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Abstract. Although most electric power is presently generated using
fossil fuels, two abundant renewable and clean energy sources, solar and
wind, are increasingly cost-competitive and offer the potential of decen-
tralized (and hence more robust) sourcing. However, the intermittent
nature of solar and wind power presents difficulties in connection with
integrating them into national power grids. One approach to address-
ing these challenges is through an agent-based architecture for coordi-
nating locally-connected energy micro-grids, each of which manages its
own local energy production, distribution, and storage. By integrating
these micro-grids into a larger network structure, there is the opportu-
nity for them to be more responsive to local needs and hence more cost
effective overall. In such an arrangement, the micro-grids have agents
that can choose to resell their excess energy in an open, regional mar-
ket in alignment with respect to their specific goals (which could be to
reduce carbon emissions or to maximize their financial outcomes). In
this study, we have investigated how agents operating in such an open
environment can learn to optimize their individual trading strategies by
employing Markov-Decision-Process-based reasoning and reinforcement
learning. We empirically show that our learning trading strategies im-
prove net profit loss by up to 29 % and can reduce carbon emissions by
78 % when compared to the original (non-learning) trading strategies.

Keywords: Renewable energy · Multi-agent systems · Power trading ·
Micro-grids

1 Introduction

A micro-grid refers to a local energy system that can generate and store its own
renewable energy and also be connected to a main electrical energy supply grid
[5]. The idea of a micro-grid is to utilize the distributed local renewable energy
resources and satisfies power needs locally. It can also sell or buy power from an
energy utility company. However, renewable energy sources (wind, sun) are inter-
mittent in nature and vary hour to hour, even minute to minute, depending upon
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local conditions [5], which can compromise electric system reliability. Different
energy management strategies are used to mitigate or eliminate the impact of
supply variations, such as storage devices (batteries, fly wheel, capacitors, etc.),
forecasting techniques, demand load management, and backup generators. One
of the approaches to address this issue is the interconnection of nearby micro-
grids which reduce the impact of non-steadiness of renewable energy sources, as
communities having micro-grid can trade power with each other to satisfy their
demands [5]. An agent-based architecture for local energy distribution among
micro-grids is presented in Yasir et al. [16]. In this architecture, each micro-grid
represents a community which has its own power generator based on the renew-
able energy sources and also has its own electric energy demand which varies
from hour to hour. Every community has a coordinator agent which, when it
has a power surplus or deficit, is responsible for power trading to other inter-
connected communities or to the utility grid. Each community may employ a
different strategy for power trading depending upon either of two goals i.e. profit
maximization, and reduction in carbon emission.

In this work, we study the trading activities of coordinator agents that can
learn to adapt their strategies in an electric market. The learning trading strate-
gies of the coordinator agents that improve trading performance by employing
Markov Decision Process (MDP) and reinforcement learning. Our experimental
results show that the learned trading strategies respond to changing conditions
and lead to superior out-comes (with respect to financial rewards and reduced
carbon emissions), when com-pared with fixed trading strategies.

The rest of the paper is organized as follows: In Sect. 2 we describe the elec-
tric market and the trading strategies, Sect. 3 covers the MDP learning frame-
work. Section 4, shows empirical comparison of our learning trading strategies.
In Sect. 5, we review related work in this area. Finally, Sect. 6 discuses some
future prospects and also provides a conclusion.

2 Electric Market and Trading Strategies

In our work, we design an hour-ahead market and assume that on the hour of
delivery, suppliers always provide the amount of power they had committed in
the market. Also, there is one market for all the communities. The market mech-
anism in our work employs a double auction algorithm [8] to facilitate market
clearing (determining the price at which a unit of energy is sold by matching
bids and offers). All the sellers and buyers submit their offers and bids in certain
time interval. Once the time is over, market clearing algorithm starts making
match. In this algorithm, the buyer of the highest bid will be matched by the
seller with the lowest bid. The clearing price (or unit price per kWh) is set as
the mean of the (bid and offer) prices. Every match (i.e. a pair of seller and
buyer)has its own clearing price. There is no one clearing price for all buyers
and sellers. A coordinator agent typically buys from the market; and if no power
is available in the local market or the price is high in the market, it buys from
the utility gird.



