of the multiple
temperature of each constituent of the mixture.

16.6.2 Solution of Static Heat Conduction

Another simple example is the one-dimensional mixture of gases at rest (v˛ D 0)
without chemical reactions (�˛ D 0) between two walls 0 6 x 6 L; maintained at
two different temperatures T.0/ D T0; T.L/ D TL [32].

In both CT and ST models, the static field equation reduces to the global energy
equation (16.39)3 that reads div q D 0. In the one-dimensional case, this equation,
combined with the Fourier law with constant heat conductivity, yields the classical
result of a linear temperature profile as for a single fluid:

T 00 D 0 ” T D .TL � T0/� C T0
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where � D x=L and 0 denotes d=d�: For what concerns the densities they are
obtained by the conditions that the pressure of each constituent must be constant
due to the momentum equations.

In the MT model, the situation is quite different. Let us consider the simple case
of a binary mixture (n D 2). In the linear case, by taking into account (16.31),
system (16.1) reduces to

8̂
<̂
ˆ̂:

dp1
dx D 0;

dp2
dx D 0;

dq1
dx D ˇ .T2 � T1/ ;
dq2
dx D ˇ .T1 � T2/ ;

(16.49)

where ˇ D �11=T20 . By using the Fourier law, (16.49)2;3 can be rewritten as

�
T 00
1 D �1.T1 � T2/;

T 00
2 D �2.T2 � T1/;

(16.50)

where we assume that the dimensionless quantities,

�1 D ˇL2

�1
; �2 D ˇL2

�2
; (16.51)

are constant. The system (16.50) is equivalent to

OT 00 D 0; �00 � !2 � D 0

with OT D �T1 C .1 � �/T2; � D T2 � T1 and

� D �2

�1 C �2 D
�1

�1 C �2 ; ! D p�1 C �2:

Consequently, we get the solution in the form:

T1 D OT � .1 � �/�; T2 D OT C �� (16.52)

where

OT D A � C B; � D 1

sinh.!/
f�L sinh.! �/C�0 sinh.!.1 � �//g ; (16.53)

and A;B; �0;�L are constants of integration. In the case of ideal gases, equa-
tions (16.49)1 and (16.33) yield the constant internal energy density of each
constituent:
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Fig. 16.2 Graphs of the average temperature T and constituent temperatures T1; T2 in terms of the
dimensionless distance x=L. Tcl represents the classical straight line solution. T0 is the temperature
unit

�˛T˛c.˛/v D P˛ D Const:; .˛ D 1; 2/: (16.54)

And (16.36) yields the average temperature:

1

T
D �

T1
C 1 � �

T2
; with � D P1

P1 C P2
: (16.55)

The constant � belongs to Œ0; 1�. It is interesting to observe that the coldness
1=T (inverse of the average temperature) belongs to the convex envelope of the
component coldnesses 1=T1 and 1=T2. Equations (16.52), (16.53) and (16.55) give
the explicit solution of T1;T2 and T as the function of � and five constants of
integration: (A;B; �0;�L; �/. We observe the behavior of T is not a straight line
in contrast to the classical case of CT or ST theories; the multi-temperature effect is
that the temperature is not a linear function of x (see Fig. 16.2). Due to (16.49)–
(16.51), when � D 1=ˇ tends towards zero, the solution of (16.52), (16.53)
and (16.55) converges towards the classical solution T1 D T2 D T D OT for any
� 2�0; 1Œ. This result is true also at the boundary when �0 and�1 are of same order
as �.

Let us introduce the concentration c D �1=.�1 C �2/ with c.0/ D c0:
Then (16.54), (16.52), and (16.53) imply
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c D c0
c0 C˝.1� c0/

; with ˝ D T1
T2

T20
T10

and

T10 D B � .1 � �/�0; T20 D BC ��0:

The concentration is a function of the position x whereas, in the classical case,˝ D
1 and c D c0. Ruggeri and Lou [32] studied the method how to determine in a unique
way the constants of integration. They proved that, for a mixture of n constituents,
the measurement of the average temperature at 2.n � 1/ points allows to determine
the temperature of each constituent in all points.

16.7 Maxwellian Iteration

In order to understand a connection among the extended models of MT, ST and the
classical model CT, we use the Maxwellian iteration (for more detail see Chap. 18,
Sects. 18.2.1 and 18.3). In the present case, the Maxwellian iteration is carried
out as follows: put the zeroth iterates, i.e., the values of quantities evaluated in an
equilibrium state into the left-hand side (l.h.s.) of the system (16.39)5;6, then we
obtain the first iterates from the right-hand side (r.h.s.) of the system.

Taking into account the fact that in zero-th iteration v.0/˛ D v and consequently

d.0/b

dt
D d

dt
; J.0/b D u.0/b D 0

and moreover

T.0/˛ D T; q.0/D q.0/b D 0; t.0/ D �p.0/I D �p0I; t.0/b D �p.0/b I;

we obtain:

�b

�
dv
dt

�.0/
C gradp.0/b D Om.1/

b ;

�b

(�
@"b

@�b

�.0/ �d�b

dt

�.0/
C
�
@"b

@Tb

�.0/ �dT

dt

�.0/)
C p.0/b divv D Oe.1/b :

(16.56)

On the other hand, from the zero-th order of (16.39)2;3;4, we have

�

�
dv
dt

�.0/
D � gradp0;
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�
@"I

@T

�
dT

dt

�.0/
D
�
�2
@"I

@�
� p0

�
divv; (16.57)

�
d�b

dt

�.0/
D ��b divv;

and therefore, inserting (16.57) into (16.56), we obtain

� �b

�
gradp0 C gradp.0/b D Om.1/

b ; (16.58)

˝b div v D Oe.1/b ; (16.59)

where

˝b D p.0/b C �b

8̂
ˆ̂<
ˆ̂̂:
��b

�
@"b

@�b

�.0/
C
�
�2
@"I

@�
� p0

�
�
@"b

@Tb

�.0/

�
@"I

@T

9>>>=
>>>;
: (16.60)

Taking into account the expressions of the productions (16.31) and the definitions
of the diffusion flux Ja (16.14) and of the thermal diffusion �a (16.37), after
some arrangement (an interested reader can consult the details in the original paper
[18]), we obtain the fact that the approximation of the momentum equation of each
species (16.58) gives the Fick law (16.16)3:

J.1/a D QLa grad

�
1

T

�
�

n�1X
bD1

Lab grad
�gb � gn

T

	
; (16.61)

while for what concerns the approximation of energy equation (16.59) we obtain
new constitutive equations:

�.1/
a D �ka div v; (16.62)

where ka is a linear combination of ˝b given in (16.60).
The equation (16.62), obtained by means of the Maxwellian iteration, gives the

temperature of each species as a constitutive equation, in a similar way as the Fick
law gives the velocity of each species.

