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Preface

This volume consists of the peer-reviewed papers of the 16th Japan Conference on
Discrete and Computational Geometry and Graphs (JCDCG2 2013), which were held
during September 17–19, 2013 at Tokyo University of Science, Tokyo, Japan.

The previous conferences were held in Tokyo as JCDCG 1997, 1998, 1999, 2000,
2002, 2004, 2006, and 2011 (Japan Conference on Discrete and Computational
Geometry; including domestic conferences); in Kyoto as KyotoCGGT 2007 (Kyoto
International Conference on Computational Geometry and Graph Theory); and in
Kanazawa as JCCGG 2009 (Japan Conference on Computational Geometry and
Graphs). Other conferences in this series were also held in the Philippines (2001),
Indonesia (2003), China (2005, 2010), and Thailand (2012). The proceedings of these
conferences were published by Springer as a part of the LNCS series in volumes 1763,
2098, 2866, 3330, 3742, 4381, 4535, 7033, and 8296. The proceedings of the fifth and
twelfth conferences (2001 and 2009) were published by Springer-Verlag as special
issues of the journal Graphs and Combinatorics, Vol. 18, No. 4, 2002 and Vol. 27,
No. 3, 2011.

The organizers of JCDCG2 2013 thank the following invited speakers, Sergey
Bereg, Erik Demaine, Ferran Hurtado, Ken-ichi Kawarabayashi, David Kirkpatrick,
Stefan Langerman, Janos Pach, Kokichi Sugihara, and Jorge Urrutia, for their fruitful
talks. They also gratefully acknowledge the support of the conference secretariat, the
speakers, and all of the participants of the conference.

September 2014 Jin Akiyama
Hiro Ito

Toshinori Sakai
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Covering Partial Cubes with Zones

Jean Cardinal1(B) and Stefan Felsner2(B)

1 Université Libre de Bruxelles (ULB), Brussels, Belgium
jcardin@ulb.ac.be

2 Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

Abstract. A partial cube is a graph having an isometric embedding
in a hypercube. Partial cubes are characterized by a natural equivalence
relation on the edges, whose classes are called zones. The number of zones
determines the minimal dimension of a hypercube in which the graph
can be embedded. We consider the problem of covering the vertices of
a partial cube with the minimum number of zones. The problem admits
several special cases, among which are the problem of covering the cells
of a line arrangement with a minimum number of lines, and the problem
of finding a minimum-size fibre in a bipartite poset. For several such
special cases, we give upper and lower bounds on the minimum size of
a covering by zones. We also consider the computational complexity of
those problems, and establish some hardness results.

1 Introduction

As an introduction and motivation to the problems we consider, let us look at
two puzzles.
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Fig. 1. A partial cube with vertex labels
representing an isometric embedding in Q7

and a highlighted zone.

Hitting a consecutive pair. Given
a set of n elements, how many pairs
of them must be chosen so that every
permutation of the n elements has two
consecutive elements forming a chosen
pair?
Guarding cells of a line arrange-
ment. Given an arrangement of n
straight lines in the plane, how many
lines must be chosen so that every cell
of the arrangement is bounded by at
least one of the chosen line?
While different, the two problems can
be cast as special cases of a general
problem involving partial cubes. The
n-dimensional hypercube Qn is the
graph with the set {0, 1}n of binary words of length n as vertex set, and an

c© Springer International Publishing Switzerland 2014
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2 J. Cardinal and S. Felsner

edge between every pair of vertices that differ on exactly one bit. A partial cube
G of dimension n is a subgraph of the n-dimensional hypercube with the property
that the distance between two vertices in G is equal to their Hamming distance,
i.e., their distance in Qn. In general, a graph G is said to have an isometric
embedding in another graph H whenever G is a subgraph of H and the distance
between any two vertices in G is equal to their distance in H. Hence partial
cubes are the graphs admitting an isometric embedding in Qn, for some n. The
edges of a partial cube can be partitioned into at most n equivalence classes
called zones, each corresponding to one of the n directions of the edges of Qn

(Fig. 1).
We consider the following problem:

Partial Cube Covering: Given a partial cube, find a smallest subset S of its
zones such that every vertex is incident to an edge of one of the zones in S.

If we refer to the labeling of the vertices by words in {0, 1}n, the problem amounts
to finding a smallest subset I of [n] such that for every vertex v of the input
partial cube, there is at least one i ∈ I such that flipping bit i of the word of v
yields another vertex.

2 Classes of Partial Cubes

The reader is referred to the books of Ovchinnikov [16] and Hammack et al. [14]
for known results on partial cubes. Let us also mention that some other struc-
tures previously defined in the literature are essentially equivalent to partial
cubes. Among them are well-graded families of sets defined by Doignon and
Falmagne [7], and Media, defined by Eppstein, Falmagne, and Ovchinnikov [10].

We are interested in giving bounds on the minimum number of zones required
to cover the vertices of a partial cube, but also in the computational complexity
of the problem of finding such a minimum cover. Regarding bounds, it would
have been nice to have a general nontrivial result holding for every partial cube.
Unfortunately, only trivial bounds hold in general.

In one extreme case, the partial cube G = (V,E) is a star, consisting of one
central vertex connected to |V | − 1 other vertices of degree one. This is indeed
a partial cube in dimension n = |V | − 1, every zone of which consists of a single
edge. Since there are n vertices of degree one, all n zones must be chosen to
cover all vertices. In the other extreme case, the partial cube is such that there
exists a single zone covering all vertices. This lower bound is attained by the
hypercube Qn.

Table 1 gives a summary of our results for the various families of partial cubes
that we considered. For each family, we consider upper and lower bounds and
complexity results. We now briefly describe the various families we studied. The
proofs of the new results are in the following sections.
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2.1 Hyperplane Arrangements

The dual graph of a simple1 arrangement of n hyperplanes in R
d is a partial cube

of dimension n. The partial cube covering problem becomes the following: given
a simple hyperplane arrangement, find a smallest subset S of the hyperplanes
such that every cell of the arrangement is bounded by at least one hyperplane
in S.

Fig. 2. An arrangement of 4 lines superim-
posed with its dual.

The case of line arrangements was
first considered in [3]. In fact it was
this problem that motivated us to
investigate the generalization to par-
tial cubes. The best known lower and
upper bounds for line arrangements
on |S| are of order n/6 and n −
O(

√
n log n) (see [1]). The complexity

status of the optimization problem is
unknown (Fig. 2).

Instead of lines and hyperplanes it is also possible to consider Euclidean or
spherical arrangements of pseudo-lines and pseudo-hyperplanes, their duals are
still partial cubes. Actually, all the cited results apply to the case of arrangements
of pseudo-lines.

Fig. 3. Flip graph of acyclic orientations
of the 4-cycle.

Spherical arrangements of pseudo-
hyperplanes are equivalent to oriented
matroids, this is the Topological Rep-
resentation Theorem of Folkman and
Lawrence. The pseudo-hyperplanes
correspond to the elements of the ori-
ented matroid and the cells of the
arrangement correspond to the topes
of the oriented matroid. Hence our
covering problem asks for a minimum
size set C of elements such that for
every tope T there is an element c ∈ C
such that T ⊕ c is another tope. For
more on oriented matroids we refer
to [2].

2.2 Acyclic Orientations

From a graph G = (V,E), we can define a partial cube H in which every vertex
is an acyclic orientation of G, and two orientations are adjacent whenever they
differ by a single edge reversal (flip). This partial cube has dimension equal to
the number of edges of G. It is also the dual graph of the arrangement of the |E|
hyperplanes of equation xi = xj for ij ∈ E in R

V . Every cell of this arrangement

1 An arrangement is called simple if any d + 1 hyperplanes have empty intersection.
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corresponds to an acyclic orientation, and adjacent cells are exactly those that
differ by a single edge. This observation, in particular, shows that H is connected.
The graph H and the notion of edge flippability have been studied by Fukuda
et al. [11] and more recently by Cordovil and Forge [6].

The partial cube covering problem now becomes the following: given a graph
G = (V,E), find a smallest subset S ⊆ E such that for every acyclic orientation
of G, there exists e ∈ S such that flipping the orientation of e does not create a
cycle (Fig. 3).

2.3 Median Graphs

A median graph is an undirected graph in which every three vertices x, y, and
z have a unique median, i.e., a vertex μ(x, y, z) that belongs to shortest paths
between each pair of x, y, and z. Median graphs form structured subclass of
partial cubes that has been studied extensively, see [5] and references therein.
Since the star and the hypercube are median graph there are no non-trivial upper
or lower bounds for the zone cover problem on this class. We use a construction
of median graphs to prove hardness of the zone cover problem.

2.4 Distributive Lattices

654

1 2 3
{3}

{1,2,4}

{1,2,3,4,6}

Fig. 4. A poset (left) and the cover graph
of its lattice of down-sets (right).

Cover graphs of distributive lattices2

are partial cubes. From Birkhoff’s rep-
resentation theorem (a.k.a. Funda-
mental Theorem of Finite Distributive
Lattices) we know that there is a poset
P such that the vertices of the partial
cube are the downsets of P , the zones
of the partial cube in turn correspond
to the elements of P .

The problem becomes: given a
poset P , find a smallest subset S of
its elements such that for every downset D of P , there exists v ∈ S such that
either D ∪ {v} or D \ {v} is a downset, distinct from D.

2.5 Trees

Trees with n edges are partial cubes of dimension exactly n. Since every zone
contains exactly one edge, the partial cube covering problem on trees boils down
to the edge cover problem on trees. There are instances attaining the lower and
upper bounds of n/2 and n−1, moreover, there is a simple dynamic programming
algorithm that computes an optimal cover in linear time.
2 For a very good introduction to terminology related to partial orders and lattices

we refer to Chapter 3 of Stanley, Enumerative Combinatorics Vol. I [17].
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Table 1. Worst-case bounds and complexities for the special cases of the partial cube
covering problem. When used, n denotes the dimension of the partial cube.

Partial cube Lower bound Upper bound Complexity

Arrangements of n
lines in R

2
n − o(n) (Theorem1) n − Ω(

√
n logn) [1] –

Arrangements of n
hyperplanes in R

d
– n − Ω(n1/d)

(Theorem2)
–

Acyclic orientations – Minimum edge cut

(Theorem4)

Recognition is

coNP-complete,

even for complete

graphs

(Theorem3)

Median graphs 1 n NP-complete
(Corollary 2),
APX-hard
(Corollary 3)

Distributive lattices
with representative
poset of n elements

– 2n/3 (Corollary 4) Recognition is
coNP-complete
(Corollary 5)
ΣP

2 -complete
(Corollary 6)

Trees with n edges n/2 n − 1 P (min edge cover)

3 Line Arrangements

Recall that we have defined a guarding set for an arrangement of lines as a subset
of the lines n so that every cell of the arrangement is bounded by at least one
of the chosen lines. We first give a lower bound on the size of a guarding set for
an arrangement of lines.

Theorem 1. The minimum number of lines needed to guard the cells of any
arrangement of n lines is n − o(n).

Proof. The proof is a direct consequence of known results on the following prob-
lem from Erdős: given a set of points in the plane with no four points on a line,
find the largest subset in general position, that is, with no three points on a line.
Let α(n) be the minimum size of such a set over all arrangements of n points.
Füredi observed [12] that α(n) = o(n) follows from the density version of the
Hales-Jewett theorem [13]. But this directly proves that we need at least n−o(n)
lines to guard all cells of an arrangement. The reduction is the one observed by
Ackerman et al. [1]: consider the line arrangement that is dual to the point set,
and slightly perturb it so that each triple of concurrent lines forms a cell of size
three. Now the complement of any guarding set is in general position in the
primal point set. ��
We now show that for arrangements of hyperplanes in R

d, with d = O(1), there
always exists a guarding set of size at most n − Ω(n1/d). The proof is along the
lines of the proof given in [3] for the d = 2 case.
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Theorem 2. In every arrangement of hyperplanes in general position in R
d

(with d = O(1)), there exists a subset of the hyperplanes of size at most n −
Ω(n1/d) such that every cell is bounded by at least one hyperplane in the subset.

Proof. We will prove that every such arrangement has an independent set of size
Ω(n1/d), where an independent set is defined as the complement of a guard-
ing set, that is, a subset of the hyperplanes such that no cell is bounded by
hyperplanes of the subset only.

Let H be a set of n hyperplanes, and consider an arbitrary, inclusionwise
maximal independent set I. For each hyperplane h ∈ H \ I, there must be a
cell ch of the arrangement that is bounded by a set of hyperplanes C ∪ {h} with
C ⊆ I, since otherwise we could add h to I, and I would not be maximal. If ch
has size at least d + 1, i.e., if ch is incident to at least d + 1 hyperplanes, then
there must be a vertex of the arrangement induced by I that is also a vertex
of ch. We charge h to this vertex. Note that each vertex can only be charged
2d = O(1) times. If ch has size d, we charge h to the remaining (d − 1)-tuple
of hyperplanes of I bounding ch. This tuple can also be charged at most O(1)
times. Therefore

|H \ I| = n − |I| ≤ 2d · O(|I|d) + O(|I|d−1)
|I| = Ω(n1/d). ��

4 Acyclic Orientations

Given a graph G = (V,E) we wish to find a subset S ⊆ E such that for every
acyclic orientation of G, there exists a flippable edge e ∈ S, that is, an edge e ∈ S
such that changing the orientation of e does not create any cycle. Let us call
such a set a guarding set for G. Note that an oriented edge e = uv in an acyclic
orientation is flippable if and only if it is not transitive, that is, if and only if uv
is the only oriented path from u to v.

4.1 Complexity

Theorem 3. Given a graph G = (V,E) and a subset S ⊆ E of its edges, the
problem of deciding whether S is a guarding set is coNP-complete, even if G is
a complete graph.

Proof. The set S is not a guarding set if and only if there exists an acyclic
orientation of G in which all edges e ∈ S are transitive.

Consider a simple graph H on the vertex set V , and define G as the complete
graph on V , and S as the set of non-edges of H. We claim that S is a guarding
set for G if and only if H does not have a Hamilton path. Since deciding the
existence of a Hamilton path is NP-complete, this proves the result.

To prove the claim, first suppose that H has a Hamilton path, and consider
the acyclic orientation of G that corresponds to the order of the vertices in
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the path. Then by definition, no edge of S is in the path, hence all of them
are transitive, and S is not a guarding set. Conversely, suppose that S is not
guarding. Then there exists an acyclic orientation of G in which all edges of S
are transitive. The corresponding ordering of the vertices in V yields a Hamilton
path in H. ��

4.2 Special Cases and an Upper Bound

Lemma 1. The minimum size of a guarding set in a complete graph on n ver-
tices is n − 1.

Proof. First note that there always exists a guarding set of size n−1 that consists
of all edges incident to one vertex.

Now we need to show that any other edge subset of smaller size is not a
guarding set. This amounts to stating that every graph with at least

(
n
2

)−(n−2)
edges has a Hamilton path. To see this, proceed by induction on n. Suppose this
holds for graphs with less than n vertices. Consider a set S of at most n − 2
edges of the complete graph. Let u, v be two vertices with uv ∈ S. One of the
two vertices, say v, is incident to at most 
(n − 2)/2� edges of S. Consider a
Hamilton path on the n − 1 vertices �= v, which exists by induction hypothesis.
Then vertex v must have one or two incident edges that do not belong to S and
connect v to the first, or the last, or two consecutive vertices of this path. Hence
we can integrate v in the Hamilton path. ��
Since acyclic orientations of the complete graph Kn correspond to the permu-
tations of Sn, this is in fact the solution to the puzzle “hitting a consecutive
pair” in the introduction. The dual graph of the arrangements of hyperplanes
corresponding to the complete graph (graphic hyperplane arrangement of Kn)
is the skeleton graph of the permutohedron. Hence the above result can also be
stated in the following form.

Corollary 1. The minimum size of a set of zones covering the vertices of the
skeleton graph of the n-dimensional permutohedron is n − 1.

We now give a simple, polynomial-time computable upper bound on the size of
a guarding set. A set C ⊆ E is an edge cut whenever the graph (V,E \ C) is not
connected.

Theorem 4. Every edge cut of G is a guarding set of G.

Proof. Consider an edge cut C ⊆ E and an acyclic orientation AG of G. This
acyclic orientation can be used to define a partial order on V . Let us consider a
total ordering of V that extends this partial order, and pick an edge e = uv ∈ C
that minimizes the rank difference between u and v. We claim that e is flippable.
Suppose for the sake of contradiction that e is not flippable. Then e must be
transitive and there exists a directed path P in AG between u and v that does
not use e. Since C is a cut, u and v belong to distinct connected components of
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(V,E \ C), and P must use another edge e′ ∈ C. By definition, the endpoints of
e′ have a rank difference that is smaller than that of u and v, contradicting the
choice of e. ��
An even shorter proof of the above can be obtained by reusing the following
observation from Cordovil and Forge [6]: for every acyclic orientation of G, the
set of flippable edges is a spanning set of edges. Therefore, every such set must
intersect every edge cut.

While guarding sets are hard to recognize, even for complete graphs, we show
that a minimum-size guarding set can be found in polynomial time whenever the
input graph is chordal, i.e., if every cycle of length at least 4 has a chord. In that
case, the upper bound given by the minimum edge cut is tight, and the result
generalizes Lemma 1.

Theorem 5. The minimum size of a guarding set in a chordal graph is the size
of a minimum edge cut.

Proof. We need to show that whenever a set S of edges of a chordal graph G
has size strictly less than the edge connectivity of G, there exists an acyclic
orientation of G in which all edges of S are transitive. Let us denote by k the
edge connectivity of G, and n its number of vertices.

We proceed by induction on n. For the base case we consider complete graphs.
From Lemma 1, the minimum size of a guarding set in Kk+1 is k. Now suppose
the statement holds for every chordal graph with n − 1 vertices, and that there
exists a k edge connected chordal graph G on n vertices with a guarding set
S of size k − 1. Since G is chordal, it has at least two nonadjacent simplicial
vertices u and v, i.e., vertices whose neighborhood induces a clique. The degree
of both u and v is at least k. Hence one of them, say v, is incident to at most

(k − 1)/2� ≤ 
(d(v) − 1)/2� edges of S. Now remove v and consider, using
the induction hypothesis, a suitable acyclic orientation of the remaining graph.
This orientation induces a total order, i.e., a path p with d(v) vertices, on the
neighbors N(v) of v. Then vertex v must have one or two incident edges that do
not belong to S and connect v to the first, or the last, or two consecutive vertices
of path p. Hence we can integrate v in the path such that all the edges of S that
are incident to v are transitive. This yields a suitable acyclic orientation for G
and completes the induction step. ��
When the graph is not chordal, it may happen that the minimum size of a
guarding set is arbitrarily small compared to the edge connectivity. We can in
fact construct a large family of such examples.

Theorem 6. For every natural number t ≥ 2 and odd natural number g such
that 3 ≤ g ≤ t, there exists a graph G with edge connectivity t and a guarding
set of size g.

Proof. The graph G is constructed by considering a wheel with g + 1 vertices
and center c, and replacing every edge incident to the center c by a copy of the
complete graph Kt−1 such that each vertex of the complete graph is connected
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to both endpoints of the original wheel edge. Figure 5 shows an example. Let
us call Cg the cycle induced by the non-center vertices. Let us first look at the
edge connectivity of G. Vertices belonging to one of the Kt−1 have degree t. On
the other hand we easily construct t edge-disjoint paths between every pair of
vertices. Hence, the edge connectivity of G equals t.

Fig. 5. A graph G with edge connectivity
6 and a guarding set of size 3.

We now show that the set of edges
of Cg is a guarding set.

Suppose the opposite: there exists
an acyclic orientation for which no
edge of the cycle is flippable, hence all
of them are transitive. Since Cg is odd,
there must exist two consecutive edges
of Cg with the same orientation, say
uv and vw, with uv oriented from u to
v, and vw from v to w.

The only way to make vw transi-
tive is to construct an oriented path
from v to w going through the center
c. Hence there must exist an oriented
path of the form vPc, where P is a
path in the complete graph Kt−1 attached to v. To make uv transitive we need a
directed path cP ′v. The oriented cycle vPcP ′v is in contradiction to the acyclic-
ity. Therefore, some edge of Cg is always flippable. ��

5 Median Graphs

G

x

G´

Fig. 6. A graph G and the G′ obtained by
the construction.

A median graph is an undirected
graph in which every three vertices
x, y, and z have a unique median,
i.e., a vertex μ(x, y, z) that belongs
to shortest paths between each pair
of x, y, and z. Imrich, Klavžar, and
Mulder [15] proposed the following
construction of median graphs: Start
with any triangle-free graph G =
(V,E). First add an apex vertex x
adjacent to all vertices of V , then sub-
divide every edge of E once, and let G′

be the resulting graph. Figure 6 illus-
trates the construction.

We only need that G′ is a partial
cube. This can be shown with the explicit construction of an isometric embedding
into Qn. Let V = {v1, . . . , vn} and map these vertices bijectively to the standard
basis, i.e., vi → ei. Apex x is mapped to 0 and the subdivision vertex wij

of an edge vivj is mapped to ei + ej . The embedding shows that the zones
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are in one-to-one correspondence with the vertices of G, where the zone of vi
consists of the edge xvi together with all edges wijvj . Hence, a zone cover of
G′ corresponds to a subset of V (G). Let us call we the vertex of G′ subdividing
the edge e ∈ E(G). The construction of the embedding into Qn shows that the
transformation G → G′ yields a partial cube even if G contains triangles, only
membership in the smaller class of median graphs is lost in this case.

Lemma 2. If G has no isolated vertices, then the minimum size of a zone cover
of G′ equals the minimum size of a vertex cover of G.

Proof. We first show that a vertex cover S of G corresponds to a zone cover of
G′ of the same size. For a vertex wij at least one of vi and vj is in S, hence wij

is covered. If vi belongs to S then it is covered by its own zone. Otherwise there
is an edge vivj and necessarily vj ∈ S, therefore in this case vi is covered by the
zone of vj . The apex x is covered by every zone.

The other direction is straightforward. A zone cover of G′ must in particular
cover all subdivision vertices we ∈ V (G′). Hence the zone corresponding to at
least one of the endpoint of e must be selected, yielding a vertex cover in G. ��
Given a connected triangle-free graph G, one can construct the median graph
G′ in polynomial time. Since deciding whether G has a vertex cover of size at
most k is NP-complete, even on triangle-free graphs, we obtain:

Corollary 2. Given a median graph G′ and an integer k, deciding whether there
exists a zone cover of size at most k of G′ is NP-complete.

The minimum vertex cover problem is hard to approximate, even on triangle-free
graphs. This directly yields the following corollary.

Corollary 3. Given a median graph G′, finding a minimum size zone cover of
G′ is APX-hard.

6 Distributive Lattices

In this special case of the partial cube covering problem, we are given a poset P ,
and we wish to find a subset S of its elements such that the following holds: for
every downset D of P , there exists x ∈ S such that either D ∪ {x} or D \ {x} is
a downset, distinct from D. Given a poset P , we refer to a suitable set S as a
guarding set for P , and let g(P ) be the size of a smallest guarding set. Figure 4
gives an example of poset and the corresponding partial cube.

6.1 Relation to Poset Fibres

We first establish a connection between guarding sets and fibres. A fibre of a
poset is a subset of its elements that meets every nontrivial maximal antichain.
Let f(P ) be the size of a smallest fibre of P .
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Lemma 3. Every fibre is a guarding set. In particular, g(P ) ≤ f(P ).

Proof. Consider a poset P = (V,≤) and one of its downset D ⊆ V . Let F :=
V \ D, A := max(D), and B := min(F ), i.e., A is the antichain of maximal
elements in the order induced by D and B is the antichain of minimal elements
in the order induced by F . By definition, a guarding set is a hitting set for the
collection of subsets A ∪ B constructed in this way.

Let us now consider the subset A ∪ B′ ⊆ A ∪ B, where B′ := {b ∈ B : b
is incomparable to a,∀a ∈ A}. This set is easily shown to be a maximal antichain.
Hence, it must be hit by any fibre. ��
Duffus, Kierstead, and Trotter [8] have shown that every poset on n elements
has a fibre of size at most 2n/3. This directly yields the following.

Corollary 4. For every n-element poset P , g(P ) ≤ 2n/3.

We now consider a special case for which the notions of guarding set and fibre
coincide. A poset is bipartite if P = min(P ) ∪ max(P ), i.e., if the height of P is
at most 2.

Lemma 4. For a bipartite poset P , a set S is a guarding set for P if and only
if it is a fibre of P .

Proof. We know from Lemma 3 that every fibre is a guarding set. The other
direction is as follows.

Consider a guarding set S and let A be any maximal antichain of P . Let
T := A ∩ max(P ), and let D be the downset generated by T . As a downset D is
guarded, hence either an element of T is hit by S, or an element of min(P \ D)
is hit, but since A is maximal A = T ∪ min(P \ D), hence A is hit. Therefore, S
is a fibre. ��

6.2 Complexity

Lemma 4 yields two interesting corollaries on the complexity of recognizing and
finding guarding sets.

Corollary 5. Given a poset P and a subset S of its elements, the problem of
deciding whether S is a guarding set is coNP-complete. This holds even if P is
bipartite.

Proof. Recognition of fibres in bipartite posets has been proved coNP-complete
by Duffus et al. [8]. From Lemma 4, this is the same problem as recognizing
guarding sets. ��
Corollary 6. Given a poset P and an integer k, the problem of deciding whether
there exists a guarding set of size at most k is ΣP

2 -complete. This holds even if
P is bipartite.
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Proof. Again, this is a consequence of Lemma 4 and a recent result of Cardinal
and Joret [4] showing that the corresponding problem for fibres in bipartite
posets is ΣP

2 -complete. ��
Duffus et al. [9] mention that it is possible to construct posets on 15n+2 elements,
every fibre of which must contain at least 8n + 1 elements, which gives a lower
bound with a factor 8/15. The guarding sets for these examples do not seem to
require as many elements.

Open Problems

We left a number of problems open. For instance, we do not know the complexity
status of the problem of deciding whether there exists a guarding set of edges of
size at most k in a given graph. A natural candidate class would be ΣP

2 . For the
same problem, we do not have any nontrivial lower bound on the minimum size of
a guarding set. It would also be interesting to give tighter lower and upper bounds
on the minimum size of a guarding set in a poset and in a line arrangement.
Finally, questions involving partial cubes derived from antimatroids, such as
elimination orderings in chordal graphs, are currently under investigation.
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the TU Graz, Austria, in April 2012. We thank the organizers and the participants for
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Abstract. The notion of travel groupoids was introduced by L. Nebeský
in 2006 in connection with a study on geodetic graphs. A travel groupoid
is a pair of a set V and a binary operation ∗ on V satisfying two axioms.
For a travel groupoid, we can associate a graph. We say that a graph G
has a travel groupoid if the graph associated with the travel groupoid
is equal to G. A travel groupoid is said to be non-confusing if it has no
confusing pairs. Nebeský showed that every finite connected graph has
at least one non-confusing travel groupoid.

In this note, we study non-confusing travel groupoids on a given finite
connected graph and we give a one-to-one correspondence between the
set of all non-confusing travel groupoids on a finite connected graph and
a combinatorial structure in terms of the given graph.

Keywords: Travel groupoid · Confusing pair · Non-confusing travel
groupoid · Geodetic graph · Spanning tree
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1 Introduction

A groupoid is the pair (V, ∗) of a nonempty set V and a binary operation ∗ on
V . The notion of travel groupoids was introduced by L. Nebeský [5] in 2006
in connection with his study on geodetic graphs [1–3] and signpost systems [4].
First, let us recall the definition of travel groupoids.

A travel groupoid is a groupoid (V, ∗) satisfying the following axioms (t1)
and (t2):

(t1) (u ∗ v) ∗ u = u (for all u, v ∈ V ),
(t2) if (u ∗ v) ∗ v = u, then u = v (for all u, v ∈ V ).
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A geodetic graph is a connected graph in which there exists a unique shortest
path between any two vertices. Let G be a geodetic graph, and let V := V (G).
For two vertices u and v of G, let AG(u, v) denote the vertex adjacent to u which
is on the unique shortest path from u to v in G. Define a binary operation ∗ on
V as follows: For all u, v ∈ V , let u ∗ v := AG(u, v) if u �= v and u ∗ v := u if
u = v. This groupoid (V, ∗) is called the proper groupoid of the geodetic graph
G. Remark that the proper groupoid of any geodetic graph is a travel groupoid.

Let (V, ∗) be a travel groupoid, and let G be a graph. We say that (V, ∗) is
on G or that G has (V, ∗) if V (G) = V and E(G) = {{u, v} | u, v ∈ V, u �=
v, and u ∗ v = v}. Note that every travel groupoid is on exactly one graph.

Let (V, ∗) be a travel groupoid. For u, v ∈ V , we define u ∗0 v := u and
u∗i+1v := (u∗iv)∗v for every nonnegative integer i. It is clear that (u∗j v)∗k v =
u∗j+kv holds for any nonnegative integers j and k. Note that, for any two distinct
elements u and v in V , it holds that u∗v �= u (see [5, Proposition 2 (2)]) and that
u ∗2 v �= u by (t2). An ordered pair (u, v) of two distinct elements of V is called
a confusing pair in (V, ∗) if there exists an integer i ≥ 3 such that u ∗i v = u.
A travel groupoid (V, ∗) is said to be non-confusing if there is no confusing pair
in (V, ∗).

Nebeský gave a characterization of non-confusing travel groupoids on a finite
graph.

Theorem 1 ([5, Theorem 3]). Let (V, ∗) be a travel groupoid on a finite graph G.
Then, (V, ∗) is non-confusing if and only if, for all distinct elements u and v in V ,
there exists a positive integer k such that the sequence (u∗0 v, . . . , u∗k−1 v, u∗k v)
is a path from u to v in G. ��
Nebeský also showed a result on the existence of non-confusing travel groupoids.
Note that a travel groupoid (V, ∗) is said to be simple if it satisfies the following
axiom (t3) if v ∗ u �= u, then u ∗ (v ∗ u) = u ∗ v (for all u, v ∈ V ).

Theorem 2 ([5, Theorem 4]). For every finite connected graph G, there exists
a simple non-confusing travel groupoid on G. ��
By Theorem 2, we know that every finite connected graph has always at least
one non-confusing travel groupoid.

In this note, we study non-confusing travel groupoids on a given finite con-
nected graph and we give a one-to-one correspondence between the set of all
non-confusing travel groupoids on a finite connected graph and a combinatorial
structure in terms of the given graph.

2 Main Result

To describe the structure of non-confusing travel groupoids on a graph, we define
the following.
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Definition. For a vertex v of a graph G, a v-tree is a spanning tree of G which
contains all the edges incident to v. We denote by SG(v) the set of all v-trees
in G. ��
Lemma 3. Let (V, ∗) be a non-confusing travel groupoid on a finite connected
graph G. For an element v of V , let Tv be the graph defined by

V (Tv) := V and E(Tv) := {{u, u ∗ v} | u ∈ V \ {v}}.
Then, Tv is a v-tree of G.

Proof. Since (V, ∗) is on G, for any two distinct elements u and v in V , {u, u∗v} is
an edge of G. Therefore, we have E(Tv) ⊆ E(G). Moreover, V (Tv) = V = V (G).
So Tv is a spanning subgraph of G. By the definition of the graph Tv, we have
|E(Tv)| ≤ |V | − 1. Since (V, ∗) is non-confusing, it follows from Theorem 1 that
any vertex u of Tv distinct from v is connected to the vertex v by a path Puv in
G, where Puv is of the form (u ∗0 v, . . . , u ∗k v) for some positive integer k. Since
u∗i+1 v = (u∗i v)∗v, the edge {u∗i v, u∗i+1 v} of the path Puv is also an edge of
Tv for any i ∈ {0, 1, . . . , k − 1}. Therefore, the path Puv from u to v in G is also
a path in Tv. So we can conclude that Tv is connected. Since Tv is a connected
graph with |E(Tv)| ≤ |V (Tv)| − 1, Tv is a tree. Thus, Tv is a spanning tree of
G. For each vertex x which is adjacent to the vertex v in G, we have x ∗ v = v
and therefore {x, v} ∈ E(Tv). So, all the edges incident to the vertex v in G are
contained in Tv. Hence, the graph Tv is a v-tree of G. ��
The following theorem is our main result.

Theorem 4. Let G be a finite connected graph. Then, there exists a one-to-one
correspondence between the set Πv∈V (G)SG(v) and the set of all non-confusing
travel groupoids on G.

Proof. Let V := V (G), and let NG be the set of all non-confusing travel groupoids
on G. Note that, since G is finite, both the sets Πv∈V SG(v) and NG are finite.

For any (Tv)v∈V ∈ Πv∈V (G)SG(v), we define a groupoid on V as follows: For
two distinct elements u and v in V , u ∗ v is defined to be the vertex adjacent
to u which is on the unique path from u to v in the tree Tv. If u = v, then let
u ∗ v = u. We show that this groupoid (V, ∗) is a non-confusing travel groupoid.
First, we check that (V, ∗) satisfies the axioms (t1) and (t2). Take any two
distinct elements u and v in V . Let w := u ∗ v. Then {u,w} ∈ E(G). Therefore
{w, u} ∈ E(Tu) and we have (u ∗ v) ∗ u = w ∗ u = u. Moreover, if u = v, then
(u ∗ v) ∗ u = (u ∗ u) ∗ u = u ∗ u = u. Thus the axiom (t1) holds. Again, take any
two distinct elements u and v in V . If u and v are adjacent (i.e. {u, v} ∈ E(G)),
then {u, v} ∈ E(Tv) and therefore (u ∗ v) ∗ v = v ∗ v = v �= u. If u and v are
not adjacent, then u ∗ v �= v and the element (u ∗ v) ∗ v is the third vertex of the
path from u to v in the tree Tv and therefore (u ∗ v) ∗ v is not the element u.
Thus the axiom (t2) holds. So, (V, ∗) is a travel groupoid. Second, we check that
(V, ∗) is non-confusing. Take any two distinct elements u and v in V . Let k be
the length of the path from u to v in Tv. Then, it follows from the definition of
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(V, ∗) that u ∗k v = v and that (u ∗0 v, . . . , u ∗k v) is the path from u to v in Tv.
Therefore, (u∗0v, . . . , u∗k v) is a path from u to v in G. By Theorem 1, the travel
groupoid (V, ∗) is non-confusing. Now, we define a map Φ : Πv∈V SG(v) → NG by
Φ((Tv)v∈V ) = (V, ∗), where (V, ∗) is the non-confusing travel groupoid defined
as above for (Tv)v∈V .

Next, let (V, ∗) be a non-confusing travel groupoid on a finite connected
graph G. For each v ∈ V (G), we define a graph Tv by V (Tv) := V and E(Tv) :=
{{u, u ∗ v} | u ∈ V \ {v}}. By Lemma 3, Tv is a v-tree of G, i.e., Tv ∈ SG(v).
Therefore, (Tv)v∈V ∈ Πv∈V SG(v). Now, we define a map Ψ : NG → Πv∈V SG(v)
by Ψ((V, ∗)) = (Tv)v∈V , where (Tv)v∈V are v-trees defined as above for (V, ∗).

Then, we can check that Ψ ◦ Φ((Tv)v∈V ) = (Tv)v∈V holds for any (Tv)v∈V ∈
Πv∈V SG(v) and that Φ ◦ Ψ((V, ∗)) = (V, ∗) holds for any (V, ∗) ∈ NG.
Hence the map Φ is a one-to-one correspondence between the sets Πv∈V SG(v)
and NG. ��
Corollary 5. Let G be a finite connected graph. Then, the number of non-
confusing travel groupoids on G is equal to Πv∈V (G)|SG(v)|.
Proof. It follows from Theorem 4. ��
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Abstract. In this paper we study the minimal decomposition of octilin-
ear polygons with holes into octilinear triangles and rectangles. This new
problem is relevant in the context of modern electronic CAD systems,
where it arises when the generation and propagation of electromagnetic
noise into multi-layer PCBs has to be detected. It can be seen as a
generalization of a problem deeply investigated in the last decades: the
minimal decomposition of rectilinear polygons into rectangles, which is
solvable in polynomial time. We show that the new problem is NP-hard.
We also show the NP-hardness of a related problem, that is the decompo-
sition of an octilinear polygon with holes into octilinear convex polygons.
For both problems, we propose efficient approximation algorithms.

Keywords: Polygon decomposition · Octilinear polygons · Approxima-
tion algorithms · CAD applications

1 Introduction

The problems of partitioning a planar polygon into simpler components are well
studied in computational geometry, as they have various applications in com-
puter graphics, mesh generation, pattern recognition, VLSI, and more. Particular
examples of these problems are the decomposition of polygons into convex com-
ponents, triangles, or other exotic shapes like spiral, star-shaped, and monotone
components. (e.g., see [10] and references therein).

A specific problem concerns the partition into a minimum number of rec-
tangles of a rectilinear polygon, that is a polygon having the edges parallel
to two orthogonal directions [16]. Despite its specificity, rectangular partition
have many applications in VLSI, DNA micro-array design, processing and com-
pression of bitmap images [2,7]. The rectilinear polygon decomposition problem
has been solved in polynomial-time at earlier stage; for instance, we can find a
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O(n2.5) time algorithm in [8,14] and a O(n1.5 log n) time algorithms in [9,13].
In the last decades many works have been devoted to specific instances of this
problem (e.g., see [5,6]).

In this paper, motivated by a renewed interest in the VLSI field, we present
a generalization of the rectilinear polygon decomposition problem. This new
problem is motivated as follows.

Motivation. Currently, microprocessors and application-specific integrated cir-
cuits have thousands of gates switching simultaneously. The impulsive and repet-
itive current drawn by these active devices from the power delivery network
(PDN) is a challenging issue for a correct and reliable PDN design and a severe
source of electromagnetic noise generation [17]. The PDN for modern medium-
to-high-speed digital printed circuit boards (PCBs) is usually formed from one
or more pair of conducting parallel planes used as “power” and “ground”. The
PDN for digital circuitry has evolved over time, as signal and clock speeds have
increased, from discrete power supply wires, to discrete traces, to area fills and
ground islands on single/two-layer slow-speed boards, to the planar power bus
structure used extensively in today’s multi-layer high-speed PCBs.

Noise generated in the power bus can be easily propagated throughout the
board. Propagated noise can affect the operation of other active devices (sig-
nal integrity) [15]. Among the possible techniques to study the generation and
propagation of noise there is the so-called Cavity Model [11] in which facing
portions of power bus are considered electromagnetic resonant cavities. Given a
real-world board’s layout, one of the primary requirements for the application
of this technique is the geometric identification of all the cavities and their con-
nectivity. Then, a suitable processing of the geometrical cavities’ boundaries is
requested for a correct and not over-detailed electromagnetic modeling. After
these actions, the geometry dataset (containing also the electrical parameters)
is ready for being input to the cavity model solver.

From a geometrical point of view, a power bus corresponds to a simple poly-
gon with holes. Two facing polygons P1 and P2 located at parallel layers L1 and
L2 form a cavity; this cavity is geometrically defined as a polyhedron having
the polygon P = P1 ∩ P2 as base area and the distance from L1 and L2 as
height. The currently available cavity model solvers require that such a polygon
P must be either a rectangle and isosceles triangle or a rectangle. This and other
constraints lead to solve the problem of computing cavities [4] according to the
following two steps:

1. “simplify” each base polygon P into an octilinear polygon P ′ (a polygon is
octilinear when its angles are all multiple of 45◦). As usual, this simplification
must be performed according to some error criterion;

2. decompose the octilinear polygon P ′ into octilinear triangles and rectangles.

The problem at the former step as been studied in [3]. In this work we address
the polygon decomposition problem at the latter step.

Results. The main aim of this paper is to study the decomposition of octilinear
polygons with holes into octilinear triangles and rectangles. We call this problem
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opd-tr (Octilinear Polygon Decomposition into octilinear Triangles and Rec-
tangles). After providing some preliminary results, we study the computational
complexity of the opd-tr problem and we show that it is NP-hard. Then, we
prove that opd-tr is in APX by providing an O(n log n)-time 16-approximation
algorithm. We also provide an O(n log n)-time 3-approximation algorithm for
opd-tr when the input is restricted to a subclass of octilinear polygons. The
approximation algorithms have been achieved by exploiting results on a strictly
related problem, that is the Octilinear Polygon Decomposition into octilinear
Convex Components (opd-c), which also has theoretical interest in itself. We
show that this problem is NP-hard and we provide an O(n log n)-time exact
algorithm for the decomposition of a subclass of octilinear polygons.

Due to lack of space, many proofs are omitted (they will be given in the full
version).

2 Definitions and Problem Statements

In this paper we consider the following types of polygonal objects:

– a polygon P is a compact region of the plane, bounded by a simple closed
polygonal line. A polygon may also have holes, that is internal pairwise-disjoint
polygonal lines delimiting regions of the plane not belonging to the polygon
itself;

– a component is a polygon without holes;
– a multiple polygon P is a set of polygons. The intersection of any two elements

of P, if non-empty, consists totally of edges and vertices.

The boundary of a polygon P consists of all points of the polygonal lines
defining P and its holes, while the interior of P consists of all points of P that
do not belong to the boundary of P .

A polygonal line can be represented by afinite sequence of vertices v1, v2, . . . , vn
and edges [v1, v2], [v2, v3], . . . , [vn−1, vn], [vn, v1] such that two edges share at most
one point and this point is shared only if the edges are consecutive.

Let us consider non-oriented directions in the plane, and define them accord-
ing to the angle they form with respect to the x-axis. Directions forming angles
multiples of 90◦ are called rectilinear, while those forming angles multiples of
45◦ are called octilinear. Notice that, there are two rectilinear and four octilinear
directions. A polygon edge parallel to an octilinear (rectilinear, resp.) direction
is called octilinear edge (rectilinear edge, resp.).

Definition 1. An octilinear polygon (rectilinear polygon, resp.) is a polygon
whose edges are all octilinear (rectilinear, resp.).

Figure 1 shows internal angles of octilinear and rectilinear polygons. We call
the angles of 45◦, 90◦, 135◦, 225◦, 270◦, 315◦ being of type a, b, c, d, e and f ,
respectively (and, we extend the notion of type to vertices: the type of vi is the
type of the angle at vi). Without loss of generality, we do not consider polygons
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(a) (b) (c) (e)(d)

Fig. 1. All the possible internal angles at vertices in octilinear polygons (angles d, e
and f are concave). Angles b and e are the only possible internal angles of rectilinear
polygons.

with internal angles of 180◦. Given a multiple polygon P, we denote by AP ,
(resp., BP , CP ,DP , EP , FP) the number of angles of type a (resp., b, c, d, e, f,)
in P. We write A, instead of AP , if P is clear by the context, and we do the same
for the other types of angle. Note that angles of type a, b, c (resp., d, e, f) are
convex (resp., concave). A component with only convex angles is called convex
component.

We use cuts to divide polygons. A cut for a polygon P can be defined as
a segment c = [p1, p2] such that both p1 and p2 belong to the boundary of
P and each internal point of c belongs to the interior of P . A cut parallel to
a rectilinear (octilinear, resp.) direction is called rectilinear cut (octilinear cut,
resp.). Figure 2a shows an octilinear polygon P with two rectilinear cuts that
divide P into two triangles and one rectangle.

A decomposition of a polygon P is defined by a sequence (c1, c2, . . . , cm)
of cuts for P that, when applied in order, produces a multiple polygon P =
{P1, P2, . . . , Pm′} such that: (1) the union of elements of P gives P , and (2) the
intersection of any two elements of P, if non-empty, consists totally of edges and
vertices. In general, we are interested in decomposition producing multiple poly-
gons having only components as elements. Generalizing, decomposing a multiple
polygon P produces a new multiple polygon P ′ consisting of the union of the
decompositions of all elements of P.

In this work we are interested in decomposing octilinear polygons into octilin-
ear triangles and rectangles. In the remainder, octilinear rectangles and triangles
are simply called basic components.

(opd-tr) octilinear pol. decomp. into octilinear triangles and rectangles

given: A multiple octilinear polygon P.
problem: Decompose P into the minimum number of basic components.

When the input of the opd-tr problem is restricted to rectilinear polygons,
it can be easily observed that we get the well known problem of “minimum
dissection of rectilinear regions” [16], that has been solved in polynomial-time
at earlier stage.
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Both for technical and theoretical reasons we are also interested in decom-
posing octilinear polygons into convex components, still by using octilinear cuts
only.

(opd-c) octilinear polygon decomp. into octilinear convex components

given: A multiple octilinear polygon P.
problem: Decompose P into the minimum number of octilinear convex com-

ponents.

3 Preliminary Results

As observed in the previous section, the opd-tr problem is a generalization
of the well known problem of “minimum dissection of rectilinear regions” [16],
denoted here as opd-tr−. As already mentioned, this problem is solvable in
polynomial time. Why this problem is so easy? On the sight of addressing the
opd-tr problem, it is useful to provide a brief explanation.

Concerning the opd-tr− problem, note that a rectilinear polygon has ver-
tices of type b and e only, while rectangles (i.e., the final components of the
decomposition) has vertices b only. This implies that, solving the opd-tr− prob-
lem requires to use cuts that “remove” angles of type e, i.e. all the concave
vertices. To remove the concave vertices, two kind of cuts can be used:

– vertex-cut: a vertex-cut is a rectilinear cut [v, v′], where v is the concave
vertex to be removed and v′ is any other vertex. At a closer analysis, in the
case of rectilinear polygons, v′ must be a concave vertex as well.

– point-cut: a point-cut is a rectilinear cut [v, p], where v is the concave vertex
to be removed and p is a point internal to some edge (an original edge, or
some edge generated by cuts).

In [7] it is recalled that the opd-tr− problem can be efficiently solved by
using a two-phase approach: first find and apply a maximum set of disjoint
rectilinear vertex-cuts, then for each concave vertex v (taken in an arbitrary
order) apply a rectilinear point-cut [v, p]. Now we could ask whether such an
approach can be useful to face with the general case, i.e. when the input is
an octilinear polygon. Unfortunately, the answer is negative since at least the
following observations apply:

– for the rectilinear case, when a point-cut [v, p] that eliminates the concavity
of v meets a point p (where p is a point internal to some edge), the cut does
not create new concave vertices (in fact, it creates two new convex vertices,
i.e. both of type b).
In the octilinear case, a cut [v, p] may create at p two new vertices of type a
and c (cf polygons in Fig. 2). Hence, the new concave vertex of type c needs
to be further removed by planning a new octilinear cut, and this new cut may
create further concave vertices and so on.
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– for the rectilinear case, the presence of vertex-cuts represents a noteworthy
situation, since they belong to the solution. In the octilinear case this is not
true, as shown by Fig. 2b, where the vertex-cut [v1, v2] does not belong to any
minimal solution.

v2

(a) (b)

v1

Fig. 2. Examples of decomposition of an octilinear polygon. The vertex-cut [v1, v2]
does not belong to the solution of the opd-tr problem.

3.1 Cuts for the OPD-TR Problem

Concerning the opd-tr problem, note that a polygon is a basic component if
and only if its internal angles are of type a and b. This implies that, solving
the opd-tr problem requires to use octilinear cuts that remove vertices of type
c, d, e and f . Similarly, for the opd-c problem, octilinear cuts must remove
vertices of type d, e and f . All the vertices to be removed can be considered as
“forbidden” in the corresponding problem.

Definition 2. Vertices (or angles) of type c, d, e and f are forbidden for the
opd-tr problem. Vertices (or angles) of type d, e and f are forbidden for the
opd-c problem.

We simply use the term forbidden when the problem is clear or when we have
properties that hold for forbidden vertices/angles independently from the prob-
lem at hand.

Definition 3. Let v a vertex of an octilinear polygon P . The measure of v in
P corresponds to the minimum number of octilinear cuts required to divide the
internal angle in v into subangles of type non-forbidden or 180◦. The measure
of v in P is denoted by µP (v).

Concerning the opd-tr problem, by definition, the measure of vertices of type
a, b, c, d, e, and f are 0, 0, 1, 1, 1, and 2, respectively. Concerning the opd-c
problem, the measure of vertices of type a, b, c, d, e, and f are 0, 0, 0, 1, 1, and
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1, respectively. Note that, in both cases forbidden vertices have measure greater
than zero.

