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Abstract. With the emergence of cloud computing services, a resource-
constrained client can outsource its computationally-heavy tasks to cloud
providers. Because such service providers might not be fully trusted by
the client, the need to verify integrity of the returned computation result
arises. The ability to do so is called verifiable delegation or verifiable
outsourcing. Furthermore, the data used in the computation may be
sensitive and it is often desired to protect it from the cloud throughout
the computation. In this work, we put forward solutions for verifiable
outsourcing of matrix multiplications that favorably compare with the
state of the art. Our goal is to minimize the cost of verifying the result
without increasing overhead associated with other aspects of the scheme.
In our scheme, the cost of verifying the result of computation uses only a
single modulo exponentiation and the number of modulo multiplications
linear in the size of the output matrix. This cost can be further reduced
to avoid all cryptographic operations if the cloud is rational. A rational
cloud is neither honest nor arbitrarily malicious, but rather economically
motivated with the sole purpose of maximizing its monetary reward. We
extend our core constructions with several desired features such as data
protection, public verifiability, and computation chaining.

1 Introduction

The emergence of cloud computing technologies enables clients who are unable
to procure and maintain their own computing infrastructure to resort to conve-
nient on-demand computing resources. Despite the paradigm being economically
sensible for resource-limited clients, it comes with new security and privacy con-
cerns. One of them is the lack of transparency and control over the outsourced
computation, which necessitates the need to verify the result to guarantee in-
tegrity of the computation. Another is the need to protect confidentiality of the
data used in the computation. Addressing these security objectives is the focus
of this work.

Computation outsourcing to a cloud computing provider is common today
and can take different forms. In particular, in addition to the conventional sce-
nario when a computationally-limited client outsources its computation to the
cloud and receives the result, there are many uses of cloud computing that in-
volve multiple entities. For example, a doctor’s office might send computation
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associated with a patient’s test to a cloud provider, while the patient in question
is also entitled to access to the result of the computation and thus should be
able to verify integrity of the returned result. This calls for solutions where the
integrity of the result can be verified by entities who do not have access to secret
keys thus achieving public verifiability. Furthermore, if the task result may be
verified by different entities or verified by the same entity multiple times over
time (e.g., every time the result is used), then it is desirable to lower the over-
head associated with verifying the result of the outsourced computation without
increasing other costs.

The specific problem that we treat here is matrix multiplication outsourcing.
Because of popularity of matrix multiplication in a number of different domains
and relatively high cost of this operation on large inputs, secure matrix multi-
plication outsourcing has received attention [4, 5, 18, 30]. We continue this line
of research and show below how our results compare to the state of the art.

A novel feature that we propose in this work and which is not present in
publications on the same topic is as follows: we divide the overall computation
in multiple stages and associate a key with each of them. Only if the computation
in the current stage is performed correctly and the correct key is recovered, the
server can learn the computation used in the next stage. Without the correct key,
it is computationally infeasible to proceed to the next stage and pass verification
in any of the stages that follow. This feature allows us to achieve several goals:

1. Chaining of computation from one stage to another allows for more efficient
verification of the overall task. That is, corrupting a single cell of the product
matrix invalidates the values in all other cells that follow, and verifying the
result of the final stage is sufficient in ensuring that the entire task was
performed correctly. Other publications (such as [9, 18]), on the other hand,
require verification of every matrix cell to ensure correctness of the output.

2. If the server misbehaves during the computation and produces incorrect val-
ues for one or more cells of the product matrix, in order to proceed with the
computation, it has to invest into substantially larger computation. In other
words, the effect of the server’s misbehavior is enlarged to the maximum
extent, where any deviation from the computation substantially increases
the computation cost. Thus, this mechanism is designed to deter the server
from deviating from the correct computation.

3. When the result is returned to the client and does not pass verification, the
client can efficiently identify the first stage during which the server deviated
from the prescribed computation and ask the same or different server to
rerun the computation starting from that stage.

4. If the server carries out the computation honestly, but gets compromised or
infected by malware that corrupts the computation, the server can use the
checkpoints between the stages to efficiently determine that corruption took
place and quickly recover from it. That is, if the server is unaware of the
compromise and continues with the task, the outcome will not pass verifica-
tion and the computational effort becomes wasted. With the checkpoints, on
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the other hand, the server will identify the problem, stop the computation,
resolve the problem, and resume the task without wasting its efforts.

Our contributions can be summarized as follows:

– We present the core construction for verifiable outsourcing in presence of
malicious adversaries who arbitrarily deviates from the prescribed compu-
tation (Section 4). In our scheme, delegating a task requires work linear in
the input size, carrying out the computation itself has the same complex-
ity as that of conventional matrix multiplication algorithm (i.e., O(n3) for
matrices of dimension n× n), and verification of the resulting matrix prod-
uct involves only a single modulo exponentiation and the number of modulo
multiplications linear in the output size.

– We present another construction that assumes rational adversaries who are
neither honest nor malicious, but rather economically motivated with the
sole purpose of maximizing the reward (Section 5.1). Under this adversarial
model, verification of the returned result involves only a single comparison.

– We extend the construction in the rational setting to incorporate the chaining
feature described above without compromising other properties (Section 5.2).
In particular, this has no impact on the complexity of the resulting scheme.

– We also sketch how data privacy and public verifiability, in which any entity
with access to public verification key can assess the validity of the returned
result, can be added to the constructions in both malicious and rational
settings (Section 6). This does not increase asymptotic complexities of the
scheme, but the cost of recovering the output or verification time, resp.,
may increase. Note that when public verifiability is combined with data
protection, access to the verification key does not allow for data recovery.

All our schemes achieve public delegatability, which means the entity who runs
system setup can be different from the entities who form a task to be outsourced.

In reducing the cost associated with verifiable computation schemes for matrix
multiplication outsourcing, our focus was on reducing the cost of verifying the
result as this may be a more frequently used operation or an operation performed
by weaker clients. The cost of task preparation in our and other schemes requires
O(n2) cryptographic operations for input matrices of size n × n, i.e., linear in
the size of input. The server’s work for carrying out matrix multiplication is
O(n3) cryptographic operations, i.e., uses the conventional matrix multiplication
algorithm.

We note that the cost of O(n2) cryptographic operations used in task prepa-
ration is rather high and will exceed the cost of computing matrix multiplica-
tion locally for small matrices. In particular, matrix multiplication algorithms
of asymptotic complexity as low as O(n2.373) are known, but the huge constants
hidden behind the big-O notation prevent most of them from being used in
practice (i.e., they require more than 2n3 work) [3]. In particular, for matrices
of dimension n < 1020, only the algorithm by Strassen 1969 and Winograd 1971
of complexity O(n2.807) and the technique of trilinear aggregating of complexity
O(n2.775) result in implementations of matrix multiplications that outperform
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the conventional O(n3) algorithm [3, 28]. This means that our and related con-
structions reduce the cost of matrix multiplication for the client only for large
matrices when performing n2 cryptographic operations is below O(n2.775) work.