An Intelligent Learning Mechanism for Trading Strategies 161

As discussed above, a community employs a trading strategy for power trad-
ing. Some communities may be environmentally conscious and more interested
in minimizing environmentally harmful emission, while others may be concerned
about the maximization of financial benefits.

2.1 Trading Strategies

In this section, we describe the two main trading strategies that a community
can use for trading described by Yasir et al. [16].

Altruistic Strategy (AS). The goal of a community that employs this strategy
is the minimization of carbon emissions by using more green power (and thus
not buy from the main utility grid, some of whose power is produced by fossil
fuels). This strategy also encourages other communities to use renewable energy
by selling its own (green) power in the market at the lowest price. So, the agent
using this strategy:

– is willing to buy green power at high prices, if green power is available in the
market, and

– sells green power in the market at a low price (lower than that charged by the
utility), so that more communities can use its power.

Greedy Strategy (GS). A community using this strategy always wants to
maximize its financial benefit by buying power at a low price and selling power
at a high price in the market. GS always tries to

– Buy at a low price from any place (i.e. market or utility grid)
– Sells energy surpluses at a high price to any place.

Fixed Strategy (FS). A community that employs this strategy always offers
and bids power in the market at a fixed price. For this paper, the fixed price is
21.5 cents.

Note that the generation cost of electricity is 7 cents per Kwh. So no strategy
offers below 7 cents.

In [16] the authors empirically compared AS and GS strategies in term of
two variables:

– Net profit/loss by community
– Carbon emission produced as a result of the strategy.

There are several limitations in this work. Although AS and GS adjust their
current trading price based on the history of how they traded 24 h ago, they
do not learn from past experience. As a result, these communities do not put
optimal trading bids and offers in the competitive electric market and do not get
the maximum profit or minimization of the carbon emissions. Similarly, above
mentioned strategies make trading bids randomly by adding or subtracting small
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random numbers from their last bids. They do not know how much exactly
they add or subtract from their last bids. Also, while making the bids they do
not consider the current position of the market. By using the MDP model, we
overcome all these limitations.

In this paper, we propose two types of learning strategies for trading that
a community can use. One learning strategy is used to optimize the financial
gain and the other leaning strategy is used to optimally reduce the carbon
emissions to the atmosphere. The strategy that maximizes profits is called the
greedy learner strategy while the strategy that minimizes the carbon emissions
is called the green learner strategy. Both strategies learn an MDP policy using
Q-learning. The learning algorithm uses a typical exploration-exploitation trade-
off that explores more often in early episodes of simulation and progressively less
in the later episodes of the simulation.

3 An MDP-based Learning Framework

Let Ts be the Learning Trading agent for which we develop an action policy
using the framework of MDPs and reinforcement learning. The MDP for Ts is
defined as:

MTs = (S,A, δ, r)
Where:

– S = si : i = 1....I is a set of states,
– A = aj : j = 1....J is a set of actions,
– δ(s,a) = s

′
is a transition function, and

– r (s,a) is a reward function

The state space should capture the two sets of features that are important
to how Ts would set its trading prices:

– Last hour average clearing price (ACP) in the market
– Level of electric demand (DL) available in the market for trading for current

hour.

The average market clearing price is difficult to represent because prices in
the real world are virtually continuous. We restrict the range of prices from 10
cents to 36 cents per Kwh of electricity in New Zealand dollars [4] and discretizing
the prices in 2 cents increments to get 13 possible values for the clearing price.
Similarly we categorized the level of demand in to three bands: low, medium,
and high. Information about ACP and DL is provided by the market to all
communities participating in the market.

In the final representation, the state space S is the set defined by all the
values of the elements in the following:

S = {ACPt−1,DLt}
Next, we define the set of MDP actions A. Each learning agent will generate

its bid-ding prices by using the information of ACPt−1 and DLt. The learning
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agent will either increase or decrease its trading price with reference to the
ACPt−1. After observing few real world electric markets [3,9], we found that
price for the next hour electric power is either increased or decreased up to 2 cents
per kWh as compared to the last hour. The action that an agent can do as a buyer
or a seller is to increment or decrement certain amount from the last average
clearing price. The range of increments and increments are between −2.5 and
2.5, with discrete options chosen by agents in 0.5 units, resulting in 11 possible
actions. So the set of actions is the increment or decrement of last average
clearing price from the range of price from 0 to 2.5 cents, and we discretize the
prices in 0.5 units cents to get 11 possible values for the actions.

