
Handling TSO in Mechanized Linearizability

Proofs

Oleg Travkin and Heike Wehrheim

Universität Paderborn, Institut für Informatik,
33098 Paderborn, Germany

{oleg82,wehrheim}@uni-paderborn.de

Abstract. Linearizability is the key correctness criterion for concurrent
data structures. In recent years, numerous verification techniques for lin-
earizability have been developed, ranging from model checking to mecha-
nized proving. Today, these verification techniques are challenged by the
fact that concurrent software is most likely to be run on multi-core pro-
cessors equipped with a weak memory semantics (like total store order,
TSO), making standard techniques unsound. While for model checking
and static analysis techniques, approaches for handling weak memory
in verification have already emerged, this is lacking for theorem-prover
supported, mechanized correctness proofs.

In this paper, we present the very first approaches to handling TSO se-
mantics in mechanized proofs of linearizability. More precisely, we intro-
duce two approaches, one explicitly modelling store buffers and a second
avoiding this modelling by instead reordering program operations. We
exemplify and discuss our approach on two case studies, Burns mutual
exclusion algorithm and a work stealing dequeue of Arora et al., both of
which require additional memory barriers when executed on TSO.

Keywords: Linearizability, weak memory models, verification, TSO,
KIV.

1 Introduction

With the advent of multi-core processors and the consequently rising increase
in concurrent software, high performance concurrent data structures have come
into the focus of algorithm designers. Concurrent data structures allow for a
concurrent access to standard data structures like lists, queues or stacks. High
performance is achieved by (mostly) avoiding locks, and instead relying on very
fine-grained atomicity. Due to the subtlety of lock-free algorithms, their proof of
correctness can be exceptionally complex. The quasi-standard correctness crite-
rion for concurrent data structures is linearizability [18]. Many techniques for the
verification of linearizability emerged in the past, ranging from manual proofs
(usually done by the algorithm designers themselves), to model checking [29]
and theorem proving [25,28].

A large number of existing verification techniques, both for concurrent soft-
ware in general and more specifically for linearizability, assume a sequentially

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 132–147, 2014.
c© Springer International Publishing Switzerland 2014



Handling TSO in Mechanized Linearizability Proofs 133

consistent memory model (SC) [21], i.e., assume statements in a sequential pro-
gram to be executed in program order and concurrent programs to be an in-
terleaving of components. However, multicore processors like x86, SPARC or
POWER provide weaker execution semantics than SC and allow executions to
deviate from program order [2]. The reason behind these out-of-order execution
is (mainly) the use of store buffers attached to processor cores. Store buffers can
delay write instructions while later instructions w.r.t. program order are further
processed. As a consequence, an execution may appear as though out-of-order.
Verification techniques coping with weak memory can so far be classified into
two strands. The first strand aims at reusing verification technique for sequential
consistency. This starts with techniques for detecting non-sequentially consistent
behaviour (monitoring, testing, robustness checking [10,11,8]) which can then be
eliminated by fence insertion (e.g. using techniques of [1,20]), or finding program
structures which guarantee SC behaviour even for relaxed memory models (like
data race freedom or triangular race freedom [22]). The other strand of research
takes weak memory behaviour into account, either by explicitly modelling store
buffers [9] or by rewriting the program in such a way that an SC-based verifica-
tion becomes sound [6,3,14]. None of these approaches have, however, proposed
techniques for handling weak memory within mechanized proofs of linearizabil-
ity. The advantage of a mechanized proof is the establishment of correctness for
arbitrary uses of the data structure, i.e. arbitrary method invocations by an ar-
bitrary number of processes. Compared to model checking or testing approaches,
mechanized proofs are not limited to specific usage scenarios.

In this paper, we propose two approaches for handling weak memory seman-
tics in mechanized correctness proofs of linearizability. The first approach builds
on an explicit modelling of store buffers and delayed writes. Unlike model check-
ing approaches, we need not (but could) assume bounds on the buffer size in our
models. The second approach employs an explicit reordering of program state-
ments as to mimic the behaviour of store buffers. It turns out that the second
approach is more convenient for mechanized proving as it keeps us from hav-
ing to define and reason about invariants on the store buffer contents. In our
definition of linearizability we follow [17,7] in that we compare the implementa-
tions of concurrent data structures run on TSO against sequential specifications
interpreted in an SC way (TSO-to-SC linearizability). Our general proof princi-
ple proceeds by showing a simulation relation to exist between implementation
and specification, and follows established simulation-based proof techniques for
linearizability on SC [15,25].

We discuss and exemplify our approach(es) on two case studies, a variant of
Burns mutual exclusion algorithm [12] and a work-stealing double-ended queue
of Arora et al. [5]. While the first example is rather small and mainly used
for demonstration purposes, the second example realistically reflects the size of
modern concurrent data structures. Both examples are non-linearizable when
executed on a TSO architecture in their original form and need additional mem-
ory barriers for soundness. We were able to prove linearizability of the fenced
versions for both examples, using the theorem prover KIV [24].



