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Abstract Edge detection in images is well studied, but using full three-dimensional
information to display volumes from 3D-imaging devices or to perform pixel-level
tracking of moving objects from a sequence of frames in a movie is less well under-
stood. In this work, we study the interplay between 3D wavelet–shearlet edge detec-
tion and thresholding in accomplishing these two tasks. We find that a simple thresh-
olding algorithm, modeling the edge image as a sum of two distributions, is very
effective.

Keywords Wavelet edge detector · Shearlet edge detector · Image thresholding ·
3D volume display · 3D tracking

1 Introduction

The identification of distributed discontinuities, such as edges or surface boundaries,
is an important problem in computer vision and image processing. Edge classifica-
tion is based on estimating the gradient norm at each pixel, but the complication
comes in filtering noise. One of the most well-known and successful methods for
identifying edges is due to Canny [2], but this is a single-scale algorithm.
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The advantages of using a multiscale approach for edge detection have widely
been acknowledged since [5] and [6]. It has been shown that extending such methods
to include multiple directions on multiple scales can greatly improve results [1, 7,
10]. A particular approach using the multiscale and multidirectional representation
known as the shearlet representation has shown particular promise [11].

In this work, we continue our investigation [8] of extending some of these
multiscale and multidirectional methods into three dimensions (3D). In particular,
we focus on wavelet, shearlet, and hybrid combinations. The hybrid combinations
improve efficiency by realizing that many 3D datasets encountered in practice may
not exhibit complex curvilinear discontinuity structures in all three dimensions, and
thus the full generality of 3D shearlets may not be needed.

One important application of edge detection on 3D objects is to better represent
or visualize the data, for example, data from X-ray or MRI scans. Yet our original
motivation for these 3D extensions has been to apply these techniques to motion
video by viewing the third dimension as the component obtained by stacking the
individual images. Using the edge/surface detections in this case, we can use this
information to precisely track objects within a few pixels of their true position [8].

An important component in these algorithms is to threshold, retaining only nom-
inated edge points that are above a magnitude considered to be background noise.
Sometimes these thresholds can be preset to values for a given class of expected
images and noise levels. However, in this work we will extend common 2D thresh-
olding techniques and propose a simple new method to find the appropriate thresh-
olding value based directly on the data .

This chapter is organized as follows. In the Section 2, the 3D edge detection
problem and the basics of the proposed multiscale and multidirectional methods
are given. Demonstrations of the advantages of a shearlet approach over a wavelet
approach are also shown. The Section 3 describes three thresholding algorithms
and shows the experimental results based on using them on a sequence of moving
targets. Concluding remarks follow in the Section 4.

2 Three-Dimensional Edge Detection

Detecting changes such as edges or surface changes in 3D data has many important
applications. One of these is the ability of the collection of edge intensities to be
used to visualize the content of a given image data I := [0,1]3 → [0,1]. Specifically,
we may loosely define the collection of edges as

E =
{

t ∈ [0,1]3 : |∇I(t)| ≥ h
}

, (1)

the set of points for which the magnitude of the gradient of I is above a scalar thresh-
old h∈ (0,1]. This characterization of edges, however, is only suitable for noise free
images I. To deal with noise, one solution is to prefilter the image to remove the
noise before using this characterization. This prefiltering can be done by applying
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a Gaussian filter ga = exp(−(x2 + y2 + z2)/2a2) dependent on a which determines
the filter’s noise dampening properties. This methodology is highly successful if the
optimal parameter a can be found for the particular image of interest.

By framing this methodology in the form of a wavelet transform, Mallat et al.
[5, 6] related a to the scale parameter of the transform. Specifically, the continuous
wavelet transform of an image I is given by

Wψ I(a,τ) = 〈I,ψMa,τ〉 , (2)

where Ma = aI3, I3 is the 3× 3 identity matrix, τ ∈ R
3, and a > 0. The analysis

functions
ψMa,τ(t) = |detM|− 1

2ψ(Ma
−1(t− τ)) τ ∈ R

3 (3)

are well localized waveforms that can decompose images I ∈ L2(R3) so that

I =
∫

R3
〈I,ψMa,τ〉ψMa,τ dτ . (4)

By setting ψ to be ∇g1, the first derivative of a Gaussian wavelet, the above
edge detection methodology corresponds to the detection of the local maxima of
the wavelet transform of I for a particular scale a. Further more, this framework
allows one to develop an efficient and effective detection scheme by knowing how
the magnitude of the wavelet transform behaves at location points corresponding to
edges (see [8] for details).