The total measure of an octilinear polygon P with vertices v1, v2, . . . , vn is
defined as µ(P ) =

∑
i µP (vi), and the total measure of a multiple octilinear

polygon P with polygons P1, P2, . . . , Pn is defined as µ(P) =
∑

i µ(Pi).
According to the notion of total measure we could say that solving the opd-

tr (or opd-c) problem means to find the smallest sequence of octilinear cuts
that reduces µ(P) to zero. Hence, we can use the notion of measure to define
which kind of cuts are necessary to solve the opd-tr and opd-c problems. From
now on, by cut we always mean a cut [v, p], where v is a forbidden vertex and
p is either a vertex or a point internal to some edge. The previously introduced
concepts of vertex-cuts and point-cuts are extended as follows.

Definition 4. Terminology about cuts:

– vertex-cut: a vertex-cut (shortly, vcut) is a cut [v, v′], where v is a forbidden
vertex and v′ is any other vertex. There are 5 different versions of vcuts:
– 〈n〉-vcut, where −2 ≤ n ≤ 2 represents how much the overall measure of an

octilinear polygon decreases by applying the cut.
A forbidden-vertex-cut (shortly, fvcut) is a cut [v, v′], where both v and v′ are
forbidden.

– point-cut: a point-cut (shortly, pcut) is a cut [v, p], where v is a forbidden
vertex and p is a point internal to some edge. There are 2 different versions
of pcuts:
– 〈b, b〉-pcut, if the cut generates at p two angles of type b;
– 〈a, c〉-pcut, if the cut generates at p angles of type a and c.

Lemma 1. [16] Solutions to the opd-tr− problem can be found by using 〈2〉-
vcut or 〈b, b〉-pcut only.

Lemma 2. Solutions to the opd-tr problem may require the following cuts:
〈n〉-vcut, −1 ≤ n ≤ 2, 〈b, b〉-pcut or 〈a, c〉-pcut.

It remains open to check whether 〈−2〉-vcuts are necessary to solve the opd-tr
problem.

Definition 5. Octilinear (multiple) polygons having no fvcuts are called non-
degenerated (multiple) polygons.

The following lemma provides a useful result which is valid for both the opd-tr
and opd-c problems.

Lemma 3. Let P be a non-degenerated multiple polygon. If there exists a decom-
position into basic components (convex components, respectively) that requires
µ(P) cuts, then it is an optimal solution for the opd-tr problem (for the opd-c
problem, respectively).
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Proof. By definition, µ(P ) =
∑

i µP (vi), where µP (vi) is the minimum number
of octilinear cuts required to divide the internal angle in vi into non-forbidden
subangles. Hence, each forbidden vertex vi contribute to µ(P ) by adding 1 or
2. This implies that decomposing P by using less than µ(P) cuts requires the
existence of 〈2〉-vcuts, i.e. cuts connecting pairs of forbidden vertices. This is not
the case, since the input multiple polygon P is non-degenerated. ��
Notice that the polygon shown in Fig. 2a needs more than µ(P ) = 1 cuts. We
close the section by observing that all the four octilinear directions may be
necessary to get the optimal solution to the opd-tr problem.

Lemma 4. Concerning the opd-tr problem, the following properties hold:

1. an optimal solution may require cuts parallel to all the four octilinear direc-
tions;

2. without using all the four octilinear directions may lead to solutions that are
k times the optimal one, with k arbitrarily large.

4 Complexity of the Main Problem

The computational complexity of the opd-tr problem is stated in Theorem 1.
For the sake of space, we omit the long proof of this theorem which is borrowed
from [12], where the problem of decomposing a polygon into a minimum number
of convex components by cuts in the directions of F (F is a family of non-
oriented directions in the plane) is studied. There, authors have shown that the
problem is NP-hard if |F| ≥ 3 and is solvable in polynomial time if |F| ≤ 2.

Theorem 1. The opd-tr problem is NP-hard.

5 Decomposition into Convex Components

In this section we study the opd-c problem: we start by stating the computa-
tional complexity, and then we provide an optimal algorithm when the input is
restricted to non-degenerated octilinear polygons. This algorithm will be used
to achieve approximation results shown in the next section. We conclude this
section by providing a lemma for multiple octilinear polygons that extends a
property found for rectilinear polygons.

Theorem 2. The opd-c problem is NP-hard.

Theorem 3. There exists an O(n log n)-time algorithm for solving the opd-c
problem restricted to non-degenerated octilinear polygons.

Proof. Given a non-degenerated octilinear polygon P , according to Lemma 3, we
prove the theorem by showing that there exists a solution for the opd-c problem
that requires µ(P ) octilinear cuts. We decompose P according to the following
approach: for each concave vertex v, perform a cut [v, x] that prolongs an edge
incident to v. To show that such an approach produces a solution for the opd-c
problem, consider two different cases, according to x:
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1. x is a point p interior to some edge e of P . Hence the cut [v, x] is either a
〈b, b〉-pcut or a 〈a, c〉-pcut. In both cases, the new angles at p are convex and
then they do not need further cuts. So, one cut is sufficient to “remove” the
concave vertex v from P .

2. x coincides with a vertex v′ of P , but v′ is not forbidden. Also in this case no
further cuts are needed to “remove” the concave vertex v from P .

This proves that the above approach uses µ(P ) octilinear cuts exactly. Concern-
ing the execution time, the algorithm performs O(n) cuts and each cut can be
performed in O(log n)-time by using the ray-shooting algorithm given in [1]. It is
worth to note that, if we need to test whether the input polygon is indeed a non-
degenerated component, then this task can be easily accomplished in O(n log n)-
time by using a brute-force approach: test whether for each forbidden vertex v
and for each ray r (shoot from v along an octilinear direction d), the first point
reached by r is a forbidden vertex or not. ��
In [16] it has been shown that given a multiple rectilinear polygon P consisting
of k polygons and w holes, then BP − EP = 4k − 4w. A generalization of this
result is given by the following lemma.

Lemma 5. Given a multiple octilinear polygon P consisting of k polygons and
w holes, then 3AP + 2BP + CP − DP − 2EP − 3FP = 8k − 8w.

Since a convex component P has internal angles of type a, b, c only, then, by
Lemma 5, we have 3AP +2BP +CP = 8. As consequence, the number of convex
components which differ by the (circular) sequence of convex angles is finite.

6 Approximation Results

We start by providing an approximation result for the opd-tr problem restricted
to non-degenerated components. To this end we need the notion of nice-cut :

Definition 6. A cut in an octilinear polygon is called nice-cut if either it is a
〈b, b〉-pcut, or it is a 〈+2〉-vcut.

Lemma 6. Let P be a convex component with at least 5 vertices. Then, there
exists a nice-cut in P .

Algorithm 1 provides an approximation for the opd-tr problem restricted to
non-degenerated components. This algorithm takes as input a non-degenerated
component P (i.e., an octilinear polygon without holes and without forbidden-
vertex-cuts) and performs, as a preliminary phase, the decomposition of P into
octilinear convex components. For this preliminary phase, the optimal decom-
position algorithm presented in the proof of Theorem 3 is used. The following
lemmas and remarks are useful to state the approximation bound of Algorithm 1.

Lemma 7. Let P = {v1, v2, . . . , vn} be a non-degenerated component. Then,
each solution for P requires at least µ(P ) = CP + DP + EP + 2FP cuts.
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Algorithm 1. Decomposing a non-degenerated component
Data: a non-degenerated component P = {v1, v2, . . . , vn}
Result: a decomposition of P into basic components

1 foreach vertex vi of type d, e and f do
2 divide the angle at vi by a cut that prolongs an edge incident to vi ;

/* according to the proof of Theorem 3, at the end of this step,

P is optimally decomposed into convex components */

3 end
4 while there are convex components with at least 5 vertices do
5 take a convex component C with at least 5 vertices;
6 foreach vertex vi of type c do
7 decompose C by using a nice-cut [vi, p] ;

/* according to Lemma 6, there exists such a cut in C */

8 end

9 end
10 foreach convex component C with 4 vertices and different from a rectangle do
11 decompose C ;
12 end
13 return the set of all the obtained basic components

Remark 1. Lemma 7 can be rephrased by stating that each solution for a non-
degenerated component P requires at least CP + DP + EP + 2FP + 1 basic
components. It is possible to extend easily this result to any multiple octilinear
polygon P with k polygons and w holes: in such a case, at least (CP +DP +EP +
2FP)/2+k−w basic components are required. The ratio (CP+DP+EP+2FP)/2
is due to possible forbidden-vertex-cuts (where a cut may connect two forbidden
vertices).

Lemma 8. Let P be a non-degenerated component. Algorithm 1 decomposes P
by using at most 2CP + 3DP + 3EP + 5FP cuts.

Remark 2. Lemma 8 can be rephrased by stating that Algorithm 1 decomposes P
by producing at most 2CP +3DP +3EP +5FP +1 basic components. This result
can be extended to any multiple octilinear polygon P with k polygons and w
holes: in such a case Algorithm 1 produces at most 2CP+3DP+3EP+5FP+k−w
basic components.

Theorem 4. There exists an O(n log n)-time 3-approximation algorithm for the
opd-tr problem when the input is restricted to non-degenerated components.

According to Remarks 1 and 2, we know that Algorithm 1 is able to process
not only non-degenerated components but also generic multiple octilinear poly-
gons. This implies that we can provide an approximation result for the opd-tr
problem, as follows.

Theorem 5. There exists an O(n log n)-time 16-approximation algorithm for
the opd-tr problem.
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Proof. Let us assume that a multiple octilinear polygon P consisting of k poly-
gons and w holes is given as input to Algorithm 1. According to Remarks 1 and 2
we have to show that

5FP + 3EP + 3DP + 2CP + k − w

(CP + DP + EP + 2FP)/2 + k − w
≤ 16.

By using the bound w ≤ (F + E + D)/3 on the maximum number of holes we
get:

5FP + 3EP + 3DP + 2CP + k − w

(CP + DP + EP + 2FP)/2 + k − w
=

10FP + 6EP + 6DP + 4CP + 2k − 2w

2FP + EP + DP + CP + 2k − 2w
≤

10FP + 6EP + 6DP + 4CP + 2k − 2(FP + EP + DP)/3

2FP + EP + DP + CP + 2k − 2(FP + EP + DP)/3
=

28FP + 16EP + 16DP + 12CP + 6k

4FP + EP + DP + 3CP + 6k
<

(28FP + 16EP + 16DP + 12CP + 6k) + (36FP + 36CP + 90k)

4FP + EP + DP + 3CP + 6k
= 16.

Concerning the execution time, the algorithm performs O(n) cuts. Each cut
can be performed in O(log n)-time by using the ray-shooting algorithm given
in [1]. ��
It is worth to note that Theorem 4 is based on Algorithm 1, and now this
algorithm performs, as first step, a non-optimal decomposition of P into convex
octilinear components. Unfortunately, Theorem 2 implies that such a convex
decomposition cannot be performed efficiently.

7 Conclusion and Future Work

In this work we have introduced the opd-tr problem, which consists in find-
ing the minimal decomposition of an octilinear polygon with holes into basic
components (octilinear triangles and rectangles). This problem is relevant in the
context of modern electronic CAD systems, when the Cavity Model is used to
detect the generation and propagation of electromagnetic noise into multi-layer
PCBs. As main results, we have shown that the opd-tr problem is NP-hard
and proposed a constant-factor approximation algorithm.

We are currently implementing under CGAL the obtained 16-approximation
algorithm. The implementation will be tested by using, as input, a large dataset
from a real multi-layer PCB consisting of ≈100,000 total vertices.1 The appli-
cation domain (i.e., electronic CAD) and the size of such a dataset reveal that,
1 The PCB consists of 16 layers and its ≈13,000 polygons (i.e., cavities) have been

extracted from a CadenceR© AllegroR© PCB designer project file. The polygons have
been approximated into octilinear polygons by using the schematization algorithm
proposed in [3]. Disregarding the polygons having the area below a given threshold,
we get the final dataset of ≈1,000 octilinear polygons with ≈100,000 total vertices.
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for designing decomposition algorithms, we have to take into consideration not
only the theoretical approximation bound but also the execution time. We feel
that the experimentation will show that the proposed algorithm may succeed in
both the aspects.

As future work, we propose to study the complexity (and to design decom-
position algorithms) for the opd-tr problem restricted to the case of octilinear
polygons without holes, and to design approximate algorithms for the opd-c
problem.
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Abstract. What is the largest cube or sphere that a given rectangular
piece of paper can wrap? This natural problem, which has plagued gift-
wrappers everywhere, remains very much unsolved. Here we introduce
new upper and lower bounds and consolidate previous results. Though
these bounds rarely match, our results significantly reduce the gap.

1 Introduction

The problem of minimizing the amount of paper necessary to wrap a given
3-dimensional surface arises naturally from the economics of any factory packag-
ing physical items. We study two closely related cases of this problem: given an
x × 1/x unit-area rectangle of paper, what is the largest possible cube or sphere
it can wrap?

Informally, we consider wrappings that do not stretch, cut, or intersect the
paper with itself. We allow multiple layers of paper in the folding, and unlike [3],
do not differentiate between the front and back of the paper. As in [5], to formally
capture what it means to wrap a surface with non-zero curvature, we define a
wrapping (a.k.a. folding) to be a noncrossing, contractive mapping from a 2-
dimensional rectangle of paper to a subset of Euclidean 3-space. A contractive
function ensures no pair of points move apart under their image. This definition
captures the “crinkling” that you observe when, for example, you physically
wrap a billiard ball with a sheet of paper. The noncrossing condition is difficult
to formalize (see [7]); intuitively, it prohibits wrappings that cause surfaces to
strictly intersect.

We present a variety of novel techniques that improve upper and lower bounds
for wrapping both spheres and cubes. Figure 1 graphically summarizes these
results. A sphere wrapping (respectively, cube wrapping) is a wrapping whose
image is a sphere (cube). We denote cubes of sidelength S as S-cubes and spheres
of radii R as R-spheres. Throughout, assume that 0 < x ≤ 1 so that x is the
smaller side of our x × 1/x paper.
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Fig. 1. A summary of the upper bounds (thick lines) and lower bounds (thin lines)
on sphere (top) and cube (bottom) foldings. The horizontal axes indicate the smaller
dimension of the unit-area paper. The vertical axes denote radii and side lengths,
respectively. The shaded regions indicate the gaps between the bounds. See Sect. 6 for
discussion.
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2 Previous Results

2.1 Upper Bounds

Two techniques generated the previously known upper bounds on wrappings of
spheres and cubes. The first is the surface area bound: the surface area of the
image of a contractive mapping cannot exceed the surface area of the paper.

Upper Bound 1 (Folklore). A unit-area rectangle of paper may wrap an S-
sphere or an R-cube only if S ≤ 1/

√
6 and R ≤ 1/(2

√
π).

Catalano-Johnson and Loeb [4] observe that every point on the S-cube has an
antipodal point at least 2S away. Because wrappings are contractive, every point
(particularly the center) on the original paper must also have another point that
is 2S away, implying the paper’s diagonal is at least 4S. Demaine et al. [5] apply
this argument to spheres.

Upper Bound 2 [4,5] . An x× 1/x rectangle of paper may wrap an S-sphere
or an R-cube only if S ≤ √

x2 + x−2/4 and R ≤ √
x2 + x−2/(2π).

The surface area bound becomes tight as x approaches 0 and the antipodal points
bound is tight when x = 1. Between the endpoints, these bounds are likely far
from optimal.

2.2 Lower Bounds

Numerous lower bounds for particular rectangles, some with unclear origins,
exist in the form of physical foldings.

Lower Bound 1 ([4,9], Folklore). 1/
√

7×√
7 paper wraps a 1/

√
7-cube, and

1 × 1 and 1/
√

2 × √
2 papers each wrap a 1/(2

√
2)-cube.

Akiyama, Ooya, and Segawa [3] produce a series of six efficient “symmetric-skew”
wrappings which spiral the paper around the cube.

Lower Bound 2 [3]. x × 1/x paper wraps an S-cube for each (x, S) pair:
(√

11
24 ,

√
37
264

)
,

(√
2
9 ,

√
5
36

)
,

(√
2
15 ,

√
17
120

)
,

(√
8
75 ,

√
17
120

)
,

(√
2
23 ,

√
13
92

)
,

(√
2
45 ,

√
5
36

)
.

Akiyama et al. [3] also invent a technique called strip folding, using extremely
long, narrow rectangles to come arbitrarily close to the surface area bound.

Lower Bound 3 [3]. A strip of paper with x = 1/
√

24n2 + 12n − 2 can wrap a
2n/

√
24n2 + 12n − 2-cube for integers n ≥ 1.
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Demaine et al. [6] revisit strip folding, showing that any polyhedron can be
wrapped by strip folding.

Sphere wrappings are less extensively studied than cube wrappings.

Lower Bound 4 [5]. 1 × 1 and 1/
√

2 × √
2 rectangles wrap a 1/(π

√
2)-sphere.

Demaine et al. [5] also apply strip folding to spheres but do not provide an
explicit construction.

3 Upper Bounds

The following two techniques create new upper bounds on sphere wrapping and
provide a substantial improvement over the previous upper bounds, as illustrated
in Fig. 1. Our general approach is to reduce the problem of bounding rectangular
wrappings to simpler shapes like circles and stadiums.

3.1 Inscribed Stadiums on Spheres

As x approaches 1, Upper Bound 1 (surface area) becomes less effective, as it
fails to account for necessary “crumpling” of the paper. This technique improves
upon this by observing that a particular shape inscribed within paper must waste
a certain amount of its surface area when mapped onto a sphere.

An x × y stadium is the Minkowski sum of a length-x line segment (called
the major path) with a diameter-y disk. Refer to Fig. 2.

Proposition 1. Given an x × y stadium S with major path P mapped onto a
sphere by some contractive function f , let X be the points on the sphere within
surface distance y/2 from f(P ). Then f(S) ⊂ X.

Proof. On the flat paper, all of the points in S are within y/2 of the major path
P . Because f is contractive, all of these distances can only decrease when S is
mapped onto the sphere. ��

y

x

Fig. 2. x × y stadium, dashed major
path.

dx

Fig. 3. Extension of a stadium by dx.
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Proposition 2. An x × y stadium of flat paper mapped onto an R-sphere may
occupy no more surface area than

A(x, y) = 2R
(
πR − πR cos

y

2R
+ x sin

y

2R

)
.

Proof. To bound A(x, y) we will first establish A(0, y) and then bound the deriv-
ative dA/dx. This will allow us to bound the areas of all mapped stadiums.

First, consider an 0 × y stadium: a radius-y/2 disk. By definition, the disk
must fall within y/2 of its center on the sphere. A radius-y/2 spherical cap has
area 2πR2(1 − cos y

2R ), proving the claim for A(0, y).
Now consider an x× y stadium S with major path P . Let f be a contractive

map to the sphere and A be the area of points within distance y/2 of f(P ) on
the sphere. From Proposition 1, it suffices to bound A. Extend S by some length
dx (see Fig. 3). For sufficiently small dx, the extension of f(P ) runs along a
geodesic. Call the added area dA. In Fig. 3, this is the dotted region.

Now let θ = dx/R. This is the central angle corresponding to a geodesic of
length dx on the sphere. Extending P by dx will affect the latitudes within y/2
of our geodesic. Each latitude can be extended by at most an angle of θ. Let ra

be the radius of a circle of latitude at a spherical distance a from the equator.
It is well-known that ra = R cos a

R . This yields:

dA ≤
∫ y/2

−y/2

θrada =
∫ y/2

−y/2

dx

R
R cos

a

R
da = 2R sin

y

2R
dx

so dA/dx ≤ 2R sin y/(2R). For a stadium of length x, the area on the sphere is
bounded by A(x, y) as desired. ��
A (1/x − x) × x stadium can be inscribed within any x × 1/x paper rectangle.
By Proposition 2, this stadium only occupies A(1/x − x, x) area on the sphere.
The remaining paper only has an area of x2 − πx2/4.

Upper Bound 3. x × 1/x paper can wrap an R-sphere only if

4πR2 ≤ x2 − πx2/4 + A(1/x − x, x).

3.2 n Circumscribed Circles on Spheres

Cutting the paper or adding more material can only increase the ability of the
paper to wrap a sphere. With this as inspiration, we transform the paper into n
congruent disks, and then relate upper bounds on spherical cap coverings back
to rectangular sphere wrappings.

Proposition 3. If an R-sphere can be wrapped by an x×1/x paper, then it can
also be wrapped by n congruent disks of diameter

√
x2 + (nx)−2.

Proof. Consider a arbitrary wrapping from an x × 1/x paper to an R-sphere.
Partition the flat paper into n small x × 1/(nx) rectangles. Circumscribe each
x × 1/(nx) rectangle to get n disks of diameter

√
x2 + (nx)−2. These disks can

contractively map into the original paper. ��
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Covering a sphere with n spherical caps is a well-studied problem (see e.g. [8,11])
and for many values of n, bounds exist on how large the diameter d must be
to admit a covering of a sphere of radius R. For n = 1, a disk of diameter d
can wrap an R-sphere only if d ≥ 2πR. This yields

√
x2 + x−2 ≥ 2πR, which

is exactly Upper Bound 2! This generalization of the antipodal points bound is
most useful when n is 1 or 3, where coverings are necessarily very wasteful.

Upper Bound 4. An x × 1/x rectangle may wrap an R-sphere only if R ≤√
x2 + (3x)−2/π.

Proof. Three diameter-d disks can wrap an R-sphere only if d ≥ πR (see
s Table 2 of [11]). Composing with the contrapositive of Proposition 3 yields
R ≤ √

x2 + (3x)−2/π. ��

4 Lower Bounds

4.1 Rescaling Lower Bounds on Cubes

Most lower bounds on wrapping take the form of a construction for a specific x.
Here we present a method to rescale particular foldings to produce a continuous
set of lower bounds.

Theorem 1. If x×1/x paper wraps an S-cube, then there exists a folding of an
x′ × 1/x′ rectangle into an f(x′)-cube where f(x′) = S min{x′/x, x/x′}.
Proof. Suppose x′ < x. Uniformly scaling an x × 1/x rectangle by a factor of
x′/x, yields an x′ × x′/x2 rectangle, which wraps an Sx′/x-cube. An x′ × 1/x′

rectangle contracts to an x′ × x′/x2 rectangle. A corresponding argument can
be made for x′ > x. ��

4.2 Rectangle Conversions on Cubes

The rectangle-to-rectangle hinged dissection gadget of [1] inspires a technique to
transform wrappings of a particular aspect ratio into general wrappings without
any loss of efficiency.

Lower Bound 5. Any unit-area rectangle wraps a 1/
√

6 + 2
√

2-cube.

Proof. The crease pattern in the top-left of Fig. 4 shows a valid wrapping f of
a 1/

√
6 + 2

√
2-cube from an x × 1/x rectangle (fold each horizontal or vertical

crease to a right angle) with these special properties:

1. Left and right edges of the paper map to same segment.
2. Left and right halves of the top edge map to the same segment.
3. The bottom edge maps to a point.



On Wrapping Spheres and Cubes with Rectangular Paper 37

Inital Wrapping Partition Gluing

Fig. 4. The transformations used in Lower Bounds 5 (top) and 6 (middle and bottom).

Wrapping f can be transformed into a wrapping from a different aspect ratio
rectangle as follows. Partition an x × 1/x rectangle into some set of pieces P .
Notice that one can still wrap a 1/

√
6 + 2

√
2-cube with P by applying f to

each part.
To create a new rectangular wrapping, we will “glue” P back together by

identifying edges of elements of P such that they form an x′ ×1/x′ rectangle. To
ensure this gluing produces a valid wrapping, identified points must map to the
same point under f . Then f applied to each piece of P results in a contractive
mapping f ′ from x′ × 1/x′ to the 1/

√
6 + 2

√
2-cube.

To partition an x × 1/x rectangle and glue it into an x′ × 1/x′ rectangle,
Montucla’s dissection from [10] suffices. This is visualized in step 2 of Fig. 4.

To glue the parts back together:

1. Identify the original left edge and the original right edge.
2. Identify the left half of the original top edge and the right half.
3. Identify the two small parts of the bottom edge with the large part.

Figure 4 illustrates this transformation. The first and second identifications
correspond directly to special properties 1 and 2. The last one is valid because
the entire bottom edge is mapped to a single point.

Varying the angle of the diagonal cut in the dissection creates rectangles of
any aspect ratio. ��
The efficiency of Lower Bound 5 can be increased by starting with a different
wrapping. This causes the cuts to become more constrained, resulting in a dis-
crete set of wrappings. This technique is similar to the tetrahedral wrappings
in [2].
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Lower Bound 6. For any integer n ≥ 2, a rectangle with x = 2
√

2/
√

n2 + 4
wraps a 1/(2

√
2)-cube.

The proof of this proposition is almost identical to that of Lower Bound 5.
Figure 4 should give the reader the core ideas. The principal difference is that
the bottom edge no longer maps to a single point, so the dissection is more
constrained. Combining bounds on the middle and bottom wrappings in Fig. 4
yields our lower bound. Interestingly, Lower Bound 6 for n = 2 reproduces the
square folding by Catalano-Johnson and Loeb [4].

4.3 Strip Folding

Strip folding is a technique introduced in [3] that weaves a narrow strip of paper
back and forth to cover a surface. This section sketches new strategies for strip
folding that produce superior bounds on the sphere and the cube.

Cubes. Refer to Fig. 5. Here we present a new technique for strip folding on
the cube that is more efficient than that presented in [3]. The general strategy
consists of 3 parts resembling an algorithm more than a function:

Fig. 5. Strip wrapping a cube. 3D diagram (left) and edge unfolding (right).

– Spiral around the 4 vertical faces of the cube (sides).
– Fold the excess over onto top and bottom faces.
– Try two different methods of doubling back and forth using turn gadgets (as

seen in [3]) to cover the rest of the top and bottom faces.

We parameterize in terms of n, the number of times the top of the strip
switches faces while covering the sides. For ease of computation, we require
integral n.

The excess folded onto the top and bottom leaves a w×h rectangle uncovered
on each, where w = (n−5)S√

1+n2 and h = (n−3)S√
1+n2 . In Fig. 5, the bold lines indicate

these w × h rectangles.
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Proposition 4. A w ×h rectangle can be covered by an x× f(w, h, x) rectangle
of paper when one end of the paper starts outside the corner of the rectangle
along the side of length h where

f(w, h, x) = min (2x�h/x	 + w�h/x	 − x, 2x�w/x	 + h�w/x	) .

Both parts of the minimum have the strip move straight in one direction
until it would overlap some paper, then turning at a right angle twice to double
back. Both terms start with an initial turn (or two) to enter the rectangle and
orient to run parallel to a side. The second term is improved to w +

⌈
w
x

⌉
(h + x)

with a slightly more complicated construction.
After fixing n, we need two equations to solve for the width x and sidelength

S. Combining the three lengths in the construction:

1/x

︸︷︷︸
total length

= S
√

1 + n2 +
√

16S2 − x2

︸ ︷︷ ︸
length to cover sides

+ 2f

(
(n − 5)S√

1 + n2
,
(n − 3)S√

1 + n2
, x

)

︸ ︷︷ ︸
extra length for top and bottom

. (1)

Unrolling the spiraling portion of the strip and using similar triangles yields

x/S = 4/
√

1 + n2. (2)

Lower Bound 7. For any integer n ≥ 5, x× 1/x paper wraps an S-cube where
S satisfies Eqs. (1) and (2).

When n = 5 and n = 7, we recover two of the foldings from [3].

Spheres. Any point on a sphere of fixed radius can be described by the two
angles of spherical coordinates: θ (polar angle) and φ (azimuthal angle). The
underlying strategy is to spiral with constant slope much in the way the 4 sides
of the cube were wrapped. Figure 6 shows how the strip wraps a sphere by

φ π
2

0

π

θ

Fig. 6. Strip wrapping a sphere. Bold lines are mapped without any contraction.

maintaining constant dθ/dφ. We focus on only the top hemisphere as the bottom
follows by symmetry.
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Start with an initialization rectangle of width x with the diagonal 2πR
wrapped exactly around an equator. This rectangle is indicated by the dotted
region in Fig. 6. The top edge forms a line segment with dθ

dφ held constant.
Now extend the initialization rectangle, spiraling up the sphere continuing

to hold dθ
dφ constant. Terminate when the center of the ends reaches the poles.

A “cut and paste” argument, similar to that used for Lower Bound 5,
rearranges the ends of the strip to ensure the poles are covered. This is visualized
in Fig. 6 by moving the paper above φ = 0 into the gap at the top and doing the
same for φ = π.

The length of the strip, 1/x, is the length of the initialization rectangle plus
the amount needed to spiral in each hemisphere: 1/x = Linit + 2Lspiral. In cal-
culating the lengths, care must be taken to only look at fully stretched paths
because the rest of the strip is being contracted. These paths are bold in Fig. 6.

The initialization rectangle has diagonal 2πR and height x, so its length is
given by Linit =

√
(2πR)2 − x2.

Consider the upper hemisphere. By construction, in the upper hemisphere,
the bottom of the strip incurs no contraction. Using the spherical arc length
formula:

dl2 = (R sin(φ)dθ)2 + (Rdφ)2 + dR2 = Rdφ

√

sin2(φ)
(

dθ

dφ

)2

+ 1

Integrating over φ gives the length:

Lspiral =
∫

dl = R

∫ π
2

φ0

⎛

⎝

√

sin2(φ)
(

dθ

dφ

)2

+ 1

⎞

⎠ dφ

where φ0 is the value of φ such that when the bottom of the strip is at an angle
φ0, the middle of the strip reaches the pole.

The slope dθ/dφ is constant and thus equal to the ratio of the total change
in θ to the total change in φ over the initialization rectangle. θ ranges from 0
to 2π. Similar triangles demonstrate that φ changes by x/

√
R2 − (x/(2π))2, so

dividing gives

dθ

dφ
= 2π

√
R2 − (x/(2π))2

x
=

√
(2πR/x)2 − 1.

The angular distance between the middle and the bottom of the strip is
constant, so reasoning with similar right triangles in the initialization rectangle
yields φ0 = x/(2R)

√
1 − (x/(2πR))2.

Lower Bound 8. An x × 1/x paper wraps an R-sphere if R satisfies

1
x

=
√

(2πR)2 − x2

︸ ︷︷ ︸
init

+2R

∫ π
2

x
2R

√
1−( x

2πR )2

(√

sin2(φ)
(
(2πR/x)2 − 1

)
+ 1

)

dφ

︸ ︷︷ ︸
each hemisphere
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This bound is the first explicit sphere strip folding. It becomes optimally
efficient as x tends to 0. In addition, because of how it handles the ends of the
strip, it provides a powerful lower bound for larger values of x. When x = 1 we
recover the optimal lower bound from [5].

5 Relating Cubes and Spheres

Given contractive mappings f : A → B and g : B → C, g ◦ f constitutes a
valid contractive mapping from A to C. With this as inspiration, we present
mappings between spheres and cubes, allowing upper and lower bounds for one
to be translated to the other. Upper Bound 3 for inscribed stadiums translates
particularly well.

Theorem 2. S-cubes can be contractively mapped to (2S/π)-spheres.

Proof. Let f be our contractive mapping. Consider the Voronoi regions on a
sphere induced by the six x-, y-, and z-extremal points. f will contractively map
each face of the cube into one of these regions.

S

Fig. 7. One face of a cube with the area used by g drawn in.

It suffices to examine one face F and the corresponding sixth of a sphere F ′.
Refer to Fig. 7. Let the center of F be (0, 0) and the center of F ′ be (0, 0, R). Let
g : F ′ → F be the map that sends a point with spherical coordinates x = (R, θ, φ)
to the polar point g(x) = (Rφ, θ) on the paper.

Now we will show g is expansive by looking at an infinitesimal neighborhood
of an arbitrary x. Let x = (R, θ, φ) and x̃ = (R, θ + dθ, φ + dφ). Now let dl1 =
‖x − x̃‖ and dl2 = ‖g(x) − g(x̃)‖. These are known as line elements. It is well-
known that the sphere metric yields dl21 = (R sin φdθ)2 + (Rdφ)2. Doing the
same about g(x) with the metric on the paper gives us dl22 = (Rdφ)2 +(Rφdθ)2.
Because sin2 φ ≤ φ2, dl1 ≤ dl2. These distances can be integrated into arclengths
to show that all pairwise distances on the sphere are less than their images on
the paper. Thus g is expansive, so f = g−1 is contractive. The image of g is just
a subset of F , but we can extend the domain of f to all of F by mapping the
unused region to the boundary of F ′.

The map f sends the line going through the centers of four faces of the cube
to an equator of the sphere without any contraction. If S is the sidelength of the
cube, then the resulting sphere will have radius R = 2S/π. This also shows f is
optimal: no contractive mapping can produce larger spheres from a cube. ��



42 A. Cole et al.

Theorem 3. S-tetrahedra contractively map to S/(2
√

3 arccos 1√
3
)-spheres.

Theorem 3 is proved similarly to Theorem 2. Composing the tetrahedral wrap-
pings in [2] with Theorem 3 improves the sphere lower bounds in some regions,
as shown in Fig. 1.

6 Conclusions

Figure 1 gives a complete picture of the upper and lower bounds on spheres and
cubes, respectively. The horizontal axes denote the short paper dimension x.
The vertical axes give radius R (for the sphere) and the sidelength S (for the
cube). The shaded region is the area where the largest radius/sidelength could
lie. To simplify presentation, lower bounds on cube foldings are only displayed
when they are the best known. Previous lower bounds (Lower Bounds 1–4) are
plotted as black dots.

Using Theorem 1, discrete constructions for cube lower bounds are trans-
formed into a continuum. One surprise here is that the 1/

√
2 × √

2 wrapping of
the 1/(2

√
2)-cube is less efficient than a rescaling of a construction from Lower

Bound 2. Other results in Sect. 4 provided significant improvements over previous
known bounds across a variety of aspect ratios.

The two new spherical upper bounds from Sect. 3 greatly improve upon pre-
vious bounds, especially for intermediate values of x. Upper Bound 3 (inscribed
stadiums), in particular, is such an improvement that it transfers to the cube
using contractive mappings, creating the first new cube upper bound since 2001.
Upper Bound 4 is generally weaker but still provides an improvement for some
aspect ratios. Quite surprisingly, composing Upper Bound 4 with Theorem 2
gives an upper bound tangent to Upper Bound 1 (surface area). Finally, the
contractive mappings translate cube and tetrahedron wrappings to the sphere,
elevating the lower bounds.
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Abstract. A shortest path joining two specified endpoint configurations
that is constrained to have mean curvature at most ς on every non-zero
length sub-path is called a ς-geodesic. A seminal result in non-holonomic
motion planning is that (in the absence of obstacles) a 1-geodesic consists
of either (i) a (unit-radius) circular arc followed by a straight segment
followed by another circular arc, or (ii) a sequence of three circular arcs
the second of which has length at least π [Dubins, 1957]. Dubins’ original
proof uses advanced calculus; Dubins’ result was subsequently rederived
using control theory techniques [Sussmann and Tang, 1991], [Boissonnat,
Cérézo, and Leblond, 1994], and generalized to include reversals [Reeds
and Shepp, 1990].

We introduce and study a discrete analogue of curvature-constrained
motion. Our overall goal is to show that shortest polygonal paths of
bounded “discrete-curvature” have the same structure as ς-geodesics,
and to show that properties of ς-geodesics follow from their discrete
analogues as a limiting case, thereby providing a new, and arguably sim-
pler, “discrete” proof of the Dubins characterization. Our focus, in this
paper, is on paths that have non-negative mean curvature everywhere; in
other words, paths that are free of inflections, points where the curvature
changes sign. Such paths are interesting in their own right (for example,
they include an additional form, not part of Dubins’ characterization),
but they also provide a slightly simpler context to introduce all of the
tools that will be needed to address the general case in which inflections
are permitted.

1 Introduction

Curvature-constrained paths are a fundamental tool in planning motion with
bounded turning radius. Paths that are smooth (continuously differentiable) have
the advantage that they may look more appealing and realistic than polygonal
(piecewise-linear) paths. Nevertheless, polygonal paths are a much more common
model in geometry, exactly because of their discrete nature, and for this same
reason they have the potential of providing simpler and more intuitive proofs
c© Springer International Publishing Switzerland 2014
J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 44–64, 2014.
DOI: 10.1007/978-3-319-13287-7 5
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of properties of their smooth counterparts. Furthermore, from an applications
perspective, polygonal paths are more natural to plan, describe and follow. For
instance, in air traffic management—one of our motivating applications—an air-
craft flight plan (a list of “waypoints”) is represented on the strategic level by
a polygonal path whose vertices are the GPS waypoints. The actual smoothly
turning trajectory at a waypoint is decided by the pilot on the tactical level
when executing the turn (see [25] for more on curvature-constrained route plan-
ning in air transport). We are thus motivated to formulate a discretized model
of curvature-constrained motion.

Smooth paths of bounded curvature. In studying smooth paths of bounded cur-
vature, L. E. Dubins [15] observed that if one restricts attention to paths whose
curvature is defined at every point then there are situations in which short-
est paths do not exist. On the other hand, if one only requires that paths are
everywhere differentiable (that is their slope is well-defined at every point) then
their mean curvature is well-defined on every non-zero length sub-path. Thus,
Dubins chose to define a path to have bounded curvature if its mean curvature
is bounded everywhere. Specifically, let γ be a smooth path, parameterized by
its arclength. For any t in the domain of γ, let γ′(t) denote the derivative of
γ at t – the unit vector tangent to γ at t. The path γ is said to have mean
curvature at most one if ∠st ≤ s − t, for any t < s < t + π, where ∠st denotes
the angle between the directions of γ′(s) and γ′(t). (In other words, γ′, viewed
as mapping from the domain of γ to the unit circle, is 1-Lipschitz.) Furthermore,
there is no loss of generality in restricting attention to the case where the mean
curvature bound is one, since the general case can be reduced to the unit case by
suitable scaling. Accordingly, we hereafter use the term “curvature-constrained”
as a shorthand for “has mean curvature bounded by one”, and we refer to paths
with this property as cc-paths.

Dubins’ characterization, a seminal result in curvature-constrained motion
planning, states that, in the absence of obstacles, shortest curvature-constrained
paths in the plane, are one of two types: (i) a circular arc followed by a line
segment followed by another arc, or (ii) a sequence of three circular arcs, the
second of which has length at least π.

Discrete circular arcs. While several possibilities suggest themselves as ways
to formulate a discrete analogue of unit-bounded curvature1, it seems that all
such formulations are based on a natural notion of discrete circular arcs. Let
0 < θ ≤ π/2 be a given angle. We say that a polygonal chain forms a θ-discrete
circular arc (or simply a discrete circular arc if θ is understood) if (i) its vertices
belong, in sequence, to a common circle of radius one, and (ii) successive edges
have length at most dθ = 2 sin θ

2 (that is they subtend a circular arc of length
at most θ). Any portion of regular polygon with k ≥ 3 sides, inscribed in a unit
circle, provides a prototypical (2π/k)-discrete circular arc.

1 In an earlier draft [18], the authors proposed an alternative definition which had
some deficiencies that are resolved by the definition used in this paper.
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vi−1

vi vi+1
pred(vi) = succ(vi)

θ

N in(vi)
Nout(vi)

Fig. 1. Local conditions for θ-discrete
curvature-constrained paths.

Polygonal paths of bounded discrete-
curvature. Discrete circular arcs not
only satisfy our intuitive notion of
polygonal path with bounded discrete-
curvature but, like their smooth
counterparts, they seem to capture
the extreme case. It is interesting
to ask what properties a path P
with bounded discrete-curvature
should have in general. To ensure
that such a path does not turn “too
sharply” it seems natural to require
that, like discrete circular arcs, P
should turn by at most θ at each of
its interior vertices. However, such a
restriction alone does not guarantee
that P will serve as a bona fife discrete
analogue of a bounded-curvature path:
many short successive edges of P , each
turning only slightly, can simulate a sharp turn. Taking further inspiration from
discrete circular arcs, that permit short edges with correspondingly gentle turns,
we define:

Definition 1. A polygonal path 〈v1, v2, . . . , vn〉 has θ-discrete-curvature (or just
discrete-curvature, if θ is understood) at most one if, for 1 < i < n, the turn at
vi, the difference between the angles of the rays vi−1vi and vivi+1, is no more
than sin−1(min{dθ,|vi−1vi|}

2 ) + sin−1(min{dθ,|vivi+1|}
2 ).

Remark 1. As with its smooth counterpart, we hereafter use the term “θ-discrete-
curvature-constrained” (frequently abbreviated as “θ-dcc”) to mean “has θ-
discrete-curvature bounded by one”. It is easy to confirm that (i) any discrete
circular arc is a dcc-path, and (ii) for every vertex vi on a dcc-path, the point
succ(vi) at distance min{dθ, |vivi+1|} from vi along the edge vivi+1, does not
lie in the interior of the region N in(vi) formed by the union of the unit circles
passing through vi and pred(vi), the point at distance min{dθ, |vi−1vi|} from
vi along the edge vi−1vi. We will refer to N in(vi) (respectively, Nout(vi), the
region formed by union of the unit circles passing through vi and succ(vi) as the
in-neighbourhood (respectively, out-neighbourhood) of vi (see Fig. 1). Note that,
if |vivi+1| ≤ dθ then Nout(vi) = N in(vi+1).

Relating smooth and discrete curvature-constrained paths. Let γ be a smooth
path, parameterized by its arclength. We say that a polygonal path γ̂ =
〈v1, v2, . . . , vn〉 is a θ-discretization of γ if (i) vi = γ(ti), for 1 ≤ i ≤ n, where (ii)
t1 = 0, tn = |γ|, and 0 ≤ ti+1 − ti ≤ θ, for 1 ≤ i < n.

By definition, a θ-discrete circular arc is a θ-discretization of an
arc of a (smooth) unit circle. In fact (cf. Theorem 1 below) every θ-
discretization γ̂ = 〈γ(t1), γ(t2), . . . , γ(tn)〉 of every cc-path γ forms a θ-dcc-path.
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O

y

x

γ′(0)

γ(τ)

γ′(τ)

η = (y′(s), −x′(s))

γ(s) = (x(s), y(s))

Fig. 2. |Oγ(s)| ≥ 2 sin s
2
, the slope

of Oγ(s) is at most tan s
2
.

Lemma 1. For any r and s, r < s < r + π,
in the domain of γ, |γ(s) − γ(r)| ≥ 2 sin s−r

2 .

Proof. Assume, without loss of generality,
that r = 0 and that γ(r) is at the origin O
(i.e. γ(0) = (0, 0)); the lemma is then equiva-
lent to |γ(s)| ≥ 2 sin s

2 (Fig. 2). We prove this
by lower-bounding the derivative of |γ(s)|2:

(|γ(s)|2)′
= 2γ(s) · γ

′
(s) = 2

∫ s

0
γ

′
(τ) · γ

′
(s) dτ = 2

∫ s

0
cos∠sτ dτ ≥ 2

∫ s

0
cos(s − τ) dτ = 2 sin s

Hence |γ(s)|2 ≥ 2(1 − cos s) = 4 sin2 s
2 . ��

Corollary 1. For all i, 1 ≤ i < n, |γ(ti+1) − γ(ti)| ≥ |ti+1 − ti| sin(θ/2)
θ/2 .

Proof. It suffices to observe that, since 0 ≤ ti+1 − ti ≤ θ, sin((ti+1−ti)/2)
(ti+1−ti)/2

≥
sin(θ/2)

θ/2 . ��
Lemma 2. For any r and s, r < s < r + π, in the domain of γ, the angle
between γ′(r) and the ray γ(r)γ(s) is at most s−r

2 .

Proof. Assume again that r = 0 and that γ(0) = O; also assume w.l.o.g.
that γ′(0) is horizontal (γ′(0) = (1, 0)). Let γ(s) = (x(s), y(s)), and let
k(s) = y(s)/x(s) be the slope of the ray Oγ(s) (Fig. 2, left). Then the lemma is
equivalent to k(s) ≤ tan s

2 , which we will prove by showing that k′ ≤ 1−cos s
sin2 s

=
1

2 cos2(s/2) = (tan s
2 )′.

By definition, for any τ < s the angle between γ′(τ) and γ′(s) is at most
s− τ ; in particular γ′(s) ≤ s. It follows that x′(s) = (x′(s), y′(s)) · (1, 0) = γ′(s) ·
γ′(0) = cos ∠s0 ≥ cos s, and thus x(s) ≥ sin s. Next, consider the unit vector
η = (y′(s),−x′(s)), orthogonal to γ′(s) (Fig. 2). Since the angle between γ′(τ)
and η is at least π/2−(s−τ), it follows that (x′(τ), y′(τ)) ·η ≤ cos(π/2−(s−τ)),
or x′(τ)y′(s) − y′(τ)x′(s) ≤ sin(s − τ). Integrating over τ from 0 to s, we get
x(s)y′(s) − y(s)x′(s) ≤ 1 − cos s. Combining this with x(s) ≥ sin s, we obtain
what we need: k′ = (y/x)′ = y′x−x′y

x2 ≤ 1−cos s
sin2 s

. ��
Corollary 2. The angle between the ray γ(ti−1)γ(ti) and γ′(ti) is at most sin−1

(min{dθ,|γ(ti−1)γ(ti)|}
2 )

Proof. By the lemma, the angle between the ray γ(ti−1)γ(ti) and γ′(ti) is at most
ti−ti−1

2 , which is always at most θ/2 = sin−1(dθ

2 ). So, it suffices to consider the
case where |γ(ti−1)γ(ti)| < dθ. But in this case, ti−ti−1

2 ≤ sin−1( |γ(ti−1)γ(ti)|
2 ),

by Lemma 1. ��
In summary, we have shown the following:
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Theorem 1. If γ is any cc-path and γ̂ any θ-discretization of γ, then (i) γ̂ is a
θ-bcc-path, and (ii) |γ| sin(θ/2)

θ/2 ≤ |γ̂| ≤ |γ|.
Proof. (i) That γ̂ is a θ-bcc-path is an immediate consequence of Corollary 2,
since the angle between the ray γ(ti−1)γ(ti) and the ray γ(ti)γ(ti+1) is just the
sum of the angles formed by these rays with γ′(ti).
(ii) It is clear that the length of any θ-discretization of a smooth curve γ is no
greater than the length of γ. On the other hand, it follows immediately from
Corollary 1 that its length cannot be less than |γ| sin(θ/2)

θ/2 . ��
The fact that the bounds on |γ̂| coincide in the limit as θ approaches zero, will
be used to obtain properties of shortest smooth paths as a limit of the properties
of their discrete counterparts.

Remark 2. It is worth noting at this point that our definition of θ-dcc-path,
because of its “local” nature, rules out some paths that may be seen as having
bounded curvature. For example, a “sawtooth” approximation of a straight line
(see Fig. 3) does not qualify as a θ-dcc-path if the pitch of the teeth (turn angle),
no matter how small, is too sharp relative to the size of the teeth (edge length).

1

θ

Fig. 3. A sawtooth path that
does not qualify as a θ-dcc-
path.

Configurations. A configuration is a pair (p, φ),
where p is a point and φ is a direction (unit
vector). We say that a polygonal path P =
〈v1, v2, . . . , vn〉 satisfies endpoint configurations
(v1, φ1) and (vn, φn) if (i) the difference between
the angle of the ray v1v2 and φ1, is no more
than sin−1(min{dθ,|v1v2|}

2 ), and (ii) the difference
between the angle of the ray vn−1vn and φn, is no
more than sin−1(min{dθ,|vn−1vn|}

2 ).

Remark 3. This is equivalent to asserting that the
path 〈v0, v1, v2, . . . , vn, vn+1〉, formed from P by
adding an arbitrarily short edge of direction φ1

(respectively, φn) to the start (respectively, end)
of P , has bounded discrete-curvature.

Remark 4. It is easy to confirm that, for any intermediate configuration (vi, φi),
the composition of any dcc-path 〈v1, v2, . . . , vi〉 that satisfies endpoint config-
urations (v1, φ1) and (vi, φi) with any dcc-path 〈vi, vi+1, . . . , vn〉 that satisfies
endpoint configurations (vi, φi) and (vn, φn) produces a dcc-path 〈v1, v2, . . . , vn〉
that satisfies endpoint configurations (v1, φ1) and (vn, φn). Furthermore, if
P= 〈v1, v2, . . . , vn〉 is any dcc-path that satisfies endpoint configurations (v1, φ1)
and (vn, φn), then, for all i, 1 < i < n, there exists a direction φi such that (i)
the sub-path 〈v1, v2, . . . , vi〉 is a dcc-path with endpoint configurations (v1, φ1)
and (vi, φi), and (ii) the sub-path 〈vi, vi+1, . . . , vn〉 is a dcc-path with endpoint
configurations (vi, φi) and (vn, φn). On the other hand, breaking P at an arbi-
trary point in the interior of one of its edges may produce a path that no longer
has bounded discrete-curvature (at the breakpoint).