It is possible to prove [18] that for a mixture of ideal gases

˝b D �bTc.b/v

Pn
˛D1 �˛c.˛/v .�b � �˛/Pn

˛D1 �˛c.˛/v
:

In the next section we will deduce and justify (16.62) using a classical TIP approach.
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Equation (16.62) cannot be obtained in the classical theory, and it is interesting to
observe that this is probably due to the fact that, if the gas has constituents with the
same degrees of freedom, i.e., the same � , then ˝b D 0, and consequently ka D 0.
And, from (16.62), �.1/

b D 0, and then all the temperatures are equal in the first
Maxwellian iteration. In this last case, in order to reveal the temperature difference
between constituents, it is necessary to go to the second order Maxwellian iteration.
This is the subject of a paper in preparation by Ruggeri and Simić [34].

In conclusion of this section, we have proved the following important result:

Statement 12 Using the Maxwellian iteration the Fick law (16.61) is obtained as
the first approximation of the momentum balance equation of each species (16.39)5
and the equivalent thermal diffusion law (16.62) is the first approximation of the
energy balance equation of each constituent (16.39)6.

16.8 A Classical Approach to Multi-Temperature Mixtures

As seen above, by using the Maxwellian iteration, the ST model reduces to the
classic model, but when we start from the MT model we obtain new constitutive
equations (16.62) that do not exist in the classical theory of mixtures.

To justify the results of the Maxwellian iteration, Gouin and Ruggeri [17]
constructed a classical theory of mixture with multi-temperature. The idea is to
use the usual equations in the classical approach (16.13), but now we suppose
that each constituent has its own temperature. In this approach, the role of the
average temperature defined (16.35) is fundamental. In fact the multi-temperature
effect appears through the pressure. In fact near equilibrium, we have (16.36) and
therefore:

p D
nX

˛D1
p˛.�˛;T˛/ D p0 C˘�;

where

p0 D
nX

˛D1
p˛.�˛;T/; ˘� D

n�1X
bD1

rb�b

and

rb D 1

�nc.n/v

�
�nc.n/v

@pb

@Tb
.�b;T/ � �bc.b/v

@pn

@Tn
.�n;T/

�
: (16.63)

Therefore, the total pressure p of a mixture is the sum of the equilibrium part p0
depending on �˛ and T and a new dynamic pressure part (as a nonequilibrium term)
˘� due to the difference of temperatures between the constituents.
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We assume the internal energy ".�;T; cb/ and the equilibrium pressure
p0.�;T; cb/ satisfy the Gibbs equation:

TdS D d" � p0
�2

d� �
n�1X
bD1

.gb � gn/ dcb : (16.64)

The difference between (16.15) and (16.64) consists in the fact that, in (16.64), T
means the average temperature when each component ˛ has its own temperature
T˛ and p0 takes the place of p . Let us consider first the case of a Stokesian fluid
tr � D 0. Taking into account that, from (16.38), �S depends only on the average

temperature up to the first order expansion and using (16.13) to eliminate the time
derivatives, we obtain from (16.64) the following entropy balance [18]:

�
dS

dt
C div

(
1

T

 
q�

n�1X
bD1
.gb � gn/ Jb

!)
D

q � grad

�
1

T

�
�

n�1X
bD1

Jb � grad
�gb � gn

T

	
C 1

T
tr .Jmech D/ ; (16.65)

where the mechanical flux is given by

Jmech D � �˘� I: (16.66)

Equation (16.65) can be interpreted as a balance of entropy, if we consider

˚ D 1

T

 
q �

n�1X
bD1
.gb � gn/ Jb

!

and

˙ D q � grad

�
1

T

�
�

n�1X
bD1

Jb � grad
�gb � gn

T

	
C 1

T
tr .Jmech D/ (16.67)

as the entropy flux and the entropy production, respectively.
We observe that the entropy production is the sum of products of the following

quantities:

Dissipative fluxes Thermodynamic forces
heat flux q temperature gradient grad

�
1
T

�
;

diffusion fluxes Jb chemical potential gradients grad
� gb�gn

T

�
;

mechanical flux Jmech velocity gradient D:
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In accordance with the case of a single temperature model [9, 10], which we
have discussed in Sects. 1.1.2 and 1.1.3, the fluxes depend linearly on the associated
forces in TIP near equilibrium, (see also for the general methodology of TIP [23–
25, 35]):

– For the heat flux and the diffusion fluxes, we obtain the constitutive equations in
the form of (16.16)2;3.

– For Stokesian fluids, by taking into account (16.66), the last term of (16.67),
corresponding to the mechanical production of the entropy, can be written in a
separated form:

1

T
tr .Jmech D/ D 1

T
tr
�
� DD

�� 1
T
˘� div v:

We obtain the constitutive equation of the viscous stress tensor in the form
of (16.16)1 (with � D 0), and the dynamic pressure part due to the difference
of temperatures yields

˘� D
n�1X
bD1

rb �b D �L� div v; (16.68)

where L� is a scalar coefficient.

As the production of entropy must be non-negative, (16.67) and therefore the
phenomenological coefficients must satisfy the inequalities (16.17) and

L� > 0:

Taking into account that terms rb given by (16.63) depend on .�b;T/, we deduce,
from (16.68), that constitutive quantities �a (depending a priori on rv) must be
proportional to div v:

�a D �ka div v .a D 1; � � � ; n � 1/:
This is in perfect agreement with (16.62) by the Maxwellian iteration procedure
presented in the previous section.

Let kMabk be the matrix such that ka DPn�1
bD1 Mab rb, we have

�a D �
n�1X
bD1

Mab rb div v .a D 1; � � � ; n � 1/: (16.69)

Introducing expression (16.69) into (16.68), we obtain

L� D
n�1X

a;bD1
Mab rarb > 0:
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And assuming the Onsager symmetry property, Mab D Mba .a; b D 1; � � � ; n � 1/,
we deduce that coefficients Mab are associated with a positive definite quadratic
form.

In conclusion, the results are the same as in the classical theory, but moreover we
have obtained new constitutive equation (16.69) for the difference of temperatures.

We have considered the simple case of Stokes fluids. If the fluid is non Stokesian,
the Navier-Stokes stress tensor of viscosity is given by (16.16)1 where � is the bulk
viscosity. The stress tensor t becomes

t D �.p0 C˘�/ IC � D �p IC 2
 DD;

with

p D p0 C˘� C˘:

The nonequilibrium pressure p�p0 is separated into two different parts. The first one
˘ D �� div v is related to the bulk viscosity and the second one˘� D �L� div v
is related to the multi-temperature effect between components.