The transition function δ is defined by numerous stochastic interactions
within the simulator. The reward function, r, is unknown to the MDP, and
it is calculated by the learning agent depending upon its learning objective, i.e.
maximize profit or minimize the carbon emissions.

Let TsP be the learning trading agent that wants to maximize the profit.
Then the reward function for the seller agent is:

rsp =

⎧
⎪⎨

⎪⎩

Amtst/Amtmax−s ∗ (pt − Ψbt), if traded inside market
0, if no buyer in market
Amtst/Amtmax−s ∗ (Ψbt − ACPt), if traded outside market

The reward for the buying agent that wants to maximize its profit is:

rbp =

⎧
⎪⎨

⎪⎩

Amtbt/Amtmax−b ∗ (Ψst − pt), if traded inside market
0, if no seller in market
Amtbt/Amtmax−b ∗ (ACPt − Ψst), if traded outside market

where: rsp and rbp are the rewards for selling and buying agents that want to
maximize the profit, respectively, Amtst and Amtbt are the total quantities sold
and bought from the market at time t by community Amtmax−s and Amtmax−b

are the maximum quantities sold and bought from the market by community at
any time. We use the denominator values to normalize the value of reward in
certain range.

Pt is the price at which the quantity sold is/bought from the market at time t.
Ψbt and Ψst is the price at which utility grid buys and sells at time t.
Similarly, let Tsg be the learning agent that aims to reduce the carbon emis-

sion as much as possible. The reduction in carbon emission is only possible if
community buys (when it needs) power from the market. Being the green com-
munity, it also prefer to sell power inside the market. So the reward function for
the selling agent is:

rsg =

⎧
⎪⎨

⎪⎩

Amtst/Amtavailable, if traded inside market
0, if no buyer in market
−1, if traded outside market
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The reward for learning buying agent for carbon emission minimization is:

rbg =

⎧
⎪⎨

⎪⎩

Amtbt/Amtneeded, if traded inside market
0, if no seller in market
−1, if traded outside market

where: Amtavailable is the total surplus power for selling and Amtneeded is the
total power quantity required to meet its demand. The value of reward equals to
1 when all the power (available or needed) is sold or bought, from the market.

Since this is a non-deterministic MDP formulation with unknown reward and
transition functions, we use the Watkins and Dayans [14] Q-learning formula:

Qt(s, a) = (1 − α)Qt(s, a) + α[rt + γmaxa′ Qt+1(s
′
, a

′
)]

4 Experiments

This section presents the results of four types of comparative experiments we
have conducted using learning trading strategies.

4.1 Experimental Setup

In order to compare the above mentioned strategies, we set up forty micro-grid
communities (C1 to C40). The communities have an average hourly consumption
of 1150 kWh and a wind turbine of 2000 kW generation capacity. However,
these values for an individual community will vary, since the communities are
dispersed geographically, and hence have different wind speeds and patterns in
their regions. Thus the power produced by each community is also different.
Power generated by the wind turbine is calculated by using the formula [6]:

P = 1/2ρAV 3Cp

Where P is the power in watts (W), ρ is the power density in kilograms per
cubic meter (kg/m3), A is the swept rotor area in square meters (m2), V is the
wind speed in meters per second (m/s), and Cp is the power co-efficient. We
obtained the synthetic wind speed (V) data of New Zealand from Electricity
Authority New Zealand [7]. We also obtained hourly power consumption data
of nine different places from the Property Services office of the University of
Otago [11].

