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Abstract. Partitioning methods, such as k-means, are popular and use-
ful for clustering. Recently we proposed a new partitioning method for
clustering categorical data: using the transfer algorithm to optimize an
objective function called within-cluster dispersion. Preliminary experi-
mental results showed that this method outperforms a standard method
called k-modes, in terms of the average quality of clustering results. In
this paper, we make more advanced efforts to compare the performance
of objective functions for categorical data. First we analytically com-
pare the quality of three objective functions: k-medoids, k-modes and
within-cluster dispersion. Secondly we measure how well these objec-
tives find true structures in real data sets, by finding their global op-
tima, which we argue is a better measurement than average clustering
results. The conclusion is that within-cluster dispersion is generally a bet-
ter objective for discovering cluster structures. Moreover, we evaluate the
performance of various distance measures on within-cluster dispersion,
and give some useful observations.

Keywords: Objective Function, Clustering, Categorical data, Transfer
algorithm.

1 Introduction

Clustering is an important task in data mining [1,2]. A basic idea is that objects
in the same cluster are similar to each other. Usually clustering is for discover-
ing natural structures in data. There are also utility reasons like compression or
summarization. Among different clustering schemes, partitioning methods such
as k-means [3] and k-medoids [1] are extremely popular in practice. They de-
fine objective functions to be the goal of clustering, and they have heuristic
algorithms to optimize the objective. In this paper, the objective functions we
discuss are all from partitioning methods.

Clustering for categorical data can be different from numerical data, because
the distance measures for categorical data has a different nature. For example,
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the definition of center in k-means does not directly apply for categorical data.
In this regard, k-modes [4] is designed specifically for categorical data in the
framework of partitioning methods. It has a different definition of center than
k-means, but the optimization algorithm is similar.

Recently another partitioning method [5] for clustering categorical data is pro-
posed. The objective function is called within-cluster dispersion, and it empha-
sizes pairwise similarities between objects in a cluster. The optimization method
is a version of transfer algorithm [6], which is a general procedure for optimiz-
ing any form of objective functions. This method is as efficient as k-modes but
produces clustering results with better average quality.

In this paper, we focus on comparing the performance of three major objective
functions for categorical data: k-medoids, k-modes and within-cluster dispersion.
We analyze what kind of cluster structures those objectives define and experi-
ment on how good they cluster real data sets. We measure the performance with
respect to global optima, which we argue is a more convincing way to decide the
goodness of objective functions.

One advantage of the within-cluster dispersion objective is that it can be used
with any distance measures. In practice, it gives flexibilty for users. We can use
different measures to achieve multiple clustering results [7]. Then we can either
choose a best result or learn from different perspectives. It will be interesting to
know how different distance measures affect clustering results when using this
objective.

Another reason for evaluating performance of distance measures is the lack
of study in this topic. For numerical data, the distance measure is usually
Minkowski distance. For categorical data, it remains a open question. There
has been a study [8] comparing distance measures on the task of outlier detec-
tion, but no study has been conducted on the task of clustering. In this paper,
we show within-cluster dispersion is an objective function of good quality, thus
evaluating distances on this objective is something significant to carry out.

Contributions of this paper are:

1. For partitioning methods in clustering categorical data, we analyze the
quality of three objective functions: k-medoids, k-modes and within-cluster
dispersion. The main conclusion is that within-cluster dispersion discovers
structures better than the other two.

2. Various benchmark data sets are used to evaluate the performance of the
three objective functions. We compare the global optima rather than aver-
age clustering results, to make the comparison more convincing. The results
are consistent with our analysis.

3. On the within-cluster dispersion objective, we evaluate the performance of
various data-driven distance measures and provide some useful observations.

2 Related Work

The objective functions we discuss here are from partitioning relocation cluster-
ing methods. They are highly efficient, and easily explainable because of clear
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goals defined by objective functions. K-means is most popular and typical, which
is usually for numerical data. For categorical data, three major algorithms are
k-medoids, k-modes and the transfer algorithm.

