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Abstract. We address a problem of estimating the whole structure of
an actual social network of people from only their two types of anony-
mous ego-centric information, personal attributes like sex and relational
ones like the numbers of female and male friends, obtained as answers to
questionnaires in a social survey. From these attribute values, we can ob-
tain the degree of each node, which corresponds to the number of friends
of each person, together with some macroscopic information about the
network, like the ratio of links between female and male nodes to the
total number of links, as the mixing matrices. However, we cannot di-
rectly know the actual connections between two nodes only from these
observed mixing matrices. Thus, we propose a new method for estimating
the whole structure of the hidden network by minimizing the Kullback-
Leibler divergence between each pair of the observed and estimated mix-
ing matrices, under the constraints with respect to the degree of each
node. In our experiments using three types of networks, we show that the
proposed method can produce much better estimation results, in com-
parison to a random baseline which is assigned arbitrary links under the
degree constraints, especially for the cases of highly assortative, where
each node has a tendency to connect to nodes with the same attribute
values.

1 Introduction

In recent years, there have been many studies on complex networks which ana-
lyze their essential structures and/or phenomena happened over them (Leskovec
et al. 2007; Wu et al. 2008). It has been widely known that many complex
networks have common characteristics such as a small-world nature (Watts et
al. 1998) and a scale-free nature, and many social networks have an assorta-
tive/homophily nature (Newman et al. 2003) which means a tendency that lots
of linked pairs of nodes are likely to have same or similar properties. Further-
more, in order to investigate real world phenomena such as information diffusion
and opinion formation over social networks, the Independent Cascade model, the
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Linear Threshold model (Kempe et al. 2003; Saito et al. 2009), and the voter
model (Even-Dar et al. 2007) have been studied, under an implicit assumption
that the whole structure of a target network is already given. In real world prob-
lems, however, it is not always easy to obtain a whole network structure because
of the privacy issue, even for on-line social networks mainly due to a rate limita-
tion of accessing data resources. In such cases, we can obtain partial information
about the target network. By collecting some statistical or macroscopic infor-
mation about a network, we need to estimate the whole structure as accurately
as possible. Even for an estimated network, we can know some important nodes
such as influential ones (Kimura et al. 2010) with a reasonable accuracy by using
the above-mentioned models for information diffusion or opinion formation, if
the precision of the estimated network is sufficient high.

In this paper, basically supposing that a social survey provides the source ego-
centric information, we propose a method of estimating the whole structure from
only anonymous ego-centric information. The ego-centric information consists of
two types of information, personal attributes like sex and relational ones like the
numbers of female and male friends. By collecting and aggregating these pieces
of information, we can obtain some macroscopic information like the ratio of
links between female and male nodes to the total number of links, as the mixing
matrices. However, we cannot directly know the actual connections between
two nodes only from these observed mixing matrices. Thus, we propose a new
method for estimating the whole structure of the hidden network by minimizing
the Kullback-Leibler divergence between each pair of the observed and estimated
mixing matrices.

As existing studies on estimating network structure or predicting missing
links, a variety of techniques have been proposed such as topological scores (Now-
ell et al. 2003), feature-based classification (Oyama et al. 2004), kernel-based
methods (Kato et al. 2005), hierarchical property (Clauset et al. 2008), and
matrix factorization (Menon et al. 2011). These methods attempt to learn link
tendencies from observed linked pairs and predict the link existence or non-
existence for the remaining node pairs. On the other hand, our method attempts
to estimate all links from only ego-centric information, therefore these existing
methods and our method differ in the problem settings.

In our experiments, in order to evaluate the precision of the estimated network
obtained by our proposed method we utilize three networks each of whose link
structure is completely known. For these networks, we assign artificial attributes
to all the nodes, where the associated values of some attributes are determined
by using the voter model, so that we can quantitatively evaluate the relation
between assortativity of networks and estimation precisions.