The assumptions made while running our experiments are as follows. All
communities are situated at the sea level. So the value of is 1.23 kg/m3. The blade
length of the wind turbines is 45 meter (m). The cut-in and cut-out wind speeds
of the turbines is 3 and 25 meters per second (m/s), respectively. Theoretically
the maximum value of Cp is 59 %, which is known as Betz limit [6]. However,
in practice the value of Cp is in between 25 %–45 % [6] depending upon the
height and size of the turbine. The value of the power co-efficient (Cp) is 0.4
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(i.e. 40 %). We also assume that the utility grid is always ready to buy power
and sell power to the micro-grids at the rates of 18 cents per kWh and 25 cents
per kWh, respectively. To trade into the market, a community uses the market-
based trading mechanism discussed in Sect. 2.1. The value of learning rate (α) in
our Q-learning scheme is 0.5, and the discount factor (γ) is 0.1. When exploiting
the learned policy, we randomly select one of the possible actions that is within
20 % of the highest Q-value.

We computed the value of net profit/loss1 and carbon emission2 by varying
the learning and non-learning strategies during simulation. We calculate the
amount of carbon emission produced by using electricity emission factor of 0.137
(kg Co2-equivalent per Kwh) for New Zealand [7].

4.2 Results

We ran all experiments for 35,000 simulated hours. Due to space constraints,
we have presented the results of only two representative communities: one that
experiences net power deficits, and one that has power surpluses. One community
(C1) has overall surplus power generation during 35,000 simulated hours, and
the other community (C2) has deficit in power generation for the same period.

Experiment 1. In this experiment, first all communities in the simulation
employ the fixed strategy (as described in Sect. 2.1) for the baseline scenario. To
make comparison of learning strategies with baseline scenario all communities
again employ the fixed strategy except communities C1 and C2, which use the
two learning strategies (successively, one by one). Table 1 shows the results. The
dollar sign ($) represents the net profit/loss and Kg shows the total carbon
emission produced. The results clearly show that communities using learning
strategies do better as compared to the communities that use only the fixed
strategy. There is an improvement of around 10 % in net profit loss, and about
78 % reduction in the carbon emission by the employing learning strategies. Also
the greedy and green learners perform better than fixed agent.

Table 1. Fixed vs. learning strategies

Community Fixed strategy Greedy learner Green learner

$ Kg $ Kg $ kg

C1 1,430,788 495,151 1,558,207 137,067 1,531,480 108,986

C2 −1,503,315 870,403 −1,358,975 2,360,820 −1,449,140 185,688

1 Net Profit/Loss = ((cash in - generation cost) - cash out).
2 Carbon emission stores the amount of carbon di oxide emitted during electricity

production, transmission and distribution.
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Experiment 2. This experiment is similar to Experiment 1; with the difference
being that all the other communities employ the GS strategy (in contrast to fixed
strategy). Communities C1 and C2 used the learning strategies (again, one by
one). Table 2 shows the results for the two communities using learning strategies
in the presence of greedy strategies used by the other communities.

Table 2. Greedy strategy vs. learning strategies

Community Greedy strategy Greedy learner Green learner

$ Kg $ Kg $ kg

C1 1,429,156 505,229 1,434,999 367,941 1,329,129 80,893

C2 −1,528,295 877,395 −1,503,213 616,847 −1,612,990 127,700

The results clearly show that communities using the learning strategies are
better off as compared to communities using non-learning strategies (GS, AS,
FS) in terms of net profit loss and carbon emissions.

Experiment 3. This experiment is also similar to Experiment 1 & 2, with
the difference being that all the other communities employ the AS strategy.
Communities C1 and C2 used the learning strategies (one by one). Table 3 shows
the result for the two communities using learning strategies in the presence of
altruistic strategy used by the other thirty-nine communities. By employing
learning strategies in this setup, community improved up to 29 % and carbon
emission reduced up to 31 %. It clearly shows that learning strategies obtaining
their objectives even in the presence of the Altruistic strategy.