Due to the non-zero dynamic pressure even for Stokes fluids, we conclude that
the model of multi-temperature mixtures of fluids has a great importance. Perhaps
such a model may be useful to analyze the evolution of the early universe in which
the dynamic pressure seems to be essential [36, 37].

In the present survey, we did not mention a reactive mixture, which is particularly
interesting. We here only recall that thermodynamic properties of multi-component
reactive mixtures of gases have been widely investigated by Giovangigli and Massot
in [38] (see also [39–41]).
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Chapter 17
Shock Structure and Temperature Overshoot
in Macroscopic Model of Mixtures

Abstract In this chapter, we study the shock structure in a mixture on the basis
of the model of multi-temperature mixtures explained in the previous Chap. 16. For
simplicity, the study is restricted to weak and moderately strong shocks in a binary
mixture of ideal gases without viscosity and heat conductivity. The model predicts
the existence of the temperature overshoot of the heavier constituent, which was also
predicted by other sophisticated approaches. This phenomenon is a consequence of
weak energy exchange between the constituents, either due to large mass difference,
or large rarefaction of the mixture. In the range of small Mach number, it is also
shown that the shock thickness (or equivalently, the inverse of Knudsen number)
decreases with the increase of the Mach number: a behavior similar to a single fluid.

17.1 Introduction

The aim of this chapter is to present a survey of a recent paper of Madjarević et al.
[1] that gives a systematic analysis of the shock structure problem in a binary MT
mixture of Euler fluids.

Several studies [2–4] indicated that for certain values of parameters (Mach
number, mass fraction, mass ratio, and diameter ratio of the atoms) there appears
a temperature overshoot of a heavier constituent—a region within a shock profile
where the temperature raises above the terminal temperature of the mixture. The
complexity of numerical schemes has prevented massive calculations and detailed
study of this aspect of the shock structure.

Even though the model of a mixture of Euler fluids can be regarded as simplified
since viscosity and heat conductivity were neglected, the results of the shock
structure in Helium-Argon mixture [5] obtained by using the hyperbolic MT
model are in good agreement with available experimental data [6]. This put the
macroscopic MT model at the same level of accuracy as more sophisticated models
of the kinetic theory [7], or of DSMC [8], at least for weak shocks. The main
advantage of the MT model is its tractability with only moderate numerical efforts
and with the use of standard numerical packages. These facts have stimulated further
systematic study of the problem.

© Springer International Publishing Switzerland 2015
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The main results in this chapter are concerned with the shock thickness and
the temperature overshoot of a heavier constituent described in terms of three
parameters—mass ratio, Mach number and mass concentration.

17.2 Binary Mixture of Euler Fluids

We consider a binary mixture of ideal monatomic gases without viscosity and
heat conductivity. The characteristic velocities are given in (16.32) with sound
velocity (16.34) and �1 D �2 D � D 5=3.

The average temperature of the MT mixture (16.35) becomes, in the present case,

.�1cV1 C �2cV2/T D �1cV1T1 C �2cV2T2: (17.1)

The total pressure and the intrinsic part of the internal energy are in the same form
as in the case of a single-component gas:

p D p1 C p2 D � kB

m
T; �"I D �1"1 C �2"2 D � kB

.� � 1/mT;

provided that we introduce the average mass m D m.c/ and the average temperature
T of the mixture in the following form:

1

m.c/
D c

m1

C 1� c

m2

; T D c
m.c/

m1

T1 C .1 � c/
m.c/

m2

T2; (17.2)

where c is the concentration related to the mass densities:

�1 D �c; �2 D �.1 � c/:

As in the previous chapter, we introduce the difference of the temperatures
� D T2 � T1, so-called diffusion temperature, and the ratio of the masses of the
constituents,


 D m1

m2

; 0 < 
 6 1;

where we have assumed m1 6 m2. The temperatures of the constituents can now be
expressed in terms of the new variables T, � and c, using 
 as a parameter:

T1 D T � f .c/�; T2 D T C .1 � f .c//�;

where auxiliary function f .c/ has the following form:

f .c/ D 
.1� c/

cC 
.1 � c/
:
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Finally, we also use the diffusion flux J of the constituent, instead of its velocity
v1. Since relative velocities obey the relation �1u1 C �2u2 D 0, due to (16.4), the
diffusion flux of constituent 1 is defined as

J D �1u1 D ��2u2:

Therefore, we take the change of variables

.�; v;T; �1; v1;T1/! .�; v;T; c; J; �/;

and rewrite the system of governing equations as if it were a single fluid with
extended fields. This is the idea of Ruggeri when he tried to unify the second sound
phenomena between gas and crystals [9]. We will see the explicit form in the next
section when we write the shock structure equations.

The source terms satisfy the Galilean invariance (16.11):

m1 D Om1; e1 D Oe1 C Om1 � v; (17.3)

and (16.31) gives

Om1 D � 11
�

u1
T1
� u2

T2

�
; Oe1 D ��11

�
� 1

T1
C 1

T2

�
; (17.4)

where  11 and �11 are positive phenomenological coefficients. They can be related
to state variables and relaxation times for diffusion �v and temperature �T (16.44)
and (16.47). For a monatomic gas, the ratio between relaxation times (16.48)
becomes

�T

�v
D m1 C m2

c m2 C .1 � c/m1

> 1: (17.5)

17.3 Shock Structure Problem

The shock structure, which we discussed in Sect. 3.4, is a continuous solution with
steep gradients of state variables in the neighborhood of singular surface—the shock
wave—which is diffused due to dissipative mechanisms taken into account. Our
attention will be restricted to the shock structure related to plane shocks, moving at
constant speed s in the direction orthogonal to the singular surface. Consequently,
one space variable, say x, is enough for the problem, and the shock structure is
described as a traveling wave solution, depending on a single variable ' D x �
st, which asymptotically connects equilibrium states in front and behind the shock
wave. These assumptions transform the model into a set of ordinary differential
equations where the velocity, the diffusion flux and the source term (momentum
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exchange) are described by a single component, i.e., v D .v; 0; 0/, J D .J; 0; 0/ and
Om1 D . Om1; 0; 0/, in Cartesian coordinates.

17.3.1 Dimensionless Shock Structure Equations

The problem of the shock structure is studied in dimensionless form. For this
purpose, we introduce the dimensionless variables by scaling the state variables and
independent variable ' with appropriate upstream (unperturbed) equilibrium values,
indicated by the subscript 0:

Q� D �

�0
; Qu D u

a0
; QT D T

T0
; QJ D J

�0a0
; Q� D �

T0
; Q' D '

l0
; M0 D u0

a0
; (17.6)

where u D v� s is the relative velocity of a mixture with respect to the shock wave,
l0 is the upstream reference length and a0 D f�.kB=m0/T0g1=2 is the upstream speed
of sound; m0 D m.c0/ is the equilibrium average mass of the mixture and M0 is
the upstream Mach number. For the sake of simplicity, tilde will be dropped in the
sequel.