Before we proceed with the description of our schemes, we discuss related work
(Section 2) and provide background information and definitions (Section 3).

2 Related Work

Verifiable Computation. In verifiable computation [2, 13, 15, 16, 18, 20, 21,
32], a client outsources a computationally intensive task to a server and verifies
its results in an efficient manner upon its completion. The basic question was
proposed in work on interactive proofs (IP) [8, 22], efficient arguments based
on probabilistically checkable proofs (PCP) [26, 27], and computationally sound
(CS) proofs [29]. Such schemes are not generally suitable for our goal (due to,
e.g., vast client’s storage requirements or the need for interactive verification).
Parno et al. recently introduced Pinocchio [31], which allows execution of a
general function represented as a circuit to be delegated to an untrusted worker.
The cost of output verification in [31] is linear in the size of the function’s input
and output, but requires only a constant number of most expensive operations
(pairing evaluation), which resembles similarities to our scheme in presence of
malicious adversaries. Our verification cost is still lower in practical terms and
is further reduced in the schemes with rational adversaries. The asymptotic
complexity of the server’s computation in [31] is the same as in our scheme, but
our solution offers faster performance. Lastly, the setup of [31] uses a different
key generation phase from our problem generation phase, which is applied to a
function instead of function’s input in our solution. The cost of key generation
in [31] is higher than the cost of problem generation in our solution, but the key
generation algorithm in [31] may be executed less frequently.

Homomorphic MAC and Signature. A homomorphic MAC [1] allows an en-
tity to use a secret key sk to produce a tag σ that authenticates messagemwith an
additional property that, given a set of authenticators σ1, σ2, . . . , σn for messages
m1,m2, . . . ,mn, any entity with possession of public parameters can homomor-
phically evaluate a function P on (σ1, σ2, . . . , σn) to produce a short tag σ′ that
authenticates correctness of m′ = P (m1,m2, . . . ,mn). In the public-key setting,
signatures are used to replace MACs and achieve similar functionality [25]. While
homomorphic MACs or signatures can be used to realize verifiable computation
for problems of certain structure, with such solutions the cost of verification is not
smaller than the cost of executing the task. Furthermore, it is not intuitive as to
how to protect privacy of the underlying messages using these techniques because
neither MACs nor signatures are designed for this purpose.

Matrix Computation. The problem of verifiable matrix computation has been
studied in recent literature [4, 9, 18, 30]. In addition to computation verifica-
tion, existing solutions offer other important security features that are: 1) data
protection, i.e., protection of both input and output matrices throughout the
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Table 1. Comparison with related work

Scheme
Verifiable Data Public Output-Indep. Deterministic

Computation Privacy Verifiability Verification Verification

Atallah et al. [4] ✓ ✓ ✗ ✗ ✗

Mohassel [30] ✓ ✓ ✗ ✗ ✗

Fiore et al. [18] ✓ ✗ ✓ ✗ ✓

Backes et al. [9] ✓ ✗ ✗ ✗ ✓

This work ✓ ✓ ✓ ✓ ✓

computation; 2) public verifiability, i.e., the ability of any entity to verify the re-
sult of outsourced computation; and 3) deterministic verification, i.e., the ability
to detect faulty cells in an output matrix with probability 1 (minus a negligible
function of the security parameter due to computational assumptions). Unlike
prior work, our scheme achieves all these features. Additionally, we achieve an-
other property called output-independent efficiency that allows for a constant
number of cryptographic operations (modulo exponentiations or pairing opera-
tions) to be used during verification independent of the size of the output matrix.
Table 1 summarizes features of our solution and other schemes. Note that [18]
has similar security features to ours, and although not specified in that work, it
is feasible to incorporate privacy protection into their scheme as realized in [33].
We, however, found the scheme cannot be adjusted to efficiently handle rational
adversaries.

Next, we provide a more detailed comparison of our work with closely related
schemes. Note that we treat deterministic verification as a property that is non-
trivial to achieve and thus consider only the work of Fiore et al. [18] and Backes
et al. [9]. The construction of [9], however, is based on the scheme of [18] and
would offer the same performance as that of [18] in our setting (the advantage
of [9] is that it allows for more flexible function specification and scheduling).
Thus, we list only performance of [18] as the representative of both [18] and [9].

The computational overhead for the client and the server is presented in Table 2,
where n represents the size of each dimension of input matrices, and cm, ce, and cp
denote the time to carry out a modular multiplication, exponentiation, and a pair-
ing operation, respectively. In the table, we use notation VCm and VCr to denote
our verifiable computation schemes for malicious and rational adversaries, respec-
tively. Note that some of the constructions for rational adversary do not involve
any cryptographic operations for verification (and rather perform a single compar-
ison) and that work is listed asO(1). Finally, note that in some of our constructions
for the rational adversary, the work for task preparation or server’s computation
is increased compared to the equivalent constructions for the malicious adversary,
but the verification cost is substantially (and asymptotically) reduced.

The timings of elementary cryptographic operations can be inferred from the
benchmarks in [14]. For groups that admit an asymmetric bilinear map e : G1 ×
G2 → GT , which offer faster performance than groups that admit a symmetric
bilinear map e : G1 × G1 → GT and are used in this work (as detailed later in
the paper) and can be used in the solution of [18], the timings are as follows:
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Table 2. Computation in our and mostly closely related schemes

Scheme
Client’s Server’s Client’s

Preparation Computation Verification

Fiore et al. [18] (priv. ver.) (4ce + 3cm)n2 cen
3 (ce + cm)n2

VCm (priv. ver.) (2ce + 4cm)n2 cpn
3 ce + cmn2

VCr (priv. ver.) (4ce + 6cm)n2 cpn
3 + (ce + cm)n2 O(1)

Fiore et al. [18] (pub. ver.) (4ce + 3cm)n2 cen
3 (cp + ce + cm)n2

VCm (pub. ver.) (2ce + 4cm)n2 cen
3 cpn+ (ce + cm)n2

VCr (pub. ver.) (4ce + 6cm)n2 cpn
3 + (ce + cm)n2 ce

VCm (priv. ver. + privacy) (2ce + 6cm)n2 2cpn
3 ce + cmn2

VCr (priv. ver. + privacy) (5ce + 8cm)n2 2cpn
3 + cmn2 O(1)

VCm (pub. ver. + privacy) (8ce + 16cm)n2 4cen
3 4cpn+ 4(ce + cm)n2

VCr (pub. ver. + privacy) (5ce + 8cm)n2 2cpn
3 + cmn2 ce

Table 3. Storage and communication in our and mostly closely related schemes

Scheme Client’s Storage Server’s Storage Communication

Fiore et al. [18] (priv. ver.) n2κ n2κ+ 2n2 2n2κ+ 3n2

VCm (priv. ver.) 3nκ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

VCr (priv. ver.) κ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

Fiore et al. [18] (pub. ver.) n2κ n2κ+ 2n2 2n2κ+ 3n2

VCm (pub. ver.) (n2 + n)κ n2κ+ 2n2 (n2 + n)κ+ 3n2

VCr (pub. ver.) κ 2n2κ+ 2n2 (2n2 + 1)κ+ 3n2

VCm (priv. ver. + privacy) 3nκ 4n2κ (5n2 + 1)κ

VCr (priv. ver. + privacy) (n2 + 2n)κ 4n2κ (5n2 + 1)κ

VCm (pub. ver. + privacy) 4(n2 + n)κ 4n2κ+ 8n2 4(n2 + n)κ+ 12n2

VCr (pub. ver. + privacy) (n2 + 2n)κ 4n2κ (5n2 + 1)κ

for 128-bit security, a modulo exponentiation in G1 or G2 can be performed in
0.1–0.4ms on a single core of a conventional 2.4GHz desktop machine, a modulo
exponentiation in GT in 0.4–0.9ms, and the pairing operation in 2.1–2.3ms. The
cost of modulo multiplications is at least two orders of magnitude smaller than
that of performing modulo exponentiations.