The algorithm of k-medoids [1] has the same structure as k-means, except
that the centers of clusters are medoids. A medoid is defined to be the object
whose sum of distances to other objects is minimal. One advantage of k-medoids
over k-means is that the medoid can be computed with respect to any distance
measures.

K-modes [4,9] is also a k-means-like algorithm, but it’s specifically used for
categorical data. The center here is called mode. It takes the same form as an
object, with each attribute value being the most frequent value in the cluster.

Recently another method is proposed to use transfer algorithm for clustering
categorical data [5]. The objective, called within-cluster dispersion, is tradition-
ally a cluster evaluation measure [10]. With the appropriate design of the transfer
algorithm, the objective can be locally optimized as efficient as k-modes. The av-
erage of clustering results shows that this method discovers more real structures
than k-modes.

For numerical data, there have been empirical performance evaluations of
various objective functions. Some evidence suggest that the classical k-means
objective performs better than others, although the k-means objective tends to
result in clusters of approximately the same size and shape [3].

For performance evaluation of data-driven distance measures of categorical
data, there is some good work in [8]. They bring together fourteen distance
measures, and evaluated them in the task of outlier detection.

Books on cluster analysis [2,10] usually do not include these data-driven dis-
tance measures. They discuss more about measures for binary data that are
independent from data sets, while data-driven distances use helpful information
from data sets.

Some clustering algorithmsdefine distancemeasures based on neighbors [11,12].
Definition of neighbor uses simple distance measures like the simple matching dis-
tance. The distances we use here are different, in that they directly calculate the
distances between two objects.

3 Quality Analysis of Objective Functions

3.1 Perspective of Cluster Structures

For the objective function of k-means, there is an equivalence as follows:

K∑

k=1

∑

i∈Ck

(
xi − x(k)

)2

=
K∑

k=1

1

2nk

∑

i∈Ck

∑

j∈Ck

(xi − xj)
2 (1)

In the equation, K is the number of clusters, xi is the ith object of a data set.
For the simplicity of notations, we assume the data is one-dimensional. x̄(k) is
the mean of cluster k. nk is the number of objects in cluster k.
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The left side of the equation is based on centers, while the right side of the
equation computes all pairwise distances between objects in the same cluster.
Because the k-means algorithm is closely related to centers (assign objects to
nearest cluster center and update centers), the perspective reflected by the right
side of the equation is often neglected. It’s actually an important perspective
and a basic idea of cluster definition: objects in a cluster are similar with each
other. This definition is obviously very useful because k-means has been proved
to be very successful in discovering structures in many applications.

The objective of within-cluster dispersion is the same as the right side of
equation (1), except that it replaces the squared Euclidean distance with a gen-
eral distance measure for categorical data. See equation (2). So within-cluster
dispersion also defines clusters by calculating pairwise similarities between all
objects in a cluster (Figure 2).

Dispersion =
K∑

k=1

1

nk

∑

i∈Ck

∑

j∈Ck

d(xi, xj) (2)

Now let’s check k-medoids and k-modes from this perspective. Their objective
functions have a same form:

K∑

k=1

∑

i∈Ck

d(xi,mk) (3)

Where mk is medoid and mode respectively for the kth cluster. For k-medoids,
the medoid is defined to be one of the objects that minimizes the sum of dis-
tances, thus its objective function sums over much less number of distances than
all pairwise distances (see the comparison between Figure 1 and Figure 2).

Fig. 1. Star Structure of K-medoids
Fig. 2. Net Structure of Within-cluster Dis-
persion

For k-modes, the way objects connect with each other is a little more com-
plicated. The mode is not necessarily a real object like a medoid, but a virtual
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object: each attribute of a mode can take any value from that attribute. The
mode is chosen to minimize the sum of distances from objects in the respective
cluster to the mode. On each attribute of a mode, the value minimizes the sum
of distanes between values of objects and the value of the mode. So for each
attribute, k-modes is like doing a one-dimensional k-medoids (except that some
one-dimensional objects are duplicated).