134 O. Travkin and H. Wehrheim

2 Background

TSO Architecture. Nowadays, one of the most wide-spread multicore processor
architecture is the x86 [19,4], which provides the TSO memory model. Figure 1
illustrates the architecture of a modern multicore processor providing a TSO
memory model. Each processor has a write buffer to store its writes before they
are (later) flushed to shared memory. Reading of variables either takes place
from the buffer (if there is a pending write of this variable in the store buffer)
or from shared memory. Memory barriers (or fence operations) can be used to
block program execution until the store buffer is completely flushed.

Core 1 Core n

FIFO
Write
Buffer

FIFO
Write
Buffer

Shared Memory

...

Fig. 1. TSO architecture as common
for x86-based multicore processors.

Initially : x = 0 ∧ y = 0

Process 1

write(x , 1);
read(y , r1);

Process 2

write(y , 1);
read(x , r2);

r1 = 0 ∧ r2 = 0

Fig. 2. Test program for detection of
Write → Read reordering, also known as
litmus test

As a consequence of this architecture, TSO exhibits two relaxations of program
order compared to SC. First, writes may appear as if they were executed after
a later read, i.e., the order Write → Read is relaxed. This can happen when
write and read access different memory locations. Figure 2 shows a test program
for detection of this behavior. Initially both shared variables x and y hold the
value 0. The test detects reordering if both registers have values r1 = 0 ∧ r2 = 0
at the end of its execution and hence at least one process must have had its
instructions reordered. Simple interleaving, as in an SC setting, does not allow
this outcome. A second relaxation allows processes to read their own writes
early. If a write buffer contains a pending write to an address requested by a
read, the value from the buffer is read. This behavior is called early-read [2] or
Intra-Process-Forwarding [19], because a reading processor is allowed to see its
own writes before they are committed to the memory and hence before other
processes can see them.

Burns Algorithm. Our objective is to show (a certain form of) correctness of
algorithms executed on weak memory models. The correctness proofs thus will
need to take the unusual non-SC semantics into account. We will exemplify our
approach on the following mutual exclusion algorithm of [12]. Originally, the
algorithm was defined with a loop for each process, in which it tries to enter
and leave a critical section. We modified the algorithm slightly (as to be able



Handling TSO in Mechanized Linearizability Proofs 135

bool ∗flag0 = 0, ∗flag1 = 0;

//process0: //process1:
void acquire0{ void acquire1{

∗flag0 = 1; retry : while (∗flag0 != 0) {
/∗need fence here∗/ /∗wait∗/
while (∗ flag1 != 0) { }

/∗wait∗/ ∗flag1 = 1;
} /∗need fence here∗/

} i f (∗flag0 != 0) {
∗flag1 = 0;

void release0 () { goto retry ;
∗flag0 = 0; }

} }

void release1 () {
∗flag1 = 0;

}

Fig. 3. Mutual exclusion algorithm for two processes (based on [12])

to view it as a concurrent data structure) by explicitly defining two operations
— acquire and release — which can then be repeatedly called (in turn). The
Burns algorithm (see Fig. 3) uses a flag for each process to indicate its intention
of a process to enter the critical section. Both flags are initially 0 and set to 1,
when a process tries to enter. It is an asymmetric algorithm in the sense that
processes are ordered in terms of priority. Process p0 (highest priority) sets its
flag to flag0 = 1 and waits until it observes flag1 = 0. In this case, process p1
is not trying to enter the critical section and will not enter until p0 has left it.
In contrast to p0, p1 checks the flag of p0 before setting its own flag and checks
flag0 again after having set flag1 to 1. If flag0 changes in the meantime, p1
resets its flag to 0 (allowing p0 to enter and finish) and retries. Otherwise, p1
finishes by entering the critical section. Both processes release their ownership
by setting their flag to 0.

In order to determine possible effects of weak memory on the execution of this
algorithm, we first of all need to explicitly see the low-level reads and writes. To
this end, we first compile a C program into an intermediate representation, here
using the LLVM1 compiler framework with intermediate representation LLVM
IR. On this, we can see the atomic reads and writes. Figure 4 shows the compiled
code for the operation acquire0. The code defines a function which is structured
into labeled blocks (entry, cond, body and end). Global variables (here, the two
flags) are prefixed with @. Local registers are prefixed with %. The local variables
%tobool, %conv and %cmp are just used to store values of type conversions (the
first two) and the value of a comparison. We thus will not explicitly model
these later. The br instruction is either a simple jump (e.g., in block entry) or
a conditional jump (e.g., in block cond with variable %cmp being the boolean
condition). Instruction load (resp. store) corresponds to a read (resp. write) of a
global variable. When determining the semantics of this LLVM-IR code on TSO,
we thus need to assign these statements a non-standard semantics.