The storage and communication requirements of our constructions and those
of [18] are listed in Table 3. In the table, the security parameter κ denotes the
bitlength of group elements. The client’s storage is computed as the amount
of information the client needs to maintain in order to be able to verify the
result (i.e., the size of the key). Then the task delegator and each task verifier
will require additional storage for their respective input and output matrices.
The server’s storage corresponds to the amount of storage the server needs to
maintain in order to carry out the task. Lastly, communication corresponds to
both sending the task to the server and returning the result and the proof of
computation to the client.

Rational Computation. In recent years, game theory has been used in cryp-
tographic research [17, 24] to develop a new adversarial model – a rational ad-
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versary who is no longer treated as arbitrarily malicious, but who is motivated
by some utility function with the sole purpose of maximizing its utility. It is
known that under this model protocols can be designed with better efficiency
than that of traditional counterparts [19]. As our problem deals with verifiable
computation, we are interested in rational proof systems that have been recently
studied in [6, 7, 23]. The merits of rational proof systems are that they allow
for extremely low communication and verification time [6, 7] and can achieve
single-round proofs if the prover is computationally bounded [23]. The basic
idea of this line of work is that the prover will send the result of computation to
the verifier who will compute the corresponding reward based on the “quality”
of prover’s result, and the reward will be maximized only if the result is cor-
rect. The publications focus on general complexity classes such as uniform TC0

(polynomial-time, constant-depth threshold circuits) and decision problems in
P ||NP (polynomial time with access to parallel queries to an NP oracle), while
in our case, we target specific matrix computation with the goal of achieving
even better efficiency.

3 Background and Definitions

3.1 Basic Definitions

Throughout this work we use notation x
R← S to denote that x is chosen uni-

formly at random from the set S. A function ε(n) is said to be negligible if for
sufficiently large n its value is smaller than the inverse of any polynomial poly(n).
Let F be a family of functions and Dom(f) denote the domain of function f ∈ F .
Also, let κ denote a security parameter. We use H : {0, 1}∗ → {0, 1}�1(κ) to de-
note a collision resistant hash function that takes as input a string x and outputs
an �1(κ)-bit hash y. We also use notation || to denote string concatenation. For
matrix A, notation Aij refers to the element of A at row i and column j. We use
notation PRF to refer to a pseudo-random function family defined as follows.

Definition 1. Let F : {0, 1}κ×{0, 1}�2(κ) → {0, 1}�2(κ) be a family of functions.
For k ∈ {0, 1}κ, the function fk : {0, 1}�2(κ) → {0, 1}�2(κ) is defined as Fk(x) =
F (k, x). F is said to be a family of pseudo-random functions (PRF) if for every
probabilistic polynomial time (PPT) adversary A with oracle access to a function
Fk and all sufficiently large κ, |Pr[AFk(1κ)−Pr[AR(1κ)]| is negligible in κ, where

k
R← {0, 1}κ and R is a function chosen at random from all possible functions

mapping �2(κ)-bit inputs to �2(κ)-bit outputs.

Definition 2 (Bilinear map). A one-way function e : G1 × G2 → GT is a
bilinear map if the following conditions hold:
– (Efficient) G1, G2, and GT are groups of the same prime order p and there

exists an efficient algorithm for computing e.
– (Bilinear) For all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zp, e(g

a
1 , g

b
2) = e(g1, g2)

ab.
– (Non-degenerate) If g1 generates G1 and g2 generates G2, then e(g1, g2) gen-

erates GT .
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Throughout this work, we assume there exists a trusted setup algorithm Set
that, on input a security parameter 1κ, outputs the setup for groups G1 = 〈g1〉
andG2 = 〈g2〉 of prime order p that have a bilinear map e, and e(g1, g2) generates
GT of order p. That is, (p,G1,G2,GT , g1, g2, e) ← Set(1κ).

3.2 Computational Assumptions

The first computational assumption used in this work is the Multiple Decisional
Diffie-Hellman Assumption (m-M-DDH) [12], which can be stated as follows:

Definition 3 (m-M-DDH assumption). Let G be a group of prime order p,
g ∈ G is its generator, and m ≥ 2. Also let D = (gx1 , . . . , gxm , {gxixj}1≤i<j≤m)
for random x1, . . . , xm ∈ Zp, and define random tuple as Drand = (g1, . . . , gm,
{gij}1≤i<j≤m) in G. Adversary A, whose task is to distinguish an M-DDH tu-
ple from a random tuple, outputs a bit. We define the advantage of adversary
A in solving the M-DDH problem as AdvM-DDH

A (κ) = |Pr[A(g, p,m,D) = 1]−
Pr[A(g, p,m,Drand) = 1]|. The M-DDH assumption holds if for every PPT al-
gorithm A, AdvM-DDH

A (κ) is negligible.

Some of our schemes are built using subgroups of elliptic curves with pairings
where the decisional Diffie-Hellman (DDH) problem is hard. The use of DDH-
hard pairing groups requires the External Diffie-Hellman (XDH) assumption [10].

Definition 4 (XDH assumption). Let (p,G1,G2,GT , g1, g2, e) ← Set(1κ).
We define the advantage of adversary A in solving the DDH problem in G1 as
AdvXDH

A (κ) = |Pr[A(p, g1, g2, g
a
1 , g

b
1, g

ab
1 ) = 1] − Pr[A(p, g1, g2, g

a
1 , g

b
1, g

c
1) = 1]|,

where a, b, c
R← Zp. We say that the XDH assumption holds if for every PPT

algorithm A AdvXDH
A (κ) is negligible.

The XDH assumption implies that there is no efficiently computable homo-
morphism from G1 to G2. This assumption is also necessary for the M-DDH
assumption to hold in groups that admit a bilinear map.

3.3 Verifiable Computation

A verifiable computation scheme VC is a 4-tuple of polynomial-time algorithms
(Setup, ProbGen, Compute, Verify) that allows a user to outsource the computa-
tion of function f ∈ F to an untrusted worker. VC is defined as follows:

Setup(1κ, f) → params: On input a security parameter κ and function f to be
outsourced, it produces public parameters params.

