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Abstract. The clique-chromatic number of a graph is the least number
of colors on the vertices of the graph so that no maximal clique of size at
least two is monochromatic. In 2003, Gravier, Hoang, and Maffray have
shown that, for any graph F , the class of F -free graphs has a bounded
clique-chromatic number if and only if F is a vertex-disjoint union of
paths, and they give an upper bound for all such cases. In this paper,
their bounds for F = P2 + kP1 and F = P3 + kP1 with k ≥ 3 are
significantly reduced to k + 1 and k + 2 respectively, and sharp bounds
are given for some subclasses.
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1 Introduction

All graphs considered in this paper are simple. We use terminologies from West’s
textbook [9]. V (G) and E(G) denote the vertex set and the edge set of a graph
G, respectively. The symbols Kn, Pn and Cn denote the complete graph, path,
and cycle, with n vertices, respectively. The diamond is the complete graph K4

minus an edge. The neighborhood of a vertex x in a graph G is the set of vertices
adjacent to x, and is denoted by NG(x). For S ⊆ V (G), NS(x) stands for the
neighborhood of a vertex x in S, that is, NS(x) = NG(x) ∩ S. Given graphs
G1, G2, . . . , Gk with pairwise disjoint vertex sets, the disjoint union of graphs
G1, G2, . . . , Gk is the graph with vertex set

⋃k
i=1 V (Gi) and edge set

⋃k
i=1 E(Gi),

denoted by G1 +G2 + · · ·+Gk. For k ∈ N, kG is the disjoint union of k pairwise
disjoint copies of a graph G.

A subset Q of V (G) is a clique of G if any two vertices of Q are adjacent.
A clique is maximal if it is not properly contained in another clique. A k-coloring
of a graph G is a function f : V (G) → {1, 2, . . . , k}. A proper k-coloring of a
graph G is a k-coloring of G such that adjacent vertices have different colors.
The chromatic number of a graph G is the smallest positive integer k such that
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G has a proper k-coloring, denoted by χ(G). A proper k-clique-coloring of a
graph G is a k-coloring of G such that no maximal clique of G with size at
least two is monochromatic. A graph G is k-clique-colorable if G has a proper
k-clique-coloring. The clique-chromatic number of G is the smallest k such that
G has a proper k-clique-coloring, denoted by χc(G). Note that χc(G) = 1 if
and only if G is an edgeless graph. Since any proper k-coloring of G is a proper
k-clique-coloring of G, χc(G) ≤ χ(G). Recall that a triangle is the complete
graph K3. If G is a triangle-free graph, then maximal cliques of G are edges; so
χc(G) = χ(G). Mycielski [8] showed that the family of triangle-free graphs has no
bounded chromatic number. Consequently, it has no bounded clique-chromatic
number, either. On the other hand, many families of graphs have bounded clique-
chromatic numbers, for example, comparability graphs, cocomparability graphs,
and the k-power of cycles (see [2,4,5]). In 2004, Bacso et al. [1] proved that
almost all perfect graphs are 3-clique-colorable and conjectured that all perfect
graphs are 3-clique-colorable.

A subgraph H of a graph G is said to be induced if, for any pair of vertices
x and y of H, xy is an edge of H if and only if xy is an edge of G. For a
given graph F , a graph G is F-free if it does not contain F as an induced
subgraph. A graph G is (F1, F2, . . . , Fk)-free if it is Fi-free for all 1 ≤ i ≤ k.
In [6], Gravier, Hoang and Maffray gave a significant result that, for any graph
F , the family of all F -free graphs has a bounded clique-chromatic number if
and only if F is a vertex-disjoint union of paths. Many authors explored more
results in (F1, F2, . . . , Fk)-free graphs. Gravier and Skrekovski [7] in 2003 proved
that (P3 + P1)-free graphs unless it is C5, and (P5, C5)-free graphs are 2-clique-
colorable. In 2004, Bacso et al. [1] showed that (claw, odd hole)-free graphs
are 2-clique-colorable. Later, Defossez [3] in 2006 proved that (diamond, odd
hole)-free graphs are 4-clique-colorable, and (bull, odd hole)-free graphs are 2-
clique-colorable.

Given a graph F , let f(F ) = max{χc(G) | G is an F -free graph}. When F1

is an induced subgraph of F2, if a graph G is F1-free then G is also F2-free, it
follows that f(F1) ≤ f(F2). In 2003, Gravier, Hoang and Maffray [6] showed the
following result.

Theorem 1 [6]. Let F be a graph. Then f(F ) exists if and only if F is a vertex-
disjoint union of paths. Moreover,

– if |V (F )| ≤ 2 or F = P3 then f(F ) ≤ 2,
– else f(F ) ≤ cc(F ) + |V (F )| − 3 where cc(F ) is the number of connected com-

ponents of a graph F .