Table 3. Altruistic strategy vs. learning strategies

Community Altruistic strategy Greedy learner Green learner

$ Kg $ Kg $ kg

C1 1,531,710 495,913 1,924,035 714,683 1,500,108 338,360

C2 −1,503,551 879,686 −1,060,448 1,321,194 −1,519,907 685,113

Experiment 4. This experiment consists of three parts: in each part all com-
munities employ one of the strategies described in Sect. 2.1 (i.e. Fixed, Greedy,
and Green) except C1 and C2 which use the greedy and green learning strategies.
The results are shown in Tables 4, 5, 6, 7, 8 and 9. Tables 4, 6, and 8 show that
both learning strategies perform better when compared to non-learner strategies
(Tables 5, 7, and 9) even when they learn together in the same environment at
the same time.
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Table 4. Two learning strategies in
Greedy strategy background

Community Greedy strategy

$ Kg

C1 (Greedy learner) 1,422,662 391,738

C2 (Green learner) −1,611,041 131,858

C1 (Green learner) 1,317,871 76,995

C2 (Greedy learner) −1,509,336 643,874

Table 5. Non-learner strategies in
Greedy strategy background

Community Greedy strategy

$ Kg

C1 (Greedy strategy) 1399980 517,146

C2 (Green strategy) −1,575,271 642,525

C1 (Green strategy) 1,350,825 364,804

C2 (Greedy strategy) −1,533,322 902,284

Table 6. Two learning strategies in
altruistic strategy background

Community Altruistic strategy

$ Kg

C1 (Greedy learner) 1,912,356 730,615

C2 (Green learner) −1,545,476 640,341

C1 (Green learner) 1,480,572 327,909

C2 (Greedy learner) −1,067,943 1,337,009

Table 7. Non-learner strategies in
altruistic strategy background

Community Altruistic strategy

$ Kg

C1 (Greedy strategy) 1,838,603 804,407

C2 (Green strategy) −1,504,681 873,256

C1 (Green strategy) 1,522,661 485,900

C2 (Greedy strategy) −1,140,483 1,467,335

Table 8. Two learning strategies in
fixed strategy background

Community Fixed strategy

$ Kg

C1 (Greedy learner) 1,599,149 132,305

C2 (Green learner) −1,437,841 181,317

C1 (Green learner) 1,541,371 101,318

C2 (Greedy learner) −1,351,420 236,285

Table 9. Non-learner strategies in
fixed strategy background

Community Fixed strategy

$ Kg

C1 (Greedy strategy) 1,395,544 474,323

C2 (Green strategy) −1,535,957 851,424

C1 (Green strategy) 1,396,106 474,270

C2 (Greedy strategy) −1,540,306 872,806

Experiment 5. In Experiment 5, a community instead of using either the
green or greedy learning strategy, uses a hybrid strategy of half-green and half-
greedy learning strategies (HGGL) at the same time. A community using this
approach splits its surplus or deficit into two chunks. It generates two different
trading prices for these chunks and then enters into the market for trading.
This way, a community learns to improve its profit and also learns to reduce
its carbon emissions at the same time. Tables 10, 11, and 12 show the results of
experiment 5.

These show that the community that uses use the half-green and half-greedy
learning approach makes a compromised trade-off between the net profit/loss
and the carbon emissions. It can be observed from the results that the resultant
net profits and carbon emission produced by HGGL is between the Green and
Greedy learner strategies.
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Table 10. Half greedy, Half green learner in Greedy strategy background