We have found this approach to be very successful for many image data sets,
as we shall demonstrate. However, when the data has sharp curvilinear elements or
edges that change with complicated orientations, the wavelet transform is not effec-
tive in isolating such features. For such cases, a multidirectional representation is
needed. To deal with these problems, we have developed an edge detection scheme
using the shearlet representation.

2.1 The Shearlet Representation

The shearlet representation is essentially a multidirectional extension of the wavelet
representation. Its unique spatial frequency tiling is achieved through the action of
shearing matrices that give the transform its name. Shearlets are constructed by first
restricting the subspace of L2(R3) to be L2(P1)

∨ = { f ∈ L2(R3) : supp ̂f ⊂ P1},
where P1 is the horizontal pyramidal region in the frequency plane:

P1 = {(ν1,ν2,ν2) ∈ R
3 : |ν1| ≥ 2,
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We define the shearlet group to be

Λ1 =

{

(M(1)
as1s2,τ) : 0≤ a≤ 1

4
,−3

2
≤ s1 ≤

3
2
,−3

2
≤ s2 ≤

3
2
,τ ∈ R

2
}

where

M(1)
as1s2 =

⎛

⎝

a −a1/2s1 −a−1/2s2

0 a1/2 0
0 0 a1/2

⎞

⎠ .

The shearlet analyzing functions defined on L2(P1)
∨ are given by

ψ(1)
as1s2τ(t) = |detM(1)

as1s2 |−
1
2ψ(1)((M(1)

as1s2)
−1(t− τ)). (5)

In order for any function in L2(P1)
∨ to be decomposed by these analyzing func-

tions, the following conditions and assumptions on ψ(1) need to be satisfied [4]. For
ν = (ν1,ν2,ν3) ∈ R

3,ν1 �= 0, the function ψ(1) should be such that

ψ̂(1)(ν) = ψ̂(1)(ν1,ν2,ν3) = ψ̂1(ν1)ψ̂2

(

ν2

ν1

)

ψ̂2

(

ν3

ν1

)

. (6)

The function ψ1 ∈ L2(R) should satisfy the Calderón condition

∫ ∞

0
|ψ̂1(aν)|2

da
a

= 1 for a.e. ν ∈ R

with supp ψ̂1 ⊂
[

−2,− 1
2

]

∪
[

1
2 ,2

]

and ‖ψ2‖L2 = 1 with supp ψ̂2 ⊂
[

−
√

2
4 ,

√
2

4

]

. If

these assumptions are met, then

f (t) =
∫

R3

∫ 3
2

− 3
2

∫ 3
2

− 3
2

∫ 1
4

0
〈 f ,ψ(1)

as1s2τ〉ψ
(1)
as1s2τ(t)

da
a4 ds1 ds2 dτ (7)

for all f ∈ L2(P1)
∨.

The shearlet analyzing functions ψ(1)
as1s2τ in the frequency domain are given by

ψ̂(1)
as1s2τ(ν1,ν2,ν3) = aψ̂1(aν1)ψ̂2(a

− 1
2 (
ν2

ν1
− s1))ψ̂2(a

− 1
2 (
ν3

ν1
− s2))e

−2πiν ·τ . (8)

Because of the particular support constraints given, this means each function ψ̂(1)
as1s2τ

has support described by the elements (ν1,ν2,ν3) such that for a given s1, s2, and
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1
2 . Such points end up describing a pair of hyper-trapezoids

that are symmetric with respect to the origin with orientation determined by slope
parameters s1 and s2. These hyper-trapezoids become elongated as a→ 0.
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Since the analyzing functions ψ(1)
as1s2τ only decompose elements in L2(P1)

∨, we
form complementary analyzing functions supported on the complementary pyrami-
dal regions. Specifically, we define

P2 = {(ν1,ν2,ν2) ∈ R
3 : |ν2| ≥ 2,
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and

P3 = {(ν1,ν2,ν2) ∈ R
3 : |ν3| ≥ 2,
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We also define

Λ2 =

{

(M(2)
as1s2,τ) : 0≤ a≤ 1

4
,−3
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2
,−3
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2
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2
}

where,

M(2)
as1s2 =

⎛

⎝

a1/2 0 0
−a1/2s1 a −a−1/2s2

0 0 a1/2

⎞

⎠ .