Furthermore, they proved that (P2 + 2P1)-free graphs and (P3 + 2P1)-free
graphs are 3-clique-colorable. Since the cycle C5 is both (P2 + 2P1)-free and
(P3 + 2P1)-free with χc(C5) = 3, this bound is sharp.

2 Main Results

An independent set in a graph is a set of pairwise nonadjacent vertices. A maxi-
mum independent set of a graph G is a largest independent set of G and its size
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is denoted by α(G). Bacso et al. [1] stated the relationship between the clique-
chromatic number and the size of a maximum independent set of a graph, as
follows.

Theorem 2 [1]. Let G be a graph. If G �= C5 and G is not a complete graph,
then χc(G) ≤ α(G).

It follows from Theorem 1 that every (P2 + kP1)-free graph is (2k)-clique-
colorable and every (P3+kP1)-free graph is (2k+1)-clique-colorable. We improve
these upper bounds for k ≥ 3.

Theorem 3. For k ≥ 3, a (P2 + kP1)-free graph is (k + 1)-clique-colorable.

Proof. Let G be a (P2 + kP1)-free graph. Let S = {s0, s1, . . . , sα(G)−1} be a
maximum independent set of G. If α(G) ≤ k, then χc(G) ≤ k by Theorem 2.

Assume α(G) ≥ k + 1. Let M(s0) = V (G)\(S ∪ NG(s0)). For R ⊆ S\{s0},
define YR = {v ∈ M(s0) | NS(v) = S\({s0} ∪ R)} and min(R) = min{i ∈
N | si /∈ R}. In particular, min(∅) = 1. Note that V (G) is the disjoint union of
S, NG(s0) and YR where R ⊆ S\{s0}. Let f be the coloring of G defined by

f(v) =

⎧
⎪⎨

⎪⎩

1, if v ∈ S

2, if v ∈ NG(s0)
min(R) + 2, if v ∈ YR where R = S\({s0} ∪ NS(v)).

Now, let R ⊆ S\{s0} where YR �= ∅, and let y ∈ YR. If R = S\{s0}, then
NS(y) = ∅; so S∪{y} is an independent set of G. This contradicts the maximality
of S. Thus R �= S\{s0}. If |R| ≥ k−1, then the subgraph of G induced by S∪{y}
contains an induced subgraph P2 + kP1, a contradiction. Thus |R| ≤ k − 2, and
it follows that min(R) ≤ k − 1. Therefore, f is a (k + 1)-coloring of G. Suppose
that G has a monocolored maximal clique Q of size at least two, say colored by
m. Since S is an independent set, m �= 1. Thus Q ∩ S = ∅. Note that smin(R)

is adjacent to all vertices of YR. Thus sm−2 is adjacent to all vertices of Q.
Then Q ∪ {sm−2} is a clique of G. It contradicts the maximality of Q. Hence
χc(G) ≤ k + 1.

Theorem 4. For k ≥ 3, a (P3 + kP1)-free graph is (k + 2)-clique-colorable.

Proof. Let G be a (P3 + kP1)-free graph. Let S = {s1, s2, . . . , sα(G)} be a maxi-
mum independent set of G. If α(G) ≤ k + 1, then χc(G) ≤ k + 1 by Theorem 2.
Assume α(G) ≥ k+2. For 1 ≤ i ≤ α(G), let Xi = {v ∈ V (G)\S | NS(v) = {si}}.
Suppose that there is an edge, say xixj , between Xi and Xj where i �= j. Then
there exist k vertices in S\{si, sj} together with si, xi, xj form an induced sub-
graph P3+kP1 of G, a contradiction. Thus there is no edge between any two Xi’s.
For R ⊆ S where |R| �= α(G) − 1, define YR = {v ∈ V (G)\S | NS(v) = S\R}
and min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the disjoint union of
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S, Xi where 1 ≤ i ≤ α(G), and YR where R ⊆ S and |R| �= α(G) − 1. Let f be
the coloring of G defined by

f(v) =

⎧
⎪⎨

⎪⎩

1, if v ∈ S

2, if v ∈ ⋃α(G)
i=1 Xi

min(R) + 2, if v ∈ YR where R = S\NS(v).

Let R ⊆ S where YR �= ∅, and let y ∈ YR. If R = S, then NS(y) = ∅ ; so
S ∪ {y} is an independent set of G, a contradiction. If k ≤ |R| ≤ α(G) − 2, then
the subgraph of G induced by S ∪ {y} contains an induced subgraph P3 + kP1,
a contradiction. Thus |R| ≤ k − 1, and it follows that min(R) ≤ k. Hence f is a
(k + 2)-coloring of G. Now, suppose that G has a monocolored maximal clique
Q of size at least two, say colored by m. Since S is an independent set, m �= 1.
If m = 2, then Q ⊆ Xi for some i. We have that si is adjacent to all vertices of
Q, a contradiction. Now, assume m ≥ 3. Since smin(R) is adjacent to all vertices
of YR, sm−2 is adjacent to all vertices of Q, a contradiction. Thus f is a proper
(k + 2)-clique-coloring of G, and hence χc(G) ≤ k + 2.