Community Greedy strategy

$ Kg

C1 (Green Learner) 1,329,129 80,893

C1 (HGGL) 1,384,942 222,020

C1 (Greedy Learner) 1,434,999 367,941

Community Greedy strategy

$ Kg

C2 (Green Learner) -1,612,990 127,700

C2 (HGGL) -1,553,823 400,220

C2 (Greedy Strategy) -1,503,213 616,847

Table 11. Half greedy, half green learner in altruistic strategy background

Community Greedy strategy

$ Kg

C1 (Green Learner) 1,500,108 338,360

C1 (HGGL) 1,647,174 411,278

C1 (Greedy Learner) 1,924,035 714,683

Community Greedy strategy

$ Kg

C2 (Green Learner) -1,519,907 685,113

C2 (HGGL) -1,427,069 753,328

C2 (Greedy Strategy) -1,060,448 1,321,194

Table 12. Half greedy, half green learner in fixed strategy background

Community Fixed strategy

$ Kg

C1 (Green Learner) 1,531,480 108,986

C1 (HGGL) 1,551,825 113,224

C1 (Greedy Learner) 1,558,207 137,067

Community Fixed strategy

$ Kg

C2 (Green Learner) -1,449,140 185,688

C2 (HGGL) -1,398,512 202,703

C2 (Greedy Strategy) -1,358,975 2,360,820

5 Related Work

Recently there has been increasing interest in the application of multi-agent
systems to the power trading, management and control of distributed energy
resources on micro-girds or smart grids. For example, Reddy and Veloso [13]
presented a learning strategy for the broker agent in the smart-grid market.
They used Markov Decision Process (MDPs) and reinforcement learning to train
their broker agent about market tariffs. Peters et al. [10] also proposed a learn-
ing approach for the broker agent to learn the bidding price in the smart grid
market. Similarly, Rahimi-Kian et al. [12] and Xiong et al. [15] proposed learn-
ing mechanisms for the electric suppliers to bid in the electric market. Alam
et al. [1] introduced an agent-based model for energy exchanges among commu-
nities. In their proposed model, agents use a game-theory approach to form a
coalition to exchange power. Fatimah Ishowo-Oloko et al. [4] presented a model
for a dynamic storage-pricing mechanism that uses storage information from the
renewable energy providers to generate daily, real-time electricity prices which
are communicated to the customers. In addition Cossentino et al. proposed a
multi-agent system for the management of micro-grids [2]. The prime respon-
sibility of their proposed system is to provide an electronic market to the con-
sumers and generators within a micro-grid. In case of any mismatches between
supply and demand, their agent-based system will disconnect the loads or feeders
depending upon the priority.
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With respect to the above-mentioned proposed systems, none of the mod-
els considers the environmental concerns during energy trading or exchange.
All models are concerned exclusively with profit maximization. In the model of
Reddy and Velso [13], the goal of the broker is to maximize profit and avoid the
balancing fee imposed by the utility grid in case of mismatch between production
and consumption. In this model, the broker is an individual entity who does not
represent any community and does not have its own power generating unit. The
broker in this situation makes a match between the consumer and producers.
Similarly in [10], the authors presented a learning strategy for the broker who
makes a match between the producers of the wholesale market and the consumers
of in the retailer markets. In two of the models [12,15], the bidding strategy for
the electric suppliers (who trade in the wholesale market) is presented. Buyers
haven’t been considered. In Alam et al. model [1], they do not consider the prof-
itability of the individual households as well as s the amount of carbon emission
mitigated through coalition formation. In [4], there has not been much attention
given to the consideration of robust energy distribution across locally-connected
communities. Cossentino et al. [2] uses a trading mechanism among the internal
agents of the micro-grid to balance supply and demand inside the micro-grids.
In contrast, our research focuses on learning trading strategies for a commu-
nity that not only supports inter-micro-grid power trading but also improves
the financial benefits and reduce the carbon emissions of the participants in the
proportions that the communities choose.

6 Conclusion

Interconnected micro-grids, with renewable energy sources and energy storage
devices have already been shown to be effective respect to financial advantage,
local autonomy, and more energy distribution [16]. We have presented the two
learning trading strategies and have shown that a community can improve its
financial benefit and reduce its carbon emission using an agent-based architec-
ture. This has been accomplished by means of a multi-agent simulation that
employs synthetic wind data, real electric demand, and current energy pricing
data.

Based on the studies conducted, we found that if a community wants to
maximize its financial gain then it should adopt the greedy learning strategy;
and if a community is environmentally conscious, then it should employ the
green strategy to reduce carbon emissions. A community can also maintain a
balanced position between these two parameters by using, for example, a half
green and half greedy learning strategy.

Agent-based system coordination and collaboration are inherently scalable.
So in the future we intend to extend our analysis by conducting more elabo-
rate tests with our agent-based modeling approach. We will then explore the
following:
– Dynamic adoption of learning strategies (e.g. a community will choose by itself

to become greedy learner, or green learner, or hybrid learner with varying mix
of greedy-green strategies?, by looking at market conditions).
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– Use of reinforcement learning for battery storing strategies.
– Extension of our model by considering power generating units at the consumer

level (e.g. solar PVs).
– Reinforcement learning at the demand response management.
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