In the following example, we assume the data has two attributes. In Figure
3, assume object x1 and object x2 have a same attribute value. Also reasonably
assume that this value is the most frequent value on the first attribute, thus it’s
the minimizer. So all other objects are connected to these two objects because
these pairs of distances are included in the objective function. We used dashed
lines to represent a ”partial connection” because the connection is only on one
attribute rather than both attributes. In Figure 4, x2 and x3 have the minimizer
value on the second attribute, and dashed lines are similarly connected. In Figure
5, we add the effects of two attributes together to get the whole picture of how
objects interact. For a pair of objects, if there are dashed lines in both Figure
3 and Figure 4, a solid line is plotted in Figure 5 meaning that they have full
connection. From Figure 5, we can see that the k-modes considers only a part
of the pairwise distances as in the case of within-cluster dispersion.

x1

x2

x3

Fig. 3. K-modes on the
First Attribute

x1

x2

x3

Fig. 4. K-modes on the
Second Attribute

x1

x2

x3

Fig. 5. Adding up Figure
3 and Figure 4: Partial-Net
Structure of k-modes

We have presented the different cluster structures that three objectives define.
Now the question is which cluster structure is more dominant in real data sets,
because in exploratory data analysis, we want to find the natural structures in
data. In the fully connected net structure, all objects are supposed to be similar
with each other. It’s a more compact cluster than k-modes and k-medoids. If
real-life clusters are such good quality clusters, then within-cluster dispersion
is better suited to discover them. One way to know what real-life clusters are
like is to look at k-means. K-means defines clusters to be the net structure and
k-means is widely recognized as being successful.
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Another argument from us is that the net structure is more dominant because
that’s how objects in natural clusters interact with each other. For populations of
plants, pollination happens to all adjacent plants. For a human society, people are
constantly moving and communicating with others. Objects interact with many
others that are near them, not with only one ”central” object. In this reasoning,
within-cluster dispersion also performs better than k-modes, and k-modes better
than k-medoids.

In the experiment section, we show the superiority of within-cluster dispersion
at discovering structures in real data sets.

3.2 Perspective of Informativeness

In this perspective, we compare how informative the objective functions are in
terms of describing clusters. From the discussion of cluster structures, we can
see that the computation of within-cluster dispersion involves the most amount
of distances/similarities. Obviously, the more distances computed, the more in-
formation an objective provides.

We can also reach this conclusion by comparing the centers of the objective
functions. Within-cluster dispersion can also be written in a center-based form.
We use simple matching distance to illustrate. Simple matching distance between
objects x and y on d attributes is defined as:

d(x, y) =

d∑

j=1

dj(xj , yj) dj(xj , yj) =

{
0 if xj = yj
1 otherwise

(4)

If we transform the categorical data into binary data, and treat the binary
data as numerical data, then within-cluster dispersion on the original data is
equivalent to the objective function of k-means on the transformed data. This is
because simple matching distance is essentially equivalent to Euclidean distance
on 0/1 data. So the center of k-means is our virtual ”center” for within-cluster
dispersion. Obviously, the dimension of the center is the same as the number
of all attribute values, and the entry on each dimension is proportional to the
number of objects taking the respective attribute value:

(
f(A11)

N
, ...,

f(A1p1)

N
, ...,

f(Ad1)

N
, ...,

f(Adpd
)

N
) (5)

Where Aij denotes the jth value of the ith attribute, and f(Aij) is the number
of objects taking value Aij , N being the total number of objects, pd being the
number of values in attribute Ad.