The upstream reference length l0 is usually taken as the mean free path of the
atoms. The average mean free path in the mixture will be expressed in terms of
other more primitive properties of the constituents [10]:

l0 D n1
n
.l1/0 C n2

n
.l2/0; (17.7)

.l˛/0 D 1

�d212

"
n1

�
1C m˛

m1

�1=2
C n2

�
1C m˛

m2

�1=2#�1
;

where n˛ are number densities of the constituents, and n D n1 C n2 is the mixture
number density.

Using the scaled variables (17.6), we obtain the following set of dimensionless
equations:

d

d'
.�u/ D 0;

d

d'

�
�u2 C 1

�

m0

m
�T C J2

�c.1 � c/

�
D 0;

d

d'

��
1

2
�u2 C 1

� � 1
m0

m
�T C J2

2�c.1� c/

�
uC

�
uJ

�c.1� c/
C 1

ˇ

�
J

�
D 0;

d

d'
.�cuC J/ D 0; (17.8)
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d

d'

�
�cu2 C J2

�c
C 2uJ C 1

�

m0

m1

�c .T � f .c/�/

�
D � l0

�Da0
m
.T; c; �/J;

d

d'

( 
1

2
�c

�
uC J

�c

�2
C 1

� � 1
m0

m1

�c .T � f .c/�/

!�
uC J

�c

�)

D � l0
�Da0

m
.T; c; �/JuC l0
�Ta0

e
.�;T; c; �/�:

Equation (17.8)1�3 represent conservation laws of mass, momentum and energy of
the mixture, while (17.8)4�6 are the balance laws of mass, momentum and energy
of the constituent 1. Auxiliary functions in source terms read

m
.T; c; �/ D T C Œ1 � c � f .c/��

ŒT � f .c/��ŒT C .1 � f .c//��
T;

e
.�;T; c; �/ D 1

�.� � 1/
m0

m1

m

m2

�c.1 � c/T2

ŒT � f .c/��ŒT C .1 � f .c//��

and ratios of masses can be expressed as

m0

m
D cC 
.1 � c/

c0 C 
.1 � c0/
;

m0

m1

D 1

c0 C 
.1 � c0/
;

m

m2

D 


cC 
.1 � c/
:

In (17.8) we have also used abbreviation 1=ˇ for the following expression:

1

ˇ
D 1

� � 1
�

m0

m1

.1 � 
/T � m0

m1

m

m2

�

�
C J2

2�2

�
1

c2
� 1

.1 � c/2

�
;

where ˇ can be interpreted as thermal inertia [11].

17.3.2 Boundary Conditions and Numerical Procedure

By using the procedure described in Sect. 3.4, the shock structure problem can be
approached with the use of dynamical-system theory. The system (17.8) can be seen
formally in the form (3.38), where u D .�; u;T; c; J; �/T is the column vector of
state variables.

Mere observation of the source terms in (17.8) yields that the diffusion flux and
the diffusion temperature vanish both in upstream and downstream stationary points,
i.e., J0 D J1 D 0, �0 D �1 D 0. Thus, for a given upstream equilibrium state
u0, one may determine the downstream equilibrium state u1 by integration of the
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conservative part of the system (17.8)1�4. Nontrivial solution in dimensionless form
reads

u0 D

2
66666664

�0
u0
T0
c0
J0
�0

3
77777775
D

2
66666664

1

M0

1

c0
0

0

3
77777775
; u1 D

2
66666664

�1
u1
T1
c1
J1
�1

3
77777775
D

2
6666666664

4M2
0

3CM2
0

3CM2
0

4M0

1
16

�
14 � 3

M2
0

C 5M2
0

	
c0
0

0

3
7777777775
: (17.9)

Note that relations between mixture state variables �1, u1, T1 and �0, u0, T0,
correspond to the solution of the usual Rankine-Hugoniot relations between the
state variables at the shock wave for a single fluid. On the other hand, constituent-
related state variables c, J and � have the same equilibrium values in front and
behind the shock. Since the diffusion flux J and the diffusion temperature� vanish
in equilibrium, they can be regarded as genuine nonequilibrium variables. Also,
concentration is the same in both equilibrium states, c1 D c0, and in the sequel
it will be termed equilibrium concentration, without special regard to upstream
or downstream state. Finally, downstream equilibrium can be regarded as a one-
parameter family of states parametrized by the Mach number (i.e., shock speed:
see (3.49)), u1 D u1.u0;M0/. In this way, the third parameter—Mach number—is
naturally introduced in the model through the boundary conditions.

The problem can be approached numerically in two different ways: as a
boundary-value problem, or as an initial-value problem. We adopt the latter way.

The numerical procedure has a few crucial points. First, it was shown [12]
that stationary points change their character when the shock parameter—Mach
number—crosses certain critical value. The critical value, M0 D 1, corresponds
to the highest characteristic speed of the equilibrium subsystem, here consisted of
the conservation laws for the mixture. Actually, if the highest characteristic speed is
genuinely nonlinear (3.17), it was shown [13] that there is a single eigenvalue of the
system (17.8), linearized at stationary point, which changes the sign. Furthermore,
upstream equilibrium u0 is a saddle point (in a generalized sense), while downstream
equilibrium u1 is a stable node. Thus, one may “follow” the direction of the
eigenvector corresponding to a positive eigenvalue in u0 and asymptotically reach
the stable stationary point u1. Since the domain on which the heteroclinic orbit
is defined is infinite, �1 < ' < 1, the integration should be performed on a
truncated domain, ' 2 Œ'0; '1�. This domain should be sufficiently large so as to
secure the condition that terminal values u.'0/ and u.'1/ lie in small neighborhoods
of the stationary points u0 and u1, respectively.
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17.3.3 Profile of Shock Structure

The procedure described above can be applied if the solution of the shock structure
equations exists. To analyze the existence of solution in binary mixture we write
down the characteristic velocity (16.32) of the full system in equilibrium, where
both constituents have common velocity v and temperature T. They read (in
increasing order)

�.1/ D v �
s
�

kB

m1

T; �.2/ D v �
s
�

kB

m2

T;

�.3/ D �.4/ D 0;

�.5/ D v C
s
�

kB

m2

T; �.6/ D v C
s
�

kB

m1

T;

while characteristic speeds of equilibrium subsystem are (in increasing order)


.1/ D v �
s
�

kB

m0

T; 
.2/ D 0; 
.3/ D v C
s
�

kB

m0

T:

By the Theorem 2.3 [14], the subcharacteristic conditions hold

�.1/ < 
.1/; 
.3/ < �.6/:

Admissible equilibrium states (17.9) are determined by the Lax condition 
.1/1 <

s < 

.1/
0 (or 
.3/0 < s < 


.3/
1 ), which can be equivalently expressed as M0 > 1 (or

M0 < �1). However, non-existence of the smooth shock structure (Theorem 3.1) is
related to the condition s < �.1/0 (or s > �.6/0 ). Non-existence condition then reads

s < �.1/0 , M0 > M.0/
0crit D

s
1

c0 C .1 � c0/

;

which corresponds to regions II and III in parameter space shown in Fig. 17.1. The
following situation may occur:

�
.1/
0 < s < �.2/1 , M.0/

0crit > M0 > M.1/
0crit D

s
4
C 3.1� 
/c0
4
� .1 � 
/c0 ;

which corresponds to region IV in Fig. 17.1. In this case the singularity which
appears in downstream equilibrium moves into the domain as M0 is increased, but
does not prevent the existence of the smooth shock structure since it is a regular
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Fig. 17.1 Critical values of
Mach number M0 and
unperturbed concentration c0:
possible regions

singularity [15]. The proof of this statement in the case of mixtures is neither at our
disposal at the moment, nor it can be proved numerically by the initial value strategy
described above.

In this study we restrict our attention to cases in which M0 < M0crit D
minfM.0/

0crit;M
.1/
0critg and numerical solution can be obtained as the solution of initial

value problem in the different regions evaluated in Fig. 17.1.

17.4 Shock Structure and Temperature Overshoot

Temperature overshoot is one of the peculiarities of the shock structure in mixtures
whose constituents have disparate masses. It manifests through existence of the
region of non-zero width where the temperature of one constituent raises above
the terminal, i.e., downstream equilibrium temperature of the mixture. This phe-
nomenon was observed in numerical calculations based on Boltzmann equations
for mixtures [2, 3, 16] and DSMC [8]. Available experimental data do not provide
enough evidence to support numerical simulations, although Harnett and Muntz
[6] regard the overshoot of the parallel temperature of Argon as the onset of the
overshoot of its mean temperature.

In the studies mentioned above, it was emphasized that the temperature overshoot
is the most significant in the case of small molar fraction of heavier component.
Abe and Oguchi [7] offered a physical explanation of this phenomenon. They
stated that, in the case of vanishingly small mole fraction of heavier component,
the main structure of the shock wave is determined by the lighter one. This causes
the deceleration of heavier component and, at the same time, conversion of kinetic
into thermal energy. However, dissipation through conduction is slow process which
cannot diffuse thermal energy gained by deceleration. As a consequence, the internal
energy (temperature) of heavier component is raised above the terminal one. In our
model, momentum and energy transfer through viscosity and heat conduction are
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neglected. We are focused on dissipation caused by mutual exchange of momentum
and energy between the constituents, where the most prominent role is played
by their mass ratio 
. Thus, we examine the temperature overshoot from this
perspective, analyzing its dependence on the mass ratio
, as well as upstream Mach
number M0 and equilibrium concentration c0.

The numerical solution of the present model predicts the temperature overshoot.
Figure 17.2 is an example of this effect. It has an outstanding feature, not reported
in previous studies, that the temperature overshoot varies non-monotonically with
mass ratio. Namely, there exists a value 
� of the mass ratio which determines the
local minimum of temperature overshoot. Since other studies were based on limited
number of numerical simulations, which provided information on certain particular
cases only, this phenomenon remained unobserved thus far.

The outstanding feature of non-monotonic behavior of the temperature overshoot
can be understood as follows: (1) For 
 < 
�, the temperature overshoot is
increased due to large mass difference and low Knudsen number (Kn). The flow
is between hydrodynamic and slip flow regime, but the mass ratio is too small
to yield sufficient exchange of energy between the constituents (2) For 
 > 
�,
Kn is increased, which puts the flow into transition regime. Although the masses
of the constituents become comparable, the exchange of energy is prevented by
rarefaction of the mixture, i.e., small number of cross-collisions which could cause
it. Consequently, the temperature of heavier constituent cannot be attenuated, and
temperature overshoot is increased.

Therefore, in a simplified model of MT mixtures, where viscosity and heat con-
ductivity are neglected, small mutual exchange of energy between the constituents
can be pointed out as main physical reason for the increase of temperature overshoot.
It can occur for two reasons: (a) large mass discrepancy between the constituents
(small 
), and (b) more rarefaction of a mixture.

Fig. 17.2 Temperature
profiles in the shock structure
(T—average temperature of
the mixture, T1—temperature
of the lighter constituent,
T2—temperature of the
heavier constituent):
M0 D 1:6, c0 D 0:21,

 D 0:1
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17.5 Shock Thickness and the Knudsen Number

One of the parameters which describe the shock structure globally is the shock
thickness. It is usually defined as follows:

ı D
ˇ̌
ˇ̌ v1 � v0
.dv=d'/ max

ˇ̌
ˇ̌ :

It is important to notice that the dimensionless shock thickness is equal to the
reciprocal of the Knudsen number:

Qı D ı

l0
D 1

Kn
; (17.10)

whose value helps to distinguish between different flow regimes. In view of (17.10),
shock thickness will carry also the information about the flow regime. In this section
we analyze the shock thickness (and Kn) in terms of mass ratio, Mach number and
upstream concentration.

The dependence of Kn on the Mach number is monotonous for fixed mass ratio
and upstream concentration. It increases with the increase of the Mach number,
which amounts to a decrease of the shock thickness. This is rather expected result
which is similar to the behavior of a single-component gas. However, experimental
facts about shock structure in a single fluid, as well as comparative study based
on Navies-Stokes Fourier model, reveals that this tendency seem to be opposite for
larger Mach numbers (see [17]). Since our calculations are confined to small Mach
number flows, at most M0 6 2:0, the results obtained here are in agreement with the
single fluid model in this range.

More details can be found in the original paper [1]. In this paper, a comparison
between the single and multi-temperature models is also made.
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5. D. Madjarević, S. Simić, Shock structure in helium-argon mixture—a comparison of hyper-

bolic multi-temperature model with experiment. Europhys. Lett. 102, 44002 (2013)
6. L.N. Harnet, E. Muntz, Experimental investigation of normal shock wave velocity distribution

functions in mixtures of argon and helium. Phys. Fluids 10, 565 (1972)



References 349

7. K. Abe, H. Oguchi, An analysis of shock waves in binary gas mixtures with special regard
to temperature overshoot, Report No. 511. Institute of Space and Aeronautical Science,
University of Tokyo (1974)

8. G. Bird, The structure of normal shock waves in a binary gas mixture. J. Fluid Mech. 31, 657
(1968)

9. T. Ruggeri, The binary mixtures of euler fluids: a unified theory of second sound phenomena,
in Continuum Mechanics and Applications in Geophysics and the Environment, ed. by B.
Straughan, R. Greve, H. Ehrentraut, Y. Wang (Springer, Berlin, 2001), pp. 79–91

10. G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford,
1994)
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Part VIII
Maxwellian Iteration and Objectivity



Chapter 18
Hyperbolic Parabolic Limit, Maxwellian
Iteration and Objectivity

Abstract In this chapter, we discuss the parabolic limit of extended thermody-
namics via the Maxwellian iteration, and we observe that the usual constitutive
equations, which are nonlocal in space, are approximations of some balance laws
of ET when some relaxation times are negligible. An important consequence is that
these equations need not satisfy the objectivity principle. To avoid misunderstand-
ing, we should mention that the principle still continues to be valid for constitutive
equations.