1 www.llvm.org

www.llvm.org


136 O. Travkin and H. Wehrheim

define void @_Z5acquire0() nounwind {
entry:
store i8 1, i8* @flag0

; ---- need fence here ----
br label %cond

cond:
%0 = load i8* @flag1
%tobool = trunc i8 %0 to i1
%conv = zext i1 %tobool to i32
%cmp = icmp ne i32 %conv, 0
br i1 %cmp, label %cond, label %end

end:
ret void

}

Fig. 4. LLVM IR code for method
acquire0 after compilation

COP1 =̂ ls.pc = A10 ∧ ls′.pc = A20

∧ write((flag0, 1), ls,mem, ls′,mem ′)

COP2 =̂ ls.pc = A20 ∧ ls′.pc = A30

∧ fence(ls,mem, ls′,mem ′)

COP3 =̂ ls.pc = A30 ∧ ls
′
.pc = A40

∧ read((flag1, f 1), ls,mem, ls′,mem ′)

COP4a =̂ ls.pc = A40 ∧ ls.f 1 �= 0 ∧ ls′.pc = A30

COP4b =̂ ls.pc = A40 ∧ ls.f 1 = 0 ∧ ls′.pc = A50

COPflush =̂ flush(ls,mem, ls′,mem ′)

Fig. 5. Encoding of program behav-
ior for method acquire0. Parameters
(mem, ls,mem ′, ls ′) of each COP predicate
were omitted for brevity.

3 TSO model

We are ultimately interested in a mechanized proof of correctness of algorithms.
To this end, we first need a precise formal model of TSO on top of which we can
then define the semantics of programs. We model shared memory as a function
mem : N → (N ∪ null), where we use N as the memory address space and allow
N or null to be the result of a memory access. The following three axioms de-
fine memory access (written as mem[n]) and modification (mem[n, a] modifying
memory mem at address n to become a):

� mem = mem0 ⇔ ∀n • mem[n] = mem0[n] (1)

� mem[n, a][n] = a (2)

� n �= n0 ⇒ mem[n0, a][n] = mem[n] (3)

(1) defines the identity of two memory functions, (2) states that access to the
address n will yield the last value written to it, and (3) states that modifying
one address will not change the value of another address.

In order to fix the semantics of programs on TSO, we first define an instruction
set for the interaction with the memory and store buffer (similar to [26]). In-
structions affecting store buffer and memory are write, read and fence explicitly
appearing as operations in programs plus flush which is occasionally executed
as to flush the store buffer. We let P be the set of all process identifiers, and
write ls to describe the local state of a process p ∈ P . The local state comprises
the process identifier ls .p ∈ P , the store buffer ls .buf ∈ (N× (N∪null))∗, values
of local registers ls .r from some set of registers Reg and a program counter ls .pc
from some set PC . We use LS to denote the set of local states. The instructions
modify the state as follows (where + is concatenation and primed variables are
used to describe the after state):



Handling TSO in Mechanized Linearizability Proofs 137

write((n, a), ls ,mem, ls ′,mem ′) ⇔ ls ′.buf = ls .buf + (n, a)

∧mem ′ = mem (4)

flush(ls ,mem, ls ′,mem ′) ⇔ ls .buf = (n, a) + ls ′.buf
∧mem ′ = mem[n, a] (5)

For the definition of a read, we need a helper function latest(n, buf ) (not given
here) to determine the latest entry for the requested address in the buffer.

read((n, r), ls ,mem, ls ′,mem ′) ⇔ ls ′.buf = ls .buf ∧ mem ′ = mem ∧
if n ∈ ls .buf then ls ′.r = latest(n, ls .buf )

else ls ′.r = mem[n] (6)

A read either obtains the latest value from the store buffer, if there is one, or
it obtains the value directly from the memory. The buffer and memory remain
unmodified. Finally, fences in the program code block program execution until
the store buffer is emptied. To this end, the fence is only enabled when ls .buf =
〈 〉 and blocks execution otherwise.

fence(ls ,mem, ls ′,mem ′) ⇔ ls .buf = 〈 〉 ∧ ls ′.buf = ls .buf ∧mem ′ = mem (7)

It is in the semantics of these instructions (and thus of the load and store in
LLVM) where the difference to SC semantics can be found. For modelling the
behavior of a given program we next proceed as follows. For the Burns algorithm,
we fix the set Reg of registers and assign the register %0 used in acquire0 a name
(here, f 1 because it stores the value of flag1). For the memory, we use the global
variable names flag0 and flag1 as constants 0 and 1 to access mem.

Figure 5 shows the encoding for the method acquire0 in Figure 4. In principle,
we define one operation per program instruction. However, as LLVM-IR contains
a lot of operations which need not be modelled in the theorem prover we use (e.g.,
type conversions), we get more compact operations in our model. All operations
are modelled as predicates. By specifying the change of the program counter,
we define the control flow of the method. After invocation, the program counter
is at A10. The first instruction (store) changes the program counter to A20
and attempts to write value 1 into address flag1. Note that the write does not
modify the memory directly, but enqueues the address value pair to the store
buffer. We ignore the following br instruction since it is just a jump to next
instruction in program order. Operation COP2 is a fence instruction which we
will need further on, but which first of all is not part of the operations. Please
note that local instructions, e.g., the four instructions after the load in Figure 4,
can be composed to a single one, because they are invisible to other processes
and hence, their atomicity is irrelevant for the correctness of the algorithm.
The predicate COPflush models the non-deterministic flushes of the store buffer.
It is not restricted to any particular program location and can be performed
repeatedly.