On Polygonal Paths with Bounded Discrete-Curvature: The Inflection-Free 49

We will be interested in characterizing shortest dcc-paths that satisfy speci-
fied endpoint configurations:

Definition 2. A discrete-geodesic joining endpoint configurations (v1, φ1) and
(vn, φn), is a dcc-path that (i) satisfies the endpoint configurations (v1, φ1) and
(vn, φn), and (ii) has minimum total length among paths satisfying (i).

Remark 5. It is by no means obvious that discrete-geodesics exist for all endpoint
configurations. Dubins’ proof [15] of the existence of smooth geodesics makes
use of tools from functional analysis (in particular, Ascoli’s theorem); in Sect. 4,
we describe an alternative approach to establishing the existence of discrete-
geodesics, having established a suitable characterization of the form the discrete-
geodesics must take (if they exist).

Remark 6. It is straightforward to confirm that if a path contains a pair of suc-
cessive edges vi−1vi and vivi+1 whose shortcut, edge vi−1vi+1, has length at most
dθ, then the path can be made both shorter and smaller (fewer edges) by replac-
ing the edges by their shortcut, without violating the curvature constraint. It
follows that for the purposes of characterizing discrete-geodesics, we can restrict
our attention to paths with finitely many edges formed by maximal2 discrete
circular arcs connected by (possibly degenerate) line segments. This assertion,
which follows immediately from our definition, is the discrete analogue of a non-
trivial property of smooth curvature-bounded geodesics, proved as Proposition
13 in [15].

1.1 Related Work

The books [26,27] provide general references that discuss curvature-constrained
path planning in the broader context of non-holonomic motion planning. We
note that study of curvature-constrained path planning has a rich history that
long predates and goes well beyond robot motion planning, see for example the
work of Markov [29] on the construction of railway segments.

The Dubins characterization of smooth geodesics has been rederived using
techniques from optimal control theory in [7,40]. Variations and generalizations
of the problem are studied in [6,8–10,12–14,19,28,30–34,37–39]. In addition,
Dubins’ characterization plays a fundamental role in establishing the existence
as well as the optimality of curvature-constrained paths. Jacobs and Canny [23]
showed that even in the presence of obstacles it suffices to restrict attention
to paths of Dubins form between obstacle contacts and that if such a path
exists then the shortest such path is well-defined. Fortune and Wilfong [20]
give a super-exponential time algorithm for determining the existence of, but
not actually constructing, such a path. Characterizing the intrinsic complex-
ity of the existence problem for curvature-constrained paths is hampered by
2 We ignore for the present the fact that successive maximal discrete circular arcs of

opposite orientation could share an edge. In this case we are free to impose disjoint-
ness of arcs by assigning the shared edge to just one of the two arcs.
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the fact that there are no known bounds on the minimum length or intricacy
(number of elementary segments), expressed as a function of the description of
the polygonal domain, of obstacle-avoiding paths in Dubins form. In a variety
of restricted domains polynomial-time algorithms exist that construct shortest
bounded-curvature paths [1,2,4].

A discretization of curvature-constrained motion was studied by Wilfong
[42,43]. However, his setting is different from ours since he considered discretized
environment, and not discrete paths. A practical way of producing paths with
length and turn constraints is presented in [41]. For some other recent work on
bounded-curvature paths see [3,5,11,16,17,21,22,24].

1.2 Our Approach

We study properties of discrete-geodesics that are free of inflections, as well as
their smooth counterparts. In Sect. 2 we motivate the study of this restricted class
of paths by proving that unrestricted discrete-geodesics never need more than
two internal inflections; i.e. all discrete geodesics are formed by the concatenation
of at most three inflection-free discrete-geodesics.

Section 3 establishes the central result of the paper: a precise characteriza-
tion of the form of all discrete-geodesics (if they exist). In Sect. 4 we use this
characterization to outline a proof of a characterization of smooth inflection-free
geodesics (establishing, by a simple limiting argument, this interesting variant
of the Dubins characterization). We also include a simple geometric proof of the
existence of one important special case of discrete-geodesics that illustrates the
strength of our characterization.

We note that similar methods, proving properties of smooth curves using
discretization, were already used by Schur in his paper of 1921; interestingly,
exactly these problems, considered by Schur [36] and Schmidt [35], led Dubins
to his result.

2 Inflections in Discrete-Geodesics

We now start our investigation of the structure of discrete-geodesics. An edge
e of a polygonal path is an inflection edge if the edges adjacent to e lie on the
opposite sides of (the supporting line of) e. Such an edge is said to have positive
inflection if the path makes a left turn into and a right turn out of e (and
negative inflection, otherwise). Note that, in accordance with our interpretation
of endpoint conditions as a zero-length edge of specified orientation, the first and
last edges of a path are possible inflection edges. When we want to distinguish
such edges, we refer to them as endpoint inflection edges; other inflection edges
are referred to as internal inflection edges.

It is not hard to see that a dcc-path can have arbitrarily many inflection
edges (of arbitrary lengths). However, minimum length such paths, can have no
more than two internal inflection edges (of any length) in total.
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2.1 More than Two Internal Inflection Edges is Impossible

Our first observation is that in any discrete-geodesic there can be at most one
internal inflection edge of each turn type.

Lemma 3. Any θ-dcc-path containing two or more internal inflection edges of
the same type can be replaced by another θ-dcc-path, with fewer edges, whose
total length is no longer than the original. In fact, if the inflection edges are
non-parallel, the replacement path is strictly shorter.

Proof. Let P = 〈v1, . . . , a, b, c, d, . . . , w, x, y, z, . . . , vn〉 and suppose that both bc
and xy are internal inflection edges with positive inflection (i.e. P turns left at
both b and x and right at both c and y; see Fig. 4). Note that since edges bc
and xy are internal inflection edges, the edges ab, cd, wx and yz all have strictly
positive length.

v1

a

b

c

d w

x
y

z vn

Fig. 4. A discrete curvature-
constrained path with two positive
inflection edges bc and xy.

w′ z

x
w

y

x′

N in(x)

N in(x′) Nout(y)

Fig. 5. Full translation

We assume, without loss of generality, that the ray from b through c and the
ray from x through y are either parallel or diverge (as illustrated). Then, any
transformation of P that results from a translation of the sub-path between c
and x along the vector xy (taking c, . . . x to c′, . . . x′) reduces the length of P
(except when the inflection edges are parallel, in which case the length of P is
preserved) and maintains the dcc-path property at b and c (since the edge bc
lengthens, while the turns at both b and c are not increased).

Consider the situation when x has been translated all the way to y (see
Fig. 5). The dcc-path property holds for the resulting path as long as pred(x′)
lies in Nout(y) (or, equivalently, succ(y) lies in N in(x′)), where x′ denotes the
translation of x, etc. In this case, there is nothing left to prove since the path
has one fewer edge (namely xy) than P . Hence we can assume that, after this
full translation, pred(x′) lies in Nout(y).
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If pred(x′) lies in the right component of Nout(y) (see Fig. 6) then it must lie
in the segment of this circle cut off by the line through x and y, which implies
that |pred(x′)x′| < dθ and so pred(x′) = w′. It follows that when the translation
is taken just to the point where w′ lies on the boundary of Nout(y), at which
point y must still lie outside Nout(pred(x′)) (see Fig. 7), we have |w′y| < dθ and
thus if we replace the edges w′x′ and x′y at this point by the edge w′y, we must
have a path that satisfies the dcc-path property.

Similarly, if pred(x′) lies in the left half of Nout(y) (see Fig. 6) then succ(y)
must lie in the left half of N in(x′) and in fact in the segment of this circle cut
off by the line through x and y. As before, this implies that |succ(y)y| < dθ and
so succ(y) = z. It follows that when the translation is taken just to the point
where z lies on the boundary of N in(x′), at which point x′ has not yet entered
the interior of Nout(y) (see Fig. 7), we have |x′z| < dθ and thus if we replace
the edges x′y and yz at this point by the edge x′z, we must have a path that
satisfies the dcc-path property.

z

x
w

y

w′ x′

Fig. 6.

z

x
w

x′
w′

y

Fig. 7.

Since in both of these remaining cases the resulting path has one fewer edge
than P , the result follows. Note that the only situation where the path has not
had its length strictly reduced is where the inflection edges are parallel (and so
the translation is length preserving). ��
Remark 7. It is worth observing at this point that Lemma 3 applies as well to
the case in which the inflection edge xy is an endpoint inflection. In this case,
we are not able to conclude that the transformed path has one fewer edge (since
edge yz has length zero), but it does follow from our argument that if P cannot
be shortened then the endpoint inflection edge must be a chord of the circle that
defines the endpoint configuration at y.

It follows from Lemma 3 that, ignoring the length zero edges at the path end-
points, any discrete-geodesic is the concatenation of at most three inflection-free
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Fig. 8.
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Fig. 9.

sub-paths. This motivates our next focus on the form of inflection-free discrete-
geodesics.

3 A Normal Form for Inflection-Free Geodesics

a

c

b

d
e

f
g

h

i

jk

Fig. 10. A discrete-curvature-constrained
path with five discrete arcs (including one
degenerate arc) and no inflections.

We have already noted that any short-
est dcc-path of minimum size consists
of a finite number of maximal dis-
crete circular arcs connected by (pos-
sibly degenerate) line segments that
we refer to as bridges. Here we include
the (possibly degenerate) circular arcs
(e.g. vertex k in Fig. 10) supported
by the circles (shown as dashed) that
define the endpoint configurations of
the path. A bridge vw is degenerate if
v = w (e.g. the first bridge, vertex d,
in Fig. 10). Of course, if a given path
has no inflection edges, all of the dis-
crete circular arcs have the same ori-
entation; without loss of generality we will assume that they are all clockwise
oriented (see Fig. 10).

The main result of this section is the following theorem. It amounts to a
special case of a general characterization theorem for discrete-geodesics and is a
fundamental building block for the proof of that theorem.

Theorem 2. Any inflection-free discrete-geodesic, joining two specified end-
point configurations, is composed of a sequence of at most four discrete circular
arcs, at most two of which are non-degenerate, joined by (possibly degenerate)
bridges.
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The proof of Theorem 2 proceeds by induction on the number of discrete circular
arcs in the path. Since the basis of the induction is obvious, it suffices to prove
the following:

Lemma 4. Any dcc-path, joining two specified endpoint configurations, that
consists of three non-degenerate discrete circular arcs of the same orientation,
joined by (possibly degenerate) bridges, can be replaced by a shorter path, joining
the same endpoint configurations, that consists of at most two non-degenerate
discrete circular arcs.

Proof. Suppose we are given a sub-path consisting of three non-degenerate dis-
crete circular arcs joined by two (possibly degenerate) line segments that we
refer to as the first and second bridge. We will refer to the circles supporting the
three arcs as the first, second and third circles (coloured blue, red and green,
respectively, in all of our figures). We consider several cases depending on the
nature of the two bridges (degenerate or not) and the total turn of the second arc
(essentially whether or not it exceeds π). With only one explicitly noted excep-
tion, we use one of two continuous shortening transformations both of which
involve moving all (or most) of the vertices on the second arc while keeping the
other arcs fixed: (i) a pivot rotates all (except possibly the opposite endpoint)
of the vertices on the second arc about one of the arc endpoints; and (ii) a
slide translates all (except possibly the opposite endpoint) of the vertices on the
second arc along one of the non-degenerate bridges. Since both transformations
move the second arc in a rigid fashion, we need only consider vertices in the
neighbourhood of the two bridges to confirm that the transformations preserve
the dcc-path property.

To simplify the analysis that follows we will assume throughout that if a
transformation leads to a co-linearity event : one of the bridges becomes co-linear
with one of its adjacent edges (equivalently, the turn at some bridge endpoint
becomes zero), then we will stop the transformation at this point and combine
the two co-linear edges into a new bridge. Obviously, this results in a simpler path
(with one fewer edge) and a possible degeneration of one of the discrete circular
arcs. With this exception, all of our transformations terminate with either (i) the
second arc becoming co-circular with the first or third (a co-circularity event),
in which case a bridge has been eliminated, (ii) a formerly non-degenerate bridge
becoming degenerate (a bridge degeneration event), or (iii) a bridge intersecting
one of its associated circles in a chord of length dθ (a maximal chord event). In
the second event, the resulting path is simpler in the sense that a path with a
narrow second arc (total turn less than π) gets measurably narrower, and one
with a wide second arc (total turn greater than π) gets measurably wider. The
third event is treated differently, depending on the intersection of the bridge
with it second associated circle. In all cases, the transformations are easily seen
to not only shorten the path, they also arguably leave it in a form that is simpler
than it was to start, from which it immediately follows that the full reduction
consists of only finitely many transformation steps.
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Case I: both bridges are non-degenerate. We begin by considering the case where
both bridges are non-degenerate. As we shall see, if one or more of the bridges
is degenerate, a shortening transformation exists that will bring us back to this
case.

There are two sub-cases to consider. In the first sub-case the turn from the
first bridge edge to the second is less than or equal to π (see Fig. 11). First note
that if we slide the middle discrete arc (vertices c through x) along the first bridge
edge (taking c towards b) we maintain the discrete bounded curvature property
at b and c as long as b (respectively, c) lies outside the second circle (respectively,
first) circle (i.e. until the bridge bc becomes degenerate). Meanwhile, the discrete
bounded curvature property is maintained at the endpoints of the second bridge
edge (xy) as long as the predecessor (r) of the outer point (y) lies outside of
the third circle (because of the direction of the translation the successor of the
other bridge endpoint point (x) cannot enter the second circle). If this point r
meets the third circle (a maximal chord event) while outside of the second circle,
then point r can replace y as the outer point of the second bridge (leading to a
shortening of the second discrete arc), and we can continue in Case I.

By symmetry the analogous properties hold if we slide the middle discrete
arc along the second bridge edge (taking x to y). Since both of these translations
serve to shorten the curve, we can assume that they have been done until either
or both of the bridges have degenerated (taking us to Case II or Case III below)
or we are left with unresolved maximal chord events on both bridges. In the
latter case, the successor point of b (illustrated by p in Fig. 12) must lie on the
first circle, the predecessor point of y (illustrated as r) must lie on the third
circle, and both p and r must lie inside the second circle.
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To deal with this last situation, we observe that either (i) the distance |rx|
must be at least the distance from p to the point q on the second circle intersected
by the line through p with the slope of the second bridge edge, or (ii) the distance
|pc| must be at least the distance from r to the point s on the second circle
intersected by the line through r with the slope of the first bridge edge. (It
is easily confirmed that if neither of these hold, we get a contradiction of the
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fact that the slope of edge qc must exceed the slope of edge xs.) Without loss
of generality, we assume that the first of these holds. Then, if we break edge
bc at point p and translate the second arc along the second bridge edge, the
second circle (specifically point q) must meet point p before x reaches r (note
that, since |ry| = dθ, x reaches r before y enters the second circle). If we stop
the translation at this point (see Fig. 13) we see that the first bridge has been
replaced by two edges (bp and pc) which become part of the first and second
discrete arc respectively; i.e. vertex p is a degenerate bridge, taking us to Case
II. (It is worth noting here that as the translation takes q to p the discrete
bounded curvature property is initially violated at c. It is restored just when
q coincides with p. This is the reason why we need to ensure that the bridge
remains feasible for vertices x and y until q reaches p. It is not at all clear that
a transformation exists that is guaranteed to shorten the path in the situation
under consideration, while preserving the discrete bounded curvature property
throughout.)

The second sub-case, where the turn from the first bridge edge to the
second is greater than π (see Fig. 14), is treated in a very similar fashion.
As in the first sub-case, we note that if we slide the middle discrete arc
along the first bridge edge (taking c towards b) we maintain the discrete
bounded curvature property at b and c as long as b (respectively, c) lies outside
the second (respectively, first) circle (i.e. until the first bridge becomes degener-
ate). Meanwhile the discrete bounded curvature property is maintained at the
endpoints of the second bridge edge (xy) as long as the successor (r) of the inner
point (x) lies outside of the second circle (because of the direction of the trans-
lation the predecessor of the other bridge endpoint (y) cannot enter the third
circle). If this point r meets the second circle (a maximal chord event) while
outside of the third circle, then point r can replace x as the inner point of the
second bridge (leading to a lengthening of the second discrete arc), and we can
continue in Case I.

By symmetry the analogous properties hold if we slide the middle discrete
arc along the second bridge edge (taking x to y). Since both of these translations
serve to shorten the curve, we can assume that they have been done until either
or both of the bridges have degenerated (taking us to Case II or Case III below)
or we are left with unresolved maximal chord events on both bridges. In the
latter case, the predecessor point of c (illustrated by p in Fig. 15) must lie on the
first circle, the successor point of x (illustrated as r) must lie on the third circle,
and p (respectively, r) must lie inside the first (respectively, second) circle.

To deal with this last situation, we observe that either (i) the distance |ry|
must be at least the distance from p to the point q on the circle associated with
the first arc intersected by the line through p with the slope of the second bridge
edge, or (ii) the distance |pb| must be at least the distance from r to the point
s on the circle associated with the third arc intersected by the line through r
with the slope of the first bridge edge. (As before, it is easily confirmed that if
neither of these hold, we get a contradiction of the fact that the slope of edge
bq must exceed the slope of edge ys.) Assume, without loss of generality that
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the second of these holds. Then, if we break edge xy at point r and translate
the second arc, including the point r, along the first bridge edge, the point r
must encounter the circle associated with the third arc before p reaches b. If we
stop the translation at this point (see Fig. 16) we see that the second bridge has
been replaced by two edges (xr and ry) which become part of the second and
third discrete arc respectively; i.e. vertex r is a degenerate bridge, taking us to
Case II. (As before, we note that the translation produces a path that violates
the discrete bounded curvature property initially, but it is restored just when s
coincides with r.)

Case II: one bridge is degenerate and the other is not. We assume, without loss
of generality, that the first bridge is degenerate. There are two sub-cases again
that depend on the span of the second arc. In the first sub-case (see Fig. 17) the
total turn from the first edge (bc) after the degenerate bridge (b) to the second
bridge edge (xy) is less than or equal to π. If we translate the middle discrete arc,
excluding the first bridge point, (i.e. the vertices c through x) along the second
bridge edge (taking x towards y) (see Fig. 18), we maintain the discrete bounded
curvature property until the first of two events occurs: (i) x (respectively, y) joins
the third (respectively, second) circle, or (ii) the successor (c) of the degenerate
bridge (b) joins the first circle. The first event coincides with the degeneration of
the second bridge, while the second event leaves us with a new degenerate first
bridge (vertex c), and hence a new instance of Case II with a smaller second arc.

In the second sub-case (see Figs. 19 and 21), where the total turn from the
first edge (bc) after the degenerate bridge (b) to the second bridge edge (xy) is
greater than π, we again slide the middle discrete arc, this time including the
first bridge point, (i.e. the vertices b through x) along the second bridge edge
(taking x towards y). The discrete bounded curvature property is maintained at
x and y unless x (respectively, y) joins the third (respectively, second) circle (i.e.
the second bridge becomes degenerate). Meanwhile, if b moves outside of the first
circle (see Fig. 20), then the discrete bounded curvature property is maintained
at a and b until a joins the second circle, at which point a replaces b as a
degenerate bridge, so we can continue in Case II. Alternatively, if b moves inside
the first circle, we maintain feasibility of the transformed path by (continuously)
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replacing the bridge point by the intersection point v of the first two circles
(see Fig. 22). It is straightforward to confirm that both |av| < |ab| and |vc′| < |bc|.
Thus, the transformation can continue until v coincides with either a or c, at
which point either a or c becomes a degenerate bridge, and we can continue in
Case II, with one fewer edge.

Case III: both bridges are degenerate. As in both previous cases, there are two
sub-cases depending on the span of the middle arc. If the middle arc spans less
than a half circle (refer to Fig. 23) then we can transform the path by rotating the
second arc, excluding the first bridge point, counterclockwise about the second
bridge point (see Fig. 24). Of course, if this rotation continues long enough the
second and third circle will coincide, at which point the second bridge disappears.
Prior to this, the transformation preserves the length of all edges except for the
first edge after the first bridge point (bc in Fig. 24) which shortens, since the
distance from both endpoints of this edge to the second bridge point (y) is
unchanged but the angle they form with the second bridge point decreases. The
transformation continues until the first vertex on the second arc (c) meets the
first circle, at which point it becomes a new degenerate first bridge. We then
continue in Case III, with a smaller second arc.
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In the second sub-case, the middle arc spans at least a half circle (refer to
Figs. 25 and 27). Then we can transform the path by rotating the second arc,
this time including both bridge points, counterclockwise about the second bridge
point. As in the previous sub-case, if this rotation continues long enough the
second and third circle will coincide at which point the second bridge disappears.
Prior to this, there are two cases to consider depending on the trajectory of the
first bridge point (b).

If the first bridge point (b) moves outside the first circle (see Fig. 26), the
discrete bounded curvature property is maintained at a and b until a joins the
second circle, at which point either a or c replaces b as a degenerate bridge, so
we can continue in Case III.
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Alternatively, if the first bridge point (b) moves inside the first circle (see
Fig. 28), we maintain feasibility of the transformed path by (continuously) replac-
ing the bridge point by the intersection point v of the first two circles. It is
straightforward to confirm that both |av| < |ab| and |vc′| < |bc|. Thus, the rota-
tion can continue until v coincides with either a or c, at which point either a or
c becomes a degenerate bridge, and we can continue in Case III, with one fewer
edge. ��

4 Existence and Uniqueness of ς-geodesics

Careful inspection of the proof of Lemma 4 shows that it applies even when
the first or third discrete circular arc is degenerate (i.e. arises from an endpoint
constraint), provided the second discrete circular arc spans at most a half circle.
Furthermore, if the second circular arc in some locally shortest path spans more
than a half circle, then if the first (or third) arc is degenerate, it must be the
case that the path starts (or ends) with an edge that (i) is an extension of



On Polygonal Paths with Bounded Discrete-Curvature: The Inflection-Free 61

a

b
c

e
d y

Fig. 29.

a

b
c

d
z

x
y

Fig. 30.

the corresponding endpoint configuration and (ii) cuts the middle circle with a
maximal chord.

Taking this into consideration, Theorem 2 can be strengthened to provide
a very tight characterization of the form of inflection-free θ-discrete-geodesics,
if they exist: they are formed by two (or fewer) θ-discrete circular arcs of the
same orientation, joined by a (possibly degenerate) bridge, and preceded and
followed by (possibly degenerate) edges that are extensions of the endpoint con-
figurations. Furthermore, when the extension of one endpoint configuration is
non-degenerate, either (i) there is only a single non-degenerate θ-discrete circular
arc, or (ii) the extension of the other endpoint configuration must be degenerate,
and the adjacent θ-discrete circular arc must span more than a half circle.

We note that, as θ goes to zero, this refined characterization of inflection-
free θ-discrete-geodesics describes a family of smooth geodesics, including the
sole inflection-free geodesic specified by Dubins’ general characterization. In this
way, we can derive an analogue of Dubins’ result for inflection-free geodesics.
Uniqueness, in the smooth case, is a direct consequence of the uniqueness of their
discrete counterparts, together with our discretization theorem (Theorem 1).

Clearly paths of the form specified by Theorem 2, joining specified end-
point configurations, always exist. To argue the existence of discrete-geodesics,
it remains to argue that the infimum of the lengths of paths of this form is
always realized by a path of this form. It would suffice to use a compactness
argument (of the style used by Dubins), but it turns out to be both simpler and
more revealing to argue this geometrically. We will do so for general (not nec-
essarily inflection-free) discrete-geodesics in a companion paper. To give some
sense of the kind of arguments involved, we consider just one special case here:
an inflection-free dcc-path is endpoint-anchored if it is formed by two θ-discrete
circular arcs respecting the two endpoint constraints, joined by a bridge of length
at least 2dθ. (Note that such paths correspond to the unique inflection-free paths
in Dubin’s characterization, in the limit as θ goes to zero.)

To this end, we say that a θ-discrete arc consisting of a sequence of edges
of length exactly dθ is perfect, and a θ-discrete arc consisting of a sequence of
edges all but one of which have length exactly dθ is near-perfect. With this, we
can assert that:

Claim 3. Endpoint-anchored geodesics exist and are composed of two perfect
discrete circular arcs joined by a non-degenerate bridge.
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Proof. The key to establishing the existence of discrete-geodesics is the observa-
tion that any minimum length discrete arc spanning an angle Ψ is made up of
�Ψ/θ	 segments of length dθ, and one additional edge spanning an arc of length
Ψ mod θ, i.e. it is near-perfect.

Suppose we have a dcc-path that consists of a near-perfect, but non-perfect,
discrete arc followed by a non-degenerate bridge, followed by another near-
perfect discrete circular arc. It remains to argue that such a path is not a
discrete-geodesic, i.e. it can be shortened. There are two cases to consider. The
first, shown in Fig. 29, the chord bd of length dθ from b, the last vertex on the
initial perfect arc, crosses the bridge cy. In this case, it is straightforward to
show (since |bd|+ |de| ≤ |bc|+ |ce| and |dy| < |de|+ |ey|) that replacing sub-path
bcy by bdy must produce a shorter dcc-path with the same endpoints.

Alternatively, we can assume (see Fig. 30) that neither bd nor the correspond-
ing chord xz on the second circle cross the bridge cy. In this case, if we pivot the
bridge cy about its endpoint y then the dcc-path property is preserved until the
bridge hits the first of b, d or x. But since this transformation leads to a shorter
path in all three situations. ��

5 Conclusion

We introduced a discrete model of curvature-constrained motion and studied
some of its properties, in particular the structure of geodesics in this model. Our
focus here has been primarily on inflection-free paths, which we have demon-
strated constitute an essential component of unrestricted geodesics. We have
also illustrated the utility of our characterization in relating properties of smooth
geodesics as the limiting case of our discrete geodesics.

In a subsequent paper we will extend our characterization of inflection-
free discrete-geodesics to the general case, including a re-derivation of the full
Dubins characterization of smooth geodesics, using similar limiting arguments.
We believe that discrete versions of curvature-constrained motions that include
reversals (cf. [31]) can be formulated in the same way.

Acknowledgements. We thank Sergey Bereg, Stefan Foldes, Irina Kostitsyna and
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Abstract. We consider a problem as follows: Given unit weights arriv-
ing in an online manner with the total cardinality unknown, upon each
arrival we decide where to place it on the unit circle in R

2. The objective
is to set the center of mass of the placed weights as close to the origin
as possible. We apply competitive analysis defining the competitive dif-
ference as a performance measure. We first present an optimal strategy
for placing unit weights which achieves a competitive difference of 1

5
. We

next consider a variant in which the destination of each weight must be
chosen from a set of positions that equally divide the unit circle. We
give a simple strategy whose competitive difference is 0.35. Moreover, in
the offline setting, several conditions for the center of mass to lie at the
origin are derived.

1 Introduction

Suppose that we are given a series of points, each with unit weight, one by one
with the total cardinality unknown in advance. Our task is to place the points
one by one on the unit circle in R

2 while keeping a good balance. We are not
allowed to move the point any more, once it is placed. The balance is measured
by the Euclidean distance between the center of mass of the placed points and
the origin.

The difficulty is that we do not know how many points will arrive in total.
If we guess the total cardinality somehow at the beginning, then we may try to
place the points, for example, in such a way that they equally divide the unit
circle. If the guess is correct, the center of mass comes to the origin. However, if
the guess fails, say, if one extra point arrives, we have to place it somewhere and
then lose the good balance. Also in the case of fewer points than expected, we
cannot achieve the balance as planned. In this paper we consider this problem
from the viewpoint of competitive analysis.

Our Contribution. We apply competitive analysis adopting the competitive dif-
ference as a criterion of competitiveness of a strategy. The competitive difference
is defined as the maximum difference between the cost incurred by the strategy
and the cost incurred by an optimal offline strategy that knows the total cardi-
nality of points in advance. Our results are summarized as follows:

c© Springer International Publishing Switzerland 2014
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(a) We present a non-trivial optimal strategy whose competitive difference is 1
5 .

This means that according to our strategy, the cost is guaranteed to be at
most the optimal offline cost plus 1

5 .
(b) We impose the n-cyclotomic constraint on the problem that for fixed n, the

destination of each point has to be chosen from {(cos 2kπ
n , sin 2kπ

n ) | 0 ≤ k ≤
n−1, k ∈ Z} and each position is occupied by at most one point. Depending
on the parity of n, we give a simple and competitive strategy. Our strategy
guarantees a competitive difference of 0.35 for odd n and 1

3 for even n.
(c) We investigate the n-cyclotomic constrained problem in the offline setting, in

which the cardinality of points is informed at the beginning. Even with the
information of the cardinality, it is not clear whether there is a placement
of points that lets the center of mass come exactly to the origin. We reveal
several conditions for the existence of such a placement.

Related Work. To the best of our knowledge, this paper seems the first to focus
on the placement of weighted objects that arrive in an online manner in terms
of the optimal placement of their center of mass. One can find many studies
with similar purposes in the offline setting: Kurebe et al. [6] considered the
placement of weighted rectangles on R

2 to let their center of mass approach
the target position. Teramoto et al. [7] studied the insertion of points into the
unit square in R

d in such a way that the Euclidean distance between any pair
of points becomes as uniform as possible. Recently, Barba et al. [1] considered
the problem that given a set of weights, a closed connected region, and a target
position, we are asked to place the weights on the boundary of the region so that
the center of mass lies at the target.

In consistent hashing, one can think that items and caching machines are
both mapped to points on the unit circle [4,5]. In the context of the space
science, satellite constellation design for covering the Earth’s sphere has been of
great interest, for example [3,9].

2 Problem Statement and Preliminaries

Throughout this paper a point denotes an individual object that is to be placed
(or has been placed) on R

2, while a position stands for where to place a point
on R

2. Each point has unit weight unless we specify otherwise. We sometimes
identify a position on R

2 and its xy coordinate, such as the origin O = (0, 0).
AB denotes the Euclidean distance between the positions A and B.

We define the online weight balancing problem as follows. We are given a
series of points, each with unit weight, in an online manner where the points
arrive one by one and the total cardinality is unknown in advance. Our task is
to place each point, upon its arrival, somewhere on the unit circle in R

2. Once
a point is placed, it cannot be moved any more. The objective is to minimize
the cost which is defined as the Euclidean distance between the center of mass
of the placed points and the origin, that is, the center of the unit circle.
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A strategy for placing points is denoted by a sequence θ := (θ1, θ2, . . .) ∈ S
in the sense that it places the j-th point at Pθ(j) := (cos θj , sin θj), where S
is the set of feasible strategies (specified later). The reason why a strategy is
denoted thus simply is that any adaptive decision based on the history of the
configuration does not help in this problem. When k points have arrived so far
and been placed according to the strategy θ, the center of mass of the points
lies at

Gθ(k) :=
(1

k

k∑

j=1

cos θj ,
1
k

k∑

j=1

sin θj

)
.

Then, the cost of the strategy θ is written as

Cθ(k) := OGθ(k) =

√√
√
√

(1
k

k∑

j=1

cos θj

)2

+
(1

k

k∑

j=1

sin θj

)2

.

On the other hand, the optimal offline cost, that is, one with the cardinality
known to be k in advance, is

Copt(k) := inf{Cθ(k) | θ ∈ S}.

The performance of strategies for online problems is usually measured by the
competitive ratio (see [2] for example), which would be defined as supk≥1

Cθ(k)
Copt(k)

for our problem. However, this is inconvenient here since Copt(k) = 0 and
Cθ(k) > 0 happen often in the same time. We thus define and use the competi-
tive difference instead. We say that the strategy θ has a competitive difference
of d if

Cθ(k) − Copt(k) ≤ d

holds for all k ≥ 1. Apparently, d ≥ 0. A smaller competitive difference means a
better strategy.

In this paper we consider the online weight balancing problem under two
different settings:

(A) The basic problem. We are allowed to place a point on an arbitrary position
on the unit circle. Namely, the set of feasible strategies S is

{(θ1, θ2, . . .) | 0 ≤ θj < 2π for j ≥ 1}.

(B) The n-cyclotomic problem. For fixed n, the destination of each point is
chosen from {(cos 2kπ

n , sin 2kπ
n ) | 0 ≤ k ≤ n − 1, k ∈ Z}, that is, a set of n

positions that equally divide the unit circle into n arcs. Any position should
not be occupied more than once. Formally, we set S to
{(2m1π

n
,
2m2π

n
, . . . ,

2mnπ

n

) ∣
∣
∣ 0 ≤ mj ≤ n − 1,mj ∈ Z

n for 1 ≤ j ≤ n;

mj �= mk for 1 ≤ j < k ≤ n
}

.

We assume in addition that the cardinality of the arriving points is at most n.
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3 Basic Problem

3.1 Optimal Online Strategy

We first show a lower bound on the competitive difference and then give a
strategy whose competitive difference coincides with that value. We begin by
presenting a simple lemma on the offline cost.

Lemma 1. For the basic problem, it holds that

Copt(k) =

{
1, k = 1;
0, k ≥ 2.

Proof. It is trivial that Copt(1) = 1 since the cost is one wherever we place a
single point. For k ≥ 2, just adopt the strategy (0, 2π

k , 4π
k , . . . , 2(k−1)π

k ). ��
By rotational symmetry, we can assume that an optimal strategy satisfies θ1 = 0
and 0 ≤ θ2 ≤ π. Let α := 2 arccos 1

5 (≈ 157◦), which is a key angle for obtaining
an optimal strategy. The next lemma gives a lower bound on the competitive
difference.

Lemma 2. Any strategy for the basic problem has a competitive difference of at
least 1

5 .

Proof. Fix a strategy θ arbitrarily. By rotational symmetry, we can assume that
θ1 = 0 and 0 ≤ θ2 ≤ π. We will show that the competitive difference is at least
1
5 regardless of the value of θ2.

(i) Case 0 ≤ θ2 < α. We have

Gθ(2) :=
(1

2
(1 + cos θ2),

1
2

sin θ2

)
.

Since x 	→ cos x
2 is a decreasing function on [0, π],

Cθ(2) =
1
2

√
(1 + cos θ2)2 + sin2 θ2 = cos

θ2
2

> cos
α

2
=

1
5
.

On the other hand, Copt(2) = 0 by Lemma 1. Therefore, the competitive differ-
ence is greater than 1

5 .
(ii) Case α ≤ θ2 < π. We evaluate the cost after the third point has been

placed. For ease of analysis, we square the cost:

Cθ(3)2 =
(1

3

3∑

j=1

cos θj

)2

+
(1

3

3∑

j=1

sin θj

)2

=
2
9

sin θ2 sin θ3 +
2
9

cos θ3 cos θ2 +
2
9

cos θ2 +
2
9

cos θ3 +
1
3
.
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Let us think of Cθ(3)2 as a function of θ3 with a fixed parameter θ2. By
differentiating Cθ(3)2 with respect to θ3, we obtain

∂Cθ(3)2

∂θ3
= −2

9
sin θ3 +

2
9

sin θ2 cos θ3 − 2
9

sin θ3 cos θ2

=
4
9

sin
(θ2

2
− θ3

)
cos

θ2
2

.

This implies that when θ3 = θ2
2 + π, the function Cθ(3)2 achieves a minimum of

2
9

sin θ2 sin
(θ2

2
+ π

)
+

2
9

cos
(θ2

2
+ π

)
cos θ2 +

2
9

cos θ2 +
2
9

cos
(θ2

2
+ π

)
+

1
3

=
1
9

(
1 − 2 cos

θ2
2

)2

.

(Geometrically speaking, the optimal position of the third point is the midpoint
of the longer arc connecting Pθ(1) and Pθ(2).) Hence, for general θ3, it holds
that

Cθ(3) ≥ 1
3

(
1 − 2 cos

θ2
2

)
=

1
3

(
1 − 2

5

)
=

1
5
.

Again by Lemma 1, we know Copt(3) = 0. Therefore, the competitive difference
is at least 1

5 . ��

The strategy θ defined below turns out to be optimal. Note that the choice of
placement for the fourth and later points is a matter of taste; any placement
is acceptable as long as the resulting cost does not exceed 1

5 . Here we choose a
placement for the fourth and later points so that the analysis is easy to handle.
See Fig. 1.

θj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, j = 1;
α, j = 2;
α
2 + π, j is odd, j ≥ 3;
α
2 , j is even, j ≥ 4.

Lemma 3. Cθ(1) = 1, and Cθ(k) ≤ 1
5 for all k ≥ 2.

Proof. Cθ(1) = 1 is trivial. For ease of notation we write Pθ(·) and Gθ(·) simply
as P (·) and G(·), respectively. Although the lemma can be proved by explicitly
calculating the coordinate of G(k) for general k ≥ 2, we here give a simpler proof
based on geometric arguments. Applying the strategy θ, we calculate G(2) =
( 1
25 , 2

√
6

25 ) and G(3) = (− 1
25 ,− 2

√
6

25 ). (See Fig. 1.) It is thus observed that the
origin O lies on the segment G(2)G(3) and OG(2) = OG(3) = 1

5 . Therefore, the
proof is done if G(k) lies on the segment G(2)G(3) for all k ≥ 2.

We begin by proving that every G(k) is on the line G(2)G(3), not necessarily
on that segment. Please note that P (3) = P (5) = P (7) = · · · = (− 1

5 ,− 2
√
6

5 ) and
P (4) = P (6) = P (8) = · · · = (15 , 2

√
6

5 ) are on the line G(2)G(3). For k ≥ 4, G(k)
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P(2)

P(4), P(6), ...

G(2)

G(3)

G(4) P(1)
O

P(3), P(5), ...

1.0 0.5 0.5 1.0
x

1.0

0.5

0.5

1.0

y

Fig. 1. Placement of points P (1), P (2), . . . according to the optimal online strategy θ
in Theorem 1 for the basic problem. G(i) is the center of mass when i points have been
placed so far.

can be calculated as the center of mass of a point with weight k − 1 at G(k − 1)
and one with weight unity at P (k). Hence, G(k) lies on the line G(2)G(3) if
G(k − 1) does so. Thus, we know inductively that every G(k) is on the line
G(2)G(3).

We next show by induction that for odd k ≥ 2, G(k) is on the segment
OG(2). The claim is trivial for k = 2. Suppose that G(k −2) lies on the segment
OG(2) for some odd k(≥ 4). Consider that two points are added at P (k − 1)
and P (k) at once. The center of mass of these two points is obviously at the
origin. Then, G(k) is regarded as the center of mass of a point with weight k −2
at G(k − 2) and one with weight two at the origin. Therefore, G(k) is on the
segment OG(2).

We can show similarly that for even k ≥ 3, G(k) is on the segment OG(3).
The proof is thus completed. ��
Theorem 1. The strategy θ is optimal for the basic problem. Its competitive
difference is 1

5 .

3.2 Structure of Optimal Offline Strategies

In the proof of Lemma 1, we have claimed that for k ≥ 2, the strategy
(0, 2π

k , 4π
k , . . . , 2(k−1)π

k ) achieves a cost of zero. What should be remarked upon
here that this is one of optimal offline strategies. A natural question here would
be: What other strategy achieves Copt(k) = 0? In what follows, we do not distin-
guish strategies with reflection and/or inversion symmetry or those having the
same set of angles.
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P(1)
P(2)

P(3)

P(4)

P(5)

P(6)

G(2)

G(3)

G(4)

G(5)
G(6)

P(7)

1.0 0.5 0.5 1.0
x

1.0

0.5

0.5

1.0

y

Fig. 2. Behavior of
the online strategy in
Theorem 2 for the 7-
cyclotomic problem.

P(1)

P(3)

P(4)

P(5)

P(6)

P(7)

P(8)

G(3)G(5)
G(7)

G(2)
(=G(4)=G(6))

P(2)
1.0 0.5 0.5 1.0

x

1.0

0.5

0.5

1.0

y

Fig. 3. Behavior of
the online strategy in
Theorem 3 for the 8-
cyclotomic problem.

P(2)

P(3)

P(4)

P(5)

P(7)

P(6)

P(9)
P(11)

P(10)
P(8)

P(15)

P(14)

P(13)

P(12)

P(1)1.0 0.5 0.5 1.0
x

1.0

0.5

0.5

1.0

y

Fig. 4. Behavior of the
offline strategy in Theo-
rem 4 for the 40-cyclotomic
problem, applying p = 5.
This figure depicts the
placement of 15 points such
that their center of mass lies
at the origin.

For k = 2, there does not exist such a strategy except for the strategy (0, π).
For k = 3, it is seen that (0, 2π

3 , 4π
3 ) is a unique optimal offline strategy. For

k = 4, by a basic manipulation of equations, it is derived that any optimal
strategy has the form (0, π, θ3, θ3 +π). Geometrically speaking, Cθ(4) = 0 if and
only if Pθ(1)Pθ(2)Pθ(3)Pθ(4) forms a rectangle.

What if k = 5? Apparently, the strategy (0, 2π
5 , 4π

5 , 6π
5 , 8π

5 ), which forms a
regular pentagon, is optimal. We also have (0, π, θ3, θ3 + 2π

3 , θ3 + 4π
3 ), for which

the points compose a diameter and a regular triangle. Note that since the center
of mass of a diameter and that of a regular triangle lie both at the origin, the
center of mass of the five points lies at the origin as well. Then, is there any
strategy that satisfies Cθ(5) = 0 but does not form either a regular pentagon or
the combination of a diameter and a regular triangle? The answer is yes. For π

5 >
ε > 0, we can choose δ > 0 such that the strategy (0, 2π

5 −δ, 4π
5 +ε, 6π

5 −ε, 8π
5 +δ)

has a cost of zero.

4 n-Cyclotomic Problem

4.1 Simple Online Strategy

For each of the cases of odd n and even n, we provide a simple strategy and
analyze its competitive difference. We will later explain that our strategy is not
optimal in general. See Figs. 2 and 3 for the behavior.

Theorem 2. For the n-cyclotomic problem with odd n(≥ 3), the strategy θ
defined as

θj =
(j − 1)(n − 1)π

n
, 1 ≤ j ≤ n
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achieves a competitive difference of zero for n = 3 and n = 5, and a competitive
difference of 1

3 cos π
14

(< 0.35) for n ≥ 7.

Proof. For n = 3, our strategy is θ = (0, 2π
3 , 4π

3 ). By rotational symmetry,
there is no choice of strategy. One can easily see that our strategy achieves a
competitive difference of zero.

For n = 5, we have θ = (0, 2π
5 , 4π

5 , 6π
5 , 8π

5 ). Observe each time when the k-th
item has arrived (1 ≤ k ≤ 5). One can confirm that there is no better placement
than that of our strategy, even if the cardinality is known in advance. Thus, our
strategy achieves a competitive difference of zero for n = 5.

In the rest of the proof we discuss n ≥ 7. We calculate the coordinate of the
center of mass using the identities

k∑

j=1

cos
(j − 1)(n − 1)π

n
=

1
2 cos π

2n

(
cos

π

2n
+ sin

(2k − 1)(n − 1)π)
2n

)
,

k∑

j=1

sin
(j − 1)(n − 1)π

n
=

1
2 cos π

2n

(
sin

π

2n
− sin

(2k(n − 1) + 1)π
2n

)
.

After some manipulation, we have

Cθ(k) =

∣
∣
∣sin k(n−1)π

2n

∣
∣
∣

k cos π
2n

.

We investigate the value of Cθ(k) − Copt(k) for all k. For k = 1, we have
Cθ(1) = 1 and obviously Copt(1) = 1. Therefore the difference is zero. For
k = 2, we immediately have Cθ(2) = sin π

2n . By a simple calculation, it turns out
that to place two points at (1, 0) and (cos (n−1)π

n , sin (n−1)π
n ) is optimal. Thus,

Copt(2) = sin π
2n . Hence, the difference is again zero. For k ≥ 3, by applying

Copt(k) ≥ 0, we have

Cθ(k) − Copt(k) ≤ Cθ(k) =

∣
∣
∣sin k(n−1)π

2n

∣
∣
∣

k cos π
2n

.

We derive ∣
∣
∣sin k(n−1)π

2n

∣
∣
∣

k cos π
2n

≤ 1
k cos π

2n

≤ 1
3 cos π

2n

≤ 1
3 cos π

14

,

since sin x ≤ 1 for all x, cos π
2n decreases monotonically with n, and n ≥ 7. The

competitive difference of the strategy θ is thus upper-bounded by 1
3 cos π

14
(< 0.35)

for n ≥ 7. ��
We leave some remarks without proof: For n = 7, the strategy (0, 6π

7 , 10π
7 , 4π

7 ,
12π
7 , 2π

7 , 8π
7 ) has a competitive difference of zero, while the competitive ratio of

our strategy (0, 6π
7 , 12π

7 , 4π
7 , 10π

7 , 2π
7 , 8π

7 ) is approximately 0.08. For n = 9, the
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strategy (0, 8π
9 , 14π

9 , 4π
9 , 12π

9 , 2π
9 , 6π

9 , 16π
9 , 10π

9 ) has a better competitive difference
than that of our strategy (0, 8π

9 , 16π
9 , 6π

9 , 14π
9 , 4π

9 , 12π
9 , 2π

9 , 10π
9 ). That is to say,

our strategy is not optimal for these cases.
In addition, our strategy is not optimal for large n; roughly speaking, a strat-

egy more like that presented in Theorem 1 performs better. More specifically, one
can have a better strategy by rounding each position specified in the strategy in
Theorem 1 into some nearby position that is feasible for the n-cyclotomic prob-
lem, in such a way that each position does not occur more than once. Although
the rounded positions for later points may be far from those in the original strat-
egy, this does not matter. Recall that the positions for later points do not affect
the competitiveness, as we discussed in Sect. 3.1.

Theorem 3. For the n-cyclotomic problem with even n(≥ 2), the strategy θ
defined as

θj =

{
(j−1)π

n , j is odd;
(j−2)π

n + π, j is even

achieves a competitive difference of zero for n = 4, and a competitive difference
of 1

3 for n ≥ 6.

Proof. For n = 4, the strategy obviously has a competitive difference of zero;
there is no choice of strategy.

For n ≥ 6 we first derive Cθ(k) in a closed form. It is observed that every two
angles in θ place two points so that they form a diameter. Therefore, for even
k, the center of mass lies at the origin and Cθ(k) = 0. Apparently, Cθ(1) = 1.
What remains is odd k ≥ 3. We have already known Cθ(k − 1) = 0 for such k.
The center of mass after placing the k-th point can be considered as the center
of mass of the following two weighted points: a point with weight of k − 1 at the
origin and one with unit weight at Pθ(k) on the unit circle. Hence, the center
of mass of the k points divides the line segment OPθ(k) in the ratio 1 : k − 1.
Noting OPθ(k) = 1, we have Cθ(k) = 1

1+(k−1) = 1
k for odd k.

We next check the value of Cθ(k) − Copt(k) for all k. For k = 1, we have
Copt(1) = 1 and thus the difference is zero. For odd k ≥ 3, we obtain

Cθ(k) − Copt(k) ≤ Cθ(k) =
1
k

≤ 1
3
,

since Copt(k) ≥ 0 holds. For even k ≥ 2, we have

Cθ(k) − Copt(k) ≤ Cθ(k) = 0.

We thus conclude that the competitive difference of the strategy θ is at
most 1

3 . ��
We add without proof that not only for n = 4 but also for n = 6, 8, and 10,
our strategy is an optimal strategy. The competitive difference is 1

3 for n = 6,√
2−1
3 (≈ 0.20) for n = 8, and

√
5−1
6 (≈ 0.21) for n = 10. For large n, however, it

turns out that our strategy is not optimal by the same reason as for large odd n.
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4.2 Conditions for Copt(k) = 0

Unlike in the basic problem, in the n-cyclotomic problem Copt(k) = 0 is not
always true for k ≥ 2. Apart from online optimization, there arises an interesting
question: Which pair (n, k) admits Copt(k) = 0? In this subsection we give a
partial answer. We start from easy cases.

Lemma 4. For any n, Copt(1) = 0, Copt(n − 1) = 1
n−1 , and Copt(n) = 0.