This paper is organized as follows: after formalizing our problem framework
in Section 2, we describe a detail of our proposed method in Section 3. Then, by
using three networks, we compare the estimation precisions and representative
network statistics with those of a random baseline in Section 4. Finally, we
describe our conclusion in Section 5.
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2 Problem Framework

Formally, we regard the N answerers of a social survey as nodes and define the
node set as V . LetK be the number of categorical attributes we focus on. Let S(k)

be the number of categories of the k-th attribute, and we assign each categorical
attribute value to an integer ranging from 1 to S(k), i.e., {1, . . . , S(k)}. For each
node u, we consider the K-dimensional attribute vector fu = (f

(1)
u , . . . , f

(K)
u )

whose k-th element is f
(k)
u ∈ {1, . . . , S(k)}.

Now, for each pair of node u and attribute k, we also consider the S(k)-

dimensional vector g
(k)
u whose t-th element g

(k)
u (t) corresponds to the number

of u’s friends with the categorical value t for this attribute, where note that t ∈
{1, . . . , S(k)} and du =

∑S(k)

t=1 g
(k)
u (t). Then, for the k-th attribute, we can define

the following mixing matrix element m
(k)
s,t with respect to a pair of categorical

values s and t:

m
(k)
s,t =

1

L

∑

{u:f(k)
u =s}

g(k)u (t) k = 1, . . . ,K

where L stands for the total number of links, i.e., L
∑

u∈V du. Thus, we can

obtain the observed mixing matrix M(k) = [m
(k)
s,t ] for each attribute k. From

each mixing matrix, we can calculate the assortative coefficient according to
the Newman’s method (Newman 2003), so that we can discriminate whether a
certain attribute is assortative or not.

In order to derive our objective function, we construct an N ×S(k) projection
matrix for the k-th attribute as follows:

W(k) = [w(k)
u,s] =

{
1 if f

(k)
u = s

0 otherwise

Now, we suppose that an adjacency matrix A = [au,v] is given where au,v means
the (u, v)-th element, i.e., au,v ∈ {0, 1}. Then, for a given projection matrixW(k)

of the k-th attribute, we can calculate an S(k) × S(k) estimated mixing matrix

from an adjacency matrix A, denoted by M̂(k)(A) = [m̂
(k)
s,t (A)], as follows:

m̂
(k)
s,t (A) =

1

L

∑

u∈V

∑

v∈V \{u}
au,vw

(k)
u,sw

(k)
v,t .

Then we can define the optimal adjacency matrix Â which minimizes the
KL divergences between the observed and estimated mixing matrices, M(k) and
M̂(k)(A), as follows:

Â = arg min
A

{
K∑

k=1

KL
(
M(k)||M̂(k)(A)

)
}

under the condition that
∑

v∈V \{u} au,v = du for each node u ∈ V . Note that

KL(P ||Q) means the KL divergence between probabilistic distributions P and
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Q. The calculation of the optimal adjacency matrix Â can be transformed as
follows:

Â = arg min
A

⎧
⎨

⎩

K∑

k=1

S(k)
∑

s=1

S(k)
∑

t=1

m
(k)
s,t log

m
(k)
s,t

m̂
(k)
s,t (A)

⎫
⎬

⎭

= arg max
A

⎧
⎨

⎩

K∑

k=1

S(k)
∑

s=1

S(k)
∑

t=1

m
(k)
s,t log m̂

(k)
s,t (A)

⎫
⎬

⎭

= arg max
A

⎧
⎨

⎩

K∑

k=1

S(k)
∑

s=1

S(k)
∑

t=1

m
(k)
s,t log

∑

u∈V

∑

v∈V \{u}
au,vw

(k)
u,sw

(k)
v,t

⎫
⎬

⎭

Therefore, we can solve our problem by finding the optimal A which maximizes
the following objective function:

J (A) =

K∑

k=1

S(k)
∑

s=1

S(k)
∑

t=1

m
(k)
s,t log

∑

u∈V

∑

v∈V \{u}
au,vw

(k)
u,sw

(k)
v,t , (1)

under the condition that
∑

v∈V \{u} au,v = du for each node u ∈ V .