138 O. Travkin and H. Wehrheim

4 Proving Linearizability

Our main interest is in proving linearizability of concurrent data structures.
Linearizability is a correctness condition for concurrent data structures which
states that — when used concurrently — the data structure acts as though used
sequentially. To prove this, we need to find an ”equivalent” sequential execution
for every concurrent run. An execution, or history, consists of a sequence of
invocations and responses of methods, e.g. of the acquire and release of Burns
algorithm. Every concurrent history, i.e., history in which more than one method
might run at a time, has to have a matching sequential history preserving the
order of operations from the concurrent history. For a formal definition see [18].
Linearizability is often explained in terms of linearization points (LPs) which are
points within methods where the real effect of the methods seems to take place
atomically. The acquire methods of Burns algorithm pass their linearization
point when they observe the flag of the other process to be zero. The release
methods have their LPs, when the write to their flag becomes visible.

There are a number of different ways of formally proving linearizability for a
given data structure. Here, we intend to prove linearizability by showing that
the algorithm’s implementation simulates a sequential specification of the data
structure (following approaches in [15,25]). In the sequential specification all
operations are executed atomically, and thus the sequential specification only has
sequential histories. The proof needs to build up a simulation relation between
our behavior model of the algorithm and another sequential model. We also
call this the concrete and the abstract model. The concrete model has concrete
operations (called COP...), which we have already seen, and the abstract model
has abstract operations. For the Burns algorithm, we have an abstract state
space simply consisting of one variable mtx ∈ ({none} ∪ P) and operations
acquire and release for each process.

AOPacquire0 =̂(mtx = none ∧mtx ′ = 0)

AOPacquire1 =̂(mtx = none ∧mtx ′ = 1)

AOPrelease0 =̂(mtx = 0 ∧mtx ′ = none)

AOPrelease1 =̂(mtx = 1 ∧mtx ′ = none)

Thus, in the abstract model, we have atomic operations corresponding to meth-
ods, and, in the concrete model, these are implemented by lots of concrete oper-
ations, some of which are LPs. Formally, we thus have a non-atomic refinement
between abstract and concrete model which we intend to prove via a forward
simulation. For showing the existence of a forward simulation, we first need to
define an abstraction relation Abs between the state space of the abstract model
(here, variable mtx ) and that of the concrete model (here, global variable mem
plus all local states ls of processes). In our case, the abstraction relation will be
a function from concrete to abstract. Second, we need to define the linearization
points of methods2. All concrete steps COP which are not LPs have to be shown

2 In general, simulation proofs can also be done when LPs are not fixed, but for the
algorithms in this paper this is not necessary.



Handling TSO in Mechanized Linearizability Proofs 139

to simulate abstract skip steps (empty operations) while the LP steps have to
simulate the corresponding abstract operation. In case of the method acquire0,
the LP is at COP3, but only if the method observes flag1 = 0. Hence, COP3

observing flag1 = 0 has to simulate AOPacquire0(mtx ,mtx ′). All other acquire0
operations have to simulate skip steps. Our proof technique then proceeds by
locally reasoning about processes.

The main idea behind the local proof obligations (LPO) (see [15]) is to prove
linearizability for two processes, where one process p is explicit and the other
process q a symbolic representation of all other processes. Both processes operate
on the shared global state gs ∈ GS , which in our case studies is the memory
function mem. The local states of both processes p and q are lsp, lsq ∈ LS . In
addition, we need to define and establish an invariant INV on global and local
states. The following is one of a number of proof obligations which need to be
shown for simulation.

∀ gs , gs ′ : GS , lsp, lsq, lsp′ : LS •
INV (gs , lsp) ∧ INV (gs , lsq) ∧ COP(gs , lsp, gs ′, lsp′)
⇒
INV (gs ′, lsp′) ∧ INV (gs ′, lsq) ∧ AOPpq(Abs(gs , lsp, lsq),Abs(gs

′, lsp′, lsq))

This proof obligation states the following condition: if the invariant holds both
for process p and the other process q, and p executes operation COP thereby
changing the global state and its local state, then the invariant still holds for p
and q afterwards and a corresponding abstract operation can be executed on the
corresponding abstract states3. If a particular COP -transition is a linearization
point (LP), then AOPpq must be the corresponding abstract operation, and a
skip step, otherwise. Depending on which process passes its linearization point,
AOPpq can be an abstract operation performed by either process p or q or both.
The latter two cases can occur by process p helping other processes to finish
their operation or by p passing its own linearization point and by doing this
causing the other process to linearize as well.