We also discuss the point that, under suitable assumptions, the conditions dictated
by the entropy principle in the hyperbolic case guarantee the validity of the entropy
principle also in the parabolic limit. Lastly we express our opinion concerning the
limitation of the parabolic regularized version of ET theories.

18.1 Different Constitutive Equations

We have seen that the physical laws in continuum theories are expressed by the
balance laws, which, under regularity conditions, assume the form (1.2).

In order to have a closed system, we need constitutive equations. A very
rough mathematical definition of constitutive equations may be considered as the
equations that are necessary to close the system. That is, choosing an independent
field u 2 RN , we have to give relations between the 5N components of the vectors
F0;Fi; f and the N components of the unknown vector u. But of course, as we will
see below, this definition has no physical meaning because the additional equations
must represent the real constitutive properties of the material.

For a long time, constitutive equations have been made in an empirical way. They
belong substantially to the one of the following three big classes:

• Local constitutive equations Examples are:

– stress-strain relation in non-linear elasticity: t � t.E/ (Hooke’s law in the
linear case).

© Springer International Publishing Switzerland 2015
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– The caloric and thermal equations of state in Euler fluids that express the
internal energy and the pressure as functions of the mass density and the
temperature:

" � ".�;T/; p � p.�;T/:

– All rational extended thermodynamic theories in which we assume the local
dependence of the vectors of the density, fluxes and productions (2.1).

Introducing such constitutive equations into the balance laws, we obtain a
differential system which, in general, is hyperbolic.

• Non-local type (in space) In the case of a one-component dissipative fluid,
examples are:

– Fourier’s law: (1.10)3.
– Navier-Stokes’ law: (1.10)1;2.
– In the case of a mixture of dissipative fluids with n constituents, well-known

examples are the Navier-Stokes’, Fourier’s, and Fick’s laws (16.16).

When we introduce such constitutive equations into the balance laws, we obtain
a system of differential equations where some spatial derivatives are of second
order and the time derivatives are of first order. These differential systems have a
parabolic structure.

• Non-local type (in time) Examples are as follows: visco-elastic materials
or, in general, all materials in which the stress depends not only on the
present deformation but also on the history of the deformation (constitutive
equations with memory). Except for the case of exponential memory kernel, the
mathematical structure of such systems is of integro-differential type.

18.2 Frame-Dependence of the Heat Flux

In the modern constitutive theory, all the constitutive equations must obey two
universal principles that are the first two in the Axioms of RET (see Sect. 2.2):
objectivity principle and entropy principle.

A long debate came out in the literature after Ingo Müller published a famous
paper [1] in which he proved that the Fourier and Navier-Stokes “constitutive”
equations (1.10) violate the objectivity principle. At that time Müller was convinced
that his result indicates that the objectivity principle is not a valid principle. And then
a huge literature appeared between supporter and non-supporter of the objectivity
principle. Several authors added artificial time derivatives to try to recover the
objectivity for the heat equation and for the stress. Here we record observations
on the subject made independently by Bressan [2] and Ruggeri [3]. They observed
that a possible interpretation of Müller’s result is that the objectivity principle is
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indeed universal, but the Fourier and Navier-Stokes laws are not “true” constitutive
equations.

The precise and convincing answer was presented by rational extended ther-
modynamics. In fact we have seen in Sect. 5.3.6 that the Navier-Stokes Fourier
laws are approximations of the balance laws of 14 moment, and therefore these
are not constitutive equations. It is not necessary for the laws to satisfy the frame
indifference principle.

18.2.1 Maxwellian Iteration and the Parabolic Limit

To reveal the relationship between extended and classical models, a formal iterative
scheme known as the Maxwellian iteration is applied [4, 5]. In general, the first
iterates are obtained from the right-hand sides of balance laws by putting the “zero-
th” iterates—equilibrium values—into the left-hand sides. The second iterates are
obtained from the right-hand sides by putting the first iterates into the left-hand
sides, and so on. Therefore the Maxwellian iteration is substantially composed of
(i) an identification of the relaxation times and (ii) a formal power expansion of the
solution in terms of the relaxation times: a sort of Chapman–Enskog procedure at
macroscopic level.

We proved, in Sect. 5.3.6 (5.61), that:

Statement 13 The Fourier and Navier Stokes laws (1.10) are the first order
approximation of the Maxwellian iteration of the ET balance law system (5.59).
Therefore they are not true constitutive equations and need not satisfy the objectivity
principle.

A similar situation exists in the case of a mixture of fluids holding the Fick law
for the mass diffusion. In fact as we have seen in Sect. 16.7 that

Statement 14 The Fick law (16.61) is the first approximation in the Maxwellian
iteration of momentum balance equation of each species (16.39)5.

Moreover

Statement 15 The new non-local “constitutive equation” for the temperature
differences (16.62) is the first approximation obtained by the Maxwellian iteration
of the energy balance of each constituent (16.39)6.

Another simple example in the context of the mixture theory is well-known
Darcy’s law for porous media saying that the relative velocity between the fluid
part vF and the solid one vS is proportional to the pressure gradient in the fluid (see,
e.g. [6]):

rpF D � k



.vS � vF/ ; (18.1)

where k and 
 are, respectively, the permeability and the viscosity.
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Statement 16 Darcy’s law (18.1) is an approximation to the balance law of the
linear momentum for the fluid flowing through the porous solid being treated as a
rigid body, i.e., (18.1) is a limit case of (see [7]):

�F PvF Cr pF D � k



.vS � vF/ :

We have seen that, using the Maxwellian iteration, we can obtain from extended
thermodynamics—at least formally—the usual non-local constitutive equations of
the classical theory. Therefore the parabolic systems of classical theories appear,
from a physical point of view, to be approximations of the corresponding hyperbolic
systems when some relaxation times are negligible:

• Navier Stokes’ and Fourier’s laws as a limit case of momentum and energy
balance equations in extended thermodynamics.