This center obviously has more information than the centers of k-modes and k-
medoids. For each attribute, k-modes takes the attribute value with the biggest
entry in vector (5), while k-medoids restricts the values to be from one real
object. So although mode and medoid both have the same dimension as the
number of attributes, mode has more significant information. If we see objective
functions as a measure for the information in clusters, the more informative an
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objective is, the better. In this sense, within-cluster dispersion is the best, and
k-modes better than k-medoids.

Informativeness means how well an objective can distinguish the quality of
a cluster. If a distance between two objects is not reflected in the objective,
changing it might not affect the value of the objective. Thus the two clusters be-
fore and after change are not distinguished by the objective. In practice, lacking
the ability to distinguish between clusters can result in a problem: for a single
objective value, several different structures are found. If this objective value is
the minimum and chosen to be the best result, there are no apparent ways to
choose one structure among several options.

Note that there is no way to strictly prove that one objective function is
better than another one. The reason is that clustering in real data sets can be
arbitrary. That’s why there are so many different clustering methods that define
different concepts of clusters. For one data set, say an objective function A finds
structure SA, and it’s better than SB found by objective B. However, we can
always change the data labels to something else (creating a new data set), so
that B performs better than A. So to summarize this section, the argument we
are trying to make is: within-cluster dispersion is ”generally” better than the
other two objectives.

4 Distance Measures

One advantage of within-cluster dispersion over k-modes is that it doesn’t de-
fine a specific distance measure. Since within-cluster dispersion is a very good
objective function, it is useful to evaluate how different distance measures affect
its clustering performance. In this section, we introduce the distance measures
[8] we use for evaluation.

The limitation of the simple matching distance is that it treats all categorical
values the same. Data-driven measures use the characteristics from a particular
data set to define distances. For example, if an attribute of two objects has the
same categorical value, and that value is rare in the data set, it might be a good
idea to decide that this rare match shows more similarity (less distance).

Assume a data set has N objects, each has d attributes, A1, ...Ad. Then we
can use the following information from the data set:

nk: The number of attribute values for attribute Ak.
fk(x): The number of times (frequency) attribute value x appears in attribute

Ak.
p̂k(x): The sample probability of attributeAk takes value x, given by: fk(x)/N .
p2k(x): Another probability measure of attribute Ak takes value x, given by:

p2k(x) =
fk(x)(fk(x) − 1)

N(N − 1)
(6)

From Boriah [8], some of the measures are distance measures in the original
form. They can be directly applied here. For others, we use a simple but effective
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way to transform similarity measures into distance:

distance = 1− similarity (7)

All the measures are calculated by summing over per-attribute distances:

d(X,Y ) =

d∑

k=1

dk(Xk, Yk) (8)

The measures are listed in Table 1. They have different ideas of how to incor-
porate the characteristics of a data set. For example, IOF says that mismatches
between higher frequency values are stronger, thus a larger distance is assigned.
Some of the measures from [8] are too complicated and they have similar ideas
about how to use the information in data sets. These measures are not included
in our study. Note that for all these measures, the transfer algorithm can be
carried out in a time complexity that is linear to data size N.

5 Experiments

5.1 Quality of Objective Functions

In Section 3, the conclusion of the analysis is that the within-cluster dispersion
discovers better (more real) structures than k-medoids and k-modes. In this
section, the goal is to evaluate the objective functions with real data sets. If the
structures an objective discovered fit well with the real clusters, then it’s a good
objective.

The data sets we use are from UCI machine learning repository [13]. Their
characteristics are listed in Table 2. There are more than 5 categorical data sets
in UCI repositary. We didn’t include more data sets to the experiment because
real data sets can be hard for all three objective functions to handle. For example,
if objects in a real cluster (class) are hardly similar with others, any clustering
methods don’t work. The 5 data sets we do have are more or less suitable for
the task of cluster analysis, but they are not deliberately chosen in favor of any
of the three objectives.