ProbGen(x, params) → (SKx,EKx, σx): Given an input x ∈ Dom(f), this algo-
rithm is run by the delegator to produce a secret key SKx associated with
the problem instance for computation outsourcing and output verification,
an evaluation key EKx given to the worker to carry out the outsourced com-
putation, and an encoding σx of input x.

Compute(EKx, σx) → σy: On an encoded input σx and EKx, the worker runs the
algorithm to produce an encoded outcome σy, where y = f(x).
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Verify(SKx, σy) → y ∪ ⊥: Given an encoded output σy and the secret key SKx,
this algorithm outputs y or an error ⊥ upon result verification.

The correctness requirement is such that the values produced by the algorithms
will allow any honest worker who faithfully executes Compute to pass verifica-
tion of the output it produces. More formally, for any f ∈ F , any params ←
Setup(1κ, f), and any x ∈ Dom(f), if (SKx,EKx, σx) ← ProbGen(x, params),
σy ← Compute(EKx, σx), and y ← Verify(SKx, σy), then Pr[y = f(x)] = 1.

To formulate security of a verifiable computation scheme, we define an inter-
active security experiment described next. In the experiment, the adversary A
is allowed to query ProbGen algorithms on inputs of its choice xi and obtain the
corresponding evaluation key EKxi and input encoding σxi . In the private key
setting, it is also granted oracle access to Verify algorithm, where OVerify(xi, σy)
runs y ← Verify(SKi, σy) and returns y. Eventually, A outputs the input x∗ on
which it would like to be challenged, obtains evaluation key EKx∗ and encoding
σx∗ , and produces output encoding σ′

y. The adversary succeeds if the output is
different from f(x∗) and the verification algorithm does not output an error ⊥.
Note that this definition captures full adaptive security as opposed to weaker
selective security where the adversary is required to commit to the challenge
input x∗ in the beginning of the game.

Experiment ExpVer
A (VC, f, κ)

params ← Setup(1κ, f)

for i = 1 to q do

xi ← AOVerify(·,·)(σx1 ,EK1, . . . , σxi−1 ,EKi−1)

(SKi,EKi, σxi) ← ProbGen(xi, params)

x∗ ← A(σx1 ,EK1, . . . , σxq ,EKq)

(SKx∗ ,EKx∗ , σx∗) ← ProbGen(x∗, params)

σ′
y ← A(σx1 ,EK1, . . . , σxq ,EKq, σx∗ ,EKx∗)

y′ ← Verify(SKx∗ , σ′
y)

if y′ �= ⊥ and y′ �= f(x∗) return 1

else return 0

For any κ ∈ N and any function f ∈ F , we define the advantage of an adversary
A making at most q = poly(κ) queries in the above security game against VC as
AdvVer

A (VC, f, q, κ) = Pr[ExpVer
A (VC, f, κ) = 1].

Definition 5. A verifiable computation scheme VC is secure if for any PPT
adversary A, any κ, and any f ∈ F , AdvVerA (VC, f, q, κ) is negligible in κ.

In this work we consider two types of adversaries: the first type is the tradi-
tional adversary that can arbitrarily deviate from the prescribed computation as
defined by Compute functionality. We denote this type of adversary as malicious.
While the malicious adversary model leads to strong security guarantees, it has
been criticized as overly pessimistic due to neglecting the incentive that could
potentially cause computational entities to deviate from the prescribed behavior.
We therefore consider the second type of adversary which we denote as rational.
A rational adversary is neither honest nor malicious, but only interested in max-
imizing its reward attained during computation. The rationale behind including
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this type of adversary is that it allows us to design more efficient solutions if the
server can be assumed not to intentionally corrupt the result. Next, we formally
define the rational adversary model in verifiable computation, which was initially
proposed in [6] and later refined for rational argument systems in [7, 23].

Definition 6. A function f admits a rational argument with security parameter
κ if there exists a protocol (P, V ) and a randomized reward function reward:
{0, 1}� → R≥0 such that for any prover P̂ of size ≤ 2κ(|x|) and input x ∈ {0, 1}�,
the following three properties hold:

– Pr[output(P, V )(x) = f(x)] = 1.
– There exists a negligible function μ(·) such thatE[reward((P, V )(x))]+μ(|x|) ≥

E[reward((P̂ , V )(x))].
– If there exists a polynomial p(·) such that Pr[output((P̂ , V )(x)) �= f(x)] ≥

p(|x|)−1, then there exists a polynomial q(·) such that E[reward((P, V )(x))] ≥
E[reward((P̂ , V )(x))] + q(|x|)−1.

The first property refers to completeness of the protocol, which says prover P
is able to return a correct answer f(x) by following the prescribed protocol.
The second property ensures that by deviating from the prescribed protocol in
a computationally bounded manner, a dishonest prover P̂ will achieve at most
negligibly larger gain than a faithful prover P . The last property guarantees if
P̂ does not report a correct answer f(x) with a noticeable probability, he has to
bear a noticeable utility loss. A rational argument system ensures that a rational
adversary will maximize the reward if and only if he honestly follows the protocol
to report the correct answer. Therefore, to prove security of a protocol, we need
to show that it conforms to Definition 6 under reasonable assumptions on cost
and utility, which we formulate in the server-client setting as follows:

Assumption 1. – For each outsourced task, both the monetary reward the
client compensates and the computational cost the server bears are polyno-
mial to the size of the input.

– As the server aims to make profits by devoting his resources to clients’ specific
tasks, the monetary reward he gains from a client should be larger than the
cost it bears, which also conforms to the business practice for cloud service.

– In the event of any inconsistency between the answers the server returns and
the answers the client expects, the server will not receive any reward or even
undertake utility loss resulted from the violation of Service Level Agreement.

All additional definitions for data protection and public verifiability are omitted
due to space constraints, but can be found in the full version of this work [34].

4 Matrix Multiplication for Malicious Adversary

Problem Formulation. The delegator would like to multiply matrices A and
B of dimensions n1×n2 and n2×n3, respectively. It is assumed that the elements
of A and B are not sensitive and do not require protection. In our solution, the
delegator’s work is linear in the size of the input and output, which is optimal.
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Our first scheme aims to defend against malicious adversary who tampers
with the computation or its results regardless of costs and attempts to pass
verification. Also, this basic construction does not achieve public verifiability:
only the entity who possesses the secret key is able to attest correctness of
returned result. In section 6 we extend the scheme to support public verifiability
that allows any entity with access to public key assess the validity of computation
results. For notational simplicity, we use VCm to denote this scheme.

Description of the Scheme. The main idea used in our solution is that the
delegator encodes matrix A into matrix X and matrix B into matrix Y . The
delegator sends matrices {A,B,X, Y } to the server who computes C = A × B
and D = X × Y . The client then verifies correctness of C by checking a secret
relationship between the elements of C and D.