Proof. Copt(1) = 0 and Copt(n) = 0 are trivial. We now see why Copt(n − 1) =
1

n−1 holds. Suppose that n − 1 points have been placed optimally (though there
is no choice) and their center of mass G(n−1) lies somewhere. Next, add a point
at P (n), which is the unique destination without a point yet. Then, needless to
say, the new center of mass comes to the origin O. By considering that the mass
of the n−1 points concentrates at G(n−1), the new center can also be thought of
as the position that divides the line segment G(n− 1)P (n) in the ratio 1 : n− 1.
Since OP (n) = 1, we obtain Copt(n − 1) = OG(n − 1) = 1

n−1 . ��
The next theorem gives a sufficient condition when n belongs to a class of com-
posite numbers.

Theorem 4. For n even and divisible by some odd number p ≥ 3, Copt(k) = 0
holds if k is even or p ≤ k ≤ n − p.

Proof. Observe that if some set of placed points forms a diameter of the unit
circle or a regular polygon, then the center of mass of the points lies at the origin.
The idea of our proof is thus to give a strategy that places points in such a way
that they can be decomposed into such sets. If k is even, we can choose k

2 pairs
of positions that form k

2 distinct diameters and the proof is done.
In what follows, assume that k is odd and satisfies p ≤ k ≤ n−p. We present

a strategy for such k. For ease of presentation, only the angles appearing in the
strategy are described below. Although we give a series of angles with length
n−p in total, the strategy is constructed so that to apply only the first k angles
always leads to a cost of zero. Let m = n

2p . Intuitively, our strategy first makes
a regular p-gon followed by (m − 1)p distinct diameters. Formally, our strategy
is to: (i) Place points at

0,
2 · 2mπ

n
,
2 · 4mπ

n
, . . . ,

2 · 2(p − 1)mπ

n
.

(ii) Then place points, repeatedly for j = 1, 2, . . . , p, at

2((j − 1)m + 1)π

n
,
2((j − 1)m + 1)π

n
+ π,

2((j − 1)m + 2)π

n
,
2((j − 1)m + 2)π

n
+ π,

. . . ,
2((j − 1)m + m − 1)π

n
,
2((j − 1)m + m − 1)π

n
+ π.
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It is easy to see that the placement of (i) forms a regular p-gon; the difference
of the angles is all 4mπ

n = 2π
p . Now k ≥ p is assumed, the regular p-gon is always

completed.
One can see that in (ii), every pair of angles taken from the head forms a

diameter. Since k and p are odd, it does not occur that at the end a diameter is
left uncompleted.

Besides, it is seen that in (ii), each iteration with respect to j consists of
m − 1 distinct diameters. What remains is to claim that any angle in (ii) does
not coincide with the angles in (i). Note that 2((j−1)m+l)π

n +π = 2((j−1)m+l+pm)π
n .

For l = 1, 2, · · · ,m − 1, both (j − 1)m + l and (j − 1)m + l + pm are indivisible
by m, which implies that none of the angles in (ii) has appeared in (i). ��
See Fig. 4 for the behavior of the strategy for n = 40, p = 5, and k = 15. Together
with Lemma 4, we have a corollary.

Corollary 1. For n divisible by six, Copt(k) = 0 holds if and only if 2 ≤ k ≤
n − 2 or k = n.

For the case that n is a prime number, we show that Copt(k) cannot be zero
unless k = n through algebraic arguments. Let

B :=
{(

cos
2π

n
, sin

2π

n

)
,
(
cos

4π

n
, sin

4π

n

)
, . . . ,

(
cos

2(n − 1)π
n

, sin
2(n − 1)π

n

)}
,

which is the set of the destinations other than (1, 0). We here regard R
2 as the

complex plane. Then, the n−1 positions in B stand for the roots of the equation
zn = 1 except z = 1. Letting ζ be cos 2π

n + i sin 2π
n , these positions are expressed

as ζ, ζ2, . . . , ζn−1. The following lemma is a special case of Theorem 12.13 in [8],
where Q[X] denotes the set of polynomials of X with the coefficients being
rational.

Lemma 5. ([8]) For n prime, every element in A := {f(ζ) | f ∈ Q[X]} can be
uniquely expressed in a linear combination of ζ, ζ2, . . . , ζn−1 with aj ∈ Q,

a1ζ + a2ζ
2 + · · · + an−1ζ

n−1.

Theorem 5. For n prime, Copt(k) = 0 holds if and only if k = n.

Proof. Apply Lemma 5 with the element to be expressed being 0. Then, the
lemma states that we have to set a1, a2, . . . , an−1 to all zero. Back in the context
of R

2, this fact implies that wherever we place k points with 1 ≤ k ≤ n − 1
at some positions in B, the center of mass does not come to the origin. This
is based on the observation that the linear combination for aj ∈ {0, 1

k} with
∑n−1

j=1 aj = 1 represents the center of mass of the k points placed at k distinct
positions in B. By rotational symmetry, even if we use the position (1, 0), we
know that any placement of n − 1 or fewer points cannot let the center come to
the origin. ��
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As we demonstrated in the proof of Theorem 4, Copt(k) = 0 holds if the place-
ment of k points can be decomposed into diameters and regular polygons. We
conjecture that the converse statement is also true. Note that, on the contrary,
the converse statement is false for the basic problem, as we discussed the case
k = 5 in Sect. 3.2.

5 Concluding Remarks

Many questions are left open: What if arbitrary weights are allowed? Another
measure of balance? How about in R

3 or an arbitrary metric space? (As intro-
duced, there are numerous studies on satellite constellation design such as [3,9].)
What if the destination of points is arbitrarily restricted? For the n-cyclotomic
problem, can a more sophisticated strategy be designed? Can the problem in
Sect. 4.2 be solved for general composite numbers? Does Copt(k) = 0 need the
placed points to be decomposed into diameters and regular polygons?
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Abstract. Let W and X be convex polyhedra in the 3-dimensional
Euclidean space. IfW is dissected into a finite number of pieces which can
be rearranged to form X with hinges (which compose a dissection tree),
W is called transformable to X, and if the surface of W is transformed
to the interior of X except some edges of pieces, W is called reversible to
X. Let P be a reflective space-filler in the 3-space and let Pm be a mir-
ror image of P . In this paper, we show that any convex unfolding W of
the doubly covered polyhedron d(P ) of P is transformable to any convex
unfolding X of the doubly covered polyhedron d(Pm) of Pm, where we
assume that W (resp. X) includes P (resp. Pm) as a subset. Moreover if
W is dissected into n non-empty pieces (where n is the number of faces
of P ), W is reversible to X.

1 Introduction

The famous hinged dissection problem asked if an equilateral triangle W can be
dissected into a finite number of pieces that can be rearranged to form a square
X with hinges. H.E. Dudeney [5] gave an answer by giving a dissection by four
pieces (see Fig. 1). There is a related topic for the n-dimensional case, the so-
called Hilbert’s third problem: Given any two polyhedra of equal volume, is it
always possible to cut the first into finitely many polyhedral pieces which can
be reassembled to yield the second? If n = 2, the answer is affirmative, and is
known as the Bolyai-Gerwein Theorem [11]; moreover, they can be reassembled
with hinges [1]. On the other hand, if n = 3, M. Dehn [6] gave a counterexample;
the pair of a cube and a regular tetrahedron of equal volume.

We study the problem of finding a family of convex polyhedra such that any
pair in the family has the above-mentioned property. If a convex polyhedron
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Fig. 1. Dudeney’s dissection.

W in the 3-dimensional Euclidean space R3 is dissected into a finite number of
pieces which can be rearranged to form a convex polyhedron X, in such a way
that there is a dissection tree whose vertex set is the set of pieces and whose
edge set is the set of hinges each of which corresponds to a common edge of two
pieces, we say that W is transformable to X. Moreover if ∂W (the surface of
W ) is transformed to the interior of X except some edges of pieces, we say W
is reversible to X.J. Akiyama et al. [3] investigated reversibility of the family of
canonical parallelohedra.

In this paper, we study the family of convex unfoldings of doubly-covered
polyhedra. For a polyhedron P , the doubly-covered P (denoted by d(P )) is
the degenerate 4-dimensional polytope consisting of P and its congruent copy
(denoted by P ∗) whose corresponding faces are identified, which means the sur-
face of d(P ) is identical to that of P and the volume of an unfolding of d(P ) is
twice that of P .

If P in R3 is a reflective space-filling polyhedron (there are seven types of
such polyhedra with no obtuse dihedral angle up to congruence and similarity
[4,7]), any convex unfolding W of d(P ) is a space-filler, which means that its
infinitely many congruent copies tile the space with no gaps and no 3-dimensional
overlaps [8].

We call two figures in R2 or R3 strictly congruent if they can be mapped to
each other by rotation and translation only (with no reflection).

We show that if P is a reflective-space filler in R3 whose mirror image is
strictly congruent to P , any two convex unfoldings W and X of d(P ) are trans-
formable to each other; moreover, if W is dissected into n non-empty pieces
(where n is the number of faces of P ), W is reversible to X, where we assume
both W and X include P as a subset. If P is a reflective-space filler in R3 whose



Transformability and Reversibility of Unfoldings 79

mirror image (denoted by Pm) is not strictly congruent to P , any unfolding W
of d(P ) is transformable to any unfolding X of d(Pm); and moreover, if W is
dissected into n non-empty pieces (where n is the number of faces of P ), W is
reversible to X, where we assume P ⊂ W and Pm ⊂ X.

2 Definitions and Preliminaries

Definition 1. If a convex polyhedron W is dissected into a finite number of
pieces which can be rearranged to form a convex polyhedron X, in such a way
that there is a dissection tree whose vertex set is the set of pieces and whose edge
set is the set of hinges each of which corresponds to a common edge of two pieces,
we say that W is transformable to X. Moreover if the surface ∂W is transformed
to the interior of X except some edges of pieces, we say W is reversible to X.
The pair of W and X is called transformable or reversible, respectively.

Note that the transformability defined in [3], is not allowed to cut any side (face)
of polyhedra, but in this paper we allow to do so, because Dudeney’s dissection
cuts sides. Figure 2 shows the pair of a cube and a rectangular parallelepiped
which is transformable, and Fig. 3 shows the pair of a rhombic dodecahedron
and a rectangular parallelepiped which is reversible.

Fig. 2. The pair of a cube and a rectangular parallelepiped which is transformable.

Definition 2. A convex polyhedron W is called a reflective space-filler if its infi-
nitely many congruent copies tile space (without no gaps and no 3-dim. overlaps)
such that

(1) the tiling is face-to-face,
(2) if two copies have a face in common, one is obtained from the other by a

reflection in the common face, and
(3) any dihedral angle of W is π/k (an integer k ≥ 2).

The third condition is used for a simple polyhedral unfolding X of the doubly-
covered W (see Definition 3) to be convex since dihedral angles of X are less
than or equal twice dihedral angles of W . H. S. M. Coxeter [4] showed that
there are seven types of 3-dimensional reflective space-fillers (up to congruence
and similarity): four of them are prisms (whose bases are a square, an equilateral
triangle, a right triangle with an angle π/3, or an isosceles right triangle), and
three of them are tetrahedra one of which has congruent triangular faces with
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Fig. 3. The pair of a rhombic dodecahedron and a rectangular parallelepiped which is
reversible.

edge lengths
√

3,
√

3 and 2, and whose dihedral angle of the edge with length
2 is π/2. We call such tetrahedron a (

√
3,

√
3, 2)-tetrahedron (or Sommerville

tetrahedron, [9,10]) and denote it by ST (see Fig. 4).
By dissecting a ST into halves by the plane orthogonal to an edge with

length 2, we obtain a tetrahedron Q which is also a reflective space-filler, and
by dissecting Q into halves again by the plane orthogonal to the edge with
length 2, we obtain a tetrahedron R which is also a reflective space-filler (see
Fig. 4). We call Q and R respectively a half-ST and a quarter-ST respectively.
The quarter-ST plays an important role in [2] where they call it a tetradron.

Note that the mirror image of a half-ST or a quarter-ST is not strictly
congruent to the original.
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Fig. 4. Reflective space-filling tetrahedra: (1) a (
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3,

√
3, 2)-tetrahedron which is

denoted by ST : (2) a half-ST : (3) a quarter-ST .
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Definition 3. A doubly covered polyhedron, denoted by d(P ), of a convex poly-
hedron P is a degenerate 4-polytope which is composed by P and its congruent
copy P ∗ such that corresponding faces are identified and that the surface of d(P )
is identical to that of P .

A body W in R3 (which is topologically homeomorphic to a ball) is called
an unfolding of d(P ) if there is a locally isometric mapping from W onto d(P )
whose image has no 3-dimensional overlaps. If W includes P as a subset, W
is called simple. We call the image of the surface of W by such mapping a cut
2-complex of W .

For example, a rhombic dodecahedron W is an unfolding of a doubly covered
cube. Dissect W into seven pieces (a cube P and six square pyramids as shown
in Fig. 3(2)) and reflect each square pyramid in its square face F . The resulting
figure is the doubly covered cube d(P ). The cut 2-complex C is a set of 12 isosceles
triangles. We can also obtain d(P ) and C as follows: Since W is reversible to
P ∪ Pm, (where Pm is the image of P by reflection in the face F ), by reflecting
Pm in F we obtain d(P ), and C is the image of ∂W .

Figure 5 shows examples of unfoldings of d(P ) for a reflective space-filling
tetrahedron ST . Figure 5(2) shows a cut 2-complex which is composed of six
triangles, and Fig. 5(3) shows the corresponding unfolding. Figure 5(4) shows
another example of an unfolding of d(P ), whose corresponding cut 2-complex is
composed of three faces touching to the vertex a of P .

(1) (2) (3)
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c

2
2

3
3

3
3

Fig. 5. (1) d(P ) of a tetrahedron P = abcd which is a ST with edge lengths |ab| =
|cd| = 2; (2) a cut 2-complex where x is in the interior of P ∗; (3) an unfolding of d(P )
by the cut 2-complex showed in (2); (4) another unfolding of d(P ) when x in (2) is a
vertex a of P .

Proposition [8]. Any unfolding W of d(P ) of a reflective space-filler P is a
space-filler, and its corresponding cut 2-complex C includes all edges of P (as
well as P ∗). If W is convex, C is composed of convex polygons, and moreover if
W contains P (i.e., C ⊂ P∗), each piece of P ∗ which is dissected by C, has a
face of P (as well as P ∗), and C is characterized as follows.

(1) If P is a rectangular parallelepiped, it is possible that C includes a rectangle
(denoted by R = abcd) which is parallel to a face of P and whose each
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(1)
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(4) (5)

(2)

a b
cd

Fig. 6. (1) d(P ) of a rectangular parallelepiped P ; (2) a cut 2-complex which includes
a rectangle abcd in P ∗; (3) the unfolding of d(P ) by the cut 2-complex showed in (2);
(4) another cut 2-complex of d(P ) when abcd in (2) is a parallelogram whose vertices
are on edges of P ; (5) the unfolding of d(P ) by the cut 2-complex showed in (4).

edge is parallel to an edge of P (see Figs. 6(1) and (2)), and Fig. 6(3) is the
corresponding unfolding of d(P ). The rectangle R = abcd may degenerate
to a line segment if a = b and c = d, and to a point if a = b = c = d.
Otherwise, C is composed of four-sided faces and the intersection of P ∗ with
a plane intersecting all four side faces (see Figs. 6(4) and (5)).

(2) If P is a triangular prism, C may include a triangle �abc which is similar
to the triangular face of P . If a = b = c, C may include a line segment (ab
possible a = b) parallel to side edges of P (see Fig. 7). Otherwise, C is com-
posed of three side faces and the intersection of P ∗ with a plane intersecting
all three side faces. The resulting figures are similar to the ones shown in
Figs. 6(4) and (5).

(3) If P is a tetrahedron, C may have one vertex in the interior of P ∗ (see Fig. 5).

In Proposition, any unfolding W of d(P ) is a space-filler, and the type of the
tiling depends on P . For example, if P is a rectangular parallelepiped, the set of
W and three congruent copies of W obtained by rotations with angle π about
three edges of P , tiles the space by its translations (see [8]).

3 Theorems and Corollaries

In this section, we assume an unfolding W of d(P ) of a polyhedron P includes
the original P (i.e., the corresponding cut 2-complex of W is contained in P ∗).

Theorem 1. Let P be a reflective space-filler whose mirror image is strictly
congruent to P , that is, P be one of the following;
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Fig. 7. (1) d(P ) of a prism P whose base is an equilateral triangle and a triangle similar
to the base triangle abc; (2) a cut 2-complex with �abc; (3) the unfolding of d(P ) by
the cut 2-complex; (4) another cut 2-complex of d(P ) with a line segment ab parallel
to side edges; (5) the unfolding of d(P ) corresponding to (5); (6) a cut 2-complex of
d(P ) when b is on the face of P ; (7) the unfolding of d(P ) corresponding to the cut
2-complex shown in (6).

(1) a parallelepiped,
(2) a triangular prism whose base is an equilateral triangle, a right triangle with

an angle π/3, or a isosceles right triangle, or
(3) a (

√
3,

√
3, 2)-tetrahedron ST .

Any two convex unfoldings W and X of d(P ) are transformable to each other,
where we assume P ⊂ W and P ⊂ X. If W divides P ∗ into n (non-empty) pieces
by its corresponding cut 2-complex (where n is the number of edges of P ), W is
reversible to X (Fig. 8).

Proof. Let Pm be the image of P by reflection in the plane Π including a face of
a reflective space-filler P . Then P ∪ Pm is an unfolding of d(P ) which includes
P . Any unfolding W of d(P ) satisfying P ⊂ W , is transformable to P ∪ Pm by
hinges H, which is proved by a similar process to the one shown in the pair of a
rhombic dodecahedron and a rectangular parallelepiped (see Fig. 3). Notice that
the surface ∂W is transformed to a subset Y in Pm and Y is mapped to the cut
2-complex for W in P ∗ by reflection in Π.

Let X be a convex unfolding of d(P ) with Pm ⊂ X (we assume Pm ⊂ X
instead of P ⊂ X since Pm is strictly congruent to P ). Dissect P in W by the
cut 2-complex which is strictly congruent to the cut 2-complex for X, and use
the hinges H. Then W is transformed to X.
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(4) 

(3)

a’
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Fig. 8. (1) An unfolding W of d(P ) of a prism P whose base is an equilateral triangle;
(2) P included in the unfolding; (3) dissection and hinges; (4) the resulting figure
transformed by dissection and hinges shown in (3); (5) another dissection of W by
the 2-complex strictly congruent to the mirror image of the cut 2-complex in Fig. 7(4);
(6) the resulting figure by dissection and hinges shown in (5) which is strictly congruent
to the polyhedron shown in Fig. 7(5).

If P ∗ is dissected into n (where n is the number of faces of P ) pieces to obtain
W , the cut 2-complex except its boundary is included in the interior of P ∗, and
hence ∂W is transformed to the interior of Pm except some line segments. W is
reversible to X by Pm ⊂ X.

Theorem 2. Let P be a tetrahedron which is a half-ST or a quarter-ST . Any
convex unfoldings W of d(P ) is transformable to any convex unfolding X of
d(Pm), where we assume P ⊂ W and Pm ⊂ X. If W divides P ∗ into four pieces
by its corresponding cut 2-complex, W is reversible to X.

Proof. The proof is similar to the one of Theorem1, so we omit it.

If a polyhedron W is reversible to itself, W is called self-reversible.

Corollary 1. Let P be a reflective space-filling polyhedron whose mirror image
is strictly congruent to P , and n be the number of faces of P . If the cut 2-
complex of a convex unfolding W of d(P ) divides P ∗ into n non-empty pieces,
W is self-reversible, where we assume P ⊂ W .

Proof. If an unfolding W is combinatorially equivalent to a truncated octahe-
dron, rhombic dodecahedron, or an elongated dodecahedron, the corresponding
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cut 2-complex divides P ∗ into six non-empty pieces. So the statement in Corol-
llary 1 follows from Theorem 1.

If a polygon T in the 2-dimensional plane is reversible to itself, T is called self-
reversible. Note that the mirror image of a right triangle T with angle π/3 in
a given plane is not strictly congruent to T in the given plane. If we restrict
unfoldings of d(P ) in Theorem 1 to prisms, we get the following.

Corollary 2. Let P be a polygon which is a rectangular parallelogram, an equi-
lateral triangle, or an isosceles right triangle. Any two convex unfoldings T and
S of d(P ) are transformable to each other, where we assume that P ⊂ T and
P ⊂ S. If T divides P ∗ into n pieces by its corresponding cut 2-complex (where
n is the number of edges of P ), T is reversible to S.

If P is a right triangle with angles π/3, any convex unfoldings T of d(P )
is transformable to any unfolding S of d(Pm), where we assume P ⊂ T and
Pm ⊂ S. If T divides P ∗ into three pieces by its corresponding cut 2-complex, T
is reversible to S.

Proof. For rectangular parallelepipeds or triangular prisms P which are reflective
space-fillers, consider the subfamily of simple unfoldings of d(P ) whose cut 2-
complex is included in faces of P (as well as P ∗), that is, which are orthogonal
prisms. Then their images by orthogonal projection to corresponding bases are
the family of unfoldings of d(P ).

Remark. By observing the proof of Theorem 2, we notice that the result may
be extended to d(P ) of any convex polyhedron P whose dihedral angles are less
than or equal to π/2. To do so, we only need to give precise continuous motions
without self-intersection, which looks obvious, but we leave it for a future work.

References

1. Abbott, T.G., Abel, Z., Charlton, D., Demaine, E.D., Demaine, M.L., Kominers,
S.D.: Hinged dissections exist. Discrete Comput. Geom. 47(1), 150–186 (2012)

2. Akiyama, J., Kobayashi, M., Nakagawa, H., Sato, I.: Atoms for parallelohedra.
Geometry intuitive, discrete and convex. Bolyai Soc. Math. Stud. 24, 23–43 (2013).
Springer

3. Akiyama, J., Sato, I., Seong, H.: On Reversibility among parallelohedra. In:
Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 14–28.
Springer, Heidelberg (2012)

4. Coxeter, H.S.: Discrete groups generated by reflections. Ann. Math. 35(3), 588–621
(1934)

5. Dudeney, H.E.: The Canterbury Puzzles and Other Curious Problems.
W. Heinemann, London (2010)
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Abstract. We study the art gallery problem when the instance is a
polyomino, which is the union of connected unit squares. It is shown that
locating the minimum number of guards with r-visibility in a polyomino
with holes is NP-hard. Here, two points u and v on a polyomino are
r-visible if the orthogonal bounding rectangle for u and v lies entirely
within the polyomino. As a corollary, locating the minimum number of
guards with r-visibility in an orthogonal polygon with holes is NP-hard.

Keywords: Art gallery problem · Polyomino · r-visibility · NP-hard

1 Introduction

The art gallery problem is to determine the minimum number of guards who
can observe the interior of a gallery. Chvátal [4] proved that �n/3� guards are
the lower and upper bounds for this problem; namely, �n/3� guards are always
sufficient and sometimes necessary for observing the interior of an n-vertex sim-
ple polygon. This �n/3�-bound is replaced by �n/4� if the instance is restricted
to a simple orthogonal polygon [7].

Another approach to the art gallery problem is to study the complexity of
locating the minimum number of guards in a polygon. The NP-hardness and
APX-hardness of this problem were shown by Lee and Lin [9] and by Eidenbenz
et al. [5], respectively. Furthermore, Schuchardt and Hecker [13] proved that
this problem remains NP-hard if we restrict our attention to simple orthogonal
polygons. Even guarding the vertices of a simple orthogonal polygon was shown
to be NP-hard [8].

In this paper, we study the art gallery problem when the instance is a poly-
omino, which is the union of connected unit squares (see Fig. 1a). It is shown
that locating the minimum number of guards with r-visibility in a polyomino
with holes is NP-hard. Here, two points u and v on a polyomino are said to be
r-visible (or u r-sees v) if the orthogonal bounding rectangle for u and v lies
entirely within the polyomino (see Fig. 1b).

As a corollary of our result, locating the minimum number of guards with r-
visibility in an orthogonal polygon with holes is NP-hard. On the other hand, it is

c© Springer International Publishing Switzerland 2014
J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 87–95, 2014.
DOI: 10.1007/978-3-319-13287-7 8
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vv

Fig. 1. (a) A polyomino P of 16 cells with a hole of two cells. (b) Two points v and u
are r-visible. (c) v and x are not r-visible. (d) v and w are not r-visible.

known that the same problem for simple orthogonal polygons is polynomial-time
solvable [14].

The research on the art gallery problem for polyominoes was firstly reported
in [2], where it was shown that �(m + 1)/3� guards are always sufficient and
sometimes necessary to cover an m-polyomino (possibly with holes). Here, an m-
polyomino is a connected polyomino consisting of m unit squares. Interestingly,
their �(m + 1)/3�-bounds hold for three models of visibility: r-visibility model,
all-or-nothing model, and unrestricted model (see Fig. 2).

(b) (c)(a)

Fig. 2. (a) r-visibility model. (b) all-or-nothing model. (c) unrestricted model.

The region visible from a point in the r-visibility model is a subset of the
region visible from the same point in the all-or-nothing model (see Fig. 2), which
is in turn a subset of that in the unrestricted model. Due to this property, the
proof of the NP-hard result for orthogonal polygons in the unrestricted model
in [8] does not hold in the r-visibility model. In the conference version [1] of the
above paper [2], the NP-hardness was shown for all-or-nothing and unrestricted
models.
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2 Definitions and Results

The definitions of polyominoes and visibility are mostly from [2,14]. A poly-
omino P is a plane geometric figure formed by joining one or more identical
squares edge to edge. A polyomino is a special case of a polyform, which is a
plane figure constructed by joining together identical basic polygons. We refer to
the unit squares as cells. Figure 1(a) is an example of a polyomino P of 16 cells
with a hole of two cells.

Two points v and u in P are said to be r-visible (or v r-sees u) if the orthogo-
nal bounding rectangle for v and u lies entirely within the polyomino (see Fig. 1).
Here, the rectangle may contain points on the boundary of P , but the rectan-
gle must not contain any hole of the polyomino. (The term rectangle is used to
denote the union of the boundary and of the interior.)

It is often useful to extend the notion of visibility to other geometric objects
besides points. We say that two geometric objects X and Y are r-visible if and
only if for all points x ∈ X and y ∈ Y we have that x r-sees y. For example, a
cell X of a polyomino is said to be r-visible from a point y if every point on and
inside the boundary of X is r-visible from y.

(a) (b)

u

(c)

v

(d)

w

Fig. 3. The number of r-visible cells depends on the position of the point in a cell.
(a) A polyomino P of 16 cells. (b) 11 cells are r-visible from point u. (c) 14 cells are
r-visible from point v. (d) 13 cells are r-visible from point w.

A set of points is said to cover a set of cells if each of the cells is r-visible
from at least one of the points. In general, the number of coverable cells from a
point depends on the position of the point in the cell (see Fig. 3). However, the
polyomino constructed in Sect. 3 does not depend on such positions. In other
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words, even if guards are placed on boundaries of cells of Fig. 8, the number of
coverable cells does not change.

The definitions of a polygon and a polygon with holes are mostly from [10,12].
A polygon is defined by a finite set of segments such that every segment extreme
is shared by exactly two edges and no subset of edges has the same property.
The segments are the edges and their endpoints are the vertices of the polygon.

If each edge of a polygon is perpendicular to one of the coordinate axes, then
the polygon is called orthogonal or rectilinear. If no non-consecutive pair of edges
overlap, then the polygon is said to be simple.

A polygon with holes is a polygon P enclosing several other polygons H1,
H2, . . . , Hh, the holes. None of the boundaries of P , H1,H2, . . . ,Hh may inter-
sect, and each of the holes is empty. P is said to bound a multiply-connected
region with h holes: the region of the plane interior to or on the boundary of P ,
but exterior to or on the boundary of H1,H2, . . . ,Hh. Similarly, we define an
orthogonal polygon with holes to be an orthogonal polygon with orthogonal holes,
with all edges aligned with the same pair of orthogonal axes.

An instance of the r-visibility guard set problem for polyominoes is a pair
(P, k), where P is a polyomino and k is a positive integer. The problem asks
whether there exists a set of k points in P which covers all cells of P . The same
problem for orthogonal polygons with holes can be defined analogously.

Now we are ready to present our main results.

Theorem 1. The r-visibility guard set problem for polyominoes is NP-hard.

The proof of Theorem 1 is given in the next section. If the whole polyomino
constructed in Sect. 3 (see Fig. 8) is regarded as an orthogonal polygon with
holes, then one can see that the proof of Theorem 1 holds also for the following
corollary.

Corollary 1. The r-visibility guard set problem for orthogonal polygons with
holes is NP-hard.

3 NP-hardness of the r-visibility Guard Set Problem

In this section, we will prove Theorem 1. We construct a polynomial-time trans-
formation from an instance C of PLANAR 3SAT to a polyomino P and an
integer k such that C is satisfiable if and only if there exists a set of k points
in P covering all cells of P .

3.1 PLANAR 3SAT

The definition of PLANAR 3SAT is mostly from [LO1] on page 259 of [6]. Let
U = {x1, x2, . . . , xn} be a set of Boolean variables. Boolean variables take on
values 0 (false) and 1 (true). If x is a variable in U , then x and x are literals
over U . The value of x is 1 (true) if and only if x is 0 (false). A clause over U
is a set of literals over U , such as {x1, x3, x4}. It represents the disjunction of
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those literals and is satisfied by a truth assignment if and only if at least one of
its members is true under that assignment.

An instance of PLANAR 3SAT is a collection C = {c1, c2, . . . , cm} of clauses
over U such that (i) |cj | = 3 or |cj | = 2 for each cj ∈ C and (ii) the bipartite
graph B = (V,E), where V = U ∪ C and E contains exactly those pairs {x, c}
such that either literal x or x belongs to the clause c, is planar.

The PLANAR 3SAT problem asks whether there exists some truth assign-
ment for U that simultaneously satisfies all the clauses in C. This problem is
known to be NP-hard. For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3, c4},
and c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4} pro-
vide an instance of PLANAR 3SAT. For this instance, the answer is “yes”, since
there is a truth assignment (x1, x2, x3, x4) = (1, 0, 1, 1) satisfying all clauses. It is
known that PLANAR 3SAT is NP-complete even if each variable occurs exactly
once positively and exactly twice negatively in C [3].

3.2 Transformation from a 3SAT-instance to a Polyomino

Each variable xi ∈ {x1, x2, . . . , xn} is transformed to a polyomino of 29 cells
shown in Fig. 4(a). This polyomino is called a variable gadget. The cells labeled
with B and C correspond to xi, while the cell labeled with A corresponds to xi.
There are four possible variant forms of this gadget; cells B and C and their
adjacent cells may be connected to the opposite side (see dotted cells of Fig. 4a).

Later, one can see that (a) if two guards are placed on cells B and C, then
xi = 1, and (b) if a guard is placed on cell A, then xi = 1 (see Fig. 5). (In this
paper, a guard placed on an arbitrary point on and inside the boundary of cell g
is simply called a guard on cell g or a guard g.)

Lemma 1. (i) There is no five-guard set covering the variable gadget. (ii) There
is a six-guard set covering the variable gadget such that two of the six guards are

A

B

C

xi
xi

xi

xi

B

C

(a) (b)

g1

g3

g2

xi
A

B

C

R S T

U V W

X

Fig. 4. (a) Variable gadget of 29 cells transformed from xi. There are four variant
forms of this gadget; cells B and C and their adjacent cells may be connected to the
opposite side (see dotted cells). (b) The fourth and fifth guards are needed in R,S,T
and U,V,W for covering T and W, respectively. These two guards cannot cover X.
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g1

g2

g3

g5

g6

g4

xi = 1

xi = 0

xi = 0

xi = 1

xi = 1 xi = 0

g1

g2

g3

g4

g6 

g5

xi xi
A

B

C

A

B

C

(a) (b)

Fig. 5. Each variable gadget is covered by six guards. (a) If two guards are placed on
cells B and C, then no guard is placed on A. (b) If a guard is placed on cell A, then
no guard is placed on B or C.

on cells B and C. (iii) There is a six-guard set covering the variable gadget such
that one of the six guards is on A.

Proof. (i) Consider a guard who covers cell A and can cover as many cells as
possible (see g1 in Fig. 4b). The cell on which such a guard is placed is uniquely
determined. This guard g1 can be placed on an arbitrary point on and inside
the boundary of that cell. Similarly, two guards g2 and g3 are placed on the cells
indicated in Fig. 4(b).

There are 14 cells not covered by these three guards. In order to cover cell T
of Fig. 4(b), we must place a new guard on one of the cells R, S, and T. Similarly,
we must place another new guard on one of the cells U, V, and W to cover W.
However, these two new guards cannot cover cell X.

(ii), (iii) Such six-guard sets are given in Fig. 5(a, b), respectively.

It should be noted that Fig. 5(a) is the unique example for Lemma 1(ii). On the
other hand, Fig. 5(b) is one of the four possibilities for Lemma 1(iii); namely,
guard g3 (resp. g4) may be placed on the right (left) adjacent cell.

Lemma 2. Let G be an arbitrary six-guard set covering all cells of the variable
gadget. If G has a guard on cell B or C, then G has no guard on cell A.

Proof. (a) We first consider the case that G has a guard on B (see Fig. 6a).
Assume for contradiction that G has a guard on A. Let g1 and g2 denote
the guards on B and A, respectively. By the reason similar to the proof of
Lemma 1(i), a new guard g3 must be placed on the cell indicated in Fig. 6(a).
Similarly, two more new guards g4 and g5 are required for covering cells r and s,
respectively. Note that cells t, u, and v have not yet been covered by any guard.
Those three cells require at least two more guards, which contradicts that G is
a six-guard set.

(b) The case that G has a guard on C (see Fig. 6b) is omitted, since it is very
similar to (a).
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v

t

u

g1

g2 g4

g5

g3

xi

xi

xi

xi

xi xi

g2

g5

g4

g1

g3

xi xi

r

s

r

u

A

B

C

A

B

C

s t
v

(a) (b)

Fig. 6. There does not exist a six-guard set covering the variable gadget such that two
of the guards are placed on A and B or on A and C.

c1

x

x

x

1

2

3

(a) (b)

Fig. 7. (a) Clause gadget of five cells transformed from c1 = {x1, x2, x3}. (b) If a clause
consists of two literals, then the corresponding clause gadget is composed of three cells.

Each clause cj ∈ {c1, c2, . . . , cm} is transformed into a clause gadget of
5 × 1 cells if cj has three literals (see Fig. 7a). The first, third, and fifth cells
are labeled with the three literals of cj . Those three cells are connected to the
corresponding variable gadgets (see Fig. 8). If cj consists of two literals, then the
corresponding clause gadget is composed of 3 × 1 cells (see Fig. 7b). (The gad-
get of Fig. 7(b) is essential, since it is known that 3SAT with exactly three
occurrences per variable is polynomial-time solvable if every clause cj has
three literals [11].)

In order to construct connections from variable gadgets to clause gadgets, we
use connection gadgets (see green cells of Fig. 8). Each connection gadget has an
even number of bends. (Bending cells are indicated by red spheres in the figure).
For example, the number of bends in the connection gadget between x4 and c2
(resp. x4 and c3) is four (resp. two).

Finally, let k = 6n + l/2 (= 6 · 4 + 16/2 = 32), where n is the number of
variables, and l is the number of bends in all the connection gadgets. From this
construction, C is satisfiable if and only if the whole polyomino P is covered by
k guards. From the positions of the 32 guards, one can see that (x1, x2, x3, x4) =
(1, 0, 1, 1) satisfies C. This completes the proof.
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c1

x

x

x

1
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3

x

x

3

4

x1

x

x

x

2

3
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x

x

x

1

2

4

x1

x3

c3

c2

c4

g

ggg

g gg

g

gg

g

g

g

g

g

g

g

g

gg

g

x2

g

gg

g

g

x4

g

g

g

g

g

g

g

g

Fig. 8. The whole polyomino P transformed from C = {c1, c2, c3, c4}, where c1 =
{x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 = {x2, x3, x4}. C is satisfiable
if and only if the whole polyomino is covered by k = 32 cells.

4 Conclusion

In this paper, we studied the art gallery problem when the instance is a poly-
omino with holes. It was shown that locating the minimum number of guards
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with r-visibility in a polyomino with holes is NP-hard. As a corollary, the same
problem for orthogonal polygons with holes is NP-hard.
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Abstract. Let X be a set of multicolored points in the plane such that
no three points are collinear and each color appears on at most �|X|/2�
points. We show the existence of a non-crossing properly colored geomet-
ric perfect matching on X (if |X| is even), and the existence of a non-
crossing properly colored geometric spanning tree with maximum degree
at most 3 on X. Moreover, we show the existence of a non-crossing prop-
erly colored geometric perfect matching in the plane lattice. In order to
prove these our results, we propose an useful lemma that gives a good
partition of a sequence of multicolored points.
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1 Introduction

Various topics on a set of red and blue points in the plane have been studied
[3]. In this paper, we consider some problems for more colors. Given a set X
of multicolored points in the plane, we want to draw a graph in the plane such
that the vertex set is X and each edge is a straight-line segment whose two end-
vertices have distinct colors. We call such a graph a properly colored geometric
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graph on X, which is also called an alternating geometric graph if X is a 2-colored
point set. For alternating geometric perfect matchings on a 2-colored point set,
the next theorem is well-known.

Theorem 1.1 ([5]). Let R and B be sets of red and blue points in the plane,
respectively. Assume that no three points of R ∪ B are collinear. If |R| = |B|,
then there exists a non-crossing alternating geometric perfect matching on R∪B.

In this paper, we first generalize this Theorem 1.1 for a 3-colored point set, stated
as Theorem 1.2 (Fig. 1). Note that Theorem 1.1 is a special case of Theorem 1.2
with G = ∅.

Theorem 1.2. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R ∪ B ∪ G are collinear. If
|X| is even and each color appears on at most |X|/2 points, then there exists a
non-crossing properly colored geometric perfect matching on X.

Fig. 1. A non-crossing properly colored geometric perfect matching (Color figure
online).

Next, we consider a tree of maximum degree at most 3, which is called a 3-tree.
Kaneko [2] proved the following theorem.

Theorem 1.3 (Kaneko [2]). Let R and B be sets of red and blue points in
the plane, respectively. Assume that no three points of R ∪ B are collinear. If
|R| = |B|, then there exists a non-crossing alternating geometric spanning 3-tree
on R ∪ B.

Our second result is a generalization of this Theorem 1.3 for a 3-colored point
set, stated as Theorem 1.4 (Fig. 2).

Theorem 1.4. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R ∪ B ∪ G are collinear. If
each color appears on at most �|X|/2� points, then there exists a non-crossing
properly colored geometric spanning 3-tree on X.

If |X| is even, then we can obtain this Theorem 1.4 as a corollary from our
Theorem 1.2 and the following theorem by Hoffmann and Tóth [1].

Theorem 1.5 (Hoffmann and Tóth [1]). Every disconnected properly colored
geometric graph with no isolated vertices can be augmented (by adding edges) into
a connected properly colored geometric graph so that the degree of every vertex
increases by at most two.
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Fig. 2. A non-crossing properly colored geometric spanning 3-tree (Color figure online).

By our Theorem 1.2, there exists a non-crossing properly colored geometric per-
fect matching M on X. By applying Theorem 1.5 to M , we can augment M
into a non-crossing properly colored geometric spanning 3-tree on X. Note that
if |X| is odd, then a maximum matching M on X is not a perfect matching (one
isolated vertex remains), so we cannot apply Theorem 1.5 to M . In Sect. 4, we
present another proof of Theorem 1.4 for both even and odd |X|.

We can also consider problems on red and blue points in the plane lattice
by using L-line segments instead of line segments, where an L-line segment in
the plane lattice consists of a vertical line segment and a horizontal line segment
having a common endpoint. Kano et al. [4] proved the following theorem.

Theorem 1.6 (Kano and Suzuki [4]). Let R and B be sets of red and blue
points in the plane lattice, respectively. Assume that every vertical line and hor-
izontal line passes through at most one point of the points. If |R| = |B|, then
there exists a non-crossing alternating geometric perfect matching on R∪B such
that each edge is an L-line segment.

Our third result is a generalization of this Theorem 1.6 for a 3-colored point set,
stated as Theorem 1.7 (Fig. 3).

Theorem 1.7. Let R, B, G be sets of red, blue, and green points in the plane
lattice, respectively. Assume that every vertical line and horizontal line passes
through at most one point of X = R ∪ B ∪ G. If |X| is even and each color
appears on at most |X|/2 points, then there exists a non-crossing properly colored
geometric perfect matching on X such that each edge is an L-line segment.

Fig. 3. A non-crossing properly colored geometric perfect matching with L-line seg-
ments (Color figure online).

In order to prove our results, we propose the following lemma (Fig. 4).
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Lemma 1.8. Let (x1, x2, . . . , xn) be a sequence of n ≥ 3 points colored with 3
colors, say red, blue, and green. Let R, B, G be sets of red, blue, and green points
in the sequence, respectively. Assume that the both ends x1 and xn have the same
color. If each color appears on at most �n/2� points, then there exists an even
number p (2 ≤ p ≤ n− 1) such that xp and x1 have distinct colors and for every
C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤ p

2
,

|C ∩ {xp+1, . . . , xn}| ≤
⌈
n − p

2

⌉
.

x1 xp xn

Fig. 4. Example of Lemma 1.8 (Color figure online).

This lemma gives a balanced partition of a 3-colored sequence, in the sense that
every color appears on at most half of the points in each part of the partition.
In our inductive proofs, this lemma is useful in some cases where some “ends”
have the same color. We expect applications of the Lemma to problems where
each color appears on at most half of points.

We can generalize above our results for a multicolored point set with 2, 3 or
more colors, by using the following lemma.

Lemma 1.9. Let NX = {n1, n2, . . . , nr} (r ≥ 4) be a set of positive integers.
Set n = n1 + n2 + · · · + nr. If each integer ni is at most �n/2� then there exists
a tripartition NX = NR ∪ NB ∪ NG such that

∑

k∈NR

k ≤
⌈n

2

⌉
,

∑

k∈NB

k ≤
⌈n

2

⌉
,

∑

k∈NG

k ≤
⌈n

2

⌉
.

Proof. We may assume that n1 ≤ n2 ≤ · · · ≤ nr. Then n1 ≤ 
n/r� ≤ 
n/4� <

n/2� since r ≥ 4 and n ≥ 4. Thus, for some integer nj , it follows that n1 +n2 +
· · · + nj < 
n/2� and n1 + n2 + · · · + nj + nj+1 ≥ 
n/2�. Then, nj+2 + nj+3 +
· · · + nr = n − (n1 + n2 + · · · + nj + nj+1) ≤ n − 
n/2� = �n/2�. Note that
1 ≤ j ≤ r − 2 because if j = r − 1 then nr = n − (n1 + · · · + nj) > n − 
n/2� =
�n/2�, which contradicts our assumption. Hence, we have the desired tripartition
NR = {n1, . . . , nj}, NB = {nj+1}, and NG = {nj+2, . . . , nr}. �
By using Lemma 1.9, where let ni be the number of points of color i, we can
obtain the following results for multicolored points from Theorems 1.2, 1.4, 1.7,
and Lemma 1.8.
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Corollary 1.10. Let X be a set of multicolored points in the plane such that
no three points are collinear. If |X| is even and each color appears on at most
|X|/2 points, then there exists a non-crossing properly colored geometric perfect
matching on X.

Corollary 1.11. Let X be a set of multicolored points in the plane such that no
three points are collinear. If each color appears on at most �|X|/2� points, then
there exists a non-crossing properly colored geometric spanning 3-trees on X.

Corollary 1.12. Let X be a set of multicolored points in the plane lattice.
Assume that every vertical line and horizontal line passes through at most one
point of X. If |X| is even and each color appears on at most |X|/2 points, then
there exists a non-crossing properly colored geometric perfect matching on X
such that each edge is an L-line segment.

Corollary 1.13. Let (x1, x2, . . . , xn) be a sequence of multicolored n ≥ 3 points.
For each color j, let Cj be a set of points colored with j in the sequence. Assume
that the both ends x1 and xn have the same color. If |Cj | ≤ �n/2� for every color
j, then there exists an even number p (2 ≤ p ≤ n− 1) such that xp and x1 have
distinct colors and for every color j,

|Cj ∩ {x1, . . . , xp}| ≤ p

2
,

|Cj ∩ {xp+1, . . . , xn}| ≤
⌈
n − p

2

⌉
.

In this paper, we will prove Lemma 1.8, Theorem 1.2, Theorem 1.4, and Theorem
1.7 in Sects. 2, 3, 4, and 5, respectively.

Throughout this paper, we will use the following definitions, notations, and
a fact. For two points x and y in the plane, xy denotes the line segment joining
x and y. For a set X of points in the plane, we denote by conv(X) the boundary
of the convex hull of X. We call a point in X ∩ conv(X) a vertex of conv(X).
For a graph G and its vertex v, we denote by degG(v) the degree of v in G. For
positive integers n, a, and b such that n = a + b, we know that a ≤ �n/2� and
b ≤ �n/2� if and only if |a− b| ≤ 1. It is also known that 
n/2�+ �n/2� = n. We
often use these facts without mentioning.

2 Proof of Lemma 1.8

By the symmetry of the colors, we may assume that x1 and xn are red. First,
we claim the lemma holds when B = ∅ or G = ∅, say G = ∅.

Claim 1. If G = ∅ then there exists an even number p (2 ≤ p ≤ n − 1) such
that xp is blue and

|R ∩ {x1, . . . , xp}| = |B ∩ {x1, . . . , xp}| =
p

2
,

|R ∩ {xp+1, . . . , xn}| ≤
⌈
n − p

2

⌉
, |B ∩ {xp+1, . . . , xn}| ≤

⌈
n − p

2

⌉
.
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Proof. Define a function f from {1, 2, . . . , n} to the set of integers as

f(i) = |R ∩ {x1, . . . , xi}| − |B ∩ {x1, . . . , xi}| .
Then f(i) increases or decreases by one, and f(1) = |{x1}| − |∅| = 1 and

f(n − 1) = |R ∩ {x1, . . . , xn−1}| − |B ∩ {x1, . . . , xn−1}| = |R \ {xn}| − |B \ {xn}|
= (|R| − 1) − |B| = |R| − 1 − (n − |R|) = 2|R| − 1 − n

≤ 2
⌈n

2

⌉
− 1 − n ≤ (n + 1) − 1 − n = 0.

Hence we can take the smallest number p (2 ≤ p ≤ n − 1) such that f(p) = 0.
Then, f(p − 1) = 1. Thus, xp is a blue point since f(i) decreases when xi is a
blue point. Since f(p) = 0, by the definition of f , we have

|R ∩ {x1, . . . , xp}| = |B ∩ {x1, . . . , xp}| =
p

2
.

Then, p is even and for each C ∈ {R,B},

|C ∩ {xp+1, . . . , xn}| = |C| − |C ∩ {x1, . . . , xp}| ≤
⌈n

2

⌉
− p

2
=

⌈
n − p

2

⌉
.

�
Next, by using Claim 1, we will prove the lemma. We use induction on n. If
n = 3 or n = 4 then xi (2 ≤ i ≤ n − 1) are not red since x1, xn ∈ R and
|R| ≤ �n/2� = 2. Thus, xp = x2 is the desired point. For n ≥ 5, we suppose that
the lemma holds for a sequence of n − 2 points.

Case 1. |C| = �n/2� for some C ∈ {R,B,G}.
Set W = C and K = (R∪B∪G)\C. We recolor all the points of W with white,
and all the points of K with black1. Then, we have

|W | =
⌈n

2

⌉
, |K| = n − |W | = n −

⌈n
2

⌉
=

⌊n
2

⌋
≤

⌈n
2

⌉
.

Since x1, xn ∈ W or x1, xn ∈ K, by Claim 1, there exists an even number p
(2 ≤ p ≤ n − 1) such that xp and x1 have distinct colors and

|W ∩ {x1, . . . , xp}| = |K ∩ {x1, . . . , xp}| =
p

2
,

|W ∩ {xp+1, . . . , xn}| ≤
⌈
n − p

2

⌉
, |K ∩ {xp+1, . . . , xn}| ≤

⌈
n − p

2

⌉
.

Hence, since each of R,B and G is a subset of W or K, the point xp is the
desired point.
1 We denote a set of black points by K not by B, because B means a set of blue points

in this paper.
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Case 2. |C| ≤ �n/2� − 1 for every C ∈ {R,B,G}.
If x2 is not red, then the point xp = x2 is the desired point because for every
C ∈ {R,B,G},

|C ∩ {x3, . . . , xn}| ≤ |C| ≤
⌈n

2

⌉
− 1 =

⌈
n − 2

2

⌉
=

⌈
n − p

2

⌉
.