Next, we apply this technique to our running example. However, the first
observation (found by using the model checking approach [27]) is that the acquire
methods of the Burns algorithm both need a fence (see Fig. 3). Otherwise, the
initial write could be still pending while the flag of the other process is read
within the loop. Hence, both processes would be able to enter the critical section
at the same time by observing the other flag value to be zero while the write to
the own flag is still pending. In particular, the following history of invokes and
returns would be possible:

〈inv0(acquire0), inv1(acquire1), ret0(acquire0), ret1(acquire1)〉
which corresponds to one of the sequences:

AOPacquire0; AOPacquire1 or AOPacquire1; AOPacquire0

3 In principle, Abs is only defined on gs. If information about local states is needed
for the definition of Abs, these have to moved into the global state via auxiliary
variables.



140 O. Travkin and H. Wehrheim

Both sequences violate the corresponding AOP definitions, because both require
mtx = none, but modify its value. Hence, the second AOP must not finish until a
release method linearizes. We place a fence at COP2 in acquire0 in order to ensure
the write is no longer pending during observation of the other flag. Thereby, we
disable executions as the one mentioned above. We modify acquire1 similarly.

Now that we fixed the implementation by ruling out non-linearizable execu-
tions, we can define the invariant, which is defined as properties holding at a
particular program location. In case of the Burns algorithm, we are interested in
the values of the flags. However, the flag values depend on the state of the store
buffer, i.e., whether a write to the flag was flushed or not. Thus, we have to spec-
ify two kinds of properties in our invariant: First, the invariant has to establish
the possible states of the store buffer at particular program locations. Second,
the possible flag values depending on the store buffer state and the program have
to be specified. For the method acquire0 the invariant is defined as:

INV (mem, ls) =̂((ls .pc ∈ {A10,A30,A40,A50} ⇒ ls .buf = 〈 〉)
∧ (ls .pc = A20 ⇒ ls .buf = 〈 〉 ∨ ls .buf = 〈(flag0, 1)〉)
∧ (ls .pc = A10 ⇒ mem[flag0] = 0)

∧ (ls .pc = A20 ∧ ls .buf = 〈 〉 ⇒ mem[flag0] = 1)

∧ (ls .pc = A20 ∧ ls .buf = 〈(flag0, 1)〉 ⇒ mem[flag0] = 0)

∧ ((ls .pc ∈ {A30,A40,A50} ⇒ mem[flag0] = 1)

∧ (ls .pc = A50 ⇒ ls .f 1 = 0)

where program location A20 is the one with a potentially pending write to flag0
and thus having two possible states of the store buffer, which determine the
value of mem[flag0]. Note that the value of mem[flag0] at the other program
locations (A10,A30,A40,A50) can only be stated without referring to the store
buffer state, because we know that the store buffer is empty. Otherwise, a similar
distinction to the one at location A20 would be necessary.

Finally, we provide an abstraction function Abs that maps each concrete state
to an abstract state. Throughout all executions, flag0 = 1 (resp. flag1 = 1)
means that process 0 (resp. 1) is either the owner of the mutex or it tries to
acquire it. We distinguish the two cases by taking the progress of local states into
account. We use the two range predicates observed0(mem[flag1] = 0) in order to
define the range after process 0 observed flag1 = 0 and observed1(mem[flag0] =
0) for process 1, respectively. The abstraction function is then defined as a case
distinction over the three cases:

Abs(lsp, lsq,mem) =̂if mem[flag0] = 1 ∧ observed0(mem[flag1] = 0)

then mtx = 0

else if mem[flag1] = 1 ∧ observed1(mem[flag0] = 0)

then mtx = 1

else mtx = none



Handling TSO in Mechanized Linearizability Proofs 141

Given the above abstraction function and invariant, we were able to show all
proof obligations for the fenced Burns algorithm, thereby establishing lineariz-
ability with respect to the given sequential specification.

5 Avoiding Store Buffers

In the last section, we have seen how to prove linearizability using an explicit
modelling of store buffers to encode the TSO behavior. However, keeping store
buffers as part of the state has a huge drawback. Mechanized proofs reveal many
impossible cases of executions which thus need to be ruled out by the invariant
(unless they are harmless). Hence, the invariant not only has to cover the prop-
erties of potential store buffer states, but also the interconnection between store
buffer states and values of global and local variables. Hence, the simplicity of
specification due to an operational memory model is paid by the complexity of
invariants, which have a major impact on the size of correctness proofs and the
time and effort that is required for the proofs.

In the following, we will therefore present an idea of how to transform our pro-
gram model under TSO into an equivalent program model under SC, for which
store buffers are no longer required. For the proof, we use the proof obligations
from the previous section in combination with the new program model. First of
all, we have to make some restrictions to the class of the programs to which our
transformation applies. We restrict our transformation to programs, which are
(1) in SSA-form [13], (2) do not read early (from store buffer) and (3) loops must
be either non-writing or contain at least one synchronizing instruction (fence,
CAS instruction, etc.) that limits the potential reordering to a finite delay. Al-
though the three conditions seem to be a strong limitation to the applicability
of our approach, they hold surprisingly often to the best of our experience: (1) is
a typical intermediate representation by compilers as in case of the LLVM com-
piler framework, (2) is rarely relevant for concurrent algorithms that are adapted
for weak memory models, because reads to previously written shared variables
do usually have synchronization in between in order to ensure that the write is
flushed before the read is issued. Condition (3) is the actual limitation of the
class of programs, since not all loops will have memory barriers. However, our
transformation still applies to a large class of algorithms, since most concurrent
algorithms rely on some sort of synchronization primitives.