In more detail, the secret relationship is formed by generating secret random

group elements Rij such that Dij = R
Cij

ij , which are of the form g
ricj
T , where

{ri}n1

i=1 and {cj}n3

j=1 are two vectors of random elements. Moreover, in order to sat-
isfy the relationship, we need to embed ri and cj into eachDij , and this is realized

by formingXij and Yij to be of the form g
riAij

1 and g
cjBij

2 , respectively. We aim to
rely on the M-DDH assumption to show that, given gri1 and g

cj
2 , g

ricj
T is indistin-

guishable from a random value, which is however difficult due to the existence of
bilinear pairing operation. To remedy the problem, we completely hide all infor-
mation about g

cj
2 ’s from the server. As a result, if we rely on the XDH assumption,

(gr1T , . . ., g
rn1

T , {gricjT }1≤i≤n1,1≤j≤n3) is a partial (n1 + n3)-M-DDH tuple and the
adversary can have only a negligible advantage in distinguishing the gT

ricj ’s from
random elements of the group. The hiding is achieved by further masking each Yij

by a random value Tij , which should be also in a special form; otherwise, the client
will have to computeX×T to satisfy the relationship, which is the exact workload

the client wants to avoid. Therefore, Tij ’s are formed as g
wjdi

2 using two random
vectors {di}n2

i=1 and {wj}n3

j=1, and the client only needs to perform O(n1n3) work
to compute X × T .

When the server returns C and
∑

i

∑
j Dij , the delegator uses

{ricj}1≤i≤n1,1≤j≤n3 and information about the product X × T to verify that
the sum of the elements in C after proper randomization matches

∑
i

∑
j Dij . If

the verification succeeds, the delegator uses C as the correct output. The details
are given in Figure 1.

The complexity of ProbGen run by the delegator is dominated by computing
key vk and matricesX and Y , and is therefore O(n1n2+n2n3). Compute involves
the execution of two matrix multiplications resulting in complexity O(n1n2n3).
Verify consists of ensuring the validity of C by checking its elements against s
that Compute produces and has complexity O(n1n3), i.e., linear in the size of
the output. The value of s is computed in such a way that a malicious adversary
is unable to construct an incorrect s that passes the verification test.

Security of the scheme can be stated as follows:
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Setup(1κ, f): Given f that indicates matrix multiplication, using the security pa-
rameter κ run (p,G1,G2,GT , g1, g2, e) ← Set(1κ) and set Set params =
(p,G1,G2,GT , g1, g2, gT = e(g1, g2), f). Matrix elements should be representable
as values in Zp.

ProbGen(x = (A,B),params): On input two matrices A and B of respective dimen-
sions n1 × n2 and n2 × n3, perform:

1. Choose ri
R← Z

∗
p for 1 ≤ i ≤ n1, dj

R← Z
∗
p for 1 ≤ j ≤ n2, and ck, wk

R← Z
∗
p

for 1 ≤ k ≤ n3.
2. Compute ti =

∑n2
k=1 Aikdk for 1 ≤ i ≤ n1, f =

∑n3
j=1 wj , and vki = ritif for

1 ≤ i ≤ n1.
3. Compute Xij = g

riAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

4. Compute Yij = g
cjBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

5. Set SKx = ({ci}n3
i=1, {vki}n1

i=1, {ri}n1
i=1), EKx = params, and σx =

(A,B,X, Y ).
Compute(EKx, σx = (A,B,X, Y )): Given σx, execute:

1. Compute C = A×B.
2. Compute s =

∏n1
i=1

∏n3
j=1

∏n2
k=1 e(Xik, Ykj).

3. Set σy = (C, s).

Verify(SKx = ({ci}n3
i=1, {vki}n1

i=1, {ri}n1
i=1), σy = (C, s)): If g

∑n1
i=1 ri

∑n3
j=1 cjCij+vki

T = s,
output C; otherwise, output ⊥.

Fig. 1. Description of the core scheme VCm in presence of malicious adversaries

Theorem 1. Assuming that the M-DDH and XDH problems are hard, the ver-
ifiable computation scheme VCm is secure according to Definition 5 in presence
of malicious adversaries.

The proof and correctness analysis of this construction can be found in Ap-
pendix A.

5 Matrix Multiplication for Rational Adversary

Our next construction aims at defending against a rational adversary. Because a
rational adversary behaves in the most profitable manner by considering both the
compensation paid by the client and the cost endured during the computation, it
would be to the adversary’s advantage to honestly report all computed results to
obtain compensation for the work (rather than report a bogus result that could
be detected with overwhelming probability and hence yield a lower reward).

In our solution against rational adversaries VCr, we achieve two features: (i)
to force a rational adversary who wishes to maximize its profits to conform to the
prescribed protocol and (ii) in case of faulty computation, to pinpoint location of
faulty cells by both the server and the client. Realizing both features is achieved
by requiring the client to perform only work sublinear in the size of the matrices
at the time of computation verification. For the ease of presentation, we describe
our solution in a modular manner, where the first scheme support only the first
feature and the second presented scheme enhances it with the second feature.
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5.1 Description of the Base Scheme

The main idea behind VCr is similar to that of VCm: as before, the delegator
encodes A into X and B into Y and asks the server to compute products A×B
and X×Y . Similar to VCm, correctness of A×B is verified by checking a secret
relationship between the two matrix products. However, unlike VCm, where the
delegator performs the verification itself, in VCr, the delegator further outsources
the verification task to the server and only performs one string comparison to
confirm correctness of the verification process. The saving in the verification cost
comes with slightly increased work during problem generation, but this work is
still linear in the size of input and output. This scheme can be suitable in the
setting with three entities (besides the server) such as a doctor who delegates
problem generation to lab assistants and patients who verifies the result of the
computation returned by the server. The entity performing problem generation
(i.e., lab assistant in the above example) is willing to put in additional (one-time)
work to benefit routine operations (i.e., verification) by end users (patients).

In our solution, the delegator, as before, produces X as a randomized version

of A with its elements of the form g
riAij

1 and Y as a randomized version of B with

its elements of the form g
cjBij+wjdi

2 . The delegator also releases a new matrix Z
formed as g

ricj
T to aid the server in producing a proof of correct computation.

Unlike VCm, security of which relies on the secrecy of g
ricj
T , in VCr, we need to

incorporate additional secret information in the solution to guarantee security

despite public exposure of matrix Z. If we treat Y as B̂ + T , where B̂ = g
cjBij

2

and T = g
wjdi

2 , we want to use X ×T as secret information. In order to do that,
the cells of X×T should be indistinguishable from random group elements, and
can be produced by the server only if it follows the prescribed protocol. Towards
the goal, we incorporate additional randomization into X and B̂ by representing

their elements as g
ri/mjAij

1 and g
cjmiBij

2 , respectively, using another random
vector {mi}n2

i=1. The verification key is set to be the result of hashing of all cells
of X × T . Therefore, to pass verification, the server has to recover all elements
of X × T correctly. Notice that because the server is unable to separate B̂ from
T in Y and thus compute X × T by unintended means, the server is forced to
compute X×Y and A×B, determine X× B̂ from A×B with the help of Z, and
remove X × B̂ from X × Y to recover the key. The scheme is given in Figure 2.