3 Solution Algorithm

In order to maximize the objective function Eq.(1), we employ the EM algorithm
by defining the following posterior probability on the link between nodes u and
v.

q̄
(k)
s,t,u,v =

āu,vw
(k)
u,sw

(k)
v,t

∑
x∈V

∑
y∈V āx,yw

(k)
x,sw

(k)
y,t

where āu,v means the current value of (u, v)-th element of the adjacency matrix.
Then, we define the expectation value of log-likelihood of complete data on
posterior probability referred to as Q function as follows:

Q
(
A|Ā)

=

K∑

k=1

S(k)
∑

s=1

S(k)
∑

t=1

m
(k)
s,t

∑

u∈V

∑

v∈V \{u}
q̄
(k)
s,t,u,v log au,v.

In our problem framework, due to the degree constraints, we add the following
Lagrange multiplier terms.

Q̃
(
A|Ā)

= Q
(
A|Ā)

+
∑

u∈V

λu

⎛

⎝du −
∑

v∈V \{u}
au,v

⎞

⎠

where λu means the Lagrange multiplier on node u.
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Although the actual value of each adjacency matrix element is au,v ∈ {0, 1},
we relax our problem by allowing each value to be a real number au,v ∈ [0, 1].
and we refer to this matrix as a relaxed adjacency matrix.

The proposed method estimates the Q̃ function as the E step of the EM
algorithm, and maximizes the Q̃ function by updating the relaxed adjacency
matrix as the M step as follows:

au,v =
du

∑K
k=1

∑S(k)

s=1

∑S(k)

t=1 m
(k)
s,t q̄

(k)
s,t,u,v

∑K
k=1

∑S(k)

s=1

∑S(k)

t=1 m
(k)
s,t

∑
v∈V \{u} q̄

(k)
s,t,u,v

.

The proposed method repeats the E and M steps until convergence. Furthermore,
since this relaxation problem is a convex optimization problem over a convex set,
it is guaranteed that we can always obtain the unique global optimal solution
from any initialized values. Let At be the relaxed adjacency matrix at t-th
iteration of our algorithm. For a small value ε, we define the convergence criterion
as |(J(At)− J(At−1))/J(At−1)| < ε. Finally, our proposed method selects the
largest top-du values from {âu,v : v ∈ V } for each u. and constructs an estimated

link set Ê. Then, the method outputs the estimated link set Ê.
Consequently given the node set V and K categorical attributes, we propose

a method to estimate all the links between actual nodes of their hidden social
network by the following steps:

STEP1 For each node u, extract K categorical attribute values and then con-
structK-dimensional attribute vector fu. For each user u, extract the number
of friends du and its breakdown by values of attribute k, and then construct
observed mixing matrix M(k);

STEP2 Estimate a relaxed adjacency matrix Â = [âu,v] by minimizing the KL
divergence between each pair of the observed and estimated mixing matrices,
and select the largest top-du values from {âu,v : v ∈ V } for each u, then

outputs an estimated link set Ê;

4 Experimental Evaluation

Our goal is estimating the whole structure using only ego-centric information
obtained from a social survey. However, in this paper, in order to quantitatively
evaluate the precision of estimated network obtained by our proposed method,
we utilize three networks each of whose link structure is completely known. Fur-
thermore, it is naturally considered that the estimation precision depends on
the numbers of attributes and categories, and the levels of assortative coeffi-
cients. Then, we evaluate the relations between estimation precisions and these
conditions of utilizing attributes. Therefore, at the STEP1 of our method, as sub-
stitute for extracting K attributes from a social survey, we assign K artificial
attributes by the method described in the subsection 4.2.
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4.1 Network Data

We describe a detail of three networks used in our experiments.
First one is a synthetic network with a hierarchical property, just like employee

relationships. In this network, we can assume two types of nodes, central and
peripheral nodes. The central nodes are characterized by relatively high degree
and low clustering coefficients, while the peripheral nodes by relatively low degree
and high clustering coefficients. We generated this network according to Ravasz
et al. (Ravasz et al. 2003). This network has 125 nodes and 410 links. Hereafter,
this network is referred to as Hierarchical network.

Second one is a hyperlink network of a Japanese university Web site, where
we obtained this network by crawling the Web site as of August 2010. This
network has 600 nodes and 1,299 links. Hereafter, this network is referred to as
Web network 2.