Hence we may assume that x2 is red. Then there exists a blue or green point
xt (t ≥ 3), such that x1, . . . , xt−1 are all red. We now consider a sequence

Y = (y1, y2, . . . , yn−2) = (x2, . . . , xt−1, xt+1, . . . , xn),

which is obtained from the original sequence by removing one red point x1 and
one blue or green point xt. Note that the points y1(= x2) and yn−2(= xn) have
the same color, namely red. For every C ∈ {R,B,G}, |C∩Y | ≤ |C| ≤ �n/2�−1 =
�(n − 2)/2�. Thus, by applying the inductive hypothesis to Y , there exists an
even number q (2 ≤ q ≤ n − 3) such that yq is a blue or green point and for
every C ∈ {R,B,G},

|C ∩ {y1, . . . , yq}| ≤ q

2
,

|C ∩ {yq+1, . . . , yn−2}| ≤
⌈
n − 2 − q

2

⌉
.

Then yq = xq+2 and t + 1 ≤ q + 2 since x1, . . . , xt−1 are red, xt /∈ Y , and yq
is not red. Hence, since x1 and xt have distinct colors, for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xq+2}| = |C ∩ {x1, xt, y1, . . . , yq}| ≤ q

2
+ 1 =

q + 2
2

,

|C ∩ {xq+3, . . . , xn}| = |C ∩ {yq+1, . . . , yn−2}| ≤
⌈
n − 2 − q

2

⌉
=

⌈
n − (q + 2)

2

⌉
.

Therefore, since q is even, namely q+2 is even, the point xp = xq+2 is the desired
point.

3 Proof of Theorem 1.2 by Using Lemma 1.8

We briefly call a non-crossing properly colored geometric perfect matching a
Perfect Matching. Set 2n = |X|. We prove the theorem by induction on n. If
n = 1 then the theorem is true. For n ≥ 2, we suppose that the theorem holds
for 2(n − 1) points.

Suppose that |C| = n for some C ∈ {R,B,G}. Set W = C and K =
(R ∪ B ∪ G) \ C. We recolor all the points of W with white, and all the points
of K with black. Then there exists the desired Perfect Matching by applying
Theorem 1.1 to W ∪ K.
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Hence, we may assume that

|C| ≤ n − 1 for every C ∈ {R,B,G}.
Suppose that some two adjacent vertices u and v of conv(X) have distinct

colors. By our assumption, we have

|C ∩ (X − {u, v})| ≤ |C| ≤ n − 1 for every C ∈ {R,B,G}.
Thus, since |X − {u, v}| = 2(n − 1), we can apply the inductive hypothesis to
X−{u, v} and there exists a Perfect Matching on X−{u, v}. By adding an edge
uv to this matching, we can obtain the desired Perfect Matching.

Therefore, we may assume that all the vertices of conv(X) have the same
color. Let v be a vertex of conv(X). By a suitable rotation of the plane, we may
assume that v is the highest vertex of conv(X), and a and b are the left and the
right vertices of conv(X) adjacent to v, respectively.

We sort all the points of X with respect to their counterclockwise angle from
the ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , x2n) so that x1 = v, x2 = a, and x2n = b. Since the two end-points
x1 and x2n have the same color, by Lemma 1.8, there exists an even number p
(2 ≤ p ≤ 2n − 1) such that for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤ p

2
, |C ∩ {xp+1, . . . , x2n}| ≤

⌈
2n − p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x2(= a), x3, . . . , xp−1} and Right = {xp+1, . . . , x2n−1, x2n(= b)} as
shown in Fig. 5 so that a ∈ Left, b ∈ Right, |Left∪{v, xp}| = p, |Right| = 2n−p,
and for every C ∈ {R,B,G},

|C ∩ (Left ∪ {v, xp})| ≤ p

2
, |C ∩ Right| ≤

⌈
2n − p

2

⌉
.

Since p is even, by applying the inductive hypothesis to each of Left∪{v, xp}
and Right, we can obtain the desired Perfect Matching.

xp

x1 = v

x3

x4

x5

x6

x2 = a
x2n = b

xp

x1 = v

Fig. 5. A balanced partition and the desired Perfect Matching.
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4 Proof of Theorem 1.4 by Using Lemma 1.8

We first prove the following proposition, which is a stronger version of Theorem
1.3. Our proof of this proposition is also another proof of Theorem 1.3.

Proposition 4.1. Let R and B be sets of red and blue points in the plane,
respectively. Assume that no three points of X = R ∪ B are collinear. Let v be
a vertex of conv(X). Suppose that one of the following three conditions (i), (ii)
and (iii) holds:

(i) |B| = 1, 1 ≤ |R| ≤ 3, and v ∈ R,
(ii) 2 ≤ |B|, |R| = |B| + 2, and v ∈ R,
(iii) 2 ≤ |B| ≤ |R| ≤ |B| + 1.

Then there exists a non-crossing alternating geometric spanning 3-tree T on X
such that degT (v) = 1.

Proof. We briefly call an alternating geometric spanning 3-tree a Spanning 3-
Tree. If Condition (i) holds then the star K1,|R|, whose center is blue, is the
desired Spanning 3-Tree.

Hence, we may assume that (ii) or (iii) holds. Set n = |X|. We prove the
proposition by induction on n. By the assumption of the proposition, n ≥ 4. If
n = 4 then |R| = |B| = 2. Thus, there exists a non-crossing alternating geometric
matching M = {va, bc} where a and b have distinct colors. Then, the path vabc
is the desired Spanning 3-Tree.

For n ≥ 5, we suppose that the proposition holds for at most n−1 points. The
outline of the proof is that we will find a Spanning 3-Tree on X − v and connect
v and a point with degree at most 2 in the tree. We consider the following two
cases depending on the colors of the two neighbors of v of conv(X).

Case 1. v and a neighbor vertex u of v of conv(X) have distinct colors.

Subcase 1.1. Condition (ii) holds.

Since v ∈ R and |R| = |B| + 2, X − v = (R − v) ∪ B and |R − v| = |B| + 1.
Since 2 ≤ |B|, we have 2 ≤ |B| ≤ |R − v| ≤ |B| + 1. Thus, R − v and B satisfy
Condition (iii). Hence, since u is a vertex of conv(X − v), we can apply the
inductive hypothesis to R − v, B, and u. Then there exists a Spanning 3-Tree
T1 on (R− v) ∪B such that degT1

(u) = 1. Therefore, T = T1 + vu is the desired
Spanning 3-Tree on X.

Subcase 1.2. Condition (iii) holds and v ∈ R.

3 ≤ |R| since n ≥ 5. Thus, 2 ≤ |R| − 1 ≤ |R − v|. By Condition (iii), |R − v| =
|R|−1 ≤ |B| ≤ |R| = |R−v|+1. Hence, we have 2 ≤ |R−v| ≤ |B| ≤ |R−v|+1.
Thus, R−v and B satisfy Condition (iii). Hence, since u is a vertex of conv(X−v),
we can apply the inductive hypothesis to R − v, B, and u. Then there exists a
Spanning 3-Tree T1 on (R−v)∪B such that degT1

(u) = 1. Therefore, T = T1+vu
is the desired Spanning 3-Tree on X.
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Subcase 1.3. Condition (iii) holds and v ∈ B.

If |B| = 2 then 2 ≤ |R| ≤ 3 and |B − v| = 1. Thus, since u ∈ R, R and B − v
satisfy Condition (i). If 3 ≤ |B| then 2 ≤ |B − v|. By Condition (iii), we have
2 ≤ |B − v| ≤ |B| ≤ |R| ≤ |B|+1 = |B − v|+2. Thus, since u ∈ R, R and B − v
satisfy Condition (ii) or (iii). Hence, since u is a vertex of conv(X − v), we can
apply the inductive hypothesis to R, B−v, and u. Then there exists a Spanning
3-Tree T1 on R ∪ (B − v) such that degT1

(u) = 1. Therefore, T = T1 + vu is the
desired Spanning 3-Tree on X.

Case 2. v and its two neighbor vertices of conv(X) have the same color.

By a suitable rotation of the plane, we may assume that v is the highest vertex
of conv(X), and a and b are the left and the right vertices of conv(X) adjacent
to v, respectively.

Subcase 2.1. v, a, b ∈ R.

We sort all the points of X−v with respect to their counterclockwise angle from
the ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , xn−1) so that x1 = a and xn−1 = b. Since 2 ≤ |B| ≤ |R| ≤ |B|+2,
we have 1 ≤ |B| − 1 ≤ |R − v| ≤ |B| + 1, which implies ||R − v| − |B|| ≤ 1.
Thus, in the sequence, each color appears on at most �(n − 1)/2� points. Since
the two end-points x1 and xn−1 have the same color, namely red, by Lemma 1.8,
there exists an even number p (2 ≤ p ≤ n − 2) such that xp ∈ B and for every
C ∈ {R,B},

|C ∩ {x1, . . . , xp}| ≤ p

2
, |C ∩ {xp+1, . . . , xn−1}| ≤

⌈
n − 1 − p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , xn−2, xn−1(= b)}
as shown in Fig. 6 so that a ∈ Left, b ∈ Right, |Left ∪ {xp}| = p, |Right| =
n − 1 − p, and for every C ∈ {R,B},

|C ∩ (Left ∪ {xp})| ≤ p

2
, |C ∩ Right| ≤

⌈
n − 1 − p

2

⌉
. (1)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the red point v to the blue point xp.
First, set W = R ∩ Left and K = (B ∩ Left) ∪ {xp}. Since p is even,

|K| = |W |. Hence, since xp ∈ K is a vertex of conv(K ∪ W ), we can apply the
inductive hypothesis to K, W , and xp. Then there exists a Spanning 3-Tree T1

on Left ∪ {xp} such that degT1
(xp) = 1.

Next, set W = R ∩ Right and K = (B ∩ Right) ∪ {xp}. By the inequality
(1), ||W | − (|K| − 1)| = ||R ∩ Right| − |B ∩ Right|| ≤ 1. Thus, we have −1 ≤
|W | − (|K| − 1) ≤ 1, that is, 0 ≤ |K| − |W | ≤ 2. Then, either of the following
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v

x2

x3

x4

x5

x1 = a
xn-1 = b

xp

v

T1

T2

Fig. 6. A balanced partition and the desired Spanning 3-tree (Color figure online).

conditions (i), (ii), or (iii) holds: (i) |W | = 1, 1 ≤ |K| ≤ 3, and xp ∈ K,
(ii) 2 ≤ |W |, |K| = |W | + 2, and xp ∈ K, (iii) 2 ≤ |W | ≤ |K| ≤ |W | + 1. Hence,
since xp ∈ K is a vertex of conv(K ∪W ), we can apply the inductive hypothesis
to K, W , and xp. Then there exists a Spanning 3-Tree T2 on Right∪ {xp} such
that degT2

(xp) = 1.
Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X.

Subcase 2.2. v, a, b ∈ B.

We sort all the points of X with respect to their counterclockwise angle from the
ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , xn) so that x1 = v, x2 = a, and xn = b. Note that in this subcase
R and B satisfy Condition (iii) since v ∈ B, that is, 2 ≤ |B| ≤ |R| ≤ |B| + 1.
Thus, in the sequence, each color appears on at most �n/2� points. Since the
two end-points x1 and xn have the same color, namely blue, by Lemma 1.8,
there exists an even number p (2 ≤ p ≤ n − 1) such that xp ∈ R and for every
C ∈ {R,B},

|C ∩ {x1, . . . , xp}| ≤ p

2
, |C ∩ {xp+1, . . . , xn}| ≤

⌈
n − p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x2(= a), x3, . . . , xp−1} and Right = {xp+1, . . . , xn−1, xn(= b)}
as shown in Fig. 7 so that a ∈ Left, b ∈ Right, |Left ∪ {x1(= v), xp}| = p,
|Right| = n − p, and for every C ∈ {R,B},

|C ∩ (Left ∪ {v, xp})| ≤ p

2
, |C ∩ Right| ≤

⌈
n − p

2

⌉
. (2)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the blue point v to the red point xp.
First, set W = (R∩Left)∪{xp} and K = B∩Left. Since Left∪{x1(= v), xp}

has even points and x1(= v) is blue, |W | = |K| + 1. Hence, since xp ∈ W is a
vertex of conv(W ∪K), we can apply the inductive hypothesis to W , K, and xp.
Then there exists a Spanning 3-Tree T1 on Left∪{xp} such that degT1

(xp) = 1.
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x4
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x2 = a
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x1 = xv 1 = v

Fig. 7. A balanced partition and the desired Spanning 3-tree (Color figure online).

Next, set W = (R ∩ Right) ∪ {xp} and K = B ∩ Right. By the inequality
(2), |(|W | − 1) − |K|| = ||R ∩ Right| − |B ∩ Right|| ≤ 1. Thus, we have −1 ≤
(|W | − 1) − |K| ≤ 1, that is, 0 ≤ |W | − |K| ≤ 2. Then, either of the following
conditions (i), (ii), or (iii) holds: (i) |K| = 1, 1 ≤ |W | ≤ 3, and xp ∈ W , (ii)
2 ≤ |K|, |W | = |K| + 2, and xp ∈ W , (iii) 2 ≤ |K| ≤ |W | ≤ |K| + 1. Hence,
since xp ∈ W is a vertex of conv(W ∪K), we can apply the inductive hypothesis
to W , K, and xp. Then there exists a Spanning 3-Tree T2 on Right∪ {xp} such
that degT2

(xp) = 1.
Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X. �

Now, we will prove Theorem 1.4. If |X| ≤ 3 then the theorem is true. Thus, we
may assume that |X| ≥ 4. Instead of Theorem 1.4 with |X| ≥ 4, we prove the
following stronger Proposition 4.2 by using Lemma 1.8 and Proposition 4.1.

Proposition 4.2. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R∪B∪G are collinear. |X| ≥ 4.
Let v be a vertex of conv(X). If each color appears on at most �|X|/2� points,
then there exists a non-crossing properly colored geometric spanning 3-tree T on
X such that degT (v) = 1.

Proof. Set n = |X|. We briefly call a properly colored geometric spanning 3-tree
a Spanning 3-Tree. If there are exactly two colors then the proposition holds by
Proposition 4.1. Thus, we may assume that R �= ∅, B �= ∅, G �= ∅.

Suppose that the number of points colored with some color is exactly �n/2�,
say |R| = �n/2�. Then |B ∪ G| = n − |R| = 
n/2� ≤ �n/2�. Set W = R and
K = B ∪ G. Then, 2 ≤ |K| ≤ |W | ≤ |K| + 1 since n ≥ 4. Thus, we can apply
Proposition 4.1 to W , K, and v. Then there exists a Spanning 3-Tree T with
degT (v) = 1 on X = W ∪ K, which is the desired tree. Therefore, we have the
following claim.

Claim 1. We may assume that each color appears on at most �n/2�− 1 points.

We prove Proposition 4.2 by induction on n. If n = 4 then we may assume that
|R| = 2, |B| = 1, and |G| = 1 by the symmetry of the colors. Set W = R and
K = B ∪ G. Then, 2 ≤ |W | = |K|. Thus, we can apply Proposition 4.1 to W ,
K, and v. Then there exists a Spanning 3-Tree T on X = W ∪ K such that
degT (v) = 1, which is the desired tree.
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For n ≥ 5, we suppose that the proposition holds for at most n − 1 points.
The outline of the proof is that we will find a Spanning 3-Tree on X − v and
connect v and a point with degree at most 2 in the tree. We consider the following
two cases depending on the colors of the two neighbors of v of conv(X). By the
symmetry of the colors, we may assume that v ∈ R.

Case 1. v and some neighbor vertex u of v of conv(X) have distinct colors,
namely, u /∈ R.

|X − v| ≥ 4. By Claim 1, for every C ∈ {R,B,G}, |C − v| ≤ |C| ≤ �n/2� − 1 ≤
�|X − v|/2� points. Hence, since u is a vertex of conv(X − v), we can apply the
inductive hypothesis to X − v and u. Then there exists a Spanning 3-Tree T1 on
X − v such that degT1

(u) = 1. Therefore, T = T1 + vu is the desired Spanning
3-Tree on X.

Case 2. v and its two neighbor vertices of conv(X) have the same color.

By a suitable rotation of the plane, we may assume that v is the highest vertex of
conv(X), and a and b are the left and the right vertices of conv(X) adjacent to v,
respectively. We sort all the points of X−v with respect to their counterclockwise
angle from the ray emanating from v and passing through a, and denote the
sorted sequence by (x1, x2, . . . , xn−1) so that x1 = a and xn−1 = b.

By Claim 1, for every C ∈ {R,B,G}, |C−v| ≤ |C| ≤ �n/2�−1 ≤ �(n−1)/2�
points. Thus, in the sequence, each color appears on at most �|X − v|/2� points.
The two end-points x1 and xn−1 have the same color, namely red. Hence, by
Lemma 1.8, there exists an even number p (2 ≤ p ≤ n − 2) such that xp /∈ R
and for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤ p

2
, |C ∩ {xp+1, . . . , xn−1}| ≤

⌈
n − 1 − p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , xn−2, xn−1(= b)}
as shown in Fig. 8 so that a ∈ Left, b ∈ Right, |Left ∪ {xp}| = p, |Right| =
n − 1 − p, and for every C ∈ {R,B,G},

|C ∩ (Left ∪ {xp})| ≤ p

2
, |C ∩ Right| ≤

⌈
n − 1 − p

2

⌉
. (3)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the red point v to the non-red point xp. By the symmetry of B and G,
we may assume that xp ∈ B.

First, we will find a Spanning 3-Tree T1 on Left∪{xp} such that degT1
(xp) =

1. If |Left ∪ {xp}| = 2 then the path xpa is the desired Spanning 3-Tree T1. Thus,
since p is even, we suppose that |Left ∪ {xp}| ≥ 4. Then, since xp is a vertex of
conv(Left∪{xp}), we can apply the inductive hypothesis to Left∪{xp} and xp.
Then there exists a Spanning 3-Tree T1 on Left∪{xp} such that degT1

(xp) = 1.
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Fig. 8. A balanced partition and the desired Spanning 3-tree (Color figure online).

Next, we will find a Spanning 3-Tree T2 on Right∪{xp} such that degT2
(xp) =

1. If |Right ∪ {xp}| = 2 then the path xpb is the desired Spanning 3-Tree T2. If
|Right ∪ {xp}| = 3 then n − 1 − p = |Right| = 2. Thus, by the inequality (3),
|C ∩ Right| ≤ 1. Thus implies that Right ∪ {xp} has one red point b, one blue
point xp, and one blue or green point g. Hence, the path xpbg is the desired
Spanning 3-Tree T2.

Thus, we suppose that |Right ∪ {xp}| ≥ 4. If for every C ∈ {R,B,G},
|C ∩ (Right ∪ {xp})| ≤ �(n − p)/2�, then, since xp is a vertex of conv(Right ∪
{xp}), we can apply the inductive hypothesis to Right∪{xp} and xp. Then there
exists a Spanning 3-Tree T2 on Right ∪ {xp} such that degT2

(xp) = 1.
Hence, we suppose that for some C ∈ {R,B,G}, |C ∩ (Right ∪ {xp})| >

�(n − p)/2�. Since xp is blue, by the inequality (3), we have
⌈
n − p

2

⌉
< |B ∩ (Right ∪ {xp})| ≤

⌈
n − 1 − p

2

⌉
+ 1 =

⌈
n − p + 1

2

⌉
.

This implies that n− p is even and |B ∩ (Right∪ {xp})| = (n− p)/2 + 1. Set
W = B ∩ (Right ∪ {xp}) and K = (Right ∪ {xp}) \ W . Then,

|K| = |Right ∪ {xp}| − |W | = (n − 1 − p + 1) − (
n − p

2
+ 1) =

n − p

2
− 1

Thus, |W | = |K| + 2. Hence, since xp ∈ W is a vertex of conv(W ∪ K), we can
apply Proposition 4.1 to W , K, and xp. Then there exists a Spanning 3-Tree T2

on Right ∪ {xp} such that degT2
(xp) = 1.

Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X. �

5 Proof of Theorem 1.7 by Using Lemma 1.8

We can prove Theorem 1.7 in the same way as the proof of Theorem 1.2 in Sect. 3.
We briefly call a non-crossing properly colored geometric perfect matching (such
that each edge is an L-line segment) a Perfect Matching. Set 2n = |X|. We prove
the theorem by induction on n. If n = 1 then the theorem is true. For n ≥ 2, we
suppose that the theorem holds for 2(n − 1) points.

Suppose that |C| = n for some C ∈ {R,B,G}. Set W = C and K =
(R ∪ B ∪ G) \ C. We recolor all the points of W with white, and all the points
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of K with black. Then there exists the desired Perfect Matching by applying
Theorem 1.6 to W ∪ K.

Hence, we may assume that

|C| ≤ n − 1 for every C ∈ {R,B,G}.

The rectangular hull of X is the smallest closed rectangular enclosing X. We
denote by rect(X) the boundary of the rectangular hull of X. We call a point in
X ∩ rect(X) a vertex on rect(X).

Suppose that some two adjacent vertices u and v on rect(X) have distinct
colors. By our assumption, we have

|C ∩ (X − {u, v})| ≤ |C| ≤ n − 1 for every C ∈ {R,B,G}.

Thus, since |X − {u, v}| = 2(n − 1), we can apply the inductive hypothesis to
X − {u, v} and there exists a Perfect Matching on X − {u, v}. By adding an L-
line segment uv on rect(X) to this matching, we can obtain the desired Perfect
Matching.

Therefore, we may assume that all the vertices on rect(X) have the same
color. Let a and b be the left and the right vertices on rect(X), respectively. We
sort all the points of X by their horizontal coordinate, and denote the sorted
sequence by (x1, x2, . . . , x2n) so that x1 = a and x2n = b. Since the two end-
points x1 and x2n have the same color, by Lemma 1.8, there exists an even
number p (2 ≤ p ≤ 2n − 1) such that for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤ p

2
, |C ∩ {xp+1, . . . , x2n}| ≤

⌈
2n − p

2

⌉
.

This implies that the vertical line passing through xp partitions X \ {xp}
into Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , x2n−1, x2n(= b)}
so that a ∈ Left, b ∈ Right, |Left ∪ {xp}| = p, |Right| = 2n − p, and for every
C ∈ {R,B,G},

|C ∩ (Left ∪ {xp})| ≤ p

2
, |C ∩ Right| ≤

⌈
2n − p

2

⌉
.

Since p is even, by applying the inductive hypothesis to each of Left ∪ {xp}
and Right, we can obtain the desired Perfect Matching.
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Abstract. A set of triangles F is said to generate a polygon P if a
homothetic transform λP of P can be dissected into triangles each con-
gruent to a triangle in F . The simplicial element number of a polygon
P is defined to be the minimum cardinality of a family F of triangles
that can generate P . The simplicial element number of a set of poly-
gons P1, P2, . . . , Pk is defined to be the minimum cardinality of a family
F of triangles that can generate all P1, . . . , Pk. In this paper, we con-
sider simplicial element numbers for several set of regular polygons and
generating relations among triangles.

Keywords: Original triangle · Terminal triangle · Intermediate trian-
gle · Simplicial element number · Generating chain

Mathematical subject classification (2010): 52B45 · 52C20

1 Introduction

A finite set of simplices F is said to tile a polytope P , if P can be represented
as the union of a number of simplices τ1, τ2, . . . , τN such that the interiors of
these τi are mutually disjoint, and each τi is congruent to a member of F . A set
of simplices F is said to generate a polytope P , written as F → P , if F tiles
a polytope that is similar to P . For a simplex σ, we write σ → P instead of
{σ} → P . Note that (σ → τ) ∧ (τ → P ) implies σ → P .

The simplicial element number of a polytope P , denoted by e(P ), is defined
to be the minimum cardinality of a family F of simplices that can generate
P . The simplicial element number of a set of polytopes P1, P2, . . . , Pk, denoted
by e(P1, P2, . . . , Pk), is defined to be the minimum cardinality of a family F of
simplices that can generate all P1, . . . , Pk. For example, e({3}, {6}) = 1, where
{p} denotes the regular p-gon. It is obvious that the inequality e(P1, . . . , Pk) ≤
e(P1) + · · · + e(Pk) holds. If equality holds, then P1, . . . , Pk are said to be
independent.

We denote σ ∼ τ if two simplices σ and τ are similar. For a simplex σ, define
as follows:

σ is

⎧
⎪⎨

⎪⎩

original if τ → σ implies τ ∼ σ,

terminal if σ → τ implies τ ∼ σ,

intermediate otherwise.
c© Springer International Publishing Switzerland 2014
J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 112–121, 2014.
DOI: 10.1007/978-3-319-13287-7 10
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A finite sequence of simplices σ1σ2 . . . σk (or written as σ1 → σ2 → · · · → σk)
is called a generating chain of length k if σi → σi+1 and σi �∼ σi+1 for i =
1, 2, . . . , k − 1. For example, in the two-dimensional case,

�(π
6 , π

3 , π
2 ) → �(π

6 , π
6 , 2π

3 ) → �(π
3 , π

3 , π
3 ) (∗)

is a generating chain of length 3 (see Fig. 1), where �(α, β, γ) denotes a triangle
with interior angles α, β, γ. Note that, as far as generating relations concern, we
need not distinguish two similar triangles. So, we may regard �(α, β, γ) as any
representative of the triangles with interior angles α, β, γ.

(π
6 ,

π
3 ,

π
2 ) (π

6 ,
π
6 ,

2π
3 ) (π

3 ,
π
3 ,

π
3 )

Fig. 1. A generating chain

In this paper, we consider mainly the 2-dimensional case. Our results strongly
depend on the works of Laczkovich [7,8]. We show the following.

• e({3}, {n}) = 2 for every n > 3, n �= 6.
e({4}, {n}) = 2 for every n > 4.
e({3}, {4}, {6}, {12}) = 2.
If m,n (m �= n) are sufficiently large, then e({m}, {n}) = 2.

• All right triangles are original.
Isosceles triangles other than �(π

6 , π
6 , 2π

3 ) are all terminal.
Intermediate triangles are only the following types:

�(π
6 , π

6 , 2π
3 ), �(α, 2α, π − 3α),�(β, π

3 , 2π−3β
3 ),

where α, β take suitable irrational multiples of π (infinitely many values are
possible for α, β).

• The generating chain (∗) is the only chain of length ≥ 3 that contains the
intermediate triangle �(π

6 , π
6 , 2π

3 ).
The length of every generating chain of triangles is at most 3.

2 Polygons

Theorem 2.1. If a polygon P has n sides whose lengths are linearly independent
over the rational field Q, then e(P ) ≥ n/3.
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Proof. Let a1, a2, . . . , an be the side-lengths of P that are linearly independent
over Q. Suppose that a set of k triangles tiles P , and let b1, b2, . . . , b3k be the
side-lengths of the k triangles. Each ai can be represented as a linear combination
of b1, . . . , b3k with integral coefficients. Since a1, . . . , an are linearly independent
over Q, we must have 3k ≥ n, and hence k ≥ n/3. 
�
Corollary 2.1. For any integer n > 0, there is a polygon P with e(P ) ≥ n.

Example 2.1. The simplicial element number of a quadrilateral with sides
1,

√
2,

√
3,

√
5 is 2.

The following theorem is proved by Laczkovich [8, Theorems 3.3, 3.6].

Theorem 2.2 (Laczkovich 2012).

(i) A triangle T can generate a rectangle a×b if and only if T is a right triangle
in which the ratio of perpendicular sides is a rational multiple of a/b or b/a.

(ii) A triangle T can generate an equilateral triangle if and only if one of the
following holds.
– T is �(π

6 , π
3 , π

2 ).
– T is �(π

6 , π
6 , 2π

3 ).
– The ratios of sides of T are all rationals, and one angle of T is π/3 or

2π/3.

Example 2.2. If the side-lengths of T are 7, 8, 13 (in this case, the largest angle
of T becomes 2π/3), then the equilateral triangle of side 11760 can be dissected
into 2469600 triangles each congruent to T , see Laczkovich [7] p.86.

Let us state a well-known fact (see Appendix D of Niven [10]) as a lemma for
later use.

Lemma 2.1. Let α be an acute angle of a triangle. If cos α ∈ Q, then either
α/π is irrational or α = π/3. If tan α ∈ Q, then either α/π is irrational or
α = π/4. 
�
From Theorem 2.2, we have the following.

Theorem 2.3. (i) For any n > 3, n �= 6, an equilateral triangle and a regular n-
gon are independent. (ii) A square and any other regular polygon are independent.

Proof. (i) First, note that the interior angle of a regular n-gon is (n − 2)π/n.
Let T be a triangle that generates an equilateral triangle. We use Theorem 2.2
(ii). If T is �(π

6 , π
6 , 2π

3 ) or �(π
6 , π

3 , π
2 ), then, except the cases n = 4, 6, 12, no

angle (n − 2)π/n can be constructed as a linear combination of the angles of T
with nonnegative integral coefficients. By Theorem 2.2 (i), T cannot generate
{4}. Suppose that T generates {12}. Since �(π

6 , π
3 , π

2 ) generates �(π
6 , π

6 , 2π
3 ), we

may suppose that T is a triangle with sides 1,
√

3, 2 (which is a �(π
6 , π

3 , π
2 )) and

T tiles a regular 12-gon P . The side-length s of P can be then represented as
s = a + b

√
3 (where a, b are nonnegative integers), and the area of P is
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12 × (s/2)2 cot π
12 = 3s2(2 +

√
3) = 3(a + b

√
3)2(2 +

√
3)

= 3(2a2 + 6b2 + 6ab) + 3(4ab + a2 + 3b2)
√

3.

On the other hand, since T tiles P , the area of P is an integral multiple of
√

3/2,
which cannot be equal to 3(2a2+6b2+6ab)+3(4ab+a2+3b2)

√
3, a contradiction.

Now, suppose that the ratios of the sides of T are all rationals and T has an
angle equal to π/3 or 2π/3. If α denotes the smallest angle of T , then cos α is
a rational by the law of cosines. Hence α/π is irrational or α = π/3 by Lemma
2.1. If α = π/3, then T is an equilateral triangle, and no angle (n − 2)π/n (n �=
6) is an integral multiple of π/3. If α < π/3, then α/π is irrational, and by
Theorem 2.2 (ii), T must have 2π/3 as its largest angle. In this case, no angle
(n − 2)π/n (n �= 6) can be constructed as a linear combination of the angles of
T with nonnegative integral coefficients.

(ii) Let T be a triangle that generates a square, and let α be the smallest
angle of T . By Theorem 2.2 (i), T is a right triangle and tanα is a rational.
Hence α/π is irrational or α = π/4 by Lemma 2.1. If T generates a regular
n-gon for n �= 3, 4, then the angle (n − 2)π/n must be represented as a linear
combination of the angles of T with nonnegative integral coefficients, which is
possible only when α = π/4 and n = 8. So, assume that �(π

4 , π
4 , π

2 ) with sides
1, 1,

√
2 can tile a regular octagon {8}, and let s denote the side-length of the

octagon. This s must be written as s = a + b
√

2 with some nonnegative integers
a, b. Let r be the circum-radius of the octagon. By the cosine law, we have
s2 = 2r2 − 2r2 cos π

4 = r2(2 − √
2), and hence r2 = s2/(2 − √

2). The area of the
octagon is 4r2 sin π

4 = 4s2/(2
√

2 − 2) = 2s2/(
√

2 − 1) = 2(a + b
√

2)2/(
√

2 − 1).
Since a, b are nonnegative integers, this is an irrational number. On the other
hand, since we assumed that the right isosceles triangle tiles the octagon, the
area of the octagon must be an integral multiple of 1/2, a rational number, which
is a contradiction. 
�
Example 2.3. e({3}, {4}, {6}, {12}) = 2.

This can be seen as follows. Since {3}, {4} are independent, the simplicial element
number is at least 2. Let T1 be the right triangle with sides 1, 2,

√
3, and T2 be

the right triangle with perpendicular sides 1, 2 − √
3. Now, T1 can generate {3}

and {6}; T2 can generate {12}, see Fig. 2. Since {T1, T2} can generate a rectangle
1 × 2, {T1, T2} can generate a square. Hence the simplicial element number is at
most 2.

If m,n are sufficiently large and m �= n, then {m}, {n} are independent.

Theorem 2.4. If 420 < m < n, then e({m}, {n}) = 2.

Proof. It is obvious that e({m}, {n}) ≤ 2. By [8, Theorem 3.4 (iii)], if k > 420
and T → {k}, then T is either �( (k−2)π

2k , (k−2)π
2k , 2π

k ) or �( (k−2)π
2k , π

k , π
2 ). From

this we can deduce that there is no triangle T such that T → {m} and T → {n}.
Therefore e({m}, {n}) ≥ 2. 
�
Conjecture 2.1. e({m}, {n}) = 2 for 3 ≤ m < n and (m,n) �= (3, 6).
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1
tan π

12 = 2 − √
3

T2

1

√
3

T1

2

Fig. 2. Triangles T1 and T2

3 Triangles

Since the minimum angle in a triangle is at most π/3, we have the following.

Example 3.1. An equilateral triangle is terminal.

The following result is obtained by Laczkovich [7, Theorem 5.3].

Theorem 3.1 (Laczkovich 1995). Suppose that all angles of T are rational mul-
tiples of π. (i) If the three angles of T are all different, then T is original. (ii)
If T is an isosceles (not an equilateral) triangle with base angle θ, then σ → T
implies either σ = �(θ, π

2 − θ, π
2 ) or σ ∼ T .

As a corollary, we have the following.

Corollary 3.1. Suppose that all angles of T are rational multiples of π and all
angles are different. If T is not a right triangle, then T is terminal.

Proof. If T → τ , then the angles of τ are all rational multiples of π. If all angles
of τ are different, then τ is original by Theorem 3.1 (i), and hence T ∼ τ . If just
two angles of τ are equal, then since T is not a right triangle, we have T ∼ τ
by Theorem 3.1 (ii). This is impossible. Now, suppose that τ is an equilateral
triangle. By Theorem 2.2 (ii), the ratios of the sides of T are all rational numbers.
Let α be the minimum angle of T . Since T is not an equilateral triangle, it follows
that α < π/3. Since the ratios of side-lengths of T are all rational numbers,
cos α ∈ Q by the cosine law. This implies either α/π is an irrational or α = π/3
by Lemma 2.1, which is a contradiction. 
�
The following was essentially proved in Soifer [11].

Theorem 3.2. If the three interior angles α, β, γ of a triangle T are linearly
independent over Q, then T is original and terminal.

Proof. Suppose that T can be generated by a triangle τ with three interior angles
x, y, z. Then, for some nonnegative integers li,mi, ni,

⎧
⎪⎨

⎪⎩

α = 	1x + m1y + n1z

β = 	2x + m2y + n2z

γ = 	3x + m3y + n3z.
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Since α, β, γ are linearly independent over Q, so are x, y, z. From

x + y + z = α + β + γ = (
∑

	i)x + (
∑

mi)y + (
∑

ni)z

it follows that 1 =
∑

	i =
∑

mi =
∑

ni. Changing the suffixes suitably, we may
assume 	1 = 1,m2 = 1, n3 = 1. Then, α = x, β = y, γ = z, and τ is similar to T .
The latter part follows similarly. 
�
Theorem 3.3. (i) All right triangles are original, and (ii) isosceles triangles
other than �(π

6 , π
6 , 2π

3 ) are terminal.

Proof. (i) Let T be a right triangle and suppose τ → T . Since T can generate a
rectangle, τ can generate a rectangle, and hence τ is a right triangle by Theorem
2.2. Let α, β (α ≤ β) be two acute angles of T , and α′, β′ (α′ ≤ β′) be two acute
angles of τ . We have α′ ≤ α (and β′ ≥ β), for otherwise, τ cannot generate T .
If α = β (i.e. α = β = π/4), then T can generate a square, and hence τ can
generate a square. In this case, tan α′ is a rational by Theorem 2.2 (i), and since
π/4 is an integral multiple of α′, α′ is also a rational multiple of π. This implies
α′ = π/4 by Lemma 2.1, and hence τ ∼ T . So, we may suppose α < β. If α is
a rational multiple of π, then so is β, and T is original by Theorem 3.1 (i), and
τ ∼ T . So, we suppose α/π is not a rational. In this case, α and β (= π/2 − α)
are linearly independent over Q. If α′ < α, then β′ > β, and hence both α, β
must be multiples of α′, but this is impossible since α, β are linearly independent
over Q. Therefore, α′ = α and τ ∼ T .

(ii) Since an equilateral triangle is terminal, we consider the case that T is
an isosceles triangle that is neither equilateral nor �(π

6 , π
6 , 2π

3 ). Let α, α, β be
the three angles of T . If α or β is a rational multiple of π, then both α, β are
rational multiples of π, and T is terminal by Theorem 3.1 (ii). So, suppose that
one of α, β are irrational multiples of π. Then, since 2α + β = π, it follows that
α, β are both irrational multiple of π, and α, β are linearly independent over Q.
Suppose that T → τ , and let x, y, z be the angles of τ . We have

⎧
⎪⎨

⎪⎩

x = m1α + n1β

y = m2α + n2β

z = m3α + n3β.

where mi, ni are all nonnegative integers. Hence

2α + β = π = x + y + z =
(∑

mi

)
α +

(∑
ni

)
β,

and
∑

mi = 2,
∑

ni = 1. Hence, after suitable change of notations, we can
deduce that x = α, y = α, z = β. Therefore T ∼ τ , and T is terminal. 
�
Angles of a triangle are commensurable if they are all rational multiples of π.

Corollary 3.2. (i) Among the triangles with commensurable angles, the triangle
�(π

6 , π
6 , 2π

3 ) is a unique intermediate triangle. (ii) The generating chain (∗) is a
unique chain of length ≥ 3 that contains �(π

6 , π
6 , 2π

3 ).
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Proof. (i) By Corollary 3.1 and Theorem 3.3, it follows that among the triangles
with commensurable angles, �(π

6 , π
6 , 2π

3 ) is only one intermediate triangle. (ii)
Let σ = �(π

6 , π
6 , 2π

3 ) and suppose that σ → τ, σ �∼ τ . Then the angles of τ are
also commensurable and τ is not a right triangle by Theorem 3.3(i). Since σ is
an intermediate triangle, and σ �∼ τ , it follows from Theorem 3.1(i)(ii) that τ
is an equilateral triangle, which is terminal. Suppose now η → σ, η �∼ σ. Then
by Theorem 3.1(ii), we have η = �(π

6 , π
3 , π

2 ), which is original by Theorem 3.3.
Hence (∗) is a unique generating chain of length ≥ 3 that contains �(π

6 , π
6 , 2π

3 ).

�
Let σ be a triangle with non-commensurable angles, and suppose that σ → τ
and σ �∼ τ . From Laczkovich [7, Theorems 4.1], all possible candidates for such
pair (σ, τ) are derived as in Table 1.

The next theorem follows from Table 1.

Table 1. Possible pairs (σ, τ) when angles of σ are non-commensurable

σ τ

1. �(α, π−2α
2

, π
2
) �(α, α, π − 2α)

2. �(α, π
3
, 2π−3α

3
) �(π

3
, π
3
, π
3
)

3. �(α, 2α, π − 3α) �(α, α, π − 2α)

4. �(α, π−3α
2

, π+α
2

) �(α, α, π − 2α) or

�(3α, π−3α
2

, π−3α
2

) or

�(α, 2α, π − 3α) or

�(α, π−α
2

, π−α
2

) or

�(2α, π−α
2

, π−3α
2

)

5. �(α, π−3α
3

, 2π
3
) �(α, α, π − 2α) or

�(α, 2α, π − 3α) or

�(α, π+3α
3

, 2π−6α
3

) or

�(α, π
3
, 2π−3α

3
) or

�(2α, π
3
, 2π−6α

3
) or

�(π
3
, π
3
, π
3
)

Theorem 3.4. If σ is a triangle with non-commensurable angles, then all pos-
sible types of generating chains η → σ → τ of length three are given as follows:

(a) �(α, π−3α
2 , π+α

2 ) → �(α, 2α, π − 3α) → �(α, α, π − 2α)

(b) �(α, π−3α
3 , 2π

3 ) → �(α, 2α, π − 3α) → �(α, α, π − 2α)

(c) �(α, π−3α
3 , 2π

3 ) → �(α, π
3 , 2π−3α

3 ) → �(π
3 , π

3 , π
3 )

(d) �(α, π−3α
3 , 2π

3 ) → �(2α, π
3 , 2π−6α

3 ) → �(π
3 , π

3 , π
3 ).
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Remark 3.1. If α < π
3 and sin α

2 ∈ Q, then (a) is indeed a generating chain,
see Laczkovich [7, Theorem 2.4]. Notice that there are infinitely many such α.
If α < π

3 and
√

3 sin α, cos α ∈ Q, then (b), (c), (d) are all generating chains, see
Laczkovich [7, Theorem 2.5], and Theorem 2.2(ii). If we let α be the smallest
angle of the right triangle with sides n2 + 3, n2 − 3, 2

√
3n (n > 4), then α < π

3

and
√

3 sin α, cos α ∈ Q. Hence there are also infinitely many α for generating
chains (b), (c), (d).

Theorem 3.5. Intermediate triangles other than �(π
6 , π

6 , 2π
3 ) are only of the

following types:
�(α, 2α, π − 3α),�(β, π

3 , 2π
3 − β),

where α, β take suitable irrational multiples of π, and infinitely many different
values are possible for α, β.

Proof. If an intermediate triangle has commensurable angles, then, by Corollary
3.2, it is �(π

6 , π
6 , 2π

3 ). If it has non-commensurable angles, then, by Theorem
3.4, it must be one of the types �(α, 2α, π − 3α),�(β, π

3 , 2π
3 − β), and infinitely

many values are possible for α, β by Remark 3.1. 
�
Problem 3.1. Determine all possible values of α and β of the above theorem.

Problem 3.2. Determine the original triangles, terminal triangles, and inter-
mediate triangles completely.

Theorem 3.6. The length of a generating chain of triangles is at most 3.

Proof. Suppose that there exists a generating chain σ1 → σ2 → σ3 → σ4

of length 4. Then the sub-chain σ1 → σ2 → σ3 is either (∗) or a type of
(a), (b), (c), (d) of Theorem 3.4. Hence σ3 is an isosceles triangle other than
�(π

6 , π
6 , 2π

3 ), and hence σ3 is terminal by Theorem 3.3 (ii). Therefore σ4 cannot
exist, a contradiction. 
�

4 In Higher Dimensions

Let us state here some known results in dimension ≥ 3. A d-dimensional Hill-
simplex [6] (or Hadwiger-Hill simplex [5]) of angle θ, denoted by Qd(θ), is defined
as the convex hull of the vectors 0, v1, v1 + v2, . . . , v1 + v2 + · · · + vd, where
v1, . . . , vd are linearly independent unit vectors such that the angle between every
two of them is equal to θ. A Hill-simplex of angle π/2 is called an orthogonal Hill-
simplex, and a 3-dimensional Hill-simplex is called a Hill-tetrahedron. Figure 3
shows the orthogonal Hill-tetrahedron Q3(π/2).

For every d ≥ 3, by bisecting Qd(π/2) successively, we can get a generating
chain of d-simplices

σ0 → σ1 → σ2 → · · · → σd

such that σd = Qd(π/2) and σ0 is similar to σd, see for the details, Maehara [9].
Since σ0 ∼ σd, we can extend this generating chain to both direction, and we
can get arbitrarily long generating chain. (Cf. Theorem 3.6.)
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O v1

v1 + v2

v1 + v2 + v3

Fig. 3. The orthogonal Hill-tetrahedron Q3(π/2)

A 3-dimensional convex polytope is called a parallelohedron if it tiles R
3 by

translations only. Akiyama et al. [1] proved that for any parallelohedron Π, there
is an affine transformation f of R3 such that f(Π) is generated by the orthogonal
Hill-tetrahedron Q3(π/2).

The simplicial element numbers of the families of regular d-polytopes for d ≥
2 are determined by Akiyama et al. [2–4] as shown in Table 2. (Their “element
number” is slightly different from our simplicial element number, but Table 2
follows from their works.)

Table 2. e(the d-dimensional regular polytopes)

d # of regular polytopes simplicial element number

2 ∞ ∞
3 5 4

4 6 4

≥ 5 3 3
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Abstract. Given a sequence of positive integers p = (p1, . . . , pn), let Sp

denote the family of all sequences of positive integers x = (x1, . . . , xn)
such that xi ≤ pi for all i. Two families of sequences (or vectors),
A,B ⊆ Sp, are said to be r-cross-intersecting if no matter how we
select x ∈ A and y ∈ B, there are at least r distinct indices i such
that xi = yi. We determine the maximum value of |A| · |B| over all
pairs of r-cross-intersecting families and characterize the extremal pairs
for r ≥ 1, provided that min pi > r + 1. The case min pi ≤ r + 1 is
quite different. For this case, we have a conjecture, which we can ver-
ify under additional assumptions. Our results generalize and strengthen
several previous results by Berge, Frankl, Füredi, Livingston, Moon, and
Tokushige, and answers a question of Zhang. The special case r = 1 has
also been settled recently by Borg.

1 Introduction

The Erdős-Ko-Rado theorem [EKR61] states that for n ≥ 2k, every family of
pairwise intersecting k-element subsets of an n-element set consists of at most(
n−1
k−1

)
subsets, as many as the star-like family of all subsets containing a fixed

element of the underlying set. This was the starting point of a whole new area
within combinatorics: extremal set theory; see [GK78,Bol86,DeF83,F95]. The
Erdős-Ko-Rado theorem has been extended and generalized to other structures:
to multisets, divisors of an integer, subspaces of a vector space, families of per-
mutations, etc. It was also generalized to “cross-intersecting” families, i.e., to
families A and B with the property that every element of A intersects all ele-
ments of B; see Hilton [Hi77], Moon [Mo82], and Pyber [Py86].

For any positive integer k, we write [k] for the set {1, . . . , k}. Given a sequence
of positive integers p = (p1, . . . , pn), let

Sp = [p1] × · · · × [pn] = {(x1, . . . , xn) : xi ∈ [pi] for i ∈ [n]}.
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We will refer to the elements of Sp as vectors. The Hamming distance between
the vectors x, y ∈ Sp is |{i ∈ [n] : xi �= yi}| and is denoted by d(x, y). Let
r ≥ 1 be an integer. Two vectors x, y ∈ Sp are said to be r-intersecting if
d(x, y) ≤ n − r. (This term originates in the observation that if we represent
a vector x = (x1, . . . , xn) ∈ Sp by the set {(i, xi) : i ∈ [n]}, then x and
y ∈ Sp are r-intersecting if and only if the sets representing them have at least
r common elements.) Two families A,B ⊆ Sp are r-cross-intersecting, if every
pair x ∈ A, y ∈ B is r-intersecting. If (A,A) is an r-cross-intersecting pair, we
say A is r-intersecting. We simply say intersecting or cross-intersecting to mean
1-intersecting or 1-cross-intersecting, respectively.

The investigation of the maximum value for |A| · |B| for cross-intersecting
pairs of families A,B ⊆ Sp was initiated by Moon [Mo82]. She proved, using a
clever induction argument, that in the special case when p1 = p2 = · · · = pn = k
for some k ≥ 3, every cross-intersecting pair A,B ⊆ Sp satisfies

|A| · |B| ≤ k2n−2,

with equality if and only if A = B = {x ∈ Sp : xi = j}, for some i ∈
[n] and j ∈ [k]. In the case A = B, Moon’s theorem had been discovered by
Berge [Be74], Livingston [Liv79], and Borg [Bo08]. See also Stanton [St80]. In his
report on Livingston’s paper, published in the Mathematical Reviews, Kleitman
gave an extremely short proof for the case A = B, based on a shifting argument.
Zhang [Zh13] established a somewhat weaker result, using a generalization of
Katona’s circle method [K72]. Note that for k = 2, we can take A = B to be
any family of 2n−1 vectors without containing a pair (x1, . . . , xn), (y1, . . . , yn)
with xi + yi = 3 for every i. Then A is an intersecting family with |A|2 = 22n−2,
which is not of the type described in Moon’s theorem.

Moon also considered r-cross-intersecting pairs in Sp with p1 = p2 = · · · =
pn = k for some k > r + 1, and characterized all pairs for which |A| · |B| attains
its maximum, that is, we have

|A| · |B| = k2(n−r).

The assumption k > r + 1 is necessary. See Tokushige [To13], for a somewhat
weaker result, using algebraic techniques.