The complexity of ProbGen is O(n1n2+n1n3+n2n3), i.e., linear in the size of
the input. The complexity of Compute is dominated by two matrix multiplica-
tions resulting in O(n1n2n3) time. Lastly, the Verify algorithm performs a single
string comparison of complexity O(1) and outputs the matrix of size n1 × n3.

Security of this solution holds only when each cell Aij of matrix A takes a
non-zero value. For that reason, we next describe a mechanism for encoding an
arbitrary matrix M into an equivalent matrix M ′ that contains only non-zero
values and decoding the result after M ′ is used in the computation.

Matrix encoding: Given M of dimensions n1 × n2, choose any value � such that
Aij + � �= 0 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. To form M ′, add � to each
element of M , i.e., M ′

ij = Mij + �, and store � for future reference.
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Setup(1κ, f): The same as in VCm.
ProbGen(x = (A,B),params): On input two matrices A and B of respective dimen-

sions n1 × n2 and n2 × n3, perform:

1. Choose ri
R← Z

∗
p for 1 ≤ i ≤ n1, dj ,mj

R← Z
∗
p for 1 ≤ j ≤ n2, and ck, wk

R← Z
∗
p

for 1 ≤ k ≤ n3.

2. Compute Xij = g
ri/mjAij

1 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

3. Compute Yij = g
cjmiBij+wjdi
2 for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n3.

4. Compute Zij = g
cjri
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3.

5. Compute ti =
∑n2

k=1 Aikdk/mk for 1 ≤ i ≤ n1, and vkij = tiriwj for 1 ≤ i ≤
n1 and 1 ≤ j ≤ n3.

6. Compute skij = g
vkij

T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3, set skj =
H(sk1j ||sk2j || . . . ||skn1j) for 1 ≤ j ≤ n3, and sk = H(sk1||sk2|| . . . ||skn3).

7. Set SKx = sk, EKx = (params, Z), and σx = (A,B, X,Y ).
Compute(EKx = (params, Z), σx = (A,B,X, Y )): Execute the following steps:

1. Compute (i) V
(1)
ij =

∑n2
k=1 AikBkj , (ii) V

(2)
ij =

∏n2
k=1 e(Xik, Ykj) =

gT
∑n2

k=1
Aik(cjriBkj+wjdkri/mk), and (iii) Δij = V

(2)
ij /Zij

V
(1)
ij for 1 ≤ j ≤ n3

and 1 ≤ i ≤ n1.
2. Compute ˆskj = H(Δ1j ||Δ2j ||. . .||Δn1j) and ŝk = H(ŝk1||ŝk2||. . .||ŝkn3).
3. Set σy = (V (1), ŝk).

Verify(SKx = sk, σy = (V (1), ŝk)): Verify whether ŝk = sk. If the check succeeds,
output V (1); otherwise, output ⊥.

Fig. 2. Description of the core scheme VCr in presence of rational adversaries

Matrix decoding: Let C′ = M ′×N ′, whereM ′ (N ′) is an encoded version of ma-
trix M (resp., N) using value �1 (resp., �2) and has dimensions n1×n2 (resp.,
n2 × n3). Observe that each element C′

ij =
∑n2

k=1 (Mik + �1)(Nkj + �2). To
recover C = M ×N , compute the offset Δij for each element, which equals
to �2

∑n2

k=1 Mik + �1
∑n2

k=1 Nkj + n2�1�2, and set Cij = C′
ij −Δij . Note that

the value �2
∑n2

k=1 Aik (�1
∑n2

k=1 Bkj) is the same for all elements in a single
row of matrix M (resp., single column of matrix N). This means that we
only need to compute that value for n1 rows of matrix M (resp., n3 columns
of matrix N). The overall complexity of computing all offsets is therefore
O(n1n2 + n2n3) and the complexity of computing C from C′ is O(n1n3).
The decoding computation is simplified when only one of the matrices used
in the product was encoded to eliminate zero entries (as in VCr). In that case,
the offset becomes Δij = �1

∑n2

k=1 Nkj assuming that M was the encoded
matrix, and the overall complexity of decoding is O(n1n3 + n2n3).

Security of our VCr scheme can be stated as follows:

Theorem 2. If H is a collision-resistant hash function, the M-DDH and XDH
assumptions hold, and all elements of A are non-zero, a server that deviates
from the protocol can only pass verification with a probability negligible in κ.

Assumption 2. If in VCr the server returns correct ŝk = sk but incorrect V (1) �=
C, the error will be detected by the client with a non-negligible probability.
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This assumption is crucial to our result and can be realized by outsourcing a
small (but non-negligible) fraction 0 < ρ < 1 of all tasks to a second independent
server. For example, for each task the client chooses random v ∈ [0, 1], and if
v ≤ ρ, the client uses two (non-colluding) servers for independently outsourcing
the task and compares the returned products C afterwards. If the servers are
non-colluding and at least one returned C is incorrect, the client will be able
to detect misbehavior with non-negligible probability. This implies that if the
server performed the work to pass the verification test, it will be incentivized to
return correct C.
Theorem 3. If Assumptions 1 and 2 and assumptions of Theorem 2 hold, VCr

is secure in presence of rational adversaries according to Definition 6.

Due to space constraints, security proofs and correctness analysis are available
only in the full version [34]. The above means that following the protocol and
producing correct matrix products A × B and X × Y is the most profitable
strategy for a rational adversary.

5.2 Description of the Enhanced Scheme

In this section, we propose an enhanced scheme that supports chaining and
allows honest parties to pinpoint faulty cells in case of computation corruption or
intentional deviation from the prescribed computation using a single mechanism.
That is, recall that this feature makes it difficult for a dishonest server to continue
with the next stage of the computation if it was not carried out correctly at
the current stage and allows the client to efficiently identify the first stage at
which a fault occurred. It also allows the cloud itself to detect a problem with
the computation (in case of compromise or malware infection). The basic idea
behind the solution is that the client divides the entire computation into n3

sub-computations. The keys ski are formed as before, but now the ith key is
used to encode the inputs of the (i + 1)th sub-computation. The server is able
to recover the (i + 1)th sub-key only if it executes sub-computations 1, . . ., i
correctly. Upon computation completion, the verifier receives the last key from
the server and examines its correctness. If the verifier notices a discrepancy
between the returned key and its expected value, he will ask the server to return
all the keys generated throughout the computation. The verifier then applies
a procedure similar to binary search to locate the first incorrect key, which
corresponds to the first sub-computation that has been executed incorrectly.
This operation can be implemented in O(log n) steps when the number of sub-
computations is n. The server will also be able to examine correctness of the first
i sub-computations that have been executed so far by verifying that the inputs
of (i+ 1)th sub-computation could be decoded correctly using ski. If this check
fails, this serves as a notice of the existence of faulty cells and the server can
suspend the computation to identify faulty sells among the computed cells.