The transformation proceeds in two steps. The starting point of the transfor-
mation are the concrete operations COPi of some method implementation. These
are used to build a symbolic reachability graph in the first step. In this graph,
the nodes are pairs of program location and symbolic store buffer contents. In
a later step, we use this graph as basis for the construction of an equivalent
program with its operations having SC semantics, and thus, without the need
of store buffers.

Definition 1. A symbolic reachability graph G = (N ,E ) consists of a set of
nodes N ⊆ PC × (N × (N ∪ Reg))∗ and edges E ⊆ N × Lab × N . The labels of
the edges are memory instructions or are empty.



142 O. Travkin and H. Wehrheim

write(flag0, 1)

fence

read(flag1, f1)

(A1, < >)

(A2, <(flag0, 1)>)

(A3, < >)

flush(flag0, 1)

(A2, < >)

(A4, < >)

(A5, < >)

Fig. 6. Abstract reachability
graph of operation acquire0

COP1asc =̂ ls.pc = (A10, 〈 〉)
∧ ls ′.pc = (A10, 〈(flag0, 1)〉)
∧mem ′ = mem

COP1bsc =̂ ls.pc = A10, 〈(flag0, 1)〉)
∧ ls ′.pc = (A20, 〈 〉)
∧mem ′ = mem[flag0, 1]

COP2sc =̂ ls.pc = (A20, 〈 〉)
∧ ls ′.pc = (A30, 〈 〉)
∧mem ′ = mem

COP3sc =̂ ls.pc = (A30, 〈 〉)
∧ ls ′.pc = (A40, 〈 〉)
∧ ls ′.f 1 = mem[flag1]

COP4asc =̂ ls.pc = (A40, 〈 〉)
∧ ls.f 1 = 0 ∧ ls ′.pc = (A50, 〈 〉)
∧mem ′ = mem

COP4bsc =̂ ls.pc = (A40, 〈 〉)
∧ ls.f 1 �= 0 ∧ ls ′.pc = (A30, 〈 〉)
∧mem ′ = mem

Fig. 7. Encoding of program behavior for
operation acquire0

The symbolic store buffer contents either contain pairs of memory address and
register name or memory address and constant. The graph of an operation im-
plementation is incrementally constructed as follows. The initial node consists
of the initial program location and an empty store buffer. New nodes and edges
are constructed as follows:

(l , buf )
lab−→ (l ′, buf ′) iff ∃COPi such that

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ write((n, r), ls ,mem, ls ′,mem ′) and
buf ′ = buf � 〈(n, r)〉, lab = write(n, r), (ditto constants)

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ r∗ := r ∧ write((n, r∗), ls ,mem, ls ′,mem ′)
and buf ′ = buf � 〈(n, r∗)〉, lab = r∗ := r ∧ write(n, r)

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ read((n, r), ls ,mem, ls ′,mem ′) and
buf ′ = buf , lab = read(n, r),

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ flush(ls ,mem, ls ′,mem ′) and
∃(n, r) such that buf = 〈(n, r)〉� buf ′, lab = flush,

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ fence(ls ,mem, ls ′,mem ′)) and
buf = buf ′ = 〈 〉, lab = fence,

– COPi ⇒ (ls .pc = l ∧ ls ′.pc = l ′), COPi is no memory instruction and
buf ′ = buf , lab empty.



Handling TSO in Mechanized Linearizability Proofs 143

Operation predicates with more complex structure can be treated in a similar
way, e.g. by first logically splitting them into one of the forms of above. Thus,
what we are tracking here is just the potential contents of the store buffer, and
this only symbolically in that we store which register (or constant) the value must
come from. This is similar to symbolic execution [23], however, not tracking all
variables. The symbolic reachability graph is finite due to the above mentioned
restrictions, in particular, because we have no loops with write operations but
without fences. Such a graph can be automatically constructed. For operation
acquire0 the graph is given in Figure 6.

Note that in loops, the flush of a write(x , r) can be delayed past the re-
definition of r corresponding to the next loop iteration (i.e., synchronization
between definition and write of r). Thus, the redefinition of register r also mod-
ifies the symbolic store buffer content in our reachability graph. To overcome
this problem, we replace COPs with such writes write(x , r) in the program by
r∗ := r ∧ write(x , r∗) with r∗ representing the value of r while the write is
still pending. Such cases are the only cases in which we need a second variable
instance. However, for both of our case studies this was not necessary.