Likewise, we define

Λ3 =

{

(M(3)
as1s2,τ) : 0≤ a≤ 1

4
,−3

2
≤ s1 ≤

3
2
,−3

2
≤ s2 ≤

3
2
,τ ∈ R
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}

where,

M(3)
as1s2 =

⎛

⎝

a1/2 0 0
0 a1/2 0

−a1/2s1 −a1/2s2 a

⎞

⎠ .

By defining ψ(2) and ψ(3) as ψ̂(2)(ν) = ψ̂(2)(ν1,ν2,ν3) = ψ̂1(ν2)ψ̂2

(

ν1
ν2

)

ψ̂2

(

ν3
ν2

)

and ψ̂(3)(ν) = ψ̂(3)(ν1,ν2,ν3) = ψ̂1(ν3)ψ̂2

(

ν1
ν3

)

ψ̂2

(

ν2
ν3

)

, the analyzing functions

ψ( j)
as1s2τ(t) = |detM( j)

as1s2 |−
1
2ψ( j)((M( j)

as1s2)
−1(t− τ)), (9)

for j = 2,3 decompose the subspaces L2(P2)
∨ and L2(P3)

∨, respectively. Since
the union of L2(P1)

∨, L2(P2)
∨, and L2(P3)

∨ forms the space L2(R3) minus the
functions whose frequency supports are contained in [−2,2]3, we can obtain a com-
plete decomposition of L2(R3) by adding analyzing functions that can decompose
these elements. This is done by using an appropriate bandlimited window function
ϕ and forming the analyzing functions ϕτ(t) = ϕ(t− τ).

The shearlet representation consists of the collection of analyzing functions

{ψ( j)
as1s2τ}3

j=1 and ϕ restricted to the appropriate groups, but for simplicity of
notation we will drop the superscript. Examples of the spatial frequency hyper-
trapezoidal regions for these atoms are shown in Fig. 1.
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Fig. 1 Three-dimensional spatial frequency representations (four disjoint domains for each) of
shearlet atoms for three different choices of scales and shearing parameters

We denote S H ψ f (a,s1,s2,τ) to be 〈 f ,ψas1s2τ〉. We are able to design an edge
detection routine by using the following result [4] that characterizes the asymptotic
decay as a→ 0 for edge point locations.

Theorem 1. [4] Let Ω be a bounded region in R
3 with boundary ∂Ω and define the

function B to be the characteristic function over Ω . Assume that ∂Ω is a piecewise
smooth two-dimensional manifold. Let γ j , j = 1,2, . . . ,m be the separating curves
of ∂Ω . Then we have

1. If τ /∈ ∂Ω , then

lim
a→0+

a−NS H ψB(a,s1,s2,τ) = 0 for all N > 0.

2. If τ /∈ ∂Ω \∪m
j=1γ j and (s1,s2) does not correspond to the normal direction of

∂Ω at τ , then

lim
a→0+

a−NS H ψB(a,s1,s2,τ) = 0 for all N > 0.

3. If τ /∈ ∂Ω \∪m
j=1γ j and (s1,s2) corresponds to the normal direction of ∂Ω at τ

or τ ∈∪m
j=1γ j and (s1,s2) corresponds to one of the two normal directions of ∂Ω

at p, then
lim

a→0+
a−1S H ψB(a,s1,s2,τ) �= 0.
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4. If τ ∈ γ j and (s1,s2) does not correspond to the normal directions of ∂Ω at τ ,
then

|S H ψB(a,s1,s2,τ)| ≤Ca
3
2 .

This result allows us to use the concepts developed in [11] for 2D to be extended
to obtain a 3D shearlet edge detection algorithm. Details of the algorithm are given
in [8].

2.2 Visualization

An edge map of a 3D dataset is particularly useful for visualizing complex objects
by taking advantage of the ability of an alpha map to give some transparency to the
detected surfaces [9]. In this section, we demonstrate the capability of the wavelet
and shearlet edge detection schemes to be used for visualization.