The detail of our solution can be described as follows: The client generates
five matrices {A,B,X, Y, Z} and forms keys ski as in the base scheme. Now the
computation of the ith column of matrices A × B and X × Y is considered to
be the ith sub-computation. The client then blinds each element of the (i+1)th
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Setup(1κ, f): The same as in VCr.
ProbGen(x = (A,B), params): Given matrices A and B, perform:

1. Compute X, Y , Z, and {ski}n3
i=1 as in VCr.

2. Set B̂i1 = Bi1 and Ŷi1 = Yi1 for 1 ≤ i ≤ n2; and also set
• B̂ij = PRFskj−1 (i||j||0) ⊕ (Bij ||0λ)
• Ŷij = PRFskj−1(i||j||1) ⊕ (Yij ||0λ)

for 1 ≤ i ≤ n2 and 2 ≤ j ≤ n3, where λ is a correctness parameter.
3. Set SKx = {ski}n3

i=1, EKx = (params, Z), and σx = (A, B̂,X, Ŷ ).
Compute(EKx = (params, Z), σx = (A, B̂,X, Ŷ )): Execute steps:

1. Set U
(1)
i1 = B̂i1 and U

(2)
i1 = Ŷi1 for 1 ≤ i ≤ n2.

2. For j = 1, . . ., n3 do:
(a) For 1 ≤ i ≤ n1, compute V

(1)
ij =

∑n2
k=1 AikU

(1)
kj and V

(2)
ij =

∏n2
k=1 e(Xik, U

(2)
kj ).

(b) Let Δij = V
(2)
ij /Zij

V
(1)
ij for 1 ≤ i ≤ n1. Set ˆskj =

H(Δ1j ||Δ2j ||. . .||Δn1j).
(c) If j �= n3, for 1 ≤ i ≤ n2 compute

• U
(1)
ij+1||W1 = B̂ij+1 ⊕ PRF ˆskj

(i||j + 1||0)
• U

(2)
ij+1||W2 = Ŷij+1 ⊕ PRF ˆskj

(i||j + 1||1)
If W1 or W2 is not equal to 0λ, report an error and abort.

3. Set σy = (V (1), ŝkn3).
Verify(SKx = {ski}n3

i=1, σy = (V (1), ŝkn3)): Verify whether ŝkn3 = skn3 . If the check

succeeds, output V (1). Otherwise, retrieve all {ŝki}n3
i=1 from the server and find

the smallest index i such that ŝki �= ski using binary search.

Fig. 3. Description of scheme VC′
r that incorporates chaining and allows for fast loca-

tion of an error in the computation

column of matrices B and Y by XORing them with a pseudo-random string.
This string is produced using ski as the secret key to a pseudo-random function
PRF, which is evaluated on the cell’s row and column indices together with a
unique identifier for each matrix to guarantee uniqueness of the input/output.

In order to remove blinding and recover the next sub-computation, the server
needs to produce correct ski as before (by computing the ith column of twomatrix
products) and evaluate the PRF on that key to reproduce the random mask. This
will allow the server to recover the inputs for the (i + 1)th column of matrix B
and Y , i.e., the (i + 1)th sub-computation, and continue the computation. We
make the size of the pseudo-random output of PRF longer than the size of matrix
elements they mask so that the remaining bits can be used to verify that the input
to the (i+1)th sub-computation was decoded correctly. That is, we append a zero
string of a predefined size to each input before encoding, and the server can use
it to verify that decoding was successful (and if it was not, investigate the reason
for the failure). At the end of the computation, the server recovers and returns
the last key skn3 , which the client compares to the expected key and accepts the
output if the verification succeeds. The scheme is given in Figure 3.

The complexities of ProbGen and Compute are the same as in VCr, i.e.,
O(n1n2 + n1n3 + n2n3) and O(n1n2n3), respectively. Verify now performs one
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string comparison of complexity O(1) and outputs a matrix of size n1×n3 in case
of no errors. Otherwise, the client retrieves n3 keys and additionally performs
O(log(n3)) work. Security is stated below and the proof can be found in [34].

Theorem 4. If H is a collision-resistant hash function, PRF is a pseudo-random
function, the M-DDH and XDH assumptions hold, and all elements of A are non-
zero, the server that deviates from the correct protocol can only pass verification
with a probability negligible in κ.

As the corollary, we have that if the result does not verify, the client can
identify the first faulty sub-computation using O(log(n3)) string comparisons.

6 Extensions

In this section, we sketch how to extend our schemes to incorporate privacy
protection of input/output matrices and public verifiability. The details of the
constructions and their analysis are available in [34].

Matrix Privacy. This property must ensure that the server is unable to learn
any information about A and B and their product A×B. We thus modify both
schemes to achieve this goal, while still preserving computation verifiability.

Malicious Setting. To protect matrices A and B in σx, our solution encodes
them using a homomorphic encryption scheme (e.g., BGN encryption [11]) that
supports one multiplication and an unlimited number of additions on encrypted
messages. This allows for matrix multiplication A × B to be privately carried
out on encrypted data. The server also sees X and Y , but no changes to Y are

necessary. That is, the term g
wjdi

2 protects each element of matrix B that matrix
Y encodes, assuming that the M-DDH assumption holds. Matrix X , however, in
its original form can disclose information about the elements of A. To prevent
this disclosure, we encode its elements in a form similar to that of matrix Y , by

incorporating a random term g
hjui

1 into each element of X .
Rational Setting. Unlike VCm, where the computation of product matrix C

and verification value s can be carried out independently, in VCr the server needs
to perform these two computations together in order to produce correct key ŝk
used for verification purposes. As a direct consequence of the difference, we no
longer can apply an arbitrary encryption algorithm to matrices A and B because
randomness used in ciphertexts will lead to the delegator’s inability to properly
compute ŝk. To resolve the issue, we encode A and B using a similar mechanism
to that of forming matrices X and Y . That is, we use the product of two newly
generated random values (such as wjdi in Yij) to protect each individual element
in A and B, and update vkij accordingly to allow for correct verification.

Public Verifiability. Recall that public verifiability allows any entity to verify
correctness of the returned result using a public verification key. To incorporate
public verifiability into VCm and VCr, the client will now need to produce a
public verification key PVKx as a public version of SKx at ProbGen time, which
will roughly be in the form of gSKx . This key then can be utilized by any auditor
at Verify time to assess correctness of the result of outsourced computation.
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Rational Setting. Recall that in VCr, client’s secret key SKx consists of only
key sk. Therefore, all that is needed to convert the solution into a publicly
verifiable scheme is to make a public version of the key, gsk, publicly available.

Then, the verification consists of checking whether gsk = gŝk, where, as before,
ŝk is produced by the server during Compute.