Theorem 3 ensures that every (P2+kP1)-free graph where k ≥ 3 is (k+1)-clique-
colorable but we have found no graph guaranteeing this sharpness yet. However,
when k = 3 and 4, there is a (P2 + kP1)-free graph which is k-clique-colorable,
namely, the cycle C5 is (P2 + 3P1)-free and χc(C5) = 3, and the 4-chromatic
Mycielski’s graph G4 [8] is (P2 + 4P1)-free and χc(G4) = 4. (See Fig. 1) Notice
that both of them are diamond-free, this suggests the result in Theorem 5.

Fig. 1. The 4-chromatic Mycielski’s graph G4

Theorem 5. For k ≥ 3, a (P2 + kP1, diamond)-free graph is k-clique-colorable.

Proof. Let G be a (P2 + kP1, diamond)-free graph. If α(G) ≤ k, then χc(G) ≤ k
by Theorem 2. Assume α(G) ≥ k+1. Use the same terminologies and arguments
as in the proof of Theorem 3, we can define a k-coloring of G as follows:
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g(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if v ∈ S

2, if v ∈ NG(s0)
min(R) + 2, if v ∈ YR where R = S\({s0} ∪ NS(v)) and

min(R) ≤ k − 2
k, if v ∈ YR where R = S\({s0} ∪ NS(v)) and

min(R) = k − 1.

To claim that g is a proper k-clique-coloring of G, suppose that G has a
monocolored maximal clique Q of size at least two, say colored by m. Since S is
an independent set, m �= 1. If m ≤ k − 1, then sm−2 is adjacent to all vertices
of Q, a contradiction. Assume m = k. Then Q ⊆ ⋃{YR | R ⊆ S\{s0} and
k − 2 ≤ min(R) ≤ k − 1}. Since YR = ∅ for all R ⊆ S\{s0} where |R| ≥ k − 1,
we consider only YR where |R| ≤ k − 2. Thus if k − 2 ≤ min(R) ≤ k − 1, then
R = {s1, s2, . . . , sk−3, st} where k − 2 ≤ t ≤ α(G) − 1. Since G is diamond-free
and α(G) − 1 ≥ k, YR is an independent set, and then |Q ∩ YR| ≤ 1 for each
R ⊆ S\{s0}. If |Q| ≥ 3, then there exists a diamond induced by a vertex in
S\{s0} and three vertices in Q, a contradiction. So |Q| = 2. Let Q ⊆ YR1 ∪ YR2

for some R1, R2 ⊆ S\{s0} where R1 �= R2 and k−2 ≤ min(R1),min(R2) ≤ k−1.
Then |R1 ∪R2| ≤ k −1. Since α(G)−1 ≥ k, there exists a vertex in S\{s0} that
is adjacent to both vertices of Q, a contradiction. Hence χc(G) ≤ k.

Similarly to (P2 + kP1)-free graphs, the result for (P3 + kP1)-free graphs in
Theorem 4 has not been proved to be sharp. Theorem 6 gives its subclass of
graphs using at most k + 1 colors.

Theorem 6. For k ≥ 3, a (P3 + kP1, diamond)-free graph is (k + 1)-clique-
colorable.

Proof. Let G be a (P3+kP1, diamond)-free graph. If α(G) ≤ k+1, then χc(G) ≤
k + 1 by Theorem 2. Assume α(G) ≥ k + 2. Use the same terminologies and
arguments as in the proof of Theorem 4, we can define a (k + 1)-coloring of G
as follows:

g(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if v ∈ S

2, if v ∈ ⋃α(G)
i=1 Xi

min(R) + 2, if v ∈ YR where R = S\NS(v) and min(R) ≤ k − 1
k + 1, if v ∈ YR where R = S\NS(v) and min(R) = k.

Suppose that G has a monocolored maximal clique Q of size at least two,
say colored by m. If m = 2, then Q ⊆ Xi for some i; so si is adjacent to
all vertices of Q, a contradiction. If 3 ≤ m ≤ k, then sm−2 is adjacent to all
vertices of Q, a contradiction. Assume m = k + 1. Then Q ⊆ ⋃{YR | R ⊆ S
and k − 1 ≤ min(R) ≤ k}. Since G is diamond-free and α(G) ≥ k + 2, YR is an
independent set. Thus |Q ∩ YR| ≤ 1 for each R ⊆ S. If |Q| ≥ 3, then there exist
a vertex in S together with any three vertices in Q which induce a diamond, a
contradiction. So |Q| = 2. Since α(G) ≥ k + 2, there exists a vertex in S that is
adjacent to both vertices of Q, a contradiction. Hence χc(G) ≤ k + 1.
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Since the 4-chromatic Mycielski’s graph G4 is (P3 + 3P1, diamond)-free, the
upper bound in Theorem 6 for the case k = 3 is sharp.
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