For implementation, we use the thresholding technique called hysteresis to deter-
mine the true edge intensity magnitudes. Specifically, hysteresis uses two diferent
thresholds tlow and thigh to help distinguish true edges, even if the magnitude of
the gradient is somewhat below the value h specified in (1). A pixel is identified as
a strong edge pixel if its intensity gradient magnitude is greater than thigh. A pixel
is also marked as part of an edge if it is connected to a strong edge and its gradi-
ent magnitude is larger than tlow and larger than the magnitude of each of its two
neighbors in at least one of the compass directions (N–S, E–W, NE–SW, NW–SE).
This 2D hysteresis is applied to the 3D intensity magnitudes M on a slice by slice
basis.

Assuming the magnitudes M of the gradient intensities are normalized, thigh is

given as ηM for some η > 0 where M denotes the mean of M and tlow is given as
ρthigh for some ρ < 1.

We illustrate these techniques on two examples.
In the first example, we added white Gaussian noise with a standard deviation

of 0.1 to the 3D Shepp-Logan Phantom dataset. In this case, we set η = 4.1 and
ρ = 0.45. Figures 1, 2, 3, and 4 show the results. The 3D shearlet edge detector
gives a higher quality rendering of edge information.

Fig. 2 Data for the 3D phantom experiment: images of slices through main axis
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Fig. 3 Results for the 3D phantom experiment with hysteresis filtering : images of slices. Top:
results of wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge
detection

Fig. 4 Results for the 3D phantom experiment with hysteresis filtering: 3D display. Top: results of
wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge detection
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In the second example, we added a white Gaussian noise with a standard devia-
tion of 0.2 to a spherical harmonic of order 2 and degree 6 with a shading applied. In
this case, we set η = 4.3 and ρ = 0.45. Figures 5, 6, and 7 show the results. Again,
the shearlet-based edge detector gives a better reconstruction.

Fig. 5 Data for the 3D spherical harmonic experiment: images of slices through main axis

Fig. 6 Results for the 3D spherical harmonic experiment with hysteresis filtering: images of slices
through main axis. Top: results of wavelet-based edge detection. Bottom: corresponding results for
shearlet-based edge detection

3 Thresholding the Results of Edge Detectors

In this section, we study the use of various edge detection algorithms and various
thresholding algorithms in determining edges in a noisy sequence of images.

3.1 The Eight Edge Detection Algorithms

We used several edge detection algorithms: 2D and 3D versions of the Canny,
wavelet, and shearlet edge detectors, as well as hybrid wavelet (shearlet) edge detec-
tors that combine the results of 2D slices in the xy, xt, and yt directions. We used
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Fig. 7 Results for the 3D spherical harmonic experiment with hysteresis filtering: 3D display. Top:
results of wavelet-based edge detection. Bottom: corresponding results for shearlet-based edge
detection

MATLAB’s implementation of the 2D Canny algorithm in edge.m. The other algo-
rithms are described in detail in [8] and the MATLAB implementations are available
at https://www.cs.umd.edu/users/oleary/software/.

Note that the Canny algorithm returns a 0-1 image, so thresholding cannot be
applied.

3.2 The Three Thresholding Algorithms

The thresholding algorithms were one taken from Gonzales [3, p. 406], Otsu’s
method as implemented in MATLAB’s graythreshold.m, and a method that
we developed.

Gonzales determines the threshold iteratively. He sets the threshold halfway
between the mean of the pixels currently labeled “black” and those labeled “white.”
The iteration terminates when the change in mean is less than a specified tolerance.
In the figures, this method is referred to as the “global” method.

Otsu’s method aims to choose the threshold to minimize the sum of the vari-
ance among pixels labeled “black” and the variance among pixels labeled “white,”

https://www.cs.umd.edu/users/oleary/software/
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weighted by the proportions of pixels in each group. We applied it frame-by-frame
to the norm-squared of the gradient estimate from the edge detector.

Our method assumes that in an edge image, an overwhelming number of pixels
should be labeled “black.” Therefore, we set the threshold to three times the standard
deviation of the pixel values. We applied it separately to the three components of the
gradient estimate from our edge detector, and it is referred to as the “stat” method
in the figures.

Frame 5 Frame 15

Frame 20 Frame 25

Fig. 8 Frames 5, 15, 20, and 25 from the movie with shading and no noise

3.3 Tests on Moving Objects

To test our algorithms, we generated a 30-frame movie containing seven wedges
translating and rotating at different velocities. We added shading and noise to make
the problem more difficult. Several frames of the movie (with shading but no noise)
are shown in Fig. 8. We display the results of our algorithms on frame 20.