Malicious Setting. This time, unlike the rational setting, achieving public ver-
ifiability by setting PVKx to be gv for every v ∈ SKx does not work. Doing so
would reveal crucial key information, which can be easily exploited by the server
to compromise integrity of the returned result. In particular, suppose we set PVKx

to consist of g
ricj
T for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n3 and g

∑n1
k=1 rivki

T , and let Verify

consists of checking whether
∏n1

i=1

∏n3

j=1 (g
ricj
T )Cij +g

∑n1
k=1 rivki

T = s (where s is re-

turned by Compute).1 To launch an attack, the adversary first correctly computes
C and s, then changes an arbitrary matrix element from Cij to Cij + δ, and mul-

tiplies s by g
ricjδ
T . This allows the adversary to produce a tuple (Ĉ, ŝ) that differs

from the correct (C, s), but nevertheless passes verification. Notice that this at-
tack is infeasible in the original VCm scheme as the adversary has no information
about g

ricj
T and hence is unable to correctly produce ŝ. Therefore, further changes

are needed to support public verifiability in the malicious setting.
The idea behind the modification is to make g

ricj
T ’s and s belong to two

different groups. That is, we make the values of the form gricj available only in
GT , while s will have to be produced as a number of elements si in G2 (and there
is no efficiently computable homomorphism from an element of GT to an element
of G2). Then in the construction the delegator produces PVKx as of gri1 , g

ricj
T

and g
∑n1

i=1 rivki

T and provides only three matrices A, B, Y in σx to the server.
The server computes each si ∈ G2 by performing a modulo exponentiation using
A and Y (instead of the pairing operation in VCm) and returns them to the
client. Because verification of the result now consists of checking whether the

product of all (g
ricj
T )Cij ’s and g

∑n1
i=1 rivki

T matches the product of e(gri1 , si)’s, it
is no longer feasible for the adversary to succeed in the above attack.

The introduced modifications can also be applied to the version of the scheme
with data privacy in both adversarial settings to obtain verifiable computation
schemes with public delegatability and verifiability and privacy protection. Due
to space constraints, detailed constructions of these schemes are provided in [34].

7 Conclusions

This work presents schemes for verifiable outsourcing of matrix multiplications
in both malicious and rational adversary models. The complexity and features
of our schemes favorably compare to the state of the art, with the solution in the
rational setting having a very low verification cost of only a single comparison.
Our basic constructions achieve public delegatability and can be extended with

1 Note that because s is returned as an element of GT and each Cij is returned as an

element in Z
∗
p, the values g

ricj
T for each i and j and g

∑n1
k=1

rivki

T represent the minimum
information the verifier needs to possess to carry out verification.
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features of data protection, public verifiability and chaining (supporting all or a
subset of the features).
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A Security Analysis of VCm Scheme

To demonstrate correctness of VCm construction, we show that if the computa-
tion was performed correctly, Verify outputs product A×B. In Verify, we have:

g
∑n1

i=1 ri
∑n3

j=1 cjCij+vki

T =
∏n1

i=1 g
ri

∑n3
j=1 cjCij+vki

T =
∏n1

i=1

∏n3

j=1 g
ricjCij+ritiwj

T

=
∏n1

i=1

∏n3

j=1

∏n2

k=1 e(g
riAik
1 , g

cjBkj+wjdk

2 ) =
∏n1

i=1

∏n3

j=1

∏n2

k=1 e(Xik, Ykj) = s

Proof (Theorem 1). Our proof follows the hybrid argument. We start with the
security experiment ExpVer

A (VCm, f, κ) and devise a sequence of security games,
where the adversary A’s view in one game is indistinguishable from its view in
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another game. We analyze A’s advantage AdvVer
A (VCm, f, q, κ) in winning the

experiment. Let Ti denote the event that the security experiment returns 1 in
game Gi. The security games are defined as follows:

Game G0. Define G0 to be the same as ExpVer
A (VCm, f, κ).

Game G1. The game is identical to G0, except that when generating Yij , the

delegator will use random value r
(1)
ij in Zp instead of wjdi. In other words, each

Yij is formed as g2
cjBij+r

(1)
ij as opposed to g

cjBij+wjdi

2 in game G0. To be able
to verify the result of computation, the delegator also changes each vki in SKx

from its original value ri
∑n2

k=1

∑n3

j=1 Aikdkwj to ri
∑n2

k=1

∑n3

j=1 Aikr
(1)
kj , while

keeping the remaining portion of VCm construction unchanged. This will allow
the delegator to verify the result of computation without any changes to Verify.

Comparing A’s view in games G0 and G1, we have that g
wjdi

1 ’s are replaced

with random group elements. Now notice that all g
wjdi

1 ’s collectively form a
partial (n2 +n3)-M-DDH tuple. This gives us that the advantage A has in game
G0 is at most AdvM-DDH

A (κ) larger than in game G1 and thus any non-negligible
difference in the adversary’s behavior between the gamesG0 andG1 can be used
to break the M-DDH assumption. Therefore, we have that |Pr[T1] − Pr[T0]| ≤
AdvM-DDH

A (κ) and based on our assumption that the M-DDH problem is hard
the difference in the adversary’s view between games G0 and G1 is negligible.

Game G2. The game is identical to G1 except the delegator removes infor-

mation about cj and Bij from each Yij , i.e., Yij = g
r
(1)
ij

2 instead of g
cjBij+r

(1)
ij

2 .
To be able to verify the result of computation, we also update SKx to com-
pensate for the difference in Yij ’s. We thus add the difference in the vki’s∑n1

i=1

∑n3

j=1 ricj(
∑n2

k=1 AikBkj) to the value of vk1 in G1 while keeping the re-
maining vki’s the same as in G1 (note that there are other possibilities because

only
∑

i vki’s is used). Because the r
(1)
ij ’s are completely random, the distribu-

tion of the Yij ’s in G1 and in G2 is identical and thus Pr[T2] = Pr[T1]. Now
observe that we removed any information about the cj ’s from A’s view.

Let us next analyze A’s success in winning ExpVer
A (VCm, f, κ) in G2. Assum-

ing the XDH assumption is true, the M-DDH problem is hard in our setting with
bilinear maps, i.e., it is hard in GT . Thus, while A can compute griT for each i,
({griT }1≤i≤n1 , {gricjT }1≤i≤n1,1≤j≤n3) is a partial (n1 + n3)-M-DDH tuple and A
can have only a negligible advantage in distinguishing the g

ricj
T ’s from random

group elements. Now suppose that A was able to return a tuple (Ĉ, ŝ) that dif-
fers from correct (C, s), but nevertheless passes verification. Then the returned

value satisfies the equation gT
∑n1

i=1

∑n3
j=1 ricj(Cij−Ĉij) = s/ŝ. Because the server

has no information about the cj ’s and furthermore is unable to distinguish g
ricj
T ’s

from random group elements, the only way for A to create simultaneously valid
Cij − Ĉij and s/ŝ is to correctly guess the value of g

ricj
T . The probability of this

happening is, however, negligible in κ and thus Pr[T2] is negligible as well.
Combined with the previous analysis of the differences in the adversarial suc-

cess between games G0 and G2, we obtain that A’s advantage is negligible in
winning the experiment ExpVer

A (VCm, f, κ) as desired. �
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