Zhang [Zh13] suggested that Moon’s results may be extended to arbitrary
sequences of positive integers p = (p1, . . . , pn). The aim of this note is twofold:
(1) to establish such an extension under the assumption mini pi > r +1, and (2)
to formulate a conjecture that covers essentially all other interesting cases. We
verify this conjecture in several special cases.

We start with the case r = 1, which has also been settled by Borg [Bo14],
using different techniques.

Theorem 1. Let p = (p1, . . . , pn) be a sequence positive integers and let A,B ⊆
Sp form a pair of cross-intersecting families of vectors.

We have |A| · |B| ≤ |Sp|2/k2, where k = mini pi. Equality holds for the case
A = B = {x ∈ Sp : xi = j}, whenever i ∈ [n] satisfies pi = k and j ∈ [k]. For
k �= 2, there are no other extremal cross-intersecting families.
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We say that a coordinate i ∈ [n] is irrelevant for a set A ⊆ Sp if, whenever
two elements of Sp differ only in coordinate i and A contains one of them, it also
contains the other. Otherwise, we say that i is relevant for A.

Note that no coordinate i with pi = 1 can be relevant for any family. Each
such coordinate forces an intersection between every pair of vectors. So, if we
delete it, every r-cross-intersecting pair becomes (r−1)-cross-intersecting. There-
fore, from now on we will always assume that we have pi ≥ 2 for every i.

We call a sequence of integers p = (p1, . . . , pn) a size vector if pi ≥ 2 for
all i. The length of p is n. We say that an r-cross-intersecting pair A,B ⊆ Sp is
maximal if it maximizes the value |A| · |B|.

Using this notation and terminology, Theorem1 can be rephrased as follows.

Theorem 1’. Let p = (p1, . . . , pn) be a sequence of positive integers with k =
mini pi > 2.

For any maximal pair of cross-intersecting families, A,B ⊆ Sp, we have
A = B, and there is a single coordinate which is relevant for A. The relevant
coordinate i must satisfy pi = k.

See Sect. 5 for a complete characterization of maximal cross-intersecting pairs
in the k = 2 case. Here we mention that only the coordinates with pi = 2 can
be relevant for them, but for certain pairs, all such coordinates are relevant
simultaneously. For example, let n be odd, p = (2, . . . , 2), and let A = B consist
of all vectors in Sp which have at most �n/2� coordinates that are 1. This makes
(A,B) a maximal cross-intersecting pair.

Let T ⊆ [n] be a subset of the coordinates, let x0 ∈ Sp be an arbitrary vector,
and let k be an integer satisfying 0 ≤ k ≤ |T |. The Hamming ball of radius k
around x0 in the coordinates T is defined as the family

Bk = {x ∈ Sp : |{i ∈ T : xi �= (x0)i}| ≤ k}.

Note that the pair (Bk, Bl) is (|T | − k − l)-cross-intersecting. We use the word
ball to refer to any Hamming ball without specifying its center, radius or its
set of coordinates. A Hamming ball of radius 0 in coordinates T is said to be
obtained by fixing the coordinates in T .

For the proof of Theorem1, we need the following statement, which will be
established by induction on n, using the idea in [Mo82].

Lemma 2. Let 1 ≤ r < n, let p = (p1, . . . , pn) be a size vector satisfying 3 ≤
p1 ≤ p2 ≤ · · · ≤ pn and let A,B ⊆ Sp form a pair of r-cross-intersecting
families. If

2
pr+1

+
r∑

i=1

1
pi

≤ 1,

then |A| · |B| ≤ ∏n
i=r+1 p2i . In case of equality, we have A = B and this family

can be obtained by fixing r coordinates in Sp.

By fixing any r coordinates, we obtain a “trivial” r-intersecting family A =
B ⊆ Sp. As was observed by Frankl and Füredi [FF80], not all maximal size
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r-intersecting families can be obtained in this way, for certain size vectors. They
considered size vectors p = (k, . . . , k) with n ≥ r + 2 coordinates, and noticed
that a Hamming ball of radius 1 in r +2 coordinates is r-intersecting. Moreover,
for k ≤ r, this family is strictly larger than the trivial r-intersecting family. See
also [AhK98].

On the other hand, as was mentioned before, for k ≥ r + 2, Moon [Mo82]
proved that among all r-intersecting families, the trivial ones are maximal.

This leaves open only the case k = r + 1, where the trivial r-intersecting
families and the radius 1 balls in r + 2 coordinates have precisely the same
size. We believe that in this case there are no larger r-intersecting families. For
r = 1, it can be and has been easily verified (and follows, for example, from
our Theorem 1, which deals with the asymmetric case, when A and B do not
necessarily coincide). Our Theorem 7 settles the problem also for r > 6. The
intermediate cases 2 ≤ r ≤ 6 are still open, but they could possibly be handled
by computer search.

Therefore, to characterize maximal size r-intersecting families A or maximal
r-cross-intersecting pairs of families (A,B) for all size vectors, we cannot restrict
ourselves to fixing r coordinates. We make the following conjecture that can
roughly be considered as a generalization of the Frankl-Füredi conjecture [FF80]
that has been proved by Frankl and Tokushige [FT99]. The generalization is
twofold: we consider r-cross-intersecting pairs rather than r-intersecting families
and we allow arbitrary size vectors not just vectors with all-equal coordinates.

Conjecture 3. If 1 ≤ r ≤ n and p is a size vector of length n, then there
exists a maximal pair of r-cross-intersecting families A,B ⊆ Sp, where A and
B are balls. If we further have pi ≥ 3 for all i ∈ [n], then all maximal pairs of
r-cross-intersecting families consist of balls.

Note that the r = 1 special case of Conjecture 3 is established by Theorem 1.
Some further special cases of the conjecture are settled in Theorem 7.

It is not hard to narrow down the range of possibilities for maximal r-cross-
intersecting pairs that are formed by two balls, A and B. In fact, the following
simple lemma implies that all such pairs are determined up to isomorphism
by the radii of A and B. Assuming that Conjecture 3 is true, finding max |A| ·
|B| for r-cross-intersecting families A,B ⊆ Sp boils down to making numeric
comparisons for pairs of balls obtained by all possible radii. In case pi ≥ 3 for
all i, the same process also finds all maximal r-cross-intersecting pairs.

Lemma 4. Let 1 ≤ r ≤ n and let p = (p1, . . . , pn) be a size vector. If A,B ⊆
Sp form a maximal pair of r-cross-intersecting families, then either of them
determines the other. In particular, A and B have the same set of relevant
coordinates. Moreover, if A is a ball of radius l around x0 ∈ Sp in a set of
coordinates T ⊆ [n], then |T | ≥ l + r, B is a ball of radius |T | − l − r around x0

in the same set of the coordinates, and we have pi ≤ pj for i ∈ T and j ∈ [n]\T .

As we have indicated above, we have been unable to prove Conjecture 3 in its
full generality, but we were able to verify it in several interesting special cases.
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We will proceed in two steps. First we argue, using entropies, that the number of
relevant coordinates in a maximal r-cross-intersecting family is bounded. Then
we apply combinatorial methods to prove the conjecture under the assumption
that the number of relevant coordinates is small.

In the case when there are many relevant coordinates for a pair of maximal
r-cross-intersecting families, we use entropies to bound the size of the families
and to prove

Theorem 5. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, let A,B ⊆ Sp

form a maximal pair of r-cross-intersecting families and let T be the set of
coordinates that are relevant for A or B. Then neither the size of A nor the
size of B can exceed

|Sp|∏
i∈T (pi − 1)1−2/pi

.

We use this theorem to bound the number of relevant coordinates i with
pi > 2. The number of relevant coordinates i with pi = 2 can be unbounded; see
Sect. 5.

Theorem 6. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector and let A,B ⊆
Sp form a maximal pair of r-cross-intersecting families.

For the set of coordinates T relevant for A or B, we have
r∏

i=1

pi ≥
∏

i∈T

(pi − 1)1−2/pi ,

which implies that |{i ∈ T : pi > 2}| < 5r.

We can characterize the maximal r-cross-intersecting pairs for all size vectors p
satisfying min pi > r + 1, and in many other cases.

Theorem 7. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector with p1 ≤ p2 ≤
· · · ≤ pn and let A,B ⊆ Sp form a pair of r-cross-intersecting families.

1. If p1 > r + 1, we have |A| · |B| ≤ ∏n
i=r+1 p2i . In case of equality, A = B holds

and this family can be obtained by fixing r coordinates in Sp.
2. If p1 = r + 1 > 7, we have |A| · |B| ≤ ∏n

i=r+1 p2i . In case of equality, A = B
holds and this family can be obtained either by fixing r coordinates in Sp or
by taking a Hamming ball of radius 1 in r + 2 coordinates i, all satisfying
pi = r + 1.

3. There is a function t(r) = o(r) such that if p1 ≥ 2r/3 + t(r) and (A,B) is
a maximal r-cross-intersecting pair, then the families A and B are balls of
radius 0 or 1 in at most r + 2 coordinates.

The proof of Theorem7 relies on the following result.

Theorem 8. Let 1 ≤ r ≤ n and let p be a size vector of length n with pi > 2
for all i ∈ [n]. If A,B ⊆ Sp is a maximal pair of r-cross-intersecting families
and at most r + 2 coordinates are relevant for them, then A and B are balls of
radius 0 or 1.
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With an involved case analysis, it may be possible to extend Theorem 8 to
pairs with more relevant coordinates. Any such an improvement carries over to
Theorem 7.

All of our results remain meaningful in the symmetric case where A = B. For
instance, in this case, Theorem 1 (also proved by Borg [Bo14]) states that every
intersecting family A ⊆ Sp has at most |Sp|/k members, where k = mini pi.
In case k > 2, equality can be achieved only by fixing some coordinate i with
pi = k. Note that in the case A = B (i.e., r-intersecting families) the exact
maximum size is known for size vectors (q, . . . , q), [FT99].

2 Proof of Theorem1

The aim of this section is to establish Theorem 1. First, we verify Lemma 4
and another technical lemma (see Lemma 9 below), which generalizes the corre-
sponding result in [Mo82]. Our proof is slightly simpler. Lemma9 will enable us
to deduce Lemma 2, the main ingredient of the proof of Theorem1, presented at
the end of the section.

Proof of Lemma 4. The first statement is self-evident: if A,B ⊆ Sp form a max-
imal pair of r-cross-intersecting families, then

B = {x ∈ Sp : x r-intersects y for all y ∈ A}.

If a coordinate is irrelevant for A, then it is also irrelevant for B defined by
this formula. Therefore, by symmetry, A and B have the same set of relevant
coordinates.

If A is the Hamming ball around x0 of radius l in coordinates T , then we
have B = ∅ if |T | < l + r, which is not possible for a maximal cross-intersecting
family. If |T | ≥ l + r, we obtain the ball claimed in the lemma. For every i ∈ T ,
j ∈ [n]\T , consider the set T ′ = (T\{i}) ∪ {j} and the Hamming balls A′ and
B′ of radii l and |T |− l − r around x0 in the coordinates T ′. These balls form an
r-cross-intersecting pair and in case pi > pj , we have |A′| > |A| and |B′| > |B|,
contradicting the maximality of the pair (A,B). �

The following lemma will also be used in the proof of Theorem5, presented in
the next section.

Lemma 9. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, and let A,B ⊆
Sp form a maximal pair of r-cross-intersecting families.

If i ∈ [n] is a relevant coordinate for A or B, then there exists a value l ∈ [pi]
such that

|{x ∈ A : xi �= l}| ≤ |A|/pi,

|{y ∈ B : yi �= l}| ≤ |B|/pi.
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Proof. Let us fix r, n, p, i, A, and B as in the lemma. By Lemma 4, if a coordinate
is irrelevant for A, then it is also irrelevant for B and vice versa.

In the case n = r, we have A = B and this family must be a singleton, so
that the lemma is trivially true. From now on, we assume that n > r and hence
the notion of r-cross-intersecting families is meaningful for n − 1 coordinates.

Let q = (p1, . . . , pi−1, pi+1, . . . , pn). For any l ∈ [pi], let

A′
l = {x ∈ A : xi = l},

B′
l = {y ∈ B : yi = l},

and let Al and Bl stand for the families obtained from A′
l and B′

l, respectively,
by dropping their ith coordinates. By definition, we have Al, Bl ⊆ Sq, and |A| =∑

l |Al| and |B| =
∑

l |Bl|. Furthermore, for any two distinct elements l,m ∈ [pi],
the families Al and Bm are r-cross-intersecting, since the vectors in A′

l differ from
the vectors in B′

m in the ith coordinate, and therefore the r indices where they
agree must be elsewhere.

Let Z denote the maximum product |A∗| · |B∗| of an r-cross-intersecting
pair A∗, B∗ ⊆ Sq. We have |Al| · |Bm| ≤ Z for all l,m ∈ [pi] with l �= m.
Adding an irrelevant ith coordinate to the maximal r-cross-intersecting pair
A∗, B∗ ⊆ Sq, we obtain a pair A∗′, B∗′ ⊆ Sp with |A∗′| · |B∗′| = p2iZ. Thus, using
the maximality of A and B, we have |A| · |B| ≥ p2iZ. Let l0 be chosen so as to
maximize |Al0 | · |Bl0 |, and let c = |Al0 | · |Bl0 |/Z.

Assume first that c ≤ 1. Then we have

p2iZ ≤ |A| · |B| =
∑

l,m∈[pi]

|Al| · |Bm| ≤
∑

l,m∈[pi]

Z = p2iZ.

Hence, we must have equality everywhere. This yields that c = 1 and that Al

and Bm form a maximal r-cross-intersecting pair for all l,m ∈ [pi], l �= m. This
also implies that |Al| = |Am| for l,m ∈ [pi], from where the statement of the
lemma follows, provided that pi = 2.

If pi ≥ 3, then all families Al must be equal to one another, since one member
in a maximal r-cross-intersecting family determines the other (by Lemma 4). This
contradicts our assumption that the ith coordinate was relevant for A.

Thus, we may assume that c > 1.
For m ∈ [pi], m �= l0, we have |Al0 | · |Bm| ≤ Z = |Al0 | · |Bl0 |/c. Thus,

|Bm| ≤ |Bl0 |/c, (1)

which yields that |B| =
∑

m∈[pi]
|Bm| ≤ (1 + (pi − 1)/c)|Bl0 |. By symmetry, we

also have
|Am| ≤ |Al0 |/c (2)

for m �= l0 and |A| ≤ (1 + (pi − 1)/c)|Al0 |. Combining these inequalities, we
obtain

p2iZ ≤ |A| · |B| ≤ (1 + (pn − 1)/c)2|Al0 | · |Bl0 | = (1 + (pi − 1)/c)2cZ.
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We solve the resulting inequality p2i ≤ c(1 + (pi − 1)/c)2 for c > 1 and conclude
that c ≥ (pi − 1)2. This inequality, together with Eqs. (1) and (2), completes the
proof of Lemma 9. �

Proof of Lemma 2. We proceed by induction on n.
Let A and B form a maximal r-cross-intersecting pair. It is sufficient to show

that they have only r relevant coordinates. Let us suppose that the set T of
their relevant coordinates satisfies |T | > r, and choose a subset T ′ ⊆ T with
|T ′| = r + 1. By Lemma 9, for every i ∈ T there exists li ∈ [pi] such that the
family Xi = {x ∈ B : xi �= li} has cardinality |Xi| ≤ |B|/pi.

If we assume that
2

pr+1
+

r∑

i=1

1
pi

< 1

holds (with strict inequality), then this bound of |Xi| would suffice. In order to
be able to deal with the case

2
pr+1

+
r∑

i=1

1
pi

= 1,

we show that |Xi| = |B|/pi is not possible. Considering the proof of Lemma9,
equality here would mean that the families Al and Bl (obtained by dropping the
ith coordinate from the vectors in the sets {x ∈ A : xi = l} and {y ∈ B : yi =
l}, respectively) satisfy the following condition: both (Ali , Bm) and (Am, Bli)
should be maximal r-cross-intersecting pairs for all m �= li. By the induction
hypothesis, this would imply that Ali = Bm and Am = Bli , contradicting that
|Am| < |Ali | and |Bm| < |Bli | (see (1), in view of c > 1). Therefore, we have
|Xi| < |B|/pi.

Let C = {x ∈ Sp : xi = 1 for all i ∈ [r]} be the r-intersecting family
obtained by fixing r coordinates in Sp. In the family D = B\(

⋃
i∈T ′ Xi), the

coordinates in T ′ are fixed. Thus, we have

|D| ≤
∏

i∈[n]\T ′
pi ≤

n∏

i=r+2

pi = |C|/pr+1.

On the other hand, we have

|D| = |B| −
∑

i∈T ′
|Xi| > |B|(1 −

∑

i∈T ′
1/pi) ≥ |B|(1 −

r+1∑

i=1

1/pi).

Comparing the last two inequalities, we obtain

|B| <
|C|

pr+1(1 − ∑r+1
i=1 1/pi)

.

By our assumption on p, the denominator is at least 1, so that we have |B| < |C|.
By symmetry, we also have |A| < |C|. Thus, |A| · |B| < |C|2 contradicting the
maximality of the pair (A,B). This completes the proof of Lemma 2. �
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Now we can quickly finish the proof of Theorem1.

Proof of Theorem 1. Notice that Lemma 2 implies Theorem 1, whenever k =
mini pi ≥ 3. It remains to verify the statement for k = 1 and k = 2. For k = 1,
it follows from the fact that all pairs of vectors in Sp are intersecting, thus the
only maximal cross-intersecting pair is A = B = Sp.

Suppose next that k = 2. For x ∈ Sp, let x′ ∈ Sp be defined by x′
i =

(xi + 1 mod pi) for i ∈ [n]. Note that x �→ x′ is a permutation of Sp. Clearly, x
and x′ are not intersecting, so we either have x /∈ A or x′ /∈ B. As a consequence,
we obtain that |A| + |B| ≤ |Sp|, which, in turn, implies that |A| · |B| ≤ |Sp|2/4,
as claimed. It also follows that all maximal pairs satisfy |A| = |B| = |Sp|/2. �

3 Using Entropy: Proofs of Theorems 5 and 6

Proof of Theorem 5. Let r, n, p,A,B and T be as in the theorem. Let us write y
for a randomly and uniformly selected element of B. Lemma 9 implies that, for
each i ∈ T , there exists a value li ∈ [pi] such that

Pr[yi = li] ≥ 1 − 1/pi. (3)

We bound the entropy H(yi) of yi from above by the entropy of the indicator
variable of the event yi = li plus the contribution coming from the entropy of yi
assuming yi �= li:

H(yi) ≤ h(1 − 1/pi) + (1/pi) log(pi − 1) = log pi − (1 − 2/pi) log(pi − 1),

where h(z) = −z log z − (1 − z) log(1 − z) is the entropy function, and we used
that 1 − 1/pi ≥ 1/2.

For any i ∈ [n]\T , we use the trivial estimate H(yi) ≤ log pi. By the subad-
ditivity of the entropy, we obtain

log |B| = H(y) ≤
∑

i∈[n]

H(yi) ≤
∑

i∈T

(log pi − (1 − 2/pi) log(pi − 1)) +
∑

i∈[n]\T
log pi,

or, equivalently,

|B| ≤
∏

i∈T

pi
(pi − 1)1−2/pi

∏

i∈[n]\T
pi =

|Sp|∏
i∈T (pi − 1)1−2/pi

as required. The bound on |A| follows by symmetry and completes the proof of
the theorem. �

Theorem 6 is a simple corollary of Theorem 5.

Proof of Theorem 6. Fixing the first r coordinates, we obtain the family

C = {x ∈ Sp : xi = 1 for all i ∈ [r]}.
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This family is r-intersecting. Thus, by the maximality of the pair (A,B), we
have

|A| · |B| ≥ |C|2 =

(
n∏

i=r+1

pi

)2

. (4)

Comparing this with our upper bounds on |A| and |B|, we obtain the inequality
claimed in the theorem.

To prove the required bound on the number of relevant coordinates i with
pi �= 2, we assume that the coordinates are ordered, that is p1 ≤ p2 ≤ · · · ≤
pn. Applying the above estimate on

∏
i∈[r] pi and using (pi − 1)1−2/pi > p

1/5
i

whenever pi ≥ 3, the theorem follows. �

4 Monotone Families: Proofs of Theorems 8 and 7

Given a vector x ∈ Sp, the set supp(x) = {i ∈ [n] : xi > 1} is called the support
of x. A family A ⊆ Sp is said to be monotone, if for any x ∈ A and y ∈ Sp

satisfying supp(y) ⊆ supp(x), we have y ∈ A.
For a family A ⊆ Sp, let us define its support as supp(A) = {supp(x) : x ∈

A}. For a monotone family A, its support is clearly subset-closed and it uniquely
determines A, as A = {x ∈ Sp : supp(x) ∈ supp(A)}.

The next result shows that if we want to prove Conjecture 3, it is sufficient
to prove it for monotone families. This will enable us to establish Theorems 8
and 7, that is, to verify the conjecture for maximal r-cross-intersecting pairs
with a limited number of relevant coordinates. Note that similar reduction to
monotone families appears also in [FF80].

Lemma 10. Let 1 ≤ r ≤ n and let p be a size vector of length n.
There exists a maximal pair of r-cross-intersecting families A,B ⊆ Sp such

that both A and B are monotone.
If pi ≥ 3 for all i ∈ [n] and A,B ⊆ Sp are maximal r-cross-intersecting

families that are not balls, then there exists a pair of maximal r-cross-intersecting
families that consists of monotone families that are not balls and have no more
relevant coordinates than A or B.

Proof. Consider the following shift operations. For any i ∈ [n] and j ∈ [pi]\{1},
for any family A ⊆ Sp and any element x ∈ A, we define

φi(x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn),

φi,j(x,A) =

{
φi(x) if xi = j and φi(x) /∈ A

x otherwise,

φi,j(A) = {φi,j(x,A) : x ∈ A}.

Clearly, we have |φi,j(A)| = |A| for any family A ⊆ Sp. We claim that for any pair
of r-cross-intersecting families A,B ⊆ Sp, the families φi,j(A) and φi,j(B) are
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also r-cross-intersecting. Indeed, if x ∈ A and y ∈ B are r-intersecting vectors,
then φi,j(x,A) and φi,j(y,B) are also r-intersecting, unless x and y have exactly
r common coordinates, one of them is xi = yi = j, and this common coordinate
gets ruined as φi,j(x,A) = x and φi,j(y,B) = φi(y) (or vice versa). However,
this is impossible, because this would imply that the vector φi(x) belongs to A,
in spite of the fact that φi(x) and y ∈ B are not r-intersecting.

If (A,B) is a maximal r-cross-intersecting pair, then so is (φi,j(A), φi,j(B)).
When applying one of these shift operations does change the families A or B,
then the total sum of all coordinates of all elements decreases. Therefore, after
shifting a finite number of times we arrive at a maximal pair of r-intersecting
families that cannot be changed by further shifting. We claim that this pair
(A,B) is monotone. Let y ∈ B and y′ ∈ Sp\B be arbitrary. We show that
B is monotone by showing that supp(y′) is not contained in supp(y). Indeed,
by the maximality of the pair (A,B) and using the fact that y′ /∈ B, there
must exist x′ ∈ A such that x′ and y′ are not r-cross-intersecting, and hence
|supp(x′)∪ supp(y′)| > n− r. Applying “projections” φi to x′ in the coordinates
i ∈ supp(x′) ∩ supp(y), we obtain x with supp(x) = supp(x′)\supp(y). The
shift operations φi,j do not change the family A, thus A must be closed for the
projections φi and we have x ∈ A. The supports of x and y are disjoint. Thus,
their Hamming distance is |supp(x) ∪ supp(y)|, which is at most n − r, as they
are r-intersecting. Therefore, supp(x) ∪ supp(y) = supp(x′) ∪ supp(y) is smaller
than supp(x′) ∪ supp(y′), showing that supp(y′) �⊆ supp(y). This proves that B
is monotone. By symmetry, A is also monotone, which proves the first claim of
the lemma.

To prove the second claim, assume that pi ≥ 3 for all i ∈ [n]. Note that
Theorem 1 establishes the lemma in the case r = 1, so from now on we can assume
without loss of generality that r ≥ 2. Let A,B ⊆ Sp form a maximal r-cross-
intersecting pair. By the previous paragraph, this pair can be transformed into a
monotone pair by repeated applications of the shift operations φi,j . Clearly, these
operations do not introduce new relevant coordinates. It remains to check that
the shifting operations do not produce balls from non-balls, that is, if A,B ⊆ Sp

are maximal r-cross-intersecting families, and A′ = φi,j(A) and B′ = φi,j(B)
are balls, then so are A and B. In fact, by Lemma 4 it is sufficient to prove that
one of them is a ball.

We saw that A′ and B′ must also form a maximal r-cross-intersecting pair.
Thus, by Lemma 4, there is a set of coordinates T ⊆ [n], a vector x0 ∈ Sp, and
radii l and m satisfying |T | = r+l+m and that A′ and B′ are the Hamming balls
of radius l and m in coordinates T around the vector x0. We can assume that
i ∈ T , because otherwise A = A′ and we are done. We also have that (x0)i = 1,
as otherwise A′ = φi,j(A) is impossible. The vectors x ∈ Sp such that xi = j and

|{k ∈ T : xk �= (x0)k}| = l + 1

are called A-critical. Analogously, the vectors y ∈ Sp such that yi = j and

|{k ∈ T : yk �= (x0)k}| = m + 1
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are said to be B-critical. By the definition of φi,j , the family A differs from A′ by
including some A-critical vectors x and losing the corresponding vectors φi(x).
Symmetrically, B\B′ consists of some B-critical vectors y and B′\B consists of
the corresponding vectors φi(y). Let us consider the bipartite graph G whose
vertices on one side are the A-critical vectors x, the vertices on the other side
are the B-critical vectors y (considered as disjoint families, even if l = m), and x
is adjacent to y if and only if |{k ∈ [n] : xk = yk}| = r. If x and y are adjacent,
then neither the pair (x, φi(y)), nor the pair (φi(x), y) is r-intersecting. As A
and B are r-cross-intersecting, for any pair of adjacent vertices x and y of G, we
have x ∈ A if and only if y ∈ B.

The crucial observation is that the graph G is connected. Note that this is
not the case if pk = 2 for some index k /∈ T , since all A-critical vectors x in a
connected component of G would have the same value xk. However, we assumed
that pk > 2 for l ∈ [n]. In this case, the A-critical vectors x and x′ have a
common B-critical neighbor (and, therefore, their distance in G is 2) if and only
if the symmetric difference of the l element sets {k ∈ T\{i} : xk �= (x0)k} and
{k ∈ T\{i} : x′

k �= (x0)k} have at most 2r−2 elements. We assumed that r > 1,
so this means that all A-critical vectors are indeed in the same component of
the graph G. Therefore, either all A-critical vectors belong to A or none of them
does. In the latter case, we have A = A′. In the former case, A is the Hamming
ball of radius l in coordinates T around the vector x′

0, where x′
0 agrees with x0

in all coordinates but in (x′
0)i = j. In either case, A is a ball as required. �

Proof of Theorem 8. By Lemma 10, it is enough to restrict our attention to
monotone families A and B. We may also assume that all coordinates are relevant
(simply drop the irrelevant coordinates), and thus we have n ≤ r + 2.

We denote by Ul the Hamming ball of radius l around the all-1 vector in
the entire set of coordinates [n]. Notice that the monotone families A and B
are r-cross-intersecting if and only if for a ∈ supp(A) and b ∈ supp(B) we have
|a ∪ b| ≤ n − r. We consider all possible values of n − r, separately.

If n = r, both families A and B must coincide with the singleton U0.
If n = r +1, it is still true that either A or B is U0. Otherwise, both supp(A)

and supp(B) have to contain at least one non-empty set, but the union of these
sets has size at most n − r = 1, so we have supp(A) = supp(B) = {∅, {i}}
for some i ∈ [n]. But this contradicts our assumption that the coordinate i is
relevant for A.

If n = r + 2, we are done if A = B = U1. Otherwise, we must have a two-
element set either in supp(A) or in supp(B). Let us assume that a two-element
set {i, j} belongs to supp(A). Then each set b ∈ supp(B) must satisfy b ⊆ {i, j}.
This leaves five possibilities for a non-empty monotone family B, as supp(B)
must be one of the following set systems:

1. {∅},
2. {∅, {i}},
3. {∅, {j}},
4. {∅, {i}, {j}}, and
5. {∅, {i}, {j}, {i, j}}.
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Cases 2, 3, and 5 are not possible, because either i or j would not be relevant
for B.

In case 1, we have B = U0, and thus A = U2. In this case, A and B are
balls, but the radius of A is 2. This is impossible, as U1 is r-intersecting and
|U1|2 > |U0| · |U2| always holds, so (A,B) is not maximal.

It remains to deal with case 4. Here supp(A) consists of the sets of size at
most 1 and the two-element set {i, j}. Define

C = {x ∈ Sp : xk = 1 for all k ∈ [n]\{i, j}}.

Note that |A| + |B| = |U1| + |C|, because each vector in Sp appears in the
same number of sets on both sides. Thus, we have either |A| + |B| ≤ 2|U1| or
|A| + |B| ≤ 2|C|. Since |A| > |B|, the above inequalities imply |A| · |B| < |U1|2
or |A| · |B| < |C|2. This contradicts the maximality of the pair (A,B), because
both U1 and C are r-intersecting. The contradiction completes the proof of
Theorem 8. �

Let us remark here that the extension of Theorem 8 to somewhat larger values of
relevant coordinates (in other words, verifying Conjecture 3 for the case of, say
r+4 relevant coordinates) yield a similar case analysis as we saw above for r+2
relevant coordinates, but with much more cases corresponding to containment
maximal pairs of set systems (U, V ) with |u ∪ v| bounded for u ∈ U and v ∈ V .
This seems to be doable, but the number of cases to considers grow fast.

Now we can prove our main theorem, verifying Conjecture 3 in several special
cases.

Proof of Theorem 7. The statement about the case p1 > r + 1 readily follows
from Lemma 2, as in this case the condition

2
pr+1

+
r∑

i=1

1
pi

≤ 1

holds.
To prove the other two statements in the theorem, we assume that A and

B form a maximal r-cross-intersecting pair. We also assume without loss of
generality that all coordinates are relevant for both families (simply drop the
irrelevant coordinates).

By Theorem 6, we have
∏r

i=1 pi ≥ ∏n
i=1(pi − 1)1−2/pi , and thus

r∏

i=1

pi
(pi − 1)1−2/pi

≥
n∏

i=r+1

(pi − 1)1−2/pi .

Here the function x/(x − 1)1−2/x is decreasing for x ≥ 3, while (x − 1)1−2/x is
increasing, and we have pi ≥ p1 ≥ 3. Therefore, we also have

r∏

i=1

p1
(p1 − 1)1−2/p1

≥
n∏

i=r+1

(p1 − 1)1−2/p1 ,
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pr1 ≥ (p1 − 1)n(1−2/p1),

n ≤ r log p1
(1 − 2/p1) log(p1 − 1)

.

It can be shown by simple computation that the right-hand side of the last
inequality is strictly smaller than r + 3 if p1 ≤ 2r/3 + t(r) for some function
t(r) = O(r/ log r) and, in particular, for p1 = r + 1 ≥ 8. In this case, we have
n ≤ r + 2 relevant coordinates. Thus, Theorem8 applies, yielding that A and B
are balls. This proves the last statement of Theorem7.

For the proof of the second statement, note that we have already established
that A and B are balls of radius 0 or 1. We use Lemma 4 to calculate the sizes of
A in B in the three possible cases. The product |A| · |B| is z1 =

∏n
i=r+1 p2i if A

and B are balls of radius 0. The same product is z2 = (
∑r+1

i=1 pi −r)
∏n

i=r+2 p2i if
one of them is a ball of radius 0 while the other is a ball of radius 1. Finally, the
product is z3 = (

∑r+2
i=1 pi − r − 1)2

∏n
i=r+3 p2i if both families are balls of radius

1. Note that we have A = B in the first and third cases. Using the condition
pi ≥ r + 1, it is easy to verify that z2 < z1 and z3 ≤ z1. Furthermore, we have
z3 = z1 if and only if pi = r + 1 for all i ∈ [r + 2]. This completes the proof of
Theorem 7. �

5 Coordinates with pi = 2

In many of our results, we had to assume pi > 2 for all coordinates of the size
vector. Here we elaborate on why the coordinates pi = 2 behave differently.

For the simple characterization of the cases of equality in Theorem 1, the
assumption k �= 2 is necessary. Here we characterize all maximal cross-intersecting
pairs in the case k = 2.

Let p = (p1, . . . , pn) be a size vector of positive integers with k = mini pi = 2
and let I = {i ∈ [n] : pi = 2}. For any set W of functions I → [2], define the
families

AW = {x ∈ Sp : ∃f ∈ W such that xi = f(i) for every i ∈ I},

BW = {y ∈ Sp : � ∃f ∈ W such that yi �= f(i) for every i ∈ I}.

The families AW and BW are cross-intersecting for any W . Moreover, if |W | =
2|I|−1, we have |AW | · |BW | = |Sp|2/4, so they form a maximal cross-intersecting
pair. Note that these include more examples than just the pairs of families
described in Theorem 1, provided that |I| > 1.

We claim that all maximal cross-intersecting pairs are of the form constructed
above. To see this, consider a maximal pair A,B ⊆ Sp. We know from the
proof of Theorem1 that x ∈ A if and only if x′ /∈ B, where x′ is defined by
x′
i = (xi + 1 mod pi) for all i ∈ [n]. Let j ∈ [n] be a coordinate with pj > 2. By

the same argument, we also have that x ∈ A holds if and only if x′′ /∈ B, where
x′′
i = x′

i for i ∈ [n]\{j} and x′′
j = (xj + 2 mod pj). Thus, both x′ and x′′ belong
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to B or neither of them does. This holds for every vector x′, implying that j is
irrelevant for the family B and thus also for A.

As there are no relevant coordinates for A and B outside the set I of coor-
dinates with pi = 2, we can choose a set W of functions from I to [2] such that
A = AW . This makes

B = {y ∈ Sp : y intersects all x ∈ A} = BW .

We have |A| + |B| = |Sp| and |A| · |B| = |Sp|2/4 if and only if |W | = 2|I|−1.
The size vector p = (2, . . . , 2) of length n is well studied. In this case, Sp is the

n-dimensional hypercube. If r > 1, then all maximal r-cross-intersecting pairs
have an unbounded number of relevant coordinates, as a function of n. Indeed,
the density |A| · |B|/|Sp|2 is at most 1/4 for cross-intersecting pairs A,B ⊆ Sp,
and strictly less than 1/4 for r-cross-intersecting families if r > 1. Furthermore,
if the number of relevant coordinates is bounded, then this density is bounded
away from 1/4, while if A = B is the ball of radius (n−r)/2 in all the coordinates,
then the same density approaches 1/4.

One can also find many maximal 2-cross-intersecting pairs that are not balls.
For example, in the 3-dimensional hypercube the families A = {0, 0, 0), (0, 1, 1)}
and B = {(0, 0, 1), (0, 1, 0)} form a maximal 2-cross-intersecting pair.

Finally, we mention that there is a simple connection between the problem
discussed in this paper and a question related to communication complexity.
Consider the following two-person communication game: Alice and Bob each
receive a vector from Sp, and they have to decide whether the vectors are r-
intersecting. In the communication matrix of such a game, the rows are indexed
by the possible inputs of Alice, the columns by the possible inputs of Bob, and an
entry of the matrix is 1 or 0 corresponding to the “yes” or “no” output the players
have to compute for the corresponding inputs. In the study of communication
games, the submatrices of this matrix in which all entries are equal play a special
role. The largest area of an all-1 submatrix is the maximal value of |A| · |B| for
r-cross-intersecting families A,B ⊆ Sp.
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Abstract. The double competition multigraph of a digraph D is the
multigraph which has the same vertex set as D and has mxy multiple
edges between two distinct vertices x and y, where mxy is defined to be
the number of common out-neighbors of x and y in D times the number
of common in-neighbors of x and y in D.

In this paper, we introduce the notion of the double multicompetition
number of a multigraph. It is easy to observe that, for any multigraph
M , M together with sufficiently many isolated vertices is the double
competition multigraph of some acyclic digraph. The double multicom-
petition number of a multigraph is defined to be the minimum number
of such isolated vertices. We give a characterization of multigraphs with
bounded double multicompetition number and give a lower bound for
the double multicompetition numbers of multigraphs.

Keywords: Intersection graph · Double competition multigraph ·
Double multicompetition number · Acyclic digraph
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1 Introduction

The competition graph of a digraph is defined to be the intersection graph of
the family of the out-neighborhoods of the vertices of the digraph (see [11] for
intersection graphs). A digraph D is a pair (V (D), A(D)) of a set V (D) of vertices
and a set A(D) of ordered pairs of vertices, called arcs. An arc of the form (v, v)
is called a loop. For a vertex x in a digraph D, we denote the out-neighborhood
of x in D by N+

D (x) and the in-neighborhood of x in D by N−
D (x), i.e., N+

D (x) :=
{v ∈ V (D) | (x, v) ∈ A(D)} and N−

D (x) := {v ∈ V (D) | (v, x) ∈ A(D)}. A graph
G is a pair (V (G), E(G)) of a set V (G) of vertices and a set E(G) of unordered
pairs of vertices, called edges. The competition graph of a digraph D is the graph
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which has the same vertex set as D and has an edge between two distinct vertices
x and y if and only if N+

D (x) ∩ N+
D (y) �= ∅. R. D. Dutton and R. C. Brigham

[4] and F. S. Roberts and J. E. Steif [13] gave characterizations of competition
graphs by using edge clique covers of graphs. The notion of competition graphs
was introduced by J. E. Cohen [3] in 1968 in connection with a problem in
ecology, and several variants and generalizations of competition graphs have
been studied.

In 1987, D. D. Scott [16] introduced the notion of double competition graphs
as a variant of the notion of competition graphs. The double competition graph
(or the competition-common enemy graph or the CCE graph) of a digraph D
is the graph which has the same vertex set as D and has an edge between two
distinct vertices x and y if and only if both N+

D (x) ∩ N+
D (y) �= ∅ and N−

D (x) ∩
N−

D (y) �= ∅ hold. See [8,10,15] for recent results on double competition graphs.
A multigraph M is a pair (V (M), E(M)) of a set V (M) of vertices and a

multiset E(M) of unordered pairs of vertices, called edges. Note that, in our
definition, multigraphs have no loops. We may consider a multigraph M as the
pair (V (M),mM ) of the vertex set V (M) and the nonnegative integer-valued
function mM :

(
V
2

) → Z≥0 on the set
(
V
2

)
of all unordered pairs of V where

mM ({x, y}) is defined to be the number of multiple edges between the vertices
x and y in M . The notion of competition multigraphs was introduced by C. A.
Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee [1] in 1990 as a variant
of the notion of competition graphs. The competition multigraph of a digraph
D is the multigraph which has the same vertex set as D and has mxy multiple
edges between two distinct vertices x and y, where mxy is the nonnegative integer
defined by mxy = |N+

D (x)∩N+
D (y)|. See [14,19] for recent results on competition

multigraphs.
In [12], the authors introduced the notion of the double competition multi-

graph of a digraph. The double competition multigraph of a digraph D is the
multigraph which has the same vertex set as D and has mxy multiple edges
between two distinct vertices x and y, where mxy is the nonnegative integer
defined by

mxy = |N+
D (x) ∩ N+

D (y)| · |N−
D (x) ∩ N−

D (y)|.
Recall that a clique of a multigraph M is a set of vertices of M which are

pairwise adjacent. We consider the empty set ∅ as a clique of any multigraph
for convenience. A multiset is also called a family. An edge clique partition of a
multigraph M is a family F of cliques of M such that any two distinct vertices
x and y are contained in exactly mM ({x, y}) cliques in the family F .

A digraph D is said to be acyclic if D has no directed cycles. An ordering
(v1, . . . , vn) of the vertices of a digraph D, where n is the number of vertices of
D, is called an acyclic ordering of D if (vi, vj) ∈ A(D) implies i < j. It is well
known that a digraph D is acyclic if and only if D has an acyclic ordering. For
a positive integer n, let [n] denote the set {1, 2, . . . , n}.

In [12], the authors gave a characterization of the double competition multi-
graphs of acyclic digraphs in terms of edge clique partitions of the multigraphs.
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Theorem 1 [12]. Let M be a multigraph with n vertices. Then, M is the double
competition multigraph of an acyclic digraph if and only if there exist an ordering
(v1, . . . , vn) of the vertices of M and a double indexed edge clique partition {Sij |
i, j ∈ [n]} of M such that the following conditions hold:

(I) for any i, j ∈ [n], if |Ai ∩ Bj | ≥ 2, then Ai ∩ Bj = Sij;
(IV) for any i, j, k ∈ [n], vk ∈ Sij implies i < k < j,

where Ai and Bj are the sets defined by

Ai = Si∗ ∪ T+
i , Si∗ :=

⋃

p∈[n]

Sip, T+
i := {vb | a, b ∈ [n], vi ∈ Sab},

Bj = S∗j ∪ T−
j , S∗j :=

⋃

q∈[n]

Sqj , T−
j := {va | a, b ∈ [n], vj ∈ Sab}.

In this paper, we introduce the notion of the double multicompetition num-
ber of a multigraph, and we give a characterization of multigraphs with bounded
double multicompetition number and give a lower bound for the double multi-
competition numbers of multigraphs.

2 Main Results

Proposition 2. For any multigraph M , there exists a nonnegative integer k
such that M ∪ Ik is the double competition multigraph of an acyclic digraph,
where Ik is the set of k isolated vertices.

Proof. Let M = (V (M),mM ) be a multigraph. Let E1 := {{x, y} ∈ (
V (M)

2

) |
mM ({x, y}) ≥ 1}, let A := {a{x,y} | {x, y} ∈ E1}, and let Z := {z{x,y},i |
{x, y} ∈ E1, i ∈ {1, . . . , mM ({x, y})}}. We define a digraph D by

V (D) := V (M) ∪ A ∪ Z

A(D) :=
⋃

{x,y}∈E1

mM ({x,y})⋃

i=1

{(a{x,y}, x), (a{x,y}, y), (x, z{x,y},i), (y, z{x,y},i)}.

Then, the digraph D is acyclic and the double competition multigraph of D is
M ∪ Ik, where k = |A| + |Z|. Hence the proposition holds. 	

By Proposition 2, we can define the following:

Definition. For a multigraph M , the double multicompetition number of M is
the minimum nonnegative integer k such that M ∪ Ik is the double competition
multigraph of an acyclic digraph. We denote it by dk∗(M). 	

Lemma 3. If a multigraph M has no isolated vertices, then dk∗(M) ≥ 2.
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Proof. Let k := dk∗(M). Then, there exists an acyclic digraph D whose double
competition multigraph is M ∪ Ik. Let (v1, . . . , vn+k) be an acyclic ordering of
D. Let i be the minimum index such that vi ∈ V (M) and let j be the maximum
index such that vj ∈ V (M). Then k ≥ (i−1)+(n+k−j). Since M has no isolated
vertices, the vertex vi (and vj) has at least one incident edge. Therefore, vi (and
vj) must have both an in-neighbor and an out-neighbor in D. Since vi has an
in-neighbor, we have i ≥ 2. Since vj has an out-neighbor, we have j ≤ n+ k − 1.
Thus we obtain k ≥ 2. Hence the lemma holds. 	

Example 4. For a path Pn of order n with n ≥ 2, dk∗(Pn) = 2.

Proof. Let Pn be the path with V (Pn) = {v1, . . . , vn} and E(Pn) = {{vi, vi+1} |
i ∈ {1, . . . , n − 1}}. We define a digraph D by V (D) = {v1, . . . , vn} ∪ {a, z}
and A(D) = {(a, v1), (a, v2)} ∪

(⋃n−2
i=1 {(vi, vi+1), (vi, vi+2)}

)
∪ {(vn−1, vn)} ∪

{(vn−1, z), (vn, z)}, where a and z are new vertices. Then, the digraph D is
acyclic since the ordering (a, v1, . . . , vn, z) is an acyclic ordering of D. We can
easily check that the double competition multigraph of D is Pn ∪ {a, z}. Thus
dk∗(Pn) ≤ 2. By Lemma 3, dk∗(Pn) ≥ 2. Hence dk∗(Pn) = 2. 	

Now, we give a characterization for multigraphs with bounded double multicom-
petition number, which is an extension of Theorem1.

Theorem 5. Let M be a multigraph with n vertices. Let k be a nonnegative
integer. Then, the double multicompetition number of M is at most k if and only
if there exist an integer t such that 0 ≤ t ≤ k, an ordering (v1, . . . , vn) of the
vertices of M , and a double indexed edge clique partition {Sij | i, j ∈ [n + k]} of
M such that the following conditions hold:

(i) For any i, j ∈ [n], if |Ai ∩ Bj | ≥ 2, then Ai ∩ Bj = St+i,t+j, where Ai and
Bj are the sets defined for i, j ∈ [n] by

Ai =

⎛

⎝
⋃

p∈[n+k−t]

St+i,t+p,

⎞

⎠ ∪ {vb−t | vi ∈ Sab (a, b ∈ {t + 1, . . . , t + n})},

Bj =

⎛

⎝
⋃

q∈[n+k−t]

St+q,t+j ,

⎞

⎠ ∪ {va−t | vj ∈ Sab (a, b ∈ {t + 1, . . . , t + n})}.

(ii) Let Λ1 = {1, . . . , t}, Λ2 = {t+1, . . . , t+n}, and Λ3 = {t+n+1, . . . , t+n+
(k − t)(= n + k)}.
If (i, j) ∈ Λ1 × Λ2, then Sij ⊆ {v1, . . . , v(j−t)−1}.
If (i, j) ∈ Λ1 × Λ3, then Sij ⊆ {v1, . . . , vn}.
If (i, j) ∈ Λ2 × Λ2 and i < j, then Sij ⊆ {v(i−t)+1, . . . , v(j−t)−1}.
If (i, j) ∈ Λ2 × Λ3, then Sij ⊆ {v(i−t)+1, . . . , vn}.
Otherwise, Sij = ∅.
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Proof. First, we show the “only-if” part. Suppose that a multigraph M has the
double multicompetition number at most k. Let M ′ := M ∪ Ik. Then M ′ is
the double competition multigraph of an acyclic digraph. By Theorem1, there
exist an ordering (v′

1, . . . , v
′
n+k) of the vertices of M ′ and a double indexed

edge clique partition F = {Sij | i, j ∈ [n + k]} of M ′ such that the conditions
(I) and (IV) in Theorem1 hold. Without loss of generality, we may assume
that Ik = {v′

1, . . . , v
′
t} ∪ {v′

n+t+1, . . . , v
′
n+k} for some nonnegative integer t with

0 ≤ t ≤ k. We delete all the cliques of size one from F if they exist. Since the
vertices in Ik are isolated, there is no clique Sij of size at least two containing
a vertex in Ik. Let (v1, . . . , vn) := (v′

t+1, . . . , v
′
t+n). Then, it follows from the

conditions (I) and (IV) for (v′
1, . . . , v

′
n+k) and F that the integer t, the ordering

(v1, . . . , vn), and the family F satisfy the conditions (i) and (ii).
Next, we show the “if” part. Suppose that there exist an integer t such that

0 ≤ t ≤ k, an ordering (v1, . . . , vn) of the vertices of M , and a double indexed
edge clique partition {Sij | i, j ∈ [n + k]} of M such that the conditions (i)
and (ii) hold. Then, we define a digraph D by V (D) := V (M) ∪ A ∪ Z, where
A := {a1, . . . , at} and Z := {z1, . . . , zk−t}, and

A(D) :=
⋃

(i,j)∈Λ1×Λ2

⎛

⎝
⋃

v∈Sij

{(ai, v), (v, vj−t)}
⎞

⎠

∪
⋃

(i,j)∈Λ1×Λ3

⎛

⎝
⋃

v∈Sij

{(ai, v), (v, zj−(n+t))}
⎞

⎠

∪
⋃

(i,j)∈Λ2×Λ2,i<j

⎛

⎝
⋃

v∈Sij

{(vi−t, v), (v, vj−t)}
⎞

⎠

∪
⋃

(i,j)∈Λ2×Λ3

⎛

⎝
⋃

v∈Sij

{(vi−t, v), (v, zj−(n+t))}
⎞

⎠ .