In this paper we compare the quality of different objective functions when
their global optima are reached. One other option is to compare average clus-
tering results, which means the average of any optima (global or local) when
the algorithms converged. We argue that global optimum is a better criterion
for deciding the goodness of objective functions. There are two reasons. One
is that the quality of local optima depends on the optimization algorithm. For
example, in k-means, Hartigan’s method finds better optima than the common
Lloyd’s method [14,15]. However, the thing we want to find out is how good the
objective function is, not the goodness of the optimization algorithm. Global
optimum is the result that an objective function can provide at its best. The
other reason is, for heuristic algorithms like k-means, the standard way is to run
the algorithm multiple times (say 1000) and pick the result with the minimum
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Table 1. Distance Measures For Categorical Data

Measures dk(Xk, Yk)

Eskin =

{
0; if Xk = Yk

2
n2
k

; otherwise

IOF =

{
0; if Xk = Yk

log fk(Xk)logfk(Yk); otherwise

OF =

{
0; if Xk = Yk

log N
fk(Xk)

log N
fk(Yk)

; otherwise

Goodall1
=

⎧⎨
⎩

∑
q∈Q

p2k(q); if Xk = Yk

1; otherwise

{Q ⊆ Ak : ∀q ∈ Q, pk(q) ≤ pk(Xk)}

Goodall2
=

⎧⎨
⎩

∑
q∈Q

p2k(q); if Xk = Yk

1; otherwise

{Q ⊆ Ak : ∀q ∈ Q, pk(q) ≥ pk(Xk)}
Goodall3 =

{
p2k(Xk); if Xk = Yk

1; otherwise

Goodall4 =

{
1− p2k(Xk); if Xk = Yk

1; otherwise

Gambaryan =

⎧⎪⎨
⎪⎩
1 + p̂k(Xk)log2p̂k(Xk)+

(1− p̂k(Xk)) log2 (1− p̂k(Xk)) ; if Xk = Yk

1; otherwise

Table 2. Characteristics of Benchmark Data Sets

Mushroom Congress Promoter Soybean Splice

Number of Objects 8124 435 106 47 3190

Number of Attributes 22 16 58 35 61

Number of Classes 2 2 2 4 3

objective value. As the computing power grows in modern days, the best result
from thousands of runs is very likely to be the global optima [16].

In our experiment, in order to increase the chance of finding the global optima,
we run the algorithms for as many times as possible. Note that we use random
initial conditions to make the clustering results as diverse as possible. Although
we can not be 100% sure that global optima are found, but it’s very likely to
be true: for all data sets the optima we get from 1000 runs are already highly
duplicated.

The results are shown in Table 3 and Table 4. In Table 3, different numbers
of clusters are set on the Mushroom data set. In Table 4, the number of clusters
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of the four data sets is the same as the number of true clusters(classes). The
performance measure is purity [10] (also called accuracy in literature like [17]),
which measures how well cluster results correspond to real structures in data
sets. ak is the number of objects from the most dominant class in cluster k.

Purity =

K∑
k=1

ak

N
(9)

From the results, we can see that within-cluster dispersion outperforms the
other two, which is consistent with the analysis in Section 3. We can also see
that in most cases, k-modes outperforms k-medoids. This is also reflected in our
analysis: k-modes defines a more real cluster structure than k-medoids.

Table 3. Clustering Performance of Three Objectives on Mushroom Data Set

k=2 k=3 k=4 k=5 k=6

k-medoids 0.879 0.772 0.854 0.85 0.855

k-modes 0.891 0.719 0.856 0.888 0.888

Dispersion 0.892 0.894 0.894 0.894 0.894

Table 4. Clustering Performance of Three Objectives on Four Data Sets

Soybean Promoter Congress Splice

k-medoids 0.936 0.864 0.509 0.519

k-modes 1 0.864 0.528 0.519

Dispersion 1 0.880 0.623 0.845

In Section 3.2, we mentioned that due to the uninformativeness of k-modes
and k-medoids, different clustering structures can have a same value of objective
function. This problem is exposed in the experiments on real data sets. For
example, using k-modes in the Mushroom data set (number of clusters set to
2), for a local optimum of 62534, some results have an accuracy of 0.871, others
have an accuracy of 0.884. In practice, if this kind of local optimum happens
to be the minimum after some runs, it’s a problem for users to choose among
different clusterings.