• Fick’s law as a limit case of momentum equations of each species in a mixture
with single-temperature.

• The new diffusion equation for the difference of the temperatures in mixture
with multi-temperature as a limit case of the energy balance equation of each
constituent.

• Darcy’s law for porous material is a limit case of momentum equation.

Although the previous non-local equations are not constitutive equations but
approximations of balance laws, the non-local equations have been very useful.
In many applications, the relaxation times are sometimes negligibly small and the
non-local equations are relevant in such situations. The advantage of the non-local
approximation is that, in this limit, we are able to measure non-observable quantities
like heat flux, viscous stress and, in particular, velocity and temperature of each
species in a mixture of fluids using the classical constitutive equations.

An interesting analysis on constitutive equations can be read on the recent
book [8].

18.3 Maxwellian Iteration and the Entropy Principle

Clearly a major open problem in this framework is the rigorous proof of the
convergence of the solutions via Maxwellian iterations. To make a little step toward
this proof, first of all, we have to focus our attention on another very subtle point: is
the entropy principle preserved in the Maxwellian iteration scheme? In other words:
if the “full” hyperbolic theory satisfies the entropy inequality, are we sure that the
corresponding parabolic limit satisfies automatically a suitable entropy inequality?

Here we give some results due to Ruggeri [9] in one space-dimension (but the
results remain valid in any space-dimension):

Theorem 18.1 If the system of balance laws of ET is endowed with a convex
entropy and the processes are not far from equilibrium, the entropy principle
is preserved in the Maxwellian iteration. And as a consequence, if the original
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hyperbolic system is entropic, the parabolic limiting system is also entropic. Instead,
for processes far from equilibrium, in general, this is not true.

Proof Let us consider, as in all RET theories, that the system is split into two
blocks of M conservation equations (2.26) and of N �M balance laws (2.27). And,
with the notation u0 � .v;w/ (we omit the prime), it was proved in Sect. 2.5 that
the equilibrium manifold in the main field components is the hyperplane w D 0

[see (2.29)].
In extended thermodynamics, there are many interesting cases where the pro-

cesses are not far from equilibrium. In this case, we have

h0 D h00 D 1

2
K.v/w � wC h0

eq.v/; (18.2)

and therefore if we consider one space-dimension, the symmetric system (2.11),
which is linear in w, assumes the form:

H @tvC A @xvC B @xw D 0; (18.3)

K @twC BT@xvC C @xw D �Lw; (18.4)

where v 2 RM; w 2 RN , H � h0
vv .M � M/ 2 SymC (symmetric positive definite

matrix), A � kvv .M �M/ 2 Sym (symmetric matrices), B � kvw .M � N/, C �
kww .N � N/ 2 Sym and k D h01.v;w/. Moreover L � L.v/ .N � N/ 2 SymC
because of the residual inequality˙ D �Lw � w 6 0 .

According with the Maxwellian iteration procedure Sect. 18.2.1, the first iterates
are obtained from the right-hand sides of balance laws by putting the “zero-th”
iterates—equilibrium values—on the left-hand sides, i.e., putting w D 0 on the
left side of (18.4) we have

NBT@xv D �Lw.1/;

where NB � B.v; 0/. Then substituting this into (18.3) we obtain as the first
Maxwellian iteration (taking only the principal part, i.e., we do not consider first-
order spatial derivative):

H @tv ' D @xxv; (18.5)

where the diffusion matrix D is given by

D D NBL�1 NBT 2 SymC: (18.6)

Consequently the entropy principle is preserved in the passage from the hyperbolic
system to the parabolic limit.
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In the general case, however, the entropy principle is not necessarily preserved.
In this case, instead of (18.3) and (18.4), we have

H @tvCG @twC A @xvC B @xw D 0; (18.7)

GT @tvCK@twC BT@xvC C @xw D �Lw (18.8)

with G � h0
vw .M � N/ and K � h0

ww .N � N/ 2 SymC. After the Maxwellian
iteration, we obtain a parabolic system similar to (18.5) but with a diffusion
matrix D:

D D NBL�1 NBT � NBL�1 NGT NH�1 NA: (18.9)

This matrix, in general, does not have a definite sign. Therefore the most general
system for which the entropy principle is preserved in the parabolic limit is the
following one: The matrix D of the system given by (18.9) belongs to SymC. We
call these special systems entropy-principle preserving systems.

A simple entropy-principle preserving system is the one for which h0 is given by
the sum of two functions, one is the function of only v and the other is the function
of only w. An interesting case of the processes not far from equilibrium (18.2) is a
special class of this system. In fact in this case we have G � 0 and the diffusion
matrix (18.9) reduces to (18.6) and becomes symmetric positive definite. This result
seems to indicate that the parabolic classical theories have a limiting validity only
near equilibrium according with the assumption of local equilibrium!

18.4 Regularized System and Non-subshock Formation

In the previous section we considered the full Maxwellian iteration for all relaxation
times assuming implicitly that all of them have the same order of magnitude. In this
section, we consider relaxation times with different order of magnitude.

An interesting idea is the one proposed by Torrilon and Struchtrup [10] who
have constructed a sophisticated method to obtain parabolic extended systems
called regularized systems from the hyperbolic systems of ET. Philosophy in its
construction, however, seems to be similar to the Maxwellian iteration. By this
method, they were able to derive, in the case of monatomic gases, a regularized 13
Grad system that is a natural parabolic extension of the NSF system of equations.
As the regularized system contains first-order derivatives in time and, in some
equations, second-order derivatives in space, it is of parabolic type. This fact is
in sharp contrast to the hyperbolic 13 Grad system. To obtain the regularized 13
Grad system, the authors start from the ET system with 23 moments. Therefore we
can regard the regularized parabolic Grad system as a sort of approximation of the
hyperbolic ET23. By the same procedure, the 14-moment system (5.75) for rarefied
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Fig. 18.1 Systems and sub-systems and the parabolic limit

polyatomic gases was regularized by Rahimi and Struchtrup in [11] starting from
ET with 36 moments.

In Fig. 18.1, the relationship between the different models is sketched: We can
see that the Euler-fluid sub-system is effectively a particular case of the Navier-
Stokes Fourier system. Nevertheless the Euler-fluid subsystem is also a principal
sub-system of the Grad system. And moreover the Navier-Stokes Fourier system
itself is a particular case of the Grad system when the Maxwellian iteration is used.
This situation is also valid if we take the ET theory with many moments. When
we adopt the regularization approximation, we have, as parabolic counterpart, the
regularized moment-equations. In any case, given an N-moment hyperbolic system,
all the previous systems of moments are principal sub-systems according to the
general nesting structure due to Boillat and Ruggeri [12]. Moreover we can see
that all the parabolic limits can be considered as approximations of the hyperbolic
system as sketched in Fig. 18.1.