Then, we can check that the ordering (a1, . . . , at, v1, . . . , vn, z1, . . . , zk−t) is an
acyclic ordering of D. Therefore the digraph D is acyclic. By the definition of
the digraph D, it follows that

N+
D (vh) =

⋃

j∈Λ2∪Λ3,t+h<j

St+h,j

∪ {vj−t | vh ∈ Sij , (i, j) ∈ (Λ1 ∪ Λ2) × Λ2, i < j}
∪ {zj−(n+t) | vh ∈ Sij , (i, j) ∈ (Λ1 ∪ Λ2) × Λ3},

N−
D (vh) =

⋃

i∈Λ1∪Λ2,i<t+h

Si,t+h

∪ {ai | vh ∈ Sij , (i, j) ∈ Λ1 × (Λ2 ∪ Λ3)}
∪ {vi−t | vh ∈ Sij , (i, j) ∈ Λ2 × (Λ2 ∪ Λ3), i < j}
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for h ∈ [n], and that

N+
D (ai) =

⋃

j∈Λ2∪Λ3

Sij , N−
D (ai) = ∅ for i ∈ [t],

N−
D (zj) =

⋃

i∈Λ1∪Λ2

Si,t+n+j , N+
D (zj) = ∅ for j ∈ [k − t].

Therefore, we can confirm that the double competition multigraph of D is the
multigraph M ∪ (A∪Z), where the vertices in A∪Z are isolated. Thus, we have
dk∗(M) ≤ |A| + |Z| = k.

Hence the theorem holds. 	

Let θ∗

E(M) denote the edge clique partition number of a multigraph M , i.e., the
minimum size of an edge clique partition of M . By using Theorem 5, we obtain
a lower bound for dk∗(M).

Theorem 6. For any multigraph M with n vertices,

dk∗(M) ≥ max
{

0,

⌈√
4θ∗

E(M) + 2n2 + 2n

⌉
− 2n

}
.

Proof. Let k := dk∗(M). Then, by Theorem5, there exist an ordering (v1, . . . , vn)
of the vertices of M and a double indexed edge clique partition F = {Sij | i, j ∈
[n]} of M such that the conditions (i) and (ii) hold. Then, it follows from the
condition (ii) that the number of nonempty cliques in the family F is at most

|Λ1 × Λ2| + |Λ1 × Λ3| + |(Λ2 × Λ2) ∩ {(i, j) | i < j}| + |Λ2 × Λ3|
= tn + t(k − t) +

1
2
n(n − 1) + n(k − t)

= − (t − 1
2
k)2 +

1
4
k2 + nk +

1
2
n(n − 1).

Therefore, we have an inequality θ∗
E(M) ≤ 1

4k2 + nk + 1
2n(n − 1), that is,

k2 + 4nk + 2n(n − 1) − 4θ∗
E(M) ≥ 0.

Since k ≥ 0, we obtain k ≥ max{0,
√

4θ∗
E(M) + 2n2 + 2n − 2n}. Since k is an

integer, the theorem holds. 	

The double competition number dk(G) of a graph G is defined to be the min-
imum nonnegative integer k such that G ∪ Ik is the double competition graph
of an acyclic digraph. See [2,5–7,9,16–18] for results on the double competi-
tion numbers of graphs. Note that a graph can be considered as a multigraph
without multiple edges. The following gives a relationship between the double
competition number dk(G) and the double multicompetition number dk∗(G) of
a graph.

Proposition 7. For any graph G, dk(G) ≤ dk∗(G).

Proof. Let D be an acyclic digraph such that the double competition multigraph
of D is the (multi)graph G ∪ Idk∗(G). Then, the double competition graph of D
is also the graph G ∪ Idk∗(G). Thus, we have dk(G) ≤ dk∗(G). 	
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Abstract. Geometric information processing in the human brain is very
different from that in a computer: it is slow, local, and imprecise. How-
ever, humans are able to manage a huge amount of visual data, can
understand the scenes in front of them, and thus can survive in their
daily lives. We use visual illusions to investigate how the human brain
treats geometric data, and we point out the similarities between the
robustness of human geometric processing and the topology-oriented
principle, which we have proposed for use in the design of robust geomet-
ric algorithms for computers by presenting a new algorithm for straight
skeletons.

Keywords: Visual illusion · Human vision · Robust geometric algo-
rithm · Topology-oriented approach · Brain computing · Zöllner illusion ·
Ouchi illusion · Impossible motion · Straight skeleton

1 Introduction

Computational geometry is the field in which geometric algorithms are designed
for computers [5,7,17]. Computers are much more precise than human brains,
and hence the main concern is to make these algorithms as efficient as possible
[1]. Indeed, a huge number of very efficient algorithms have been established, and
sometimes these are the most efficient, i.e., optimal, in terms of the order of the
computational time with respect to the problem size. In this sense, computational
geometry is one of the most successful areas of computer science.

However, we note that computational geometry mainly treats well-defined
problems, while in the real world, we encounter many geometric problems that
are not well defined and cannot be solved easily by the current techniques of
computational geometry. Such problems include, for example, image pattern
recognition and scene understanding [3].

The human brain, on the other hand, seems to be able to solve those problems
relatively easily. We receive geometric information about the world around us in
the form of projected images on the retina, and our brains process those images
and understand the scenes in front of us without any major difficulties. This
ability is surprising when we recall that the computations of the human brain
are slow and imprecise, compared to electronic computers. If we can understand
c© Springer International Publishing Switzerland 2014
J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 145–160, 2014.
DOI: 10.1007/978-3-319-13287-7 13
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the way in which human brains perform geometric processing, we may be able
to apply it to the construction of algorithms for ill-defined geometric problems.

Motivated by this observation, we used visual illusions to study the way in
which the human brain processes geometric data, in order to find an approach
for solving ill-defined problems in computational geometry.

On the other hand, our research group has long been studying an approach
to the design of robust geometric algorithms, which we call the topology-oriented
approach [22,24,26]. In this approach we start with the assumption that numeri-
cal errors cannot be avoided and moreover the amount of errors is not bounded a
priori, but still we aim at robust geometric algorithms. This task is ill-conditioned
because the correctness of the algorithms cannot be guaranteed due to numerical
errors. However, we can successfully construct stable algorithms by guaranteeing
the consistency of topological structures of geometric objects and thus circum-
vent failures.

We first applied this idea to an incremental algorithm for ordinary Voronoi
diagrams [25], and then extended to various geometric problems including Voronoi
diagrams for line segments [26] and line arrangements [10] in the plane, and convex
hull [15], Voronoi diagram [26] and polyhedra [20] in the three-dimensional space.

Therefore, we might regard the topology-oriented approach as an example of
human-like robust computation. In this paper we compare human brain process-
ing with the topology-oriented algorithms and discuss their similarities.

The structure of this paper is as follows. We first observe and discuss three
typical examples of visual illusions, the Zöllner illusion [11], the Ouchi illusion
[14], and the impossible motion illusion [21], in Sects. 2–4, respectively. In Sect. 5,
we construct a new algorithm for robust computation of the straight skeleton
as an example of a geometric problem, and discuss the similarities between the
computations in the human brain and the topology-oriented algorithms. We
present our concluding remarks in Sect. 6.

2 Zöllner Illusion and Overestimation of Acute Angles

Figure 1 shows the famous Zöllner illusion; the four long, straight lines are exactly
parallel and horizontal, but they look as if they are alternately slanted in opposite
directions. This optical illusion is evoked by the shorter lines crossing the longer
lines, and it is usually explained by the overestimation of the acute angles.

When two lines cross, they generate two acute angles and two obtuse angles.
It is commonly observed that the acute angles are apt to be perceived larger
than they actually are, and the obtuse angles are apt to be perceived smaller.
There are many other illusions explained in the same way, including the Hering
illusion, the Wundt illusion, and the Luckiesh illusion [11].

Various mathematical models have been proposed to explain this overesti-
mation of acute angles. A typical such model is the one by Fremüller et al. [9]. In
their theory, the retina, acting as a photo sensor, has finite resolution, and hence
images are blurred, resulting in greater rounding of acute angles than of obtuse
angles. This makes acute angles appear to be greater than the actual angles.
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Fig. 1. Zöllner illusion.

According to this mathematical model, we can strengthen other types of
slanted-line illusions, such as the Café Wall illusion [11] shown in Fig. 2. In
this figure, in each row, white and black rectangles alternate in the horizontal
direction, and each row is offset from the adjacent rows by half the width of
the rectangles. Although the lines between the rows are straight and horizontal,
they appear to be curved and sloped. This illusion can also be explained by the
Fermüller model [9].

Fig. 2. Café Wall illusion.

Now, since we know that acute angles will be perceived to be larger than
they are, we can expect that this illusion will become stronger if we distort the
rectangles into parallelopipeds, since this will generate a series of acute angles.
The parallelopiped-based Café Wall pattern is shown in Fig. 3. We can observe
that the illusion is stronger, as was predicted by the mathematical model.

These observations, together with the mathematical model, tell us that human
visual perception is affected by blurring, even though we feel that we see the figures
accurately. We can summarize this observation in the following way.

Observation 1. The computations in the human brain are imprecise.
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Fig. 3. Stronger version of the Café Wall illusion (Sugihara, 2012).

3 Ouchi Illusion and Local Motion Detection

The second example we consider is the Ouchi illusion. The picture shown in Fig. 4
is included in Ouchi’s book [16]. This is a still picture, but the central circular
area seems to drift at random, independently from the surrounding area. This
drift illusion can be explained in the following way.

Fig. 4. Ouchi illusion (adopted from [16]).

First, our retina, which is an array of photo sensors, usually has some slight
random motion. A sensor generally decreases its sensitivity if it detects the same
signal for a relatively long period of time. This is also true of the retina. In order
to avoid this decrease in sensitivity, the retina tries to use different sensors to
detect a given signal. This is why the retina moves, and hence, when we look at
a picture, the image moves on the retina.

Secondly, neurons in the brain, particularly the neurons used in the earlier
stages of processing, cover only a small area of the retina. Hence, they process
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only the local information. This causes ambiguity in the direction of the detected
motion, in the following sense.

Suppose that, as shown in Fig. 5, a neuron receives visual data in a small
circular area of the retina, and detects displacement of an edge for which both
terminal points are outside the circular area. Then, the neuron can tell that the
edge moves, but cannot tell in which direction. There are many possibilities for
the direction of the motion, as shown by the arrows in Fig. 5. This ambiguity
is called the “aperture problem” [13]. In other words, a neuron can only detect
motion perpendicular to the edge, no matter which direction the edge actually
moves.

Fig. 5. Aperture problem.

On the basis of these two observations, we can explain why the Ouchi illusion
arises. Suppose that the Ouchi pattern moves slightly on the retina. In the central
part of the Ouchi pattern, horizontal edges prevail, and, consequently, primarily
vertical motion will be detected. In the surrounding part, on the other hand,
vertical edges prevail, and, consequently, primarily horizontal motion will be
detected. As the result of this, the central and surrounding parts appear to
move differently. This is a typical way of explaining the Ouchi illusion [8].

One might think that this illusion would become stronger if the elongated
checkerboard patterns were replaced with stripes, because the edge directions
would then be more uniform. However, this is not true. The illusion becomes
weaker if we replace the central part of the Ouchi pattern with horizontal stripes
and the surrounding part with vertical stripes. This can be understood in the
following manner. When a neuron becomes excited, it suppresses the excitation of
its neighboring neurons. This is called lateral inhibition. If a moving edge is long,
the excitation of a neuron covering part of the edge will suppress the excitation
of the neurons covering the neighboring parts. In this way, the excitations of
neurons cancel each other, and the illusion becomes weaker.

A straight edge will stimulate only those neurons that detect the direction
perpendicular to that edge. If the edge direction deviates slightly, such as like
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a sine curve, it will stimulate more neurons because the edge contains many
directions. We can thus expect that the illusion will become stronger if the
straight edges are replaced with slightly curved edges.

Based on these observations, we can create patterns that will give a stronger
illusion of drift than does the Ouchi pattern. An example of such a pattern is
shown in Fig. 6.

Fig. 6. Drift illusion “UFO in the evening glow” (Sugihara, 2013).

From this illusion, we get the next observation of the nature of the human
brain.

Observation 2. The basic computations in the human brain are local.

4 Impossible Motion Illusion

Impossible motion is a new type of illusion evoked by a three-dimensional object.
Figure 7 shows an example of impossible motion called “magnet-like slopes”.
Panel (a) shows an object with four slopes. We initially perceive that the four
slopes each go down in a different direction from the high center. However, if
we place balls on the slopes, they appear to roll uphill toward the high center,
defying gravity, as shown in panel (b). Panel (c) shows another view of the same
situation; here, we can see that the center is the lowest point, and the balls are
just rolling downhill. Thus, the actual motion obeys gravity, but it appears to
be an impossible motion that defies physical laws.

This class of visual illusion comes from the fact that a single picture lacks
depth information, and so the human brain guesses at the most common solid
among infinitely many possibilities that are consistent with what is seen. This
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Fig. 7. Impossible motion “Magnet-Like Slopes” (Sugihara, 2009): (a) three-
dimensional object; (b) result of apparently impossible motion; (c) another view of
the object.

illusion was found as a byproduct of computer vision research [18,19]; refer to
[19,21] for the details of designing this class of illusion.

A remarkable aspect of this illusion is that even after we understand the
actual shape of the object, as in Fig. 7(c), we incorrectly perceive the shape
when we return to the vantage view point shown in Fig. 7(a). This observation
may be expressed in the following way.

Observation 3. Computations in the human brain persistently retain the
initial interpretation.

5 Robust Geometric Computations Suggested by the
Human Brain

As we have observed, computations in the human brain are imprecise, local, and
persistent. However, in spite of these disadvantages, the human brain still can
robustly and efficiently process visual geometric data in our daily lives. In this
section, we consider how these remarkable characteristics of the human brain
can be used in the design of algorithms for computers.

Geometric algorithms are usually designed on the assumption that numerical
computations will be done precisely, and hence, in particular, that geometric
predicates will always be evaluated correctly. However, this is not true in real
computers, and theoretically correct algorithms sometimes fail when they are
implemented as software. This failure is common when the input is very close to
a degenerate situation.

Let us take the straight skeleton as an example. Let P be a polygon in the
plane. Suppose that from each edge of P , two copies of the edge, we will call them
the sweep lines, start moving in opposite directions away from the edge and at
the same speed, and that they continue to maintain contact with the neighboring
sweep lines at the terminal vertices. Hence, the sweep lines change their lengths
as they move. The motions of the sweep lines terminate at the points of collision
with the other sweep lines. The region swept by a sweep line is assigned to the
corresponding edge. In this way, the plane is partitioned into the regions swept
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for each edge and their boundaries. This partitioning, the boundary structure
in particular, is called the straight skeleton of the polygon P [2]. Figure 8 shows
an example of a polygon (thick lines) and the corresponding straight skeleton
(thin lines). The straight skeleton has applications in many fields, such as paper
folding [6], solid modeling [27], and pop-up cards [23].

Fig. 8. Polygon and its straight skeleton.

The straight skeleton can be defined for a more general structure, a straight-
line graph, and Huber and Held [12] constructed an O(n2 log n) algorithm for the
generalized straight skeleton. For the straight skeleton of a simple polygon, an
O(n3/2 log n) algorithm is known [4]. However, these algorithms are theoretical in
the sense that they are designed on the assumption that numerical computation
is done precisely. Therefore they are not necessarily valid in actual comput-
ers because of numerical errors. In this paper, we apply the topology-oriented
principle [22,25] which we have developed for designing robust geometric algo-
rithms, and construct a new algorithm which is robust against numerical errors
and which runs in O(n2 log n) time, and thus show that the topology-oriented
approach is similar to persistent human brain computation.

The straight skeleton canbe interpreted as a roof structure in three-dimensional
space, in the following manner. Suppose that the polygon P is the shape of the
wall seen from above, all parts of the wall have the same height, and we want to
construct a roof structure in which all parts have the same angle of declination.
The straight skeleton of P tells us how to partition the roof into planar plates
so that this is possible. Indeed, to build this roof, the region assigned to an edge
of P should be elevated to a roof plate passing through the edge at the top of
the wall.

On the basis of this interpretation, we can construct a sweep algorithm for
the straight skeleton. Let π be a horizontal plane that is initially placed on top
of the wall. We let π sweep upward and, in this way, construct the roof structure
inside P step by step from the lower part to the highest point on the roof. Next,
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we let π sweep downward and thereby construct the remaining part of the roof
structure outside of P .

This idea can be summarized in the next algorithm, where we concentrate
on the construction of the straight skeleton inside P .

Algorithm 1 (Straight skeleton).
Input: polygon P and angle α between the roof plates and the horizontal plane.
Output: straight skeleton inside P .
Procedure:

1. For each edge e of P , generate the half-plane containing e that is toward the
inside of P , forming angle α with respect to the horizontal plane, and put it
into storage S. (We will call the elements of S the roof plates.)

2. For each vertex v of P , generate the half-line at the intersection of the two
roof plates that are associated with the two edges incident to v, and put it
into storage E. (We will call the elements of E the roof edges.)

3. For each edge e of P , trim the corresponding roof plates in S by the two roof
edges emanating from the two terminal vertices of e.

4. Create empty storage locations E and S.
5. Repeat Steps 5.1, 5.2, and 5.3 until E and S are empty.

5.1 Find a pair (e, s) of a roof edge e and a nonneighboring roof plate s such
that they intersect and the point of intersection is the lowest among all
such pairs.

5.2 Move e from E to E.
5.3 Increment the roof structure around the point of intersection (details of

this procedure will be shown below). If new roof edges are created, add
them to E. If the roof plates in S become completely bounded by roof
edges, move them from S to S.

6. Output the roof structure consisting of the roof edges in E and the roof plates
in S. �

)c()b()a(

Fig. 9. Inconsistency in the construction of a degenerate straight skeleton: (a) regular
polygon and growing skeleton edges; (b) detection of the first vertex; (c) detection of
the second vertex, which contradicts the first vertex.
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Intuitively, this algorithm constructs the roof structure below the sweep plane
π step by step as π moves upward. However, an inconsistency may arise due to
numerical errors in the computations. Let P be the regular polygon shown in
Fig. 9(a). In theory, all the roof edges emanating from the vertices meet at a
common point. However, in the real world, we have numerical errors, and hence
it is difficult to identify this common point of intersection. Instead, the algorithm
may find many points of intersection. Suppose that Algorithm 1 first finds the
point of intersection of a roof edge and a roof plate as shown in Fig. 9(b), and
next finds another pair, as shown in Fig. 9(c). However, this is contradictory
because the roof edges cross each other, which should not happen in the roof
structure. Therefore, Algorithm 1 is not robust against numerical errors.

We can modify this algorithm and make it robust by using what we observed
in the previous section about how the brain performs such computation. For this
purpose, we first classify the roof edges into three types.

Let us concentrate on the structure below the sweep plane π. As shown in
Fig. 10(a), the initial roof edges terminate at the points of intersection with
π, and the intersection of the roof plates and π form a cycle represented by
broken lines in this figure. We call the roof edges that terminate at the points of
intersection with π, the active edges, meaning that these edges are still growing.
We call the cycle formed by the intersection of the roof plates and π a forefront
cycle, meaning that it is moving toward the inside of the polygon P . Furthermore,
we call the roof plates at the forefront cycles the active roof plates, meaning that
they are still growing.

)b()a(

Fig. 10. Active edges, forefront cycles, and fixed edges.

Initially, all the roof edges and roof plates are active. After the sweep plane π
has moved to some extent, some of roof edges below π are completed, as shown
by the solid lines in Fig. 10(b). We call these roof edges fixed edges. In other
words, edges in E are active, while edges in E are fixed. Similarly, some of the
roof plates become completely bounded by roof edges. We call those roof plates
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fixed roof plates. In other words, roof plates in S are active, while those in S are
fixed.

Once we recognize a forefront cycle, we can identify three types of topological
changes in the roof structure that occur during sweeping, as shown in Figs. 11,
12, and 13.

e s e s

Fig. 11. Event type 1: removal of an edge from a forefront cycle.

e

s

e

s

Fig. 12. Event type 2: partition of a forefront cycle.

Fig. 13. Event type 3: disappearance of a forefront cycle of length 3.

The first type of event is that the sweep plane π hits a point of intersection
between a roof edge e and a roof plate s that is on a roof plate adjacent to s, as
shown in Fig. 11. In this case, two active edges become fixed, and the forefront
cycle becomes shorter by one.

The second type of event is that the sweep plane π has a point of intersection
between a roof edge e and a roof plate s that is not on a plate that is adjacent
to the side plate of e, as shown in Fig. 12. In this case, the forefront cycle is
partitioned into two, the active e edge becomes fixed, and two new active edges
are generated.
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The third type of event is that a forefront cycle of length 3 disappears, as
shown in Fig. 13. In this case three active edges become fixed, three roof plates
become completely bounded by fixed edges, and no new edges are generated.

On the basis of these observations, we can make Algorithm 1 robust by
modifying Step 5 in the following way.

Algorithm 2 (Robust construction of straight skeleton).
Step 5 of Algorithm 1 is replaced with the following step, and the remainder

is the same as Algorithm 1.

5’. Repeat the following until E and S are empty.
5.1’ Find a pair (e, s) of an active roof edge e and a nonneighboring roof plate

s incident to the same forefront cycle, such that their intersection is the
lowest.

5.2’ If the event is of type 1, move e and its neighboring edge from E to E,
generate a new active edge, and reconnect the forefront cycle, as shown
in Fig. 11. Move from S to S the roof plate that has become fixed.

5.3’ If the event is of type 2, move e from E to E, generate two new active
edges, and partition the forefront cycle into two, as shown in Fig. 12.

5.4’ If the event is of type 3, move the three edges (including e) from E to
E, and change the associated three active edges to fixed edges, as shown
in Fig. 13. Move from S to S the three roof plates that have become
fixed. �

Note that this algorithm does not encounter the topological inconsistency shown
in Fig. 9. Indeed, at the initial stage (Fig. 9(a)), a forefront cycle of length 7 is
generated, and in the first event shown in Fig. 9(b), which is a type-2 event, the
forefront cycle is partitioned into two forefront cycles of length 4. Hence, the
situation shown in Fig. 9(c) does not arise because the associated roof edge and
the roof plate are incident to different forefront cycles, and hence this pair is not
included in the event candidates in Algorithm 2.

In Algorithm 2, we restrict the event search to each forefront cycle. In this
search, we cannot necessarily find the correct event (i.e., the lowest intersection)
because of numerical errors. However, whatever pair of a roof edge and a roof
plate is chosen as the next event, no topological inconsistency will arise because
the chosen pair will be of type 1, 2, or 3, and thus the topological change of the
forefront cycle will be well defined.

In other words, the basic structure of Algorithm 2 allows the topological
change of the graph structure of the forefront cycles, and numerical computations
are used only to choose the most promising pair of a roof edge and a roof plate.
Once this pair is chosen, the algorithm persists in the belief that it gives the
lowest intersection and changes the forefront cycles by Steps 5.2’, 5.3’, or 5.4’ of
Algorithm 2, depending on the type of the event. Thus we obtain the following
theorem.
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Theorem 1. Algorithm 2 terminates in finite time and produces a planar graph
as output, no matter whether the pair (e, s) chosen in Step 5.1’ gives the true
lowest intersection or not.

Proof. Once a pair (e, s) is chosen in Step 5.1’, the associated event is of type 1,
type 2, or type 3, and hence the planar graph consisting of the original polygon
edges, active edges, fixed edges, forefront cycle edge, and their terminal vertices
is changed by Steps 5.2’, 5.3’, or 5.4’, all of which maintain planarity. Thus, it
suffices to show the finiteness of the procedure. Assume that the input polygon P
has n edges. Initially, the total number of edges on the forefront cycle is n. This
number decreases by one in a type 1 event and by three in a type 3 event. In a
type 2 event, the total number of edges on the forefront cycles increases by one,
but both of the forefront cycles generated by the partition are smaller by at least
two than the forefront cycle before the partition. Hence, Step 5.3’ is repeated
only a finite number of times, and thus the total number of the forefront cycles
eventually vanishes. �

Theorem 2. Algorithm 2 runs in O(n2 log n) time for an n-gon P .

Proof. Steps 1, 2, and 3 are carried out in time O(n), and Step 4 is carried
out in time O(1). Step 5’ can be performed in the following manner. Initially
there are n active edges and n active roof plates. Hence there are n(n− 2) pairs
of roof edges and nonneighboring roof plates. We store them in a heap with
the y-coordinates of the points of intersection as the keys [1]. We can construct
the heap in O(n2 log n) time. Deletion of the lowest pair (e, s) from the heap
in Step 5.1’ requires O(log n) time. In Steps 5.2’ and 5.3’, new active edges are
generated. As soon as a new active edge e is generated, we compute the point of
intersection with each of the nonneighboring roof plates on the same forefront
cycle, and add the pair (e, s) to the heap. Adding a pair to the heap requires
O(log n) time. Because there are O(n) roof plates on the same forefront cycle,
we can add all the pairs with e to the heap in O(n log n) time. Hence, Steps 5.2’
and 5.3’ can be completed in O(n log n) time. Step 5.4’ can be completed in O(1)
time. Note that the straight skeleton is a planar graph with n connected regions
(corresponding to the n edges of the input polygon) embedded in the plane, and
the degree of any vertex is at least three. Hence, the total number of vertices,
edges, and connected regions is of O(n). This means that Steps 5.1 to 5.4 are
repeated O(n) times. Therefore, Algorithm 2 runs in O(n2 log n) time. �

Figure 14 shows an example of a straight skeleton. The input polygon in this
figure has 300 vertices. This polygon was generated by inserting a number of
vertices into the edges of a 16-gon and then perturbing their locations with small
random numbers. This polygon is not degenerate, and hence the construction of
the straight skeleton is not difficult.

Figure 15 shows the output of our algorithm for a regular 30-gon. This is
highly degenerate because, if there are no numerical errors, all 30 of the roof
edges will meet at the center. In this experiment, the coordinates of the vertices
were represented by single-precision floating-point numbers, and the numerical
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Fig. 14. Straight skeleton constructed by Algorithm 2.
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Fig. 15. Degenerate straight skeleton: (a) straight skeleton; (b) close-up diagram of
the central part.

computations were performed in single-precision floating-point arithmetic. Our
algorithm was able to compute the straight skeleton, as shown in Fig. 15(a).
However, if we expand the central part by 105, we get the diagram in Fig. 15(b),
where we can see many vertices instead of a single vertex. This kind of distur-
bance is not surprising; we note that the algorithm gave a topologically consistent
output even though the polygon was highly degenerate.

This algorithm is similar to the computations in the human brain in the
sense that both are persistent once a decision has been made, regardless of its
accuracy. In this way, both are able to achieve robustness against imprecise
numerical computations.
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The strategy we followed for designing Algorithm 2 can be considered to be
a topology-oriented approach, which we have proposed as a basic principle for
designing robust geometric algorithms [22,25]. Indeed, in this approach, the basic
part of the algorithm is described in only topological terms, and the numerical
data are used only for selecting the most promising branch of the processing.
Thus we can say that the idea behind simulating the persistency of the human
brain is very similar to the topological approach for robust geometric algorithms.

6 Concluding Remarks

We observed how the human brain processed computations by looking at three
visual illusions: the Zöllner illusion, the Ouchi illusion, and the impossible motion
illusion, and we then composed a new algorithm for computing straight skeletons.
Based on our observations, we pointed out that designing algorithms based on
how the human brain computes is very similar to the topology-oriented approach,
which we have developed for a long time. Thus, the topology-oriented approach
can be used if we want to mimic the processing of the human brain.

Acknowledgment. This research is supported by the Grant-in-Aid for Challeng-
ing Exploratory Research No. 24650015 and Scientific Research (B) No. 24360039 of
MEXT.
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Abstract. Two points x, y inside a polygon P are said to be mutu-
ally link-2 visible if there exists the third point z ∈ P such that z is
visible from both x and y. The polygon P is link-2 LR-visible if there
are two points s, t on the boundary of P such that every point on the
clockwise boundary of P from s to t is link-2 visible from some point
of the other boundary of P from t to s and vice versa. We give a char-
acterization of link-2 LR-visibility polygons by generalizing the known
result on LR-visibility polygons. A main idea is to extend the concepts of
ray-shootings and components to those under notion of link-2 visibility.
Then, we develop an O(n log n) time algorithm to determine whether a
given polygon is link-2 LR-visible.

Using the characterization of link-2 LR-visibility polygons, we further
present an O(n log n) time algorithm for determining whether a polygo-
nal region is searchable by a k-searcher, k ≥ 2, improving upon the pre-
vious O(n2) time bound. A polygonal region is searchable by a searcher
if the searcher can detect (or see) an unpredictable intruder inside the
region, no matter how fast the intruder moves. A k-searcher holds k
flashlights and can see only along the rays of the flashlights emanating
from his position. Our result can also be used to simplify the existing
solutions of other polygon search problems.

1 Introduction

Let P denote a simple polygon with n vertices. Any two points s and t on P
divide the boundary of P into two subchains, which we call L and R, for left and
right chains. The LR-visibility question asks whether each point of L is visible
from a point of R, and whether each point of R is visible from a point of L. If
the answer is yes, we say P is LR-visible with respect to s and t. If there exists
a pair of points on P such that P is LR-visible with respect to them, we simply
say P is LR-visible.

Because of its relation to other problems in polygonal visibility (e.g., the
two-guard problem [15] and the polygon search problem [9,12]), the problem of
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characterizing and recognizing LR-visibility polygons has received much atten-
tion in computational geometry and robotics [1,3,4,10]. Tseng et al. [15] were
the first to propose an O(n log n) time algorithm for deciding whether a given
polygon is LR-visible. The time bound was later improved to O(n) by Das et al.
[3]. (One can also report all pairs (s, t) which admit LR-visibility, after deter-
mining the LR-visibility of a polygon [3,15].) Very recently, Tan et al. showed
that a polygon P is not LR-visible if and only if it contains k non-redundant
components such that each of them exactly intersects with k′ other components,
0 ≤ k′ ≤ k − 3, and presented an alternative, simpler algorithm for character-
izing LR-visibility polygons [14]. The backward and forward components of a
reflex vertex r are the clockwise and counterclockwise boundary chains from r
to its backward and forward ray-shootings, respectively. A component is non-
redundant if it does not contain any other component.

In this paper, we study the link-2 LR-visibility polygons, which are a gener-
alization of LR-visibility polygons. Two points x, y ∈ P are said to be mutually
link-2 visible if there exists the third point z ∈ P such that z is visible from
both x and y. A polygon P is link-2 LR-visible if there are two points s, t on
the boundary of P such that every point on the clockwise boundary of P from
s to t is link-2 visible from some point of the other boundary of P from t to s
and vice versa.

In the rest of this paper, we first give a characterization of link-2 LR-visibility
polygons. It is obtained by introducing the new concepts of link-2 ray-shootings
and components, and establishing the forbidden patterns for link-2 LR-visibility
polygons, which are a direct generalization of the same structures for LR-
visibility polygons. Next, we develop an O(n log n) time algorithm to determine
whether a given polygon is link-2 LR-visible. Using the characterization of link-
2 LR-visibility polygons, we further present an O(n log n) time algorithm for
determining whether a polygonal region is searchable by a k-searcher, k ≥ 2.
This improves upon the previous O(n2) time bound [9].

2 Preliminaries

Let P denote a simple polygon with n vertices, i.e., P has neither self-intersections
nor holes. Two points x, y ∈ P are said to be mutually visible if the line segment
connecting them, denoted by xy, is entirely contained in P . For two regions Q1,
Q2 ⊆ P , we say that Q1 is weakly visible from Q2 if every point in Q1 is visible
from some point in Q2.

For a vertex x of the polygon P , let Succ(x) denote the vertex immediately
succeeding x clockwise, and Pred(x) the vertex immediately preceding x clock-
wise. A vertex of P is reflex if its interior angle is strictly greater than 180◦;
otherwise, it is convex. An important definition for reflex vertices is that of ray-
shootings: the backward ray-shooting from a reflex vertex r, denoted by B(r), is
the first point of P hit by a “bullet” shot at r in the direction from Succ(r) to
r, and the forward ray-shooting F(r) is the first point hit by the bullet shot at
r in the direction from Pred(r) to r.
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Fig. 1. Forward, backward ray-shootings and components.

Let u, v denote two boundary points of P , and let P [u, v] and P (u, v) denote
the closed and open clockwise chains of P from u to v, respectively. We define
P [r,B(r)] and P [F (r), r] as the backward component and forward component of
the reflex vertex r, respectively. The point r is referred to as the defining vertex
of its backward or forward component. See Fig. 1. A component is said to be
non-redundant if it does not contain any other component, no matter which is
the forward or backward component. Note that some points of a component of
r may not visible from r. The following simple observation can also be made.

Observation 1. No point outside of the backward (forward) component of a reflex
vertex r is visibile from Succ(r) (Pred(r)). Moreover, P (B(r), r) (P (r, F (r)) is
the first boundary chain, immediately after r anti-clockwise (clockwise), which is
invisible from Succ(r) (Pred(r)).

The known characterization of LR-visibility polygons is given in terms of the
non-redundant components.

Theorem 1 (See [14]). A polygon P is not LR-visible if and only if it has k
non-redundant components such that each of them exactly intersects with k′ other
components, where 0 ≤ k′ ≤ k − 3.

3 Characterizing Link-2 LR-visibility Polygons

In this section, we assume that the given polygon P is not LR-visible. We will
give a characterization of link-2 LR-visibility polygons by generalizing the known
result on the LR-visibility polygons (Theorem1). By introducing the new con-
cepts of link-2 ray-shootings and components, we can generalize the forbidden
patterns for LR-visibility polygons into those for link-2 LR-visibility polygons.

Suppose that all non-redundant components in the polygon P have been
computed. Given a boundary point p, all boundary points can be ordered in
a clockwise scan of P , starting at p. If x is encountered before y, we simply
write x <p y. Assume that r is a vertex whose backward component P [r,B(r)]
is non-redundant. Let BB1(r) (BF1(r)) denote the largest (smallest) reflex ver-
tex, with respect to r, which is link-2 visible from Succ(r) but Pred(BB1(r)))
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(Succ(BF1(r))) is not link-2 visible from Succ(r). If the vertex BB1(r) (BF1(r))
exists, we define the backward (forward) link-2 ray-shooting of r, denoted by
BB2(r) (BF2(r)), to be the smallest (largest) boundary point such that no point
of P (BB2(r), BB1(r)) (P (BF1(r), BF2(r))) is link-2 visible from Succ(r). The
backward (forward) link-2 component of r is then defined as the boundary chain
P [BB1(r), BB2(r)] (P [BF2(r), BF1(r)]). See Fig. 2(a). Note that P [r,B(r)] is
always contained in the backward or forward link-2 component of r. Also, if
the forward component of r is non-redundant, we analogously define its back-
ward/forward link-2 ray-shooting and the backward/forward link-2 component
P [FB1(r), FB2(r)]/P [FF2(r), FF1(r)]. See Fig. 2(a). (In the above notion, the
first letter “B” (or “F”) stands for the original backward (or forward) component
of r.) Note that it is possible that only one of the backward and forward link-2
ray-shootings from r is defined. See Fig. 2(b). (Since P is not LR-visible, at least
one of the backward and forward link-2 ray-shootings from r is defined.)

BF1(b)FF2(a)

c

BB2(c)

b
a

BB1(c)

FF1(a)
BF2(b)))

BF2(a)

(a)

FB2(b)

b

a

FF2(b)

(b)

BF1(a)

FF1(b)

FB1(b)

BB1(a)

BB2(a)

Fig. 2. Link-2 ray-shootings and link-2 components.

We call the link-2 components, which are derived from the non-redundant
backward and forward components, the link-2 α-components and β-components,
respectively. A link-2 α-component is non-redundant if it does not contain any
other link-2 α-component, no matter which is the forward or backward
α-component. For instance, the α-component P [BB1(c), BB2(c)] in Fig. 2(b)
contains the α-component P [BF2(b), BF1(b)] and is thus redundant. (Since P is
not LR-visible, both the forward and backward link-2 α-components of a vertex
r cannot be non-redundant simultaneously.) We make the analogous definition
for the non-redundant β-components.

From the definition of link-2 α-components, the following observation can
simply be made. (The observation on the link-2 β-components can be made
analogously.)
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Observation 2. Suppose that the backward component of a reflex vertex r is
non-redundant, and the backward (forward) link-2 ray-shooting of r is defined.
Then, no point outside of the backward (forward) link-2 α-component of r is link-
2 visible from Succ(r). Moreover, P (BB2(r), BB1(r)) (P (BF1(r), BF2(r))) is
the first boundary chain, immediately after BB1(r) (BF1(r)) anti-clockwise
(clockwise), which is not link-2 visible from Succ(r).

A link-2 component C (it may be an α- or β-component) is said to intersect
with the other C ′ if C and C ′ overlap each other on the boundary of P . We call
the endpoint of a link-2 component C the left endpoint if it is first encountered,
and the other endpoint of C the right endpoint if it is second met, in a clockwise
scan of the boundary of P , starting at a point that is not contained in C.

The similarity between the components and the link-2 α/β-components
(Observations 1 and 2) makes it easy to establish a one-to-one correspondence
between the forbidden patterns, for LR-visibility polygons and link-2 LR-visibility
polygons.

Lemma 1. Suppose that the given polygon P is not LR-visible. Then, P is link-
2 LR-visible with respect to two boundary points s and t if and only if each of
the non-redundant link-2 α-components and β-components contains s or t.

Proof. The necessity follows from the definition of the link-2 α- and β-components
and Observation 2. Assume now that each of the non-redundant link-2 α-
components and β-components contains s or t, and thus, each link-2 component
contains s or t. A reflex vertex r, say, on the chain L, cannot block Succ(r) nor
Pred(r) from being seen from any point of R; otherwise, there exists a link-2 com-
ponent that contains neither s nor t, a contradiction. The lemma thus follows. �

Lemma 2. A polygon P is not link-2 LR-visible if it has three disjoint link-2
components.

Proof. It simply follows from Lemma 1, see Fig. 3(a). �

Lemma 3. A polygon P is not link-2 LR-visible if it has k non-redundant link-2
components (they may be the α- or β-components) such that each of them exactly
intersects k′ other components, where k ≥ 5 and k′ ≤ k − 3.

Proof. Figure 3(b) shows an example in which P has five link-2 components; each
of them exactly intersects other three components. As in the proof of Lemma 2
of [14], we first transform the k non-redundant link-2 components into k directed
chords of a circle R such that the order of chord’s endpoints on R is the same
as that of the components’ endpoints on P . By considering the endpoints of
the transformed k chords on R as the vertices of a regular 2k-polygon, one can
easily see that for any two boundary points s and t, there always exists a link-2
component that does not contain s nor t. Thus, P is not link-2 LR-visible. (For
details, see the proof of Lemma 2 of [14].) �
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Fig. 3. Two types of the polygons which are not link-2 LR-visible.

Theorem 2. A polygon P is link-2 LR-visible if and only if there do not exist
k non-redundant link-2 components (they may be the α- or β-components) such
that each of them exactly intersects with k′ other components, where 0 ≤ k′ ≤
k − 3.

Proof. The necessity directly follows from Lemmas 2 and 3. Assume now that
there do not exist k non-redundant link-2 components in P such that each of
them exactly intersects with k′ other components, where 0 ≤ k′ ≤ k−3. As in the
proof of Theorem 1 of [14], we can classify all non-redundant link-2 components
(including both α-components and β-components) into two groups such that
the common intersection of the components in either group is not empty. Thus,
we can find two boundary points s and t, one per group, such that P is link-2
LR-visible with respect to s and t (Lemma 1). �

4 Recognizing Link-2 LR-visibility Polygons

In this section, we present an O(n log n) time algorithm for determining whether
a given polygon P is link-2 LR-visible as well as for reporting a pair or all
pairs (s, t) which admit link-2 LR-visibility. A main procedure is to compute
a superset of all non-redundant backward link-2 α-components. A symmetric
procedure does the same for the forward link-2 α-components. As described in
[3], the non-redundant link-2 α-components can then be extracted from these two
sets. Analogously, we compute the non-redundant link-2 β-components. After all
non-redundant link-2 components are computed, we can determine whether P
is link-2 LR-visible (Theorem 2).

By symmetry, we give below only the procedure for computing a superset of
non-redundant link-2 backward α-components. We will make use of the shortest
path trees, rooted at some polygon vertices. The shortest path between two points
a and b of P , denoted by SP (a, b), is the Euclidean minimum-distance curve with
the endpoints a and b inside P . The path SP (a, b) is always a polygonal chain,
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whose turning points are the vertices of P . The shortest path tree from a vertex
v of P is the union of all shortest paths SP (v, w), for each vertex w (�= v) of P .

The following two results have been known in the literature.

Lemma 4 (See [6,7]). The polygon P can be preprocessed in O(n) time so that
a shortest path query between two given points can be answered in logarithmic
time plus the time required to report the path itself.

Lemma 5 (See [2]). The polygon P can be preproceessed in O(n log n) time so
that a ray-shooting query can be answered in O(log n) time.

4.1 Computing All Non-redundant Backward Link-2 α-Components

We consider below only backward link-2 α-components. Also, we say a backward
link-2 α-component is non-redundant, if it does not contain any other link-2
backward α-component.

We will first present a method to compute all the backward link-2 α-
components, whose defining vertices belong to a non-redundant backward link-2
α-component. The restriction of the defining vertices to a non-redundant link-
2 α-component makes it easy to find all the backward link-2 α-components in
O(n log n) time. From Lemma 2, this procedure needs to be performed at most
three times.

All Defining Vertices are Limited to a Non-redundant link-2 α-
Component. Suppose that the backward link-2 α-component P [BB1(r),
BB2(r)] of some vertex r is non-redundant. We describe below a procedure
to compute all the backward link-2 α-components, which intersect P [BB1(r),
BB2(r)] and whose defining vertices are contained in P [BB1(r), BB2(r)].
(Remember that it suffices to compute a superset of all non-redundant backward
link-2 α-components.) For simplicity, we term these components the backward
link-2 αr-components.

Assume that the backward component of a vertex p ∈ P [BB1(r), BB2(r)]
is non-redundant. If B(p) is visible from B(r), then the backward link-2 ray-
shooting of p (e.g., the vertex p′ in Fig. 4), if it exists, contains that of r and is
thus redundant. Otherwise, the last turning point of the path SP (B1(r), B(p))
is the vertex BB1(p), and the link-2 ray-shooting BB2(p) is the boundary point
hit by the “bullet” shot at BB1(p) in the direction from B(p) to BB1(p). In this
case, BB2(p) ∈ P (BB2(r), BB1(r)) (Fig. 4); otherwise, P [BB1(p), BB2(p)] ⊂
P [BB1(r), BB2(r)], contradicting the assumption that the link-2 component
P [BB1(r), BB2(r)] is non-redundant. In this way, all the backward link-2 αr-
components can be computed.

Consider now the time required to compute the backward link-2 αr-
components. First, all non-redundant backward components in P can be com-
puted O(n log n) time using the ray-shooting algorithm [2,3] (or even in O(n)
time [13]). Next, we compute the shortest paths from B(r) to all the endpoints
of the non-redundant backward components, which are contained in P [BB1(r),
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Fig. 4. Computing the link-2 ray-shootings.

BB2(r)] using the linear-time algorithm [5]. The last turing point of a path,
say, SP (B(r), B(p)), can then be reported in O(log n) time (Lemma 4), and a
link-2 backward ray-shooting can also be computed in O(log n) time (Lemma 5).
Hence, all the backward link-2 αr-components can be calculated in O(n log n)
time.

Lemma 6. For a non-redundant backward link-2 component of r, we can com-
pute in O(n log n) time all the backward link-2 αr-components, whose defining
vertices belong to the backward link-2 α-component of r.

Calling the Procedure of Computing the Link-2 αr-Components Three
Times. It follows from Lemma 2 that the procedure given in the previous section
needs to be performed for at most three non-redundant backward link-2 α-
components; either a superset of the backward link-2 α-components is eventually
computed, or three (pairwise) disjoint components are found. In the latter case,
P is not link-2 LR-visible.

Let us now describe how to find three non-redundant backward link-2 α-
components, to which the above procedure applies. Assume first that the back-
ward component of a reflex vertex r is non-redundant. The backward link-2
component of r can then be found from the visibility polygon of the line seg-
ment rB(r). The visibility polygon of rB(r) in P can be computed in linear time
[5]. Assume also that the backward link-2 α-component P [BB1(r), BB2(r)] is
found. See Fig. 5. Next, find the first reflex vertex v, by a counterclockwise
scan from BB2(r) to BB1(r), such that P [BB1(v), BB2(v)] is contained in
P [BB1(r), BB2(r)] (Fig. 5). From Lemmas 4 and 5, it can simply be done in
O(n log n) time. If no vertex v exists, the backward link-2 α-component of r
is non-redundant, with respect to all backward link-2 α-components (Fig. 5(c)).
Otherwise, since v is the first vertex, in the counterclockwise scan from BB2(r)
to BB1(r), such that P [BB1(v), BB2(v)] is contained in P [BB1(r), BB2(r)],
the backward link-2 α-component of v is non-redundant. See Figs. 5(a)–(b). (The
backward link-2 α-component of r may be redundant, see Fig. 5(a).)
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Fig. 5. Illustration for computing the non-redundant backward link-2 α-components.

Without loss of generality, assume that the backward link-2 α-component
of r is non-redundant. Then, all backward link-2 αr-components are computed.
Next, we compute the first vertex u counterclockwise (if it exists) such that
its backward link-2 α-component is non-redundant and disjoint from that of
r. As described above, the backward link-2 α-component of u (if it exists)
can be found in O(n log n) time, by a counterclockwise scan from BB2(r) to
BB1(r). If the vertex u does not exist, we then compute the backward link-2
α-components, whose defining vertices belong to P [BB2(r), BB1(r)]. Clearly,
all found components give a superset of the non-redundant backward link-2 α-
components. In the case that the link-2 backward α-component of u is found, we
compute the backward link-2 αu-components. Finally, we further find the vertex
z, immediately succeeding u, such that the backward link-2 α-component of z is
non-redundant. If z happens to be identical to r, then the backward link-2 αr-
components and αu-components give a superset of the non-redundant backward
link-2 α-components, and we are done. If the backward link-2 α-component of z
is disjoint from those of both u and v, we report that P is not link-2 LR-visible
(Lemma 2). Otherwise, we also compute the backward link-2 αz-components.
The union of all found components clearly gives a superset of the non-redundant
backward link-2 α-components. (See also [14] for a detailed description of the
same purpose procedure for LR-visibility polygons.)

Therefore, we can conclude the following result.

Lemma 7. For a simple polygon P with n vertices, one can in O(n log n) time
compute a superset of non-redundant backward link-2 α-components or report
that P is not link-2 LR-visible.

4.2 The Algorithm

We first compute two supersets of the backward and forward non-redundant
link-2 α-components, and then extract the exact set of non-redundant link-
2 α-components from them [3]. (If it is ever reported that P is not link-2
LR-visible, then we are done.) Also, we compute all the non-redundant link-2
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β-components analogously. As shown in Sect. 3, the non-redundant link-2 α-
components and β-components for link-2 LR-visible polygons have the same
property as the non-redundant components for LR-visible polygons. We can
then determine in O(n) time whether P is link-2 LR-visible, and if yes report
a pair (s, t) such that P is link-2 LR-visible with respect to s and t, using the
same purpose algorithm of [14] for LR-visibility polygons. After all link-2 non-
redundant components are computed, the algorithm ALL 2-CUTTABL PAIRS
of [15] can also be used to report all pairs s and t that admit link-2 LR-visibility.

We summarize our result in the following theorem.

Theorem 3. For a given polygon P , one can in O(n log n) time determine
whether P is link-2 LR-visible, and if so, report a pair or all pairs (s, t) which
admit link-2 LR-visibility.

5 Applications

In this section, we discuss on the application of our characterization of link-2 LR-
visibility polygons to the polygon search problem and other visibility problems
as well.

A polygonal region P is said to be searchable by a searcher if the searcher
can detect (or see) an unpredictable intruder inside the region, no matter how
fast the intruder moves. A k-searcher holds k flashlights and can see only along
the rays of the flashlights emanating from his position. It has been known that
searchability of an ∞-searcher is the same as that of a 2-searcher [9]. This result
is obtained by characterizing the polygons which are searchable by a k-searcher,
k ≥ 2. An O(n2) time solution to the polygon search problem for a 2-searcher was
then claimed in [8]. Note that P is not searchable by a 1-searcher (a 2-searcher)
if P is not LR-visible (link-2 LR-visible) [12].