5.2 Evaluation of Distance Measures

We evaluated nine data-driven distance measures on the five benchmark data
sets in Table 2. The results are shown in Table 5 and Table 6. Again, the goodness
of discovered structure is measured by purity. In Table 5 the results are averaged
from 1000 runs, while in Table 6, the results are recorded when global optima
are achieved. Although the number of data sets is not quite big, but we can still
make some interesting observations:
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1. For one data set, different distance measures can have significantly different
performances in discovering structures. For example, for the Mushroom data
set, Eskin is a lot worse than IOF. So it’s important to choose a suitable
measure for a particular data set.

2. For data sets of a similar nature, distance measures can have consistent per-
formances. For example, Goodall4 is good for two gene data sets (Promoter
and Splice). OF is not good for the two plant data sets (Mushroom and
Soybean in Table 6). So in practice, we can use the knowledge from previous
data sets to make the choice of an appropriate distance.

3. Distances with opposite philosophies have significantly different results over
one data set. For example, the performance of Goodall3 and Goodall4 on
data set Splice. This is easily expected and in practice, if one measure doesn’t
work well, it’s a good idea to choose an ”opposite” one.

4. No distance measure performs badly across all data sets. For example, OF
has bad performance on most data sets. But for the Congress data set, it is
the best measure. This implies that these various distance measures can all
somehow be useful, and they are worth a try in practical clustering tasks.

Table 5. Average Performance of Different Distance Measures

Mushroom Congress Promoter Soybean Splice

SMD 0.7534 0.8805 0.8022 0.9650 0.8392

Eskin 0.7856 0.8805 0.8035 0.9122 0.8384

IOF 0.8182 0.8805 0.8160 0.9656 0.8687

OF 0.8352 0.8828 0.5881 0.8875 0.5972

Goodall1 0.7435 0.8805 0.7874 0.9350 0.7523

Goodall2 0.7404 0.8805 0.7663 0.9192 0.7430

Goodall3 0.7580 0.8805 0.7761 0.9698 0.7415

Goodall4 0.7480 0.8805 0.9528 0.9600 0.8919

Gambaryan 0.7652 0.8805 0.8226 0.9583 0.8707

Table 6. Performance of Different Distance Measures with Respect to Global Optima

Mushroom Congress Promoter Soybean Splice

SMD 0.8922 0.8805 0.6226 1 0.8445

Eskin 0.8385 0.8805 0.6226 1 0.8455

IOF 0.8987 0.8805 0.6226 1 0.8774

OF 0.8469 0.8828 0.6226 0.8511 0.6009

Goodall1 0.8978 0.8805 0.6321 1 0.7520

Goodall2 0.8936 0.8805 0.6226 1 0.7508

Goodall3 0.8954 0.8805 0.6226 1 0.7455

Goodall4 0.8865 0.8805 0.9528 1 0.8928

Gambaryan 0.8912 0.8805 0.6226 1 0.8962
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6 Conclusions

In this paper, we focused on the performance of objective functions for clustering
categorical data. First, we analyzed the quality of three objective functions, by
presenting what kind of structures each of them define, and how informative they
are to measure cluster quality. Our conclusion is that within-cluster dispersion
is generally better than k-medoids and k-modes for discovering structures. In
experiments on benchmark data sets we measure the performance of objectives
functions with respect to their global optima, and the results are consistent with
the previous analysis. Secondly, for the objective of within-cluster dispersion, we
evaluated how various distance measures affect the performance of clustering re-
sults. Experiments exposed several interesting insights for the practice of cluster
analysis.
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