Last one is a co-author network of the international conference NIPS (Neural
Information Processing Systems). We define an author as a node and add a link
between two nodes who have at least one joint paper. There exist some researcher
communities of similar research topics. This network has 1,036 nodes and 2,044
links. Hereafter, this network is referred to as Nips network.

4.2 Artificial Attributes

We describe the method for assigning attribute values to each node via the voter
model. The voter model is one of the most basic stochastic process models, which
simulates opinion formation processes over networks. Let ht(u) be the opinion
value of node u at time t and Γ (u) be the set of parent/adjacent nodes of u. For
a given a network G = (V,E), we assign categorical values of an attribute k for
each node as follows:

VM1 Initialize t ← 1 and assign the initial opinion value as h0(u) ← s by
selecting an atrribute value s ∈ {1, . . . , S(k)} uniformly at random for each
node u ∈ V ;

VM2 Update the opinion value as ht(u) ← ht−1(v) by selecting a parent node
v ∈ Γ (u) uniformly at random for each node u ∈ V ;

VM3 Terminate if the assortative coefficient r > 0.8, otherwise update t ← t+1
and go back to VM2;

In our experiments, this algorithm terminated within 10 iterations for all the
trials.

4.3 Experimental Settings

In order to evaluate how assortativity of attributes on a network affects to the
performance of our proposed method, we prepare two types of sets of K at-
tributes, assortative ones and non-assortative ones. By repeating the trials of

2 The site name and its address are ”Faculty of Computer and Information Sciences,
Hosei University” and http://cis.k.hosei.ac.jp/, respectively.
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(c) Nips network

Fig. 1. Precision with respect to the number of attributes

the voter model, we obtain the assortative attribute for each pair of node u and

attribute k, f
(k)
u ← hT (u), where T means the final step of our voter model pro-

cess. On the other hand, by simply assigning an initial random attribute value,
we obtain the non-assortative attribute for each pair of node u and attribute k,

f
(k)
u ← h0(u). Hereafter, for a convenience, our proposed method is reffered to
as the assortative method in the case that a series of assortative attributes are
available, while it is reffered to as the non-assortative method in the case that
only a series of non-assortative attributes are available.

We set each initial value of the relaxed adjacency matrix element to au,v =
du/N , and the convergence criterion of our algorithm is specified by ε = 10−4.
Then, we estimate the whole structure of each network by our proposed method
using a set of attributes, and evaluate the performance as the average precision of
10 estimation results obtained by 10 sets of attributes generated independently.

4.4 Estimation Precisions with Respect to the Number of
Attributes

In order to evaluate our proposed method, we employ a precision measure which
has been widely used in the information retrival field. More specifically, we define
the sets of the true and estimated links as E and Ê, respectively, and calculate
the precision of Ê to E as F (E, Ê) = |E ∩ Ê|/|E|.

Fig. 1 shows the precisions of the assortative and non-assortative methods
with respect to the number of attributes K ranging from 1 to 9, where the
number of categories S(k) is set to 5 for each attribute. In these figures, we
plot the estimation precisions obtained by the assortative method, the non-
assortative method and random baseline. with a line with filled circles, a line with
filled squares, and a simple line, respectively. Here, the random baseline is the
performance obtained by arbitrary assigning links under the degree constraints.

From Fig. 1, we can observe the following characteristics. First, as expected,
for each network, the performance of the assortative method streadly improved
when the number of attributes increases in comparison to the random baseline.
This fact suggests that the proposed method generally works well by using an
enough number of attributes with high levels of assortataive coefficients. Here
we should emphasize that a person has a tendency to connect to people with
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Fig. 2. Precision with respect to the number of categories

the same attribute value in general. Second, unlike the assortative method, the
performance of the non-assortative method did not improve sufficiently even for
a case of large number of attributes. Especially, the performance improvement
was almost nothing for the Nips network with the largest size. This fact indicates
that our proposed method works well only for networks with a relatively small
size in case that only a series of non-assirtative attributes are available.