The regularized extended system appears very interesting. But one of the main
assertions that the parabolization of a system of equations avoids the formation
of sub-shock in the shock structure solution, in the present authors’ opinion,
leads to a misunderstanding. For example, if we accept that the NSF theory
is an approximation of the 14-moment hyperbolic system, the validity of the
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theory cannot exceed the validity of the 14-moments system. Therefore, from the
Table 10.2, we notice that, for 14 moments, there appears a sub-shock at the critical
Mach number depending on D but in the range 1:34 6 Mcrit 6 1:65. The upper and
lower bounds correspond to D!1 and D! 3, respectively. Therefore we cannot
expect that the NSF theory can be valid for any Mach number but we can expect at
most until the critical Mach number of the 14-moment theory even though no sub-
shock formation exists in the theory. The same is true for the regularized theory.
Its validity cannot exceed the critical Mach number of the starting hyperbolic ET
theory.

We have a clear explanation to the no-evidence of the sub-shock in experiments
thanks to the mathematical properties of the nesting theories of RET. In fact, for
a fixed truncation order N, the validity of the ET theory, as far as shock waves
are concerned, is up to the Mach number where the shock velocity s reaches the
maximum characteristic velocity evaluated in equilibrium. Beyond this limitation,
from the Boillat and Ruggeri Theorem 3.1, a sub-shock emerges, and the model is no
longer valid. We need to increase the number of truncation N taking more fields into
the model. In this case, according to the properties of the principal subsystem, i.e.,
Theorem 2.3 and inequality (10.45), the maximum characteristic velocity increases.
Therefore we have now a sub-shock formation with larger critical Mach number.
In other words, we need more moments in order to let a theory be valid for larger
Mach numbers. In the limit of infinite Mach number, we substantially deal with the
Boltzmann equation itself to predict smooth shock structure!

18.5 Conclusion

In conclusion, extended thermodynamics seems to indicate in clear manner that non-
local relations are not constitutive equations but approximations of balance laws.
The true constitutive equations are in local form and they obey the material frame
difference. The physical systems are hyperbolic in agreement with the relativity
principle that any disturbance propagates with finite speed. Nevertheless, non-local
equations such as the usual Fourier, Navier-Stokes, Fick, Darcy laws and others are
useful to measure non-observable quantities and they are good approximations in
many practical problems. The Maxwellian iteration preserves the entropy principle
at least for processes not far from equilibrium. Hyperbolic systems with dissipation
(balance laws with production terms) can have global smooth solutions provided
that the initial data are small.
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Chapter 19
Open Problems

Abstract We list up some open problems and try to discuss the perspective on the
ET theory.

19.1 Open Problems

There are still many open problems that may be interesting subjects to be studied in
the next future. Some of them are listed as follows:

• ET of dense gases and the convexity of the entropy density: The ideas of
the binary hierarchy and of the independence between the internal energy and
the pressure give, in our opinion, the correct direction for exploring rarefied
polyatomic gases. In fact, we have seen in the previous chapters that, in the
case of 14 fields, the closures via phenomenological approach, via MEP, and
via Grad procedure produce, give the same differential equations. Moreover the
system of field equations for a monatomic gas becomes a (singular) limiting
case of the system of a polyatomic gas. In this case, if the gas is polytropic,
the convexity of the entropy in equilibrium is automatically satisfied under the
usual stability requirement for the thermal and caloric equations of state and the
condition D > 3. The excellent agreements of the ET theory with experimental
data also support strongly this assertion.

However, the delicate question still remains: To what extent the present model
is valid for a dense gas? As seen in Chaps. 5 and 6, the binary hierarchy is
a natural generalization of the single hierarchy of fields for monatomic gases.
This is perfectly consistent with the moment theory in the kinetic theory for
polyatomic gases, although we know that the range of the validity of the kinetic
theory basing on the Boltzmann equation is restricted to rarefied gases. Therefore
the binary hierarchy is fully reliable in the case of rarefied polyatomic gases.

On the other hand, we have seen in Chap. 5, Sect. 5.5 that the convexity of the
entropy of a dense gas is satisfied only in a bounded domain. And we have found
that, in the case of hard-sphere systems, the domain reduces to a point when D
approaches to the monatomic limit (see Fig. 5.1). In the case of van der Waals
fluids, the situation is similar.
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These observations seem to indicate that our theory is valid only for moder-
ately dense gases. We need to improve the present ET theory in order to have a
wider range of applicability, in particular, near the monatomic limit.

• ET of relativistic gas: In the case of monatomic gases, a successful relativistic
theory was obtained as we have presented briefly in Chap. 4, Sect. 4.7. As we
have seen in the relativistic hierarchy (4.43), as usual in relativistic analysis,
the energy and momentum are combined together into the energy-momentum
tensor. In the case of the binary hierarchy (10.1), it is still not so clear what is the
natural relativistic counterpart. This is also a problem from the kinetic-theoretical
viewpoint. This is, in our opinion, a very interesting and challenging problem that
we want to investigate in near future.

• Non-linear closure for more than six fields: We have seen in Chaps. 11 and 12
that, in ET6, it is possible to have a theory that is valid even far from equilibrium.
Interesting challenge is to obtain general .N;M/-systems for which a similar
analysis to that of non-linear ET6 can be made.

• Boundary values of ET: This is still an open problem not only for a monatomic
gas as we discussed in Chap. 4, Sect. 4.2.2 but also for a polyatomic gas. Some
preliminary results are given in Chap. 9 but, in the case of many fields, this
problem is still difficult to solve.

• Applications of ET to various practical subjects in engineering, biology etc.:
ET is expected to make a contribution to many fields like nano-technology,
physical biology. But no systematic applications are made up to now at least
in the context of RET methodology. We believe there are huge possibilities for
such studies.

The previous problems are probably the most fundamental and intriguing ones in
this field. There are, instead, some works now in progress. These are not included
in the present book but will soon appear:

• Dissipative mixture: In Chap. 16, we presented only mixtures of non-dissipative
Eulerian fluids. A more realistic case is to consider a mixture of dissipative fluids
in which every species obeys the requirements of ET14.

• Shock wave with phase transition: As mentioned in Sect. 3.3, it is interesting
for us to study the problematic of shock and phase transition generalizing the
previous study on the basis of the Euler fluid. The work is important also for
practical applications. Moreover a complete analysis of Riemann problem is now
in preparation.

• Acceleration wave analyzed by the ET14 theory: In Chap. 14, we studied
acceleration waves by the ET6 theory. Similar study by the ET14 theory is
interesting because, in this case, we will have the D-dependence (dependence on
the degrees of freedom of a molecule) in wave propagation phenomena. Study of
the interaction between acceleration wave and shock wave is also in preparation.
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