The second step consists of constructing new concrete operations for the SC
execution. Basically, the new operations operate on the same global and local
variables, however, without ls .buf . Instead, we use the nodes in the symbolic
reachability graph as new program locations and define one new operation for
every edge in the graph according to the following procedure:

1. For edges (l , buf )
lab−→ (l ′, buf ′), the predicate of the operation has to contain

ls .pc = (l , buf ) ∧ ls ′.pc = (l ′, buf ′),
2. If lab = write(n, r), we add a predicate mem = mem ′.
3. If lab = r∗ := r ∧ write(n, r∗), we add a predicate r∗ := r ∧mem = mem ′.
4. If lab = read(n, r), we add a predicate ls ′.r = mem[n].

5. If lab = flush and buf = 〈(n, r)〉�buf ′, we add predicate mem ′ = mem[n, r ].
6. If lab = fence, we add a predicate mem = mem ′.
7. If the label of the edge is empty, we re-use the part of the old predicate not

refering to program locations.

For the symbolic reachability graph of method acquire0 given in Figure 6, we
thus get the operations as depicted in Figure 7.

These two transformation steps have to be applied to every method of the
algorithm, i.e., to acquire1, release0 and release1 as well. Together, they form
our new concrete SC model which then has to be shown to simulate the (same)
abstract model. So far, we have just shown correctness of this transformation,
i.e. equivalence of old program on TSO to new program on SC, for the concrete
algorithms at hand (Burns and the work-stealing deque). A general correctness
proof will be one of our next steps.

6 Evaluation

We used the Burns mutual exclusion algorithm [12] as a toy example to play with
our transformation idea as described in the previous section and to compare it



144 O. Travkin and H. Wehrheim

against a proof based on an operational encoding of the TSO memory model (see
Section 3). After getting the first promising results, we decided to tackle a more
realistic case study, the work-stealing deque algorithm by Arora et al. [5]. In par-
ticular, we were interested in whether we would be able to prove a more realistic
size of case study and therefore applied the transformation based approach to
it. The algorithm is an array based queue implementation for thread scheduling
and requires fences under weak memory models. The queue implementation is
based on fine-grained concurrency primitives, e.g., CAS operations. The provided
methods require fences in order to prevent elements from being removed twice.
Compared to the 20 LOC of the Burns algorithm, the work stealing deque had
58 LOC in our implementation of it. The C/C++ and LLVM IR code for both
implementations4 and the full linearizability proofs5 are available for download.

We used the theorem prover KIV [24] for the specification and mechanization
of our linearizability proofs. KIV provides a library with the proof obligations
(including fully mechanized soundness and completeness proofs) for proving lin-
earizability that our work is based on. Furthermore, KIV allows for automation
of proofs and provides strong visualization features, e.g., proof trees and specifi-
cation dependencies, which are crucial for the understanding of why a proof fails.
In the following, we provide our key insights about the presented approaches.

Operational vs. Transformed. The operational encoding of the memory model
allows for a straightforward translation of the program code to a program model.
The simplicity stems from having no need to think about the potential contents
of the store buffers during specification. However, as we figured out in our proof
of Burns, the store buffer content becomes crucial anyway. A theorem prover
reveals all the cases that are impossible, but break the property you try to prove.
For instance, the store buffer of process 0 could contain pending writes to flag1,
although process 0 never writes to flag1. Such cases have to be ruled out by the
invariant. Thus, we specified the possible store buffer contents for each program
location in the invariant. Furthermore, we had to specify whether a flag has a
particular value or not as properties depending on the state of store buffer. The
more states a store buffer can have, the more complex the invariant can get.

Although the transformation of the program model seemed to be more ef-
fort in the first place, it actually reduced our proof effort for several reasons.
Since, we had to find out about the possible store buffer states anyway, the
construction of the abstract reachability graph did not really increase our ef-
fort. The presence of the store buffer as part of the state in the operational
encoding basically forced us to reason about a FIFO queue in every step, be-
cause an invariant has to be established over all steps of the program. We got
rid of this burden by removing the store buffer from the local state, although
this was paid by gaining more transitions and program locations in the pro-
gram behavior. However, some of the transitions became empty transitions (e.g.,
COP1asc in Fig. 7) and were removed. A second beneficial side effect of store

4 http://lina-rmm-verification.googlecode.com/svn/trunk/examples
5 http://linearizability.bplaced.de

http://lina-rmm-verification.googlecode.com/svn/trunk/examples
http://linearizability.bplaced.de


Handling TSO in Mechanized Linearizability Proofs 145

buffer removal was a better automation of the proofs. In particular, the Burns
proof based on the operational encoding required 3784 proof steps in KIV of
which 201 were manual. The proof based on the transformed program model re-
quired 1536 steps of which 63 were manual. The generally lower number of proof
steps was also due to the significantly smaller invariant in the transformation
based proofs (approx. half the size of the former invariant). By removing store
buffer properties and the corresponding case distinctions on the flag values, we
got simple properties (e.g. mem[flag0] = 1) in certain program location ranges
(ls .pc ∈ {(A20, 〈 〉)}, (A30, 〈 〉), (A40, 〈 〉), (A50, 〈 〉)). The difference in time effort
was even bigger, but since many specifications could be reused or needed just a
bit of adaption from the operational encoding, a comparison would be unfair.