In the following, we present an O(n log n) time algorithm for determining
whether a polygonal region is searchable by a 2-searcher. Our results improves
upon the previous O(n2) time bound [9]. To this end, we first recall the char-
acterization of the 2-searchable polygons in terms of the non-redundant link-2
components (which may be the α- or β-components.)

Lemma 8. (See [9].) A polygon P is searchable by a 2-searcher, if and only if
none of the following conditions holds:

A1 There are three link-2 components in P such that one forward component
intersects the other backward component and the third is disjoint from both
the intersecting components (see Fig. 6(a)).

A2 The polygon P is not link-2 LR-visible.
A3 For any boundary point p, there are a backward link-2 component C and a

forward link-2 component C ′ such that p is not contained in both C and C ′

(see Fig. 6(b)).
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Fig. 6. Two types of the link-2 LR-visible polygons which are not 2-searchable.

Remark. The conditions N1, N2 and N3 given in [9] for characterizing the
k-searchable polygons make use of the concept of essential cuts, which are essen-
tially the same as the non-redundant components. The condition N1 consists
of A1 and one more situation of three disjoint link-2 components (Lemma2),
and N2 describes the same situation as stated in Lemma 3. The condition N3
is essentially the same as A3. Thus, the forbidden situations described by the
conditions N1, N2 and N3 in [9] are the same as those by A1, A2 and A3.
Note also that the polygons shown in Fig. 6 are link-2 LR-visible.

First, we can check in O(n log n) time whether P is link-2 LR-visible (The-
orem 3). If not, then P is not 2-searchable. Assume now that P is link-2 LR-
visible. It is easy to see that all the components satisfying A3 are essentially
non-redundant. Also, if there are three components satisfying A1, then they are
non-redundant; otherwise, there are three pairwise disjoint link-2 components,
contradicting the assumption that P is link-2 LR-visible.

Suppose that all non-redundant backward (forward) link-2 components (they
may be the α- or β-components) have been computed, and their endpoints are
ordered by a clockwise wise of P , starting at an arbitrary boundary point. For a
boundary point p, we can in O(1) time find a non-redundant backward (forward)
link-2 component C (C ′), whose left (right) endpoint is closest to p clockwise
(counterclockwise), starting at p. By scanning on the boundary of P once, we can
then determine in O(n) time whether the condition A3 is satisfied. Analogously,
for a non-redundant component C (e.g., the link-2 component of a in Fig. 6(a)),
we can also in O(1) time find a non-redundant forward (backward) link-2 com-
ponent D (D′), which is closest to the left (right) endpoint of C in clockwise
(counterclockwise) direction. Such a triple of the components, if it exists, can
also be found in O(n) time. Hence, whether the condition A1 is satisfied in P
can be verified in O(n) time. Putting together all the above results, we obtain
the following result.

Theorem 4. For a given polygon P , one can determine in O(n log n) time
whether P is searchable by a k-searcher, where k(≥ 2) is a fixed, positive integer.
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Finally, our result may also find applications in simplifying the existing solutions
of other visibility problems. For instance, an O(n4) time algorithm has been
proposed for searching a polygonal region with two 1-searchers [11]. The time
bound might further be improved to O(n3) or even O(n2), say, by characterizing
this search problem in terms of the non-redundant link-2 components. We are
working in this direction.
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Abstract. Imaginary cubes are three-dimensional objects that have
square projections in three orthogonal ways, just like a cube has. In this
paper, we introduce higher-dimensional extensions of imaginary cubes
and study their properties.

1 Introduction

Imaginary cubes are three-dimensional objects that have square projections in
three orthogonal ways, just like a cube has [1]. A regular tetrahedron and a
cuboctahedron are examples of imaginary cubes (Fig. 1(a,b)). There are two
imaginary cubes with remarkable geometric properties: a hexagonal bipyramid
imaginary cube (Fig. 1(c); we simply call it an H) and a triangular antipris-
moid imaginary cube (Fig. 1(d); we call it a T). Figure 2 shows how they can be
considered as imaginary cubes. The first author of this paper has studied imagi-
nary cubes, in particular minimal convex imaginary cubes and fractal imaginary
cubes. He has also designed sculptures and puzzles based on them [1–4].

In this paper, we study higher-dimensional extensions of imaginary cubes. In
particular, we study n-dimensional counterparts of regular tetrahedron, H, and
T for each n ≥ 2, which we call Sn,Hn, and Tn, respectively. We also study
fractal imaginary cubes that correspond to these three series of polytopes.

In Sect. 2, we review properties of imaginary cubes based on [1]. Then, we
study higher-dimensional extensions of them in Sect. 3, and fractal imaginary
hypercubes in Sect. 4.

Objects and Polytopes

Here, we only study imaginary cubes that are compact subsets of Rn. Therefore,
an object means a non-empty compact subset of Rn in this paper. We say that
two objects are similar if one can be transformed to the other by scaling and
isometry. We call this equivalence class a shape. Each shape S is also regarded
as a name of an object, and we say that an object A is an S if A belongs to the
class S. We use roman font to denote a shape, but italic font is used for objects.

A polytope is a convex hull of a finite set of points in R
n. We denote by

conv(A) the convex hull of an object A, and by vert(P ) the set of vertices of a
polytope P . A facet of an n-dimensional polytope P is an (n − 1)-dimensional

c© Springer International Publishing Switzerland 2014
J. Akiyama et al. (Eds.): JCDCGG 2013, LNCS 8845, pp. 173–184, 2014.
DOI: 10.1007/978-3-319-13287-7 15
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(a) (b) (c) (d)

Fig. 1. Examples of imaginary cubes: (a) regular tetrahedron, (b) cuboctahedron, (c)
H: hexagonal bipyramid with 12 isosceles triangle faces with a height 3/2 of the base,
(d) T: triangular antiprismoid obtained by truncating the three vertices of a base of a
regular triangular prism whose height is

√
6/4 of an edge.

(a) (b) (c) (d)

Fig. 2. Imaginary cubes in Fig. 1 placed in cubes.

face of P . We simply call an n-dimensional hypercube an n-cube. We refer the
reader to [5] for background material on polytopes.

For any two objects A and B, and for any scalar c ∈ R, we set their Minkowski
sum A + B = {a + b ∈ R

n | a ∈ A, b ∈ B}, and scaling cA = {ca | a ∈ A}. In
this paper, 1 is the vector (1, . . . , 1) ∈ R

n, and “·” is the dot product on R
n.

2 Imaginary Cubes

Imaginary cubes are three-dimensional objects with square projections in three
orthogonal ways. Note that a regular octahedron also has square projections in
three orthogonal ways, but its square projections are arranged differently. We
exclude such a case by defining an imaginary cube more precisely as follows.

Definition 1. Let C be a 3-cube, and A be an object.

1. A is an imaginary cube of C if A has the same three square projections as
C has.

2. A is an imaginary cube if it is an imaginary cube of a cube.
3. A is a minimal convex imaginary cube (MCI for short) of C if A is minimal

among convex imaginary cubes of C.
4. A is an MCI if it is an MCI of a cube.

It is clear that a convex object A is an imaginary cube of C if and only if
each edge of C contains at least one point of A. Therefore, an MCI of C is a
convex hull of some points of the edges of C, and thus it is a polytope.
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Let A be an MCI of a cube C. The vertices of A are divided into two cat-
egories: v-vertices, which are also vertices of C, and e-vertices, which are not
vertices of C. We denote by V (A) the set of v-vertices of A.

Definition 2. A 0/0.5/1 MCI of C is an MCI with its e-vertices at middle
points of the edges of C.

Each object in Fig. 1 is a 0/0.5/1 MCI. Note that a regular tetrahedron has only
v-vertices and a cuboctahedron has only e-vertices.

For a polytope A, a subset of vert(A) is called a star if it is composed of a
vertex and all of its adjacent vertices.

Theorem 3 (Theorem 3 and Corollary 4 of [1]). There is one-to-one corre-
spondence between 0/0.5/1 MCIs of C and subsets of vert(C) that do not contain
any star as their subset. There are 15 0/0.5/1 MCI shapes.

Proof. For an MCI A of C, V (A) does not contain any star because of its mini-
mality. On the other hand, from a subset S ⊂ vert(C) without a star, we obtain
an MCI by selecting its e-vertices on middle points of the edges of C both of
whose endpoints are not in S.

There are 15 equivalence classes of subsets of vert(C) without a star. Here,
two subsets of vert(C) are equivalent if one is transformed to the other by an
isometry which fixes C. We can easily check that every pair of them induces
non-similar 0/0.5/1 MCIs. Therefore, there are 15 0/0.5/1 MCI shapes. ��
We say that two MCIs A and A′ of C are v-equivalent if V (A) can be transformed
to V (A′) by an isometry which fixes C. There is a representative 0/0.5/1 MCI
in each v-equivalence class. The list of all 0/0.5/1 MCIs is given in [1].

We define a double imaginary cube as an imaginary cube of two different
cubes. As Fig. 3 shows, an H (Fig. 1(c)) is the intersection of two cubes and is a
double imaginary cube. It is shown that all the convex double imaginary cubes
are intersections of two cubes of the same size which share a diagonal and thus
they are MCIs v-equivalent to H [1, Proposition 5].

We call an n-dimensional polytope with 2n vertices a weak cross-polytope if its
vertices are on the positive and the negative sides of a set of axes of coordinates,

Fig. 3. H as the intersection of two
cubes.

y

x

z

Fig. 4. T as a weak polytope.
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and call it a cross-polytope if the distances from the origin to the vertices are the
same. As Fig. 4 shows, a T (Fig. 1(d)) is a three-dimensional weak cross-polytope
as well as an imaginary cube.

Hs and Ts form a tiling of three-dimensional Euclidean space and this tiling
is closely related to the properties that H is a double imaginary cube shape
and T is a weak cross-polytope imaginary cube shape. We explain this tiling in
Sect. 3.4 together with another tiling by imaginary hypercubes.

3 Imaginary Hypercubes

3.1 Minimal Convex Imaginary n-cubes

We extend the theory of imaginary cubes to higher-dimensional cases. For n ≥ 2,
we say that an object A is an imaginary n-cube of an n-cube C if A has (n− 1)-
cube projections in n orthogonal directions, just like C has. An imaginary n-cube
is defined as an imaginary n-cube of some n-cube.

We define the following as we did in the three-dimensional case: a minimal
convex imaginary n-cube (n-MCI for short) (of C), a 0/0.5/1 MCI (of C), v-
vertices and e-vertices of an n-MCI (of C), and v-equivalence on n-MCIs of C.
We omit the dimension when it is obvious from the context, and an n-MCI is
called an MCI, for example.

Theorem 4. For an n-cube C with n ≥ 2, there is a one-to-one correspondence
between 0/0.5/1 MCIs of C and subsets of vert(C) without a star.

The proof of this theorem is the same as that of Theorem 1 and is omitted.
Also in higher-dimensional cases, some objects are 0/0.5/1 MCIs of two dif-

ferent n-cubes. However, the set of v-vertices of such an object does not depend
on the choice of the cube as we will show in Theorem 9. Therefore, we only have
to enumerate equivalence classes of subsets of vert(C) without a star in order to
enumerate 0/0.5/1 MCI shapes. We calculated these numbers for the case n ≤ 5
with a computer program.

n 2 3 4 5

Shapes 4 15 269 829036

Modulo orientation-preserving isometries 4 16 338 1544164

Note that there is a 0/0.5/1 3-MCI that cannot be transformed to its mirror
image by any orientation-preserving isometry. The second line is the enumeration
modulo orientation-preserving isometries.

3.2 16-Cells

A 16-cell is a four-dimensional cross-polytope. It is a four-dimensional regular
polytope with 16 regular tetrahedron facets. See [8], for example, about proper-
ties of regular polytopes.
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Let A1 be a 16-cell given by vert(A1) = V1 = {(±1, 0, 0, 0), (0,±1, 0, 0),
(0, 0,±1, 0), (0, 0, 0,±1)}, and let C1 = conv({−1/2, 1/2}4) be a 4-cube. Let V2

and V3 be the subsets of vert(C1) with even and odd numbers of 1/2-coordinates,
respectively. One can see that C2 = conv(V1 ∪ V3) and C3 = conv(V1 ∪ V2) are
also 4-cubes. Since V1 does not contain any star of C2 (resp. C3), and every edge
of C2 (resp. C3) contains a point in V1, we can find that A1 is an imaginary cube
of C2 (resp. C3) that has no e-vertices. Thus, A1 is a double imaginary 4-cube.
Note that A2 = conv(V2) and A3 = conv(V3) are also 16-cells.

As we described in Sect. 2, T is a weak cross-polytope imaginary cube shape
and H is a double imaginary cube shape in the three-dimensional case. We show
that 16-cell is the only weak cross-polytope imaginary cube shape as well as the
only double imaginary cube shape in four and higher-dimensional cases. First,
we study weak cross-polytope imaginary cubes.

Lemma 5. A convex imaginary n-cube polytope has at least 2n−1 vertices.

Proof. An n-cube has n2n−1 edges and a convex imaginary n-cube polytope
contains a vertex on each of these edges. Since a vertex is on at most n edges of
the cube, we have the result. ��
Proposition 6. For n ≥ 3, T and 16-cell are the only weak cross-polytope imag-
inary hypercube shapes.

Proof. Since an n-dimensional weak cross-polytope has 2n vertices, n must sat-
isfy 2n ≥ 2n−1 by Lemma 5, and hence n ≤ 4.

For n = 4, any weak cross-polytope has eight vertices. If a weak cross-
polytope A is an imaginary cube polytope of a 4-cube C, then A is a MCI
with no e-vertices, and each edge of C contains one vertex of A from the proof
of Lemma 5. Thus A is a 16-cell.

For n = 3, assume that a weak cross-polytope A is an imaginary cube of a 3-
cube C. Note that A may not be an MCI of C. We set V (A) := vert(C)∩A. Since
a 3-cube has 12 edges and A has 6 vertices, we have 3#V (A)+(6−#V (A)) ≥ 12,
and get #V (A) ≥ 3.

If #V (A) = 3, A has three e-vertices and they must be on the edges of C
both of whose endpoints are not in V (A). Thus, A is an MCI of C, and we can
find that T is the only such polytope.

If #V (A) ≥ 4, there is a pair {v1,v2} ⊂ V (A) such that vert(A) \ {v1,v2}
is on a plane that is orthogonal to the line segment [v1,v2]. Suppose that C =
conv{0, 1}3. Since [v1,v2] contains an interior point of C, we can put v1 =
(0, 0, 0) and v2 = (1, 1, 1) without loss of generality. Suppose that the other four
vertices of A are on a plane defined as {(x, y, z) | x + y + z = a} (a ∈ R). Since
A has four or more v-vertices, we get a = 1, 2. If a = 1, vert(A) must contain
(1, 0, 0), (0, 1, 0) and (0, 0, 1). However, no line passes through two of them and
the origin (1/3, 1/3, 1/3) at the same time. Therefore, we have no weak cross-
polytope in this case. The case a = 2 is similar to the case a = 1. ��
Next, we study double imaginary n-cubes. A convex object can be an imaginary
2-cube of two or more squares. For example, a square is an imaginary cube of
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infinitely many squares. In the three-dimensional case, there are many convex
double imaginary cubes, and H is the only 0/0.5/1 MCI among them as we
mentioned in Sect. 2. For n ≥ 4, we show that 16-cell is the only convex double
imaginary n-cube shape. We prepare two lemmas, whose proofs are omitted.

Lemma 7. For n ≥ 3, the dimension of the affine hull of an imaginary n-cube
is n.

Note that this lemma does not hold for n = 2 because a line segment is an
imaginary 2-cube.

For an n-dimensional hyperplane G, we denote by r(G) he distance of G from
the origin.

Lemma 8. Let C = conv({−1, 1}n) and G be an n-dimensional hyperplane.

(1) If n > 4 and one of the open half spaces defined by G contains only one
vertex of C, then r(G) > 1.

(2) If n = 4 and one of the open half spaces defined by G contains only one
vertex v of C, then r(G) ≥ 1. If r(G) = 1, in addition, then the four
adjacent vertices of v are on G.

Theorem 9. 16-cell is the only convex double imaginary 4-cube shape. For n >
4, there is no double imaginary n-cube.

Proof. Let n ≥ 4. Suppose that B is a double imaginary cube of two n-cubes
C1 and C2. One can see that A = C1 ∩ C2 is a convex double imaginary cube
because we have B ⊂ A. We consider the double imaginary cube A.

We can assume without loss of generality that C1 = conv({−1, 1}n) and that
the edge length of C2 is less than or equal to the edge length of C1, that is, 2.
Let P be a facet of C2 and G be the hyperplane containing P . All the edges of
P must intersect with C1 because A is an imaginary cube of C2. Hence P ∩C1 is
an imaginary cube of an (n − 1)-cube P . Since n ≥ 4, the dimension of its affine
hull is n − 1 by Lemma 7. On the other hand, it is immediate to show that each
facet of C1 is not on G. Therefore, there exists a vertex v of C1 in the open half-
space defined as the opposite side of C2 with respect to G. Such a vertex of C1

is unique because every edge of C1 must intersect with C2. Therefore, if n > 4,
then r(G) > 1 by Lemma 8. Since it also holds for the facet P ′ which is parallel
to P , the edge length of C2 is greater than 2, contradicting the assumption.
Therefore, we have n = 4. By Lemma 8, the two 4-cubes have the same size
and P contains all the four adjacent vertices of v. Therefore, P ∩ C1 is a regular
tetrahedron. Since C1 and C2 have the same size, it holds for all the facets of C1

and C2. Therefore, A is a 16-cell. Since a 16-cell is a minimal convex imaginary
4-cube, it is the only convex double imaginary 4-cube. ��

3.3 Higher Dimensional Extensions of H and T

In this subsection, we make n-dimensional extensions of the four 0/0.5/1 MCIs
in Fig. 1 in each n ≥ 2. We regard the 0/0.5/1 n-MCI which has no v-vertices
as an imaginary n-cube corresponding to a cuboctahedron.
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As an n-dimensional counterpart of a regular tetrahedron, we define Sn and
S′n as follows:

V (Sn) = {x ∈ {0, 1}n | x · 1 ≡ 0 (mod 2)},

V (S′n) = {x ∈ {0, 1}n | x · 1 ≡ 1 (mod 2)}.

Let x,y ∈ {0, 1}n be two vertices of C = conv({0, 1}n). If x and y are the two
endpoints of an edge of C, we get x · 1 = y · 1 ± 1. Therefore, every edge of C
contains points of both Sn and S′n. Therefore, Sn and S′n are imaginary cubes
of C that have no e-vertices. Moreover, since both V (S) and V (S′) contain no
star of C, S and S′ are MCIs of C. Note that Sn and S′n have the same shape
which is denoted by Sn. The shape S4 is 16-cell.

Concerning H and T, we define three 0/0.5/1 MCIs of an n-cube C =
conv({−1, 1}n) as follows:

V (Hn) = {x ∈ {−1, 1}n | x · 1 ≡ 0 (mod 3)},
V (Tn) = {x ∈ {−1, 1}n | x · 1 ≡ −1 (mod 3)},
V (T ′n) = {x ∈ {−1, 1}n | x · 1 ≡ 1 (mod 3)}.

(1)

By a similar argument, one can see that they define 0/0.5/1 MCIs. Note that
Tn and T ′n are similar because we have Tn = −T ′n. We denote by Hn and Tn

the shapes of Hn and Tn, respectively.
These sets of vertices satisfy the following equations. We have

V (Hn+1) = V (T ′n) × {−1} ∪ V (Tn) × {1},
V (Tn+1) = V (Hn) × {−1} ∪ V (T ′n) × {1},
V (T ′n+1) = V (Tn) × {−1} ∪ V (Hn) × {1}.

(2)

One can see from (1) that each of Hn, Tn and T ′n is mapped to itself by a
permutation of the n coordinates. Therefore, one can derive from Eq. (2) that for
n ≥ 4, Hn has 2n copies of Tn−1 facets. The other facets are (n − 1)-simplexes
because each vertex figure of an n-cube is a simplex. On the other hand, Tn has
n copies of Hn−1 facets, n copies of Tn−1 facets and some (n− 1)-simplex facets
for n ≥ 4. In the case n = 3, the six 2-simplex facets of H3 coincide with T2 and
the three H2 facets of T3 degenerate to line segments. Thus, H3 has twelve T2

faces and T3 has eight faces.
One can see that the set of e-vertices of Hn, Tn and T ′n are the sets

{x ∈ {−1, 0, 1}n | x · 1 ≡ 0 (mod 3), x · x = n − 1},
{x ∈ {−1, 0, 1}n | x · 1 ≡ −1 (mod 3), x · x = n − 1}, and
{x ∈ {−1, 0, 1}n | x · 1 ≡ 1 (mod 3), x · x = n − 1},

(3)

respectively.

3.4 Tilings by Imaginary Cubes

As we mentioned above, Hs and Ts form a tiling of three-dimensional Euclidean
space, and 16-cells form a tiling of four-dimensional Euclidean space. We explain
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these tilings from the viewpoints of weak cross-polytope imaginary cubes and
double imaginary cubes.

We set positive integers n ≥ 3 and k ≥ 2. Consider a subset Z of the n-
dimensional cubic lattice

Z = {x ∈ Z
n | x · 1 ≡ 0 (mod k)}.

We call a cube conv({0, 1}n) + {v} (v ∈ Z
n) a lattice-cube. In each lattice-cube

C, take an MCI of C whose set of v-vertices is Z ∩ vert(C). Such an MCI is a
translation of one of Mr for 0 ≤ r < k defined as

V (Mr) = {x ∈ {0, 1}n | x · 1 ≡ r (mod k)}.

Note that every pair of these MCIs which are placed in adjacent n-cubes
share the faces on their intersection. After placing such MCIs, there remain
holes around lattice points

{x ∈ Z
n | x · 1 �≡ 0 (mod k)}.

These holes are weak cross-polytopes because all of the vertices are on the lattice
edges. Therefore, for every n and k, we have a tiling of n-dimensional space by
translations of Mr for 0 ≤ r < k and n-dimensional weak cross-polytopes of
several shapes. In the case n = 3 and k = 2, this tiling is the three-dimensional
tiling by regular tetrahedra and regular octahedra. In the case n = 3 and k = 3,
Mr (r = 0, 1, 2) are H, T , and T ′, respectively, and each hole is a T. Therefore,
we have the three-dimensional tiling by Hs and Ts. In the case n = 4 and k = 2,
not only MCIs placed in lattice-cubes but also the holes are 16-cells, and we get
the four-dimensional tiling by 16-cells. Since T and 16-cell are the only weak
cross-polytope imaginary n-cube shapes for n ≥ 3 (Proposition 6), among these
tilings, there are only two tilings by imaginary cubes.

These two tilings are related to the fact that H and 16-cell are double imag-
inary cubes. The three-dimensional tiling by Hs and Ts can be characterized
as follows [1]. Let σ3 be the isometry on three-dimensional Euclidean space to
rotate by 180 degrees around the axis x = y = z. Then, the tiling is a Voronoi
tessellation of the union Z

3 ∪ σ3(Z3) of the two cubic lattices such that Voronoi
cells of points in Z

3 ∩ σ3(Z3) have the shape H and those of other points have
the shape T. See [6], for example, for the notion of Voronoi tessellations.

This construction can be extended to higher-dimensional cases. In the n-
dimensional Euclidean space, let σn be the orthogonal transformation on R

n

that satisfies σn(1) = 1 and σn(v) = −v for v ∈ R
n with v · 1 = 0. Then,

take the Voronoi tessellation of Zn ∪ σn(Zn). The Voronoi cell of the origin is
the intersection of two n-cubes conv({−1/2, 1/2}n) and σn(conv({−1/2, 1/2}n)),
and Voronoi cells of points in Z

n ∩ σn(Zn) are its translations.
In the case n = 4, σ4 maps the set V1 to V3, V3 to V1, and V2 to itself, where

the sets V1, V2, and V3 are defined in Sect. 3.2. Therefore, the cube
conv({−1/2, 1/2}4)) = conv(V2 ∪ V3) is mapped to the cube conv(V2 ∪ V1) and
their intersection conv(V2) is the Voronoi cell at the origin. One can show that



Imaginary Hypercubes 181

the other Voronoi cells are also 16-cells, and therefore this tiling is the four-
dimensional tiling by 16-cells.

For n ≥ 3, if the intersection En of two cubes conv({−1/2, 1/2}n) and
σn(conv({−1/2, 1/2}n)) is an imaginary cube of an n-cube C, then it must
also be an imaginary cube of σn(C). It is easy to show that C and σn(C) are
different n-cubes and thus En is a double imaginary cube. Since H and 16-cell
are the only double imaginary n-cube shapes for n ≥ 3 (Theorem 9), among
these Voronoi tessellations there are only two tilings by imaginary cubes.

4 Fractal Imaginary Hypercubes

4.1 Fractal Imaginary Cubes

From a regular tetrahedron, one can form a fractal (i.e., self-similar) object
known as a Sierpinski tetrahedron (Fig. 5(a)). It has similarity dimension two
and it is also an imaginary cube.

(b)

(a)

Regular tetrahedron

(c)

Fig. 5. The first two approximations of (a) Sierpinski tetrahedron, (b) H∞, and
(c) T∞.

Let Hn be the metric space of non-empty compact subsets of Rn with the
Hausdorff metric. According to the theory of IFS (iterated function system) frac-
tals developed by Hutchinson [7], for contractions fi : Rn → R

n (i = 1, . . . ,m),
an IFS I = {fi | i = 1, 2, . . . ,m} defines a fractal object as the fixedpoint of the
following contraction map on Hn:

FI(X) =
m⋃

i=1

fi(X). (4)

As for a Sierpinski tetrahedron, let S be a regular tetrahedron and let IS =
{fi : R3 → R

3 | i = 1, 2, 3, 4} be an IFS where fi(i = 1, 2, 3, 4) are homothetic
transformations (i.e., similitudes that perform no rotations) with the scale 1/2
whose centers are vertices of S. The induced fractal is a Sierpinski tetrahedron.
It is an imaginary cube of the cube C of which S is an imaginary cube. Note
that this fractal object is minimal among imaginary cubes of C.
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As generalizations of a Sierpinski tetrahedron, fractal imaginary cubes such
that an IFS that induces the fractal is composed of k2 homothetic transforma-
tions of scale 1/k are studied [2]. Sierpinski tetrahedron is the only such shape
for k = 2. In the case k = 3, there are two such fractal shapes H∞ and T∞
whose convex hulls are H and T, respectively (Fig. 5(b,c)). In particular, H∞ is
a double imaginary cube. In the following, we explain these fractal imaginary
cubes and their higher-dimensional counterparts.

For k ≥ 2, let I = {fi : Rn → R
n | i = 1, 2, . . . , kn−1} be an IFS such that

fi(i = 1, 2, . . . , kn−1) are homothetic transformations with the scale 1/k. Let
XI be the fractal object obtained as the fixedpoint of the contraction map FI

on Hn defined by (4). Since XI is the fixedpoint of FI , for any B ∈ Hn, the
sequence B,FI(B), F 2

I (B), . . . converges to XI with respect to the Hausdorff
metric. Here, fm is the m-times repetition of f .

Lemma 10. Let C be an n-cube and let (Ai; i = 0, 1, . . .) be a sequence of
imaginary n-cubes of C. If the sequence (Ai; i = 0, 1, . . .) converges to A with
respect to the Hausdorff metric, then A is also an imaginary cube of C.

Proof. For each projection p from C to a hyperplane containing a facet of C,
p(Ai) for i = 0, 1, . . . are the same (n−1)-cube p(C). Since p induces a continuous
map from Hn to Hn−1, p(A) is also equal to p(C). ��
Proposition 11. Let I be an IFS as above. The limit XI is an imaginary cube
of an n-cube C if and only if FI(C) is an imaginary cube of C.

Proof. Suppose that XI is an imaginary cube of C. We have C ⊃ XI and the
sequence C ⊃ FI(C) ⊃ F 2

I (C) · · · converges to XI . Therefore, all of F i
I (C) are

imaginary cubes of C. In particular, FI(C) is an imaginary cube of C. Conversely,
if FI(C) is an imaginary cube of C, then all of F i

I (C) are imaginary cubes of C by
induction, and the limit XI is also an imaginary cube of C from Lemma 10. ��
The fractal object XI has the similarity dimension n − 1. Note that FI(C) is an
imaginary cube of C if and only if fi(C) (i = 1, 2, . . . , kn−1) are n-cubes obtained
by cutting C into kn n-cubes of the same size and selecting kn−1 of them so that
they form an imaginary n-cube. Such a selection of kn−1 cubes corresponds to
an (n − 1)-dimensional Latin hypercube of order k. See, for example, [9] for the
notion of a Latin hypercube.

4.2 Higher-Dimensional Extensions of the Sierpinski Tetrahedron

Let C be the n-cube conv({0, 1}n). We set Pn
a = 1

2 (C + {a}) for a ∈ {0, 1}n.
There are the following two ways of selecting 2n−1 n-cubes from {Pn

a | a ∈
{0, 1}n} to form an imaginary cube.

Ŝn = ∪{Pn
a | a ∈ {0, 1}n, a · 1 ≡ 0 (mod 2)},

Ŝ′n = ∪{Pn
a | a ∈ {0, 1}n, a · 1 ≡ 1 (mod 2)}.
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Fig. 6. The three shapes Ŝ3, Ĥ3, and T̂3.

These two imaginary cubes have the same shape which we denote by Ŝn (Fig. 6).
Let IS be the IFS that consists of 2n−1 homothetic transformations with the scale
1/2 that map C to the cubes in Ŝn, and let Sn

∞ be the fractal induced by IS . Sn
∞ is

a fractal imaginary n-cube with the similarity dimension n−1 by Proposition 11.
We denote by Sn

∞ the shape of Sn
∞. The shape S3

∞ is the Sierpinski tetrahedron.
Since all the components of IS are homothetic transformations, the convex hull
of Sn

∞ is equal to the convex hull of the centers of IS , which is Sn defined in
Sect. 3.3.

It is immediate to show that Ŝn and Ŝ′n are the only two ways of selecting
2n−1 n-cubes from {Pn

a | a ∈ {0, 1}n} to form an imaginary cube. Therefore,
Sn

∞ is the only fractal imaginary cube shape obtained as the limit of an IFS that
is composed of 2n−1 homothetic transformations with the scale 1/2.

4.3 Fractal Imaginary Cubes H∞ and T∞ and Their
Higher-Dimensional Extensions

We study the case k = 3. Let C be the n-cube conv({−1, 1}n). We define Qn
a ⊂ C

(a ∈ {−1, 0, 1}n) as 1
3 (C +{2a}). There are the following three ways of selecting

3n−1 n-cubes from {Qn
a | a ∈ {−1, 0, 1}n} to form an imaginary cube of C.

Ĥn = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ 0 (mod 3)},

T̂n = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ −1 (mod 3)},

T̂ ′n = ∪{Qn
a | a ∈ {−1, 0, 1}n, a · 1 ≡ 1 (mod 3)}.

T̂n and T̂ ′n have the same shape which we denote by T̂n. We denote by Ĥn the
shape of Ĥn (Fig. 6).

Let IH (resp. IT ) be the IFS that consists of 3n−1 homothetic transformations
with the scale 1/3 that map C to the cubes in Ĥn (resp. T̂n), and let Hn

∞ (resp.
Tn

∞) be the fractal induced by IH (resp. IT ). Hn
∞ and Tn

∞ are fractal imaginary
n-cubes with the similarity dimension n − 1 by Proposition 11. We write Hn

∞
and Tn

∞ for their shapes.
The convex hull of Hn

∞ is equal to the convex hull of the centers of the
components of IH because they are homothetic transformations. It is the set

Dn = {x ∈ {−1, 0, 1}n | x · 1 ≡ 0 (mod 3)}.
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From (3), the set of vertices of the polytope Hn defined in Sect. 3.3 is the inter-
section of Dn with the edges of C. Therefore, the convex hull of Dn coincides
with Hn. Similarly, we can show that the convex hull of Tn

∞ is Tn.

Theorem 12. For n ≥ 3, Hn
∞ and Tn

∞ are the only fractal imaginary cube
shapes obtained as the limit of an IFS that is composed of 3n−1 homothetic
transformations with the scale 1/3.

Proof. Suppose that n ≥ 2 and that U ⊂ {−1, 0, 1}n satisfies #U = 3n−1 and
∪{Qn

a | a ∈ U} is an imaginary cube of C. We show that there exist b ∈ {−1, 1}n
and r ∈ {−1, 0, 1} such that U = U(b, r) for U(b, r) = {a ∈ {−1, 0, 1}n | a·b ≡ r
(mod 3)}. It is clear that such a selection U is congruous to that of Ĥn or T̂n.
We show this by induction on n, and it is true for n = 2.

Note that we have U(b, r) = U(b′, r′) if and only if (b, r) = ±(b′, r′). Since
simultaneous equations a1+a2 ≡ r1, a1−a2 ≡ r2 (mod 3) always have a solution
(a1, a2) = 2(r1 + r2, r1 − r2), one can also find that if b �= ±b′, then we have
U(b, r) ∩ U(b′, r′) �= ∅ for any choice of r, r′ ∈ {−1, 0, 1}.

Suppose that n ≥ 3. We divide U into three parts

U = U−1 × {−1} ∪ U0 × {0} ∪ U1 × {1},

where Ui ⊂ {−1, 0, 1}n−1 satisfies #Ui = 3n−2 and that ∪{Qn−1
a | a ∈ Ui}

is an imaginary (n − 1)-cube for i ∈ {−1, 0, 1}. From the assumption, we can
put Ui = U(bi, ri) for i ∈ {−1, 0, 1}. Considering the projection in the n-th
direction, we have Ui ∩ Uj = ∅ for −1 ≤ i < j ≤ 1. Therefore, we can assume
that b−1 = b0 = b1 = (b1, . . . , bn−1), and we get {r−1, r0, r1} = {−1, 0, 1}. In
each case, there is bn ∈ {−1, 1} such that r0 ≡ r−1 − bn ≡ r1 + bn (mod 3), and
hence we obtain U = U((b1, . . . , bn), r0). ��
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Abstract. The clique-chromatic number of a graph is the least number
of colors on the vertices of the graph so that no maximal clique of size at
least two is monochromatic. In 2003, Gravier, Hoang, and Maffray have
shown that, for any graph F , the class of F -free graphs has a bounded
clique-chromatic number if and only if F is a vertex-disjoint union of
paths, and they give an upper bound for all such cases. In this paper,
their bounds for F = P2 + kP1 and F = P3 + kP1 with k ≥ 3 are
significantly reduced to k + 1 and k + 2 respectively, and sharp bounds
are given for some subclasses.

Keywords: Clique-chromatic number · Clique-coloring
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1 Introduction

All graphs considered in this paper are simple. We use terminologies from West’s
textbook [9]. V (G) and E(G) denote the vertex set and the edge set of a graph
G, respectively. The symbols Kn, Pn and Cn denote the complete graph, path,
and cycle, with n vertices, respectively. The diamond is the complete graph K4

minus an edge. The neighborhood of a vertex x in a graph G is the set of vertices
adjacent to x, and is denoted by NG(x). For S ⊆ V (G), NS(x) stands for the
neighborhood of a vertex x in S, that is, NS(x) = NG(x) ∩ S. Given graphs
G1, G2, . . . , Gk with pairwise disjoint vertex sets, the disjoint union of graphs
G1, G2, . . . , Gk is the graph with vertex set

⋃k
i=1 V (Gi) and edge set

⋃k
i=1 E(Gi),

denoted by G1 +G2 + · · ·+Gk. For k ∈ N, kG is the disjoint union of k pairwise
disjoint copies of a graph G.

A subset Q of V (G) is a clique of G if any two vertices of Q are adjacent.
A clique is maximal if it is not properly contained in another clique. A k-coloring
of a graph G is a function f : V (G) → {1, 2, . . . , k}. A proper k-coloring of a
graph G is a k-coloring of G such that adjacent vertices have different colors.
The chromatic number of a graph G is the smallest positive integer k such that
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G has a proper k-coloring, denoted by χ(G). A proper k-clique-coloring of a
graph G is a k-coloring of G such that no maximal clique of G with size at
least two is monochromatic. A graph G is k-clique-colorable if G has a proper
k-clique-coloring. The clique-chromatic number of G is the smallest k such that
G has a proper k-clique-coloring, denoted by χc(G). Note that χc(G) = 1 if
and only if G is an edgeless graph. Since any proper k-coloring of G is a proper
k-clique-coloring of G, χc(G) ≤ χ(G). Recall that a triangle is the complete
graph K3. If G is a triangle-free graph, then maximal cliques of G are edges; so
χc(G) = χ(G). Mycielski [8] showed that the family of triangle-free graphs has no
bounded chromatic number. Consequently, it has no bounded clique-chromatic
number, either. On the other hand, many families of graphs have bounded clique-
chromatic numbers, for example, comparability graphs, cocomparability graphs,
and the k-power of cycles (see [2,4,5]). In 2004, Bacso et al. [1] proved that
almost all perfect graphs are 3-clique-colorable and conjectured that all perfect
graphs are 3-clique-colorable.

A subgraph H of a graph G is said to be induced if, for any pair of vertices
x and y of H, xy is an edge of H if and only if xy is an edge of G. For a
given graph F , a graph G is F-free if it does not contain F as an induced
subgraph. A graph G is (F1, F2, . . . , Fk)-free if it is Fi-free for all 1 ≤ i ≤ k.
In [6], Gravier, Hoang and Maffray gave a significant result that, for any graph
F , the family of all F -free graphs has a bounded clique-chromatic number if
and only if F is a vertex-disjoint union of paths. Many authors explored more
results in (F1, F2, . . . , Fk)-free graphs. Gravier and Skrekovski [7] in 2003 proved
that (P3 + P1)-free graphs unless it is C5, and (P5, C5)-free graphs are 2-clique-
colorable. In 2004, Bacso et al. [1] showed that (claw, odd hole)-free graphs
are 2-clique-colorable. Later, Defossez [3] in 2006 proved that (diamond, odd
hole)-free graphs are 4-clique-colorable, and (bull, odd hole)-free graphs are 2-
clique-colorable.

Given a graph F , let f(F ) = max{χc(G) | G is an F -free graph}. When F1

is an induced subgraph of F2, if a graph G is F1-free then G is also F2-free, it
follows that f(F1) ≤ f(F2). In 2003, Gravier, Hoang and Maffray [6] showed the
following result.

Theorem 1 [6]. Let F be a graph. Then f(F ) exists if and only if F is a vertex-
disjoint union of paths. Moreover,

– if |V (F )| ≤ 2 or F = P3 then f(F ) ≤ 2,
– else f(F ) ≤ cc(F ) + |V (F )| − 3 where cc(F ) is the number of connected com-

ponents of a graph F .

Furthermore, they proved that (P2 + 2P1)-free graphs and (P3 + 2P1)-free
graphs are 3-clique-colorable. Since the cycle C5 is both (P2 + 2P1)-free and
(P3 + 2P1)-free with χc(C5) = 3, this bound is sharp.

2 Main Results

An independent set in a graph is a set of pairwise nonadjacent vertices. A maxi-
mum independent set of a graph G is a largest independent set of G and its size
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is denoted by α(G). Bacso et al. [1] stated the relationship between the clique-
chromatic number and the size of a maximum independent set of a graph, as
follows.

Theorem 2 [1]. Let G be a graph. If G �= C5 and G is not a complete graph,
then χc(G) ≤ α(G).

It follows from Theorem 1 that every (P2 + kP1)-free graph is (2k)-clique-
colorable and every (P3+kP1)-free graph is (2k+1)-clique-colorable. We improve
these upper bounds for k ≥ 3.

Theorem 3. For k ≥ 3, a (P2 + kP1)-free graph is (k + 1)-clique-colorable.

Proof. Let G be a (P2 + kP1)-free graph. Let S = {s0, s1, . . . , sα(G)−1} be a
maximum independent set of G. If α(G) ≤ k, then χc(G) ≤ k by Theorem 2.

Assume α(G) ≥ k + 1. Let M(s0) = V (G)\(S ∪ NG(s0)). For R ⊆ S\{s0},
define YR = {v ∈ M(s0) | NS(v) = S\({s0} ∪ R)} and min(R) = min{i ∈
N | si /∈ R}. In particular, min(∅) = 1. Note that V (G) is the disjoint union of
S, NG(s0) and YR where R ⊆ S\{s0}. Let f be the coloring of G defined by

f(v) =

⎧
⎪⎨

⎪⎩

1, if v ∈ S

2, if v ∈ NG(s0)
min(R) + 2, if v ∈ YR where R = S\({s0} ∪ NS(v)).

Now, let R ⊆ S\{s0} where YR �= ∅, and let y ∈ YR. If R = S\{s0}, then
NS(y) = ∅; so S∪{y} is an independent set of G. This contradicts the maximality
of S. Thus R �= S\{s0}. If |R| ≥ k−1, then the subgraph of G induced by S∪{y}
contains an induced subgraph P2 + kP1, a contradiction. Thus |R| ≤ k − 2, and
it follows that min(R) ≤ k − 1. Therefore, f is a (k + 1)-coloring of G. Suppose
that G has a monocolored maximal clique Q of size at least two, say colored by
m. Since S is an independent set, m �= 1. Thus Q ∩ S = ∅. Note that smin(R)

is adjacent to all vertices of YR. Thus sm−2 is adjacent to all vertices of Q.
Then Q ∪ {sm−2} is a clique of G. It contradicts the maximality of Q. Hence
χc(G) ≤ k + 1.

Theorem 4. For k ≥ 3, a (P3 + kP1)-free graph is (k + 2)-clique-colorable.

Proof. Let G be a (P3 + kP1)-free graph. Let S = {s1, s2, . . . , sα(G)} be a maxi-
mum independent set of G. If α(G) ≤ k + 1, then χc(G) ≤ k + 1 by Theorem 2.
Assume α(G) ≥ k+2. For 1 ≤ i ≤ α(G), let Xi = {v ∈ V (G)\S | NS(v) = {si}}.
Suppose that there is an edge, say xixj , between Xi and Xj where i �= j. Then
there exist k vertices in S\{si, sj} together with si, xi, xj form an induced sub-
graph P3+kP1 of G, a contradiction. Thus there is no edge between any two Xi’s.
For R ⊆ S where |R| �= α(G) − 1, define YR = {v ∈ V (G)\S | NS(v) = S\R}
and min(R) = min{i ∈ N | si /∈ R}. Note that V (G) is the disjoint union of
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S, Xi where 1 ≤ i ≤ α(G), and YR where R ⊆ S and |R| �= α(G) − 1. Let f be
the coloring of G defined by

f(v) =

⎧
⎪⎨

⎪⎩

1, if v ∈ S

2, if v ∈ ⋃α(G)
i=1 Xi

min(R) + 2, if v ∈ YR where R = S\NS(v).

Let R ⊆ S where YR �= ∅, and let y ∈ YR. If R = S, then NS(y) = ∅ ; so
S ∪ {y} is an independent set of G, a contradiction. If k ≤ |R| ≤ α(G) − 2, then
the subgraph of G induced by S ∪ {y} contains an induced subgraph P3 + kP1,
a contradiction. Thus |R| ≤ k − 1, and it follows that min(R) ≤ k. Hence f is a
(k + 2)-coloring of G. Now, suppose that G has a monocolored maximal clique
Q of size at least two, say colored by m. Since S is an independent set, m �= 1.
If m = 2, then Q ⊆ Xi for some i. We have that si is adjacent to all vertices of
Q, a contradiction. Now, assume m ≥ 3. Since smin(R) is adjacent to all vertices
of YR, sm−2 is adjacent to all vertices of Q, a contradiction. Thus f is a proper
(k + 2)-clique-coloring of G, and hence χc(G) ≤ k + 2.

Theorem 3 ensures that every (P2+kP1)-free graph where k ≥ 3 is (k+1)-clique-
colorable but we have found no graph guaranteeing this sharpness yet. However,
when k = 3 and 4, there is a (P2 + kP1)-free graph which is k-clique-colorable,
namely, the cycle C5 is (P2 + 3P1)-free and χc(C5) = 3, and the 4-chromatic
Mycielski’s graph G4 [8] is (P2 + 4P1)-free and χc(G4) = 4. (See Fig. 1) Notice
that both of them are diamond-free, this suggests the result in Theorem 5.

Fig. 1. The 4-chromatic Mycielski’s graph G4

Theorem 5. For k ≥ 3, a (P2 + kP1, diamond)-free graph is k-clique-colorable.

Proof. Let G be a (P2 + kP1, diamond)-free graph. If α(G) ≤ k, then χc(G) ≤ k
by Theorem 2. Assume α(G) ≥ k+1. Use the same terminologies and arguments
as in the proof of Theorem 3, we can define a k-coloring of G as follows:



More Results on Clique-chromatic Numbers of Graphs with No Long Path 189

g(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if v ∈ S

2, if v ∈ NG(s0)
min(R) + 2, if v ∈ YR where R = S\({s0} ∪ NS(v)) and

min(R) ≤ k − 2
k, if v ∈ YR where R = S\({s0} ∪ NS(v)) and

min(R) = k − 1.

To claim that g is a proper k-clique-coloring of G, suppose that G has a
monocolored maximal clique Q of size at least two, say colored by m. Since S is
an independent set, m �= 1. If m ≤ k − 1, then sm−2 is adjacent to all vertices
of Q, a contradiction. Assume m = k. Then Q ⊆ ⋃{YR | R ⊆ S\{s0} and
k − 2 ≤ min(R) ≤ k − 1}. Since YR = ∅ for all R ⊆ S\{s0} where |R| ≥ k − 1,
we consider only YR where |R| ≤ k − 2. Thus if k − 2 ≤ min(R) ≤ k − 1, then
R = {s1, s2, . . . , sk−3, st} where k − 2 ≤ t ≤ α(G) − 1. Since G is diamond-free
and α(G) − 1 ≥ k, YR is an independent set, and then |Q ∩ YR| ≤ 1 for each
R ⊆ S\{s0}. If |Q| ≥ 3, then there exists a diamond induced by a vertex in
S\{s0} and three vertices in Q, a contradiction. So |Q| = 2. Let Q ⊆ YR1 ∪ YR2

for some R1, R2 ⊆ S\{s0} where R1 �= R2 and k−2 ≤ min(R1),min(R2) ≤ k−1.
Then |R1 ∪R2| ≤ k −1. Since α(G)−1 ≥ k, there exists a vertex in S\{s0} that
is adjacent to both vertices of Q, a contradiction. Hence χc(G) ≤ k.

Similarly to (P2 + kP1)-free graphs, the result for (P3 + kP1)-free graphs in
Theorem 4 has not been proved to be sharp. Theorem 6 gives its subclass of
graphs using at most k + 1 colors.

Theorem 6. For k ≥ 3, a (P3 + kP1, diamond)-free graph is (k + 1)-clique-
colorable.

Proof. Let G be a (P3+kP1, diamond)-free graph. If α(G) ≤ k+1, then χc(G) ≤
k + 1 by Theorem 2. Assume α(G) ≥ k + 2. Use the same terminologies and
arguments as in the proof of Theorem 4, we can define a (k + 1)-coloring of G
as follows:

g(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if v ∈ S

2, if v ∈ ⋃α(G)
i=1 Xi

min(R) + 2, if v ∈ YR where R = S\NS(v) and min(R) ≤ k − 1
k + 1, if v ∈ YR where R = S\NS(v) and min(R) = k.

Suppose that G has a monocolored maximal clique Q of size at least two,
say colored by m. If m = 2, then Q ⊆ Xi for some i; so si is adjacent to
all vertices of Q, a contradiction. If 3 ≤ m ≤ k, then sm−2 is adjacent to all
vertices of Q, a contradiction. Assume m = k + 1. Then Q ⊆ ⋃{YR | R ⊆ S
and k − 1 ≤ min(R) ≤ k}. Since G is diamond-free and α(G) ≥ k + 2, YR is an
independent set. Thus |Q ∩ YR| ≤ 1 for each R ⊆ S. If |Q| ≥ 3, then there exist
a vertex in S together with any three vertices in Q which induce a diamond, a
contradiction. So |Q| = 2. Since α(G) ≥ k + 2, there exists a vertex in S that is
adjacent to both vertices of Q, a contradiction. Hence χc(G) ≤ k + 1.
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Since the 4-chromatic Mycielski’s graph G4 is (P3 + 3P1, diamond)-free, the
upper bound in Theorem 6 for the case k = 3 is sharp.
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