4.5 Estimation Precisions with Respect to the Number of
Categories

We evaluate relations between precisions and the number of categories of at-
tributes used in estimation. Fig. 2 shows the precisions of the assortative and
non-assortative methods with respect to the number of categories S(k) rang-
ing from 2 to 10 and the number of attributes K is set to 1 for each result of
estimation.

From Fig. 2, we can observe the following characteristics. First, similar to the
previous experimental results as shown in Fig. 1, for each network, the perfor-
mance of the assortative method streadly improved in comparison to the random
baseline, when the number of categories increases. This fact also suggests that
the proposed method generally works well by using even only one assortative
attribute if it has large numbers of specific categories. Second, unlike the assor-
tative method, the performance of the non-assortative method did not improve
sufficiently even for a case of large number of categories, except for the small
scale Hierarchical network. This fact also indicates that our proposed method
works well only for networks with a relatively small size in case that only one
non-assirtative attribute is available. Therefore, when combining our results ob-
served in Fig. 1 and 2, by preparing an enough number of assortative attributes,
each of which has a relatively large number of specified categories, we can ex-
pect that our proposed method is promissing to estimating the whole structure
of networks from only anonymous ego-centric information.

4.6 Estimation Performances in Terms of Network Statistics

We evaluate the structure of the obtained networks in terms of network statis-
tics. To this end, we focus on the average clustering coefficient C̄, the standard
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Table 1. Statistics of true, proposed and random networks

(a) Hierarchical network
C̄ CS.D. D̄

true 0.837 0.164 2.128

proposed 0.623 0.211 2.826

random 0.063 0.087 2.499

(b) Web network
C̄ CS.D. D̄

true 0.540 0.413 4.219

proposed 0.340 0.390 14.433

random 0.004 0.031 4.650

(c) Nips network
C̄ CS.D. D̄

true 0.582 0.427 6.213

proposed 0.420 0.394 15.923

random 0.001 0.013 5.060

deviation of the clustering coefficient of each node CS.D., and the average short-
est path length D̄ as the representative network statistics. Note that the average
of shortest path length is calculated by harmonic average to cope with discon-
nected networks. In this experiment, we used 9 assortative attributes each of
which consists of 5 categories (K = 9, S(k) = 5).

Table 1 compares the statistics of the true networks, the estimated networks by
the assortative method, and random ones. From Table 1, we can see the following
similar characteristic. First, the average values of clustering coefficient C̄ of the
estimated networks by the assortative method are significantly close to those
of the true networks, in comparison to those of random networks. We can also
see that the standard deviations of clustering coefficients CS.D. of the estimated
networks are also reasonably close to true ones. Existing assortative attributes
means that the neighborhood nodes in the network are also likely to have same
attribute values. Thus, our method can estimate the local relationships and
deviation of clustering coefficients more accurately.

Moreover, in case of the relatively small networks like the Hierarchical net-
work, we observe that the average shortest path length D̄ of the estimated net-
work is also close to that of the true network. In contrast, in each case of the
relatively large networks such as the Nips and Web networks, we observe that
the average shortest path length of the estimated network is not close to that of
the true network. This is because our proposed method occasionally produced
disconnected network in the case of large scale netowrks. On the other hand, the
random network shows the small shortest path length because of random links
like small-world model (Watts et al. 1998). From these results, we conjecture
that our proposed method can estimate more accurately the local structure like
communities.

5 Conclusion

We addressed the problem of estimating the whole structure of a network. In
this paper, we proposed a method of estimating the whole structure from only
anonymous ego-centric information by minimizing the Kullback-Leibler diver-
gence between each pair of the observed and estimated mixing matrices.

In our experiments using several types of synthetic and real networks, we
evaluated the estimation precisions with respect to the numbers of attributes
and categories and assortativity of attributes. From our experimental results, our
proposed method generally works well by using an enough number of attributes
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with high levels of assortataive coefficients, and the method can estimate more
accurately the local structure like communities.

In future, we plan to evaluate the performance of our proposed method by
using several types of attributes such as non-assortative but non-random ones,
numerical ones like age, and so forth.
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