Work Stealing Deque. We verified the work stealing deque by Arora et al. with
the transformation based approach only, but experienced similar benefits from
the approach. First, we applied the model checking approach [27] to the example
in order to find out, where fences had to be placed in the program and to get
an idea of how the algorithm works on a low level. Although the specification in
KIV took us just a few days, we spent several weeks to find a correct invariant
allowing us to prove the algorithm linearizable. The effort was mainly caused
due to iterations of adding invariant properties, trying to establish them within
the proof, and in case of a failing proof trying to understand why and to adapt
the invariant properties again. We assume that a proof based on the operational
encoding would have required more effort because of the complexity due to store
buffers. The full linearizability proofs for the work stealing deque required 6923
steps of which 1100 were manual.

7 Conclusion

In this paper, we have presented two approaches for the specification of program
behavior under TSO and provided first experimental results on their impact
to the proof effort. Both approaches focus on the mechanization of proofs in a
theorem prover. The operational encoding, a widely used approach, is modular by
keeping a memory model separate from the program specification and therefore
allows for straightforward program specification. Proofs based on this approach
unfold the full behavior during a proof, but require reasoning about store buffer
content, which makes the proof tedious and complex.

The basic principle of employing program transformations to allow for SC-
based proofs afterwards has also been followed in [6], however, using different
transformations. The transformation in [6] uses a bounded number of shared
variable copies in order to simulate store buffer behavior. Our transformation
makes reasoning about store buffer content obsolete, without adding a burden to
reason about store buffer replacements. We were able to show that our approach
reduces the proof effort and complexity (in our experiment by half compared to
the operational approach) and also enables the reuse of SC-based techniques.
The drawback of our transformation is that it is restricted to a particular class
of programs (see Sec. 5).



146 O. Travkin and H. Wehrheim

Since the linearizability theory [15] used in our proofs assumes an SC memory
model, our proofs do not cover the case of delays (of store buffer flushes) past the
return statement of a method. Thus, we implicitly assume fences at invocation
and return of methods in order to be sound. We plan to adapt the linearizability
theory (similar to [16]) as to be able to drop this assumption.

Currently, we are working on proving correctness of the program transforma-
tion, i.e. proving that the TSO model of the original program and the new SC
model of the transformed program give us equivalent (up to weak bisimulation)
transition systems. Furthermore, we aim at generalizing the transformation to a
larger class of programs.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
Fence Insertion in Integer Programs via Predicate abstraction. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg
(2012)

2. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
IEEE Computer 29(12), 66–76 (1996)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) Program-
ming Languages and Systems. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg
(2013)

4. AMD. AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming (2012),
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf

5. Arora, N.S., Blumofe, R.D., Greg Plaxton, C.: Thread Scheduling for Multipro-
grammed Multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1998, pp. 119–129. ACM, New
York (1998)

6. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO Anal-
ysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
99–115. Springer, Heidelberg (2011)

7. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: POPL, pp. 235–248 (2013)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and Enforcing Robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and
Systems. LNCS, vol. 7792, pp. 533–553. Springer, Heidelberg (2013)

9. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

10. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

11. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: Dwyer, M.B., Tip, F. (eds.) ISSTA, pp. 122–132. ACM (2011)

12. Burns, J., Lynch, N.A.: Mutual Exclusion Using Indivisible Reads and Writes. In:
Proceedings of the 18th Annual Allerton Conference on Communication, Control,
and Computing, pp. 833–842 (1980)

http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf


Handling TSO in Mechanized Linearizability Proofs 147

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13, 451–490 (1991)

14. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 84–104. Springer, Heidelberg (2013)

15. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

16. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: iFM (to appear, 2014)

17. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consis-
tent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

18. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

19. Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1 (May 2012)

20. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic Inference of Memory Fences.
SIGACT News 43(2), 108–123 (2012)

21. Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28(9), 690–691 (1979)

22. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

23. Corina, S.: Păsăreanu and Willem Visser. A Survey of New trends in Sym-
bolic Execution for Software Testing and Analysis. Int. J. Softw. Tools Technol.
Transf. 11(4), 339–353 (2009)

24. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured Specifications and
Interactive Proofs with KIV. In: Automated Deduction—A Basis for Applications.
Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer (1998)

25. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012)

26. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

27. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244,
pp. 311–326. Springer, Heidelberg (2013)

28. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Torrellas, J., Chatterjee, S. (eds.) PPOPP,
pp. 129–136 (2006)

29. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009)


	Handling TSO in Mechanized LinearizabilityProofs
	1 Introduction
	2 Background
	3 TSO model
	4 Proving Linearizability
	5 Avoiding Store Buffers
	6 Evaluation
	7 Conclusion
	References