No noise, no shading: Figs. 9, 10, and 11

In this case, edge detection is rather easy, and all of the algorithms do well, although
the 3D wavelet version tends to broaden the edges due to motion.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 9 Results of edge detection on movie with no noise using the global thresholding algorithm

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 10 Results of edge detection on movie with no noise using the Otsu thresholding algorithm

Noise with shading: Figs. 12, 13, and 14

The Canny algorithm breaks down when noise (standard deviation of 2) is added
(using MATLAB default parameters). The Gonzales threshold is again too small for
the wavelet algorithms, but with the other two threshold algorithms, the 2D and 3D
wavelets continue find all seven wedges. Although the 3D has considerable broad-
ening, it finds all of the wedge edges more reliably.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 11 Results of edge detection on movie with no noise using the stat thresholding algorithm

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 12 Results of edge detection on movie using the global thresholding algorithm. Standard
deviation of the noise is equal to 0.2 relative to white pixels

Increased noise with shading: Figs. 15, 16, and 17

When the standard deviation of the noise is increased to 4, it is hard to find the
wedges in the output of the 2D wavelet, but the seven wedges are somewhat visible
in the 3D wavelet-based results.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 13 Results of edge detection on movie using the Otsu thresholding algorithm. Standard devi-
ation of the noise is equal to 0.2 relative to white pixels

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 14 Results of edge detection on movie using the stat thresholding algorithm. Standard devia-
tion of the noise is equal to 0.2 relative to white pixels

Results for the spherical harmonic example: Figs. 18 and 19

For comparison with Figs. 6 and 7, we applied our algorithms to the results for the
spherical harmonic example. As seen in Figs. 18 and 19, the trends persist. The Otsu
algorithm does not produce good results. The global algorithm allows too much
noise. The stat algorithm is a little too conservative in declaring edges but produces
good results.
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 15 Results of edge detection on movie using the global thresholding algorithm. Standard
deviation of the noise is equal to 0.4 relative to white pixels

2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 16 Results of edge detection on movie using the Otsu thresholding algorithm. Standard devi-
ation of the noise is equal to 0.4 relative to white pixels

4 Conclusion

We have developed 2D and 3D wavelet, shearlet, and hybrid combination based
edge detection algorithms. Our investigation focused on combining edge detectors
with different thresholding methods to improve the ability to differentiate image
features from the background in the presence of noise. The value of a particular
method is dependent on the nature of the problem being considered. For rigid sta-
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2D−Canny 3D−Canny

2D−Wavelet 3D−Wavelet 2D−Shearlet

3D−Shearlet HybridWaveletWavelet−3D HybridShearletShearlet−3D

True Edges

Fig. 17 Results of edge detection on movie using the stat thresholding algorithm. Standard devia-
tion of the noise is equal to 0.4 relative to white pixels

Fig. 18 Results of edge detection on shearlet results from spherical harmonic example. Top: global
thresholding. Middle: Otsu algorithm. Bottom: stat thresholding. Compare with the bottom row of
Fig. 6
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Fig. 19 Results of edge detection using the 3D shearlet version on the spherical harmonic example.
Top: global thresholding. Bottom: stat thresholding. Otsu results are unusable in this case. Compare
with Fig. 7.

tionary image features, the 2D and 3D methods perform equally well. When features
change scale and orientation rapidly with a curvilinear description, the 3D shearlet
method has been shown to perform better as seen in the visualization of the phantom
and spherical harmonic examples. For dynamic image features that change location
and orientation rapidly over time, 3D methods have a distinct advantage. Each 3D
method incorporates significant horizontal, vertical, and time gradient information
over a fixed window of neighboring image slices. Visually, this means that each
edge image feature has additional thickness because neighboring directional gra-
dients are accumulated. In terms of tracking, this feature is in fact beneficial. As
the noise level increases, 2D methods do not account for the neighboring intensity
changes and show a degraded performance.

The proposed 3D thresholding methods are efficient to implement so that they
can be used as components to a tracking algorithm. On average our stat method
performed the best on most cases. For shaded stationary objects the wavelet methods
combined with Otsu are adequate. However, for shaded dynamic image features, the
3D Shearlet detection combined with stat thresholding seemed to perform the best.
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