
On Algebraic Properties of Nominative Data
and Functions

Volodymyr G. Skobelev1, Mykola Nikitchenko2, and Ievgen Ivanov2(B)

1 Institute of Applied Mathematics and Mechanics of NAS of Ukraine,
Donetsk, Ukraine

skbv@iamm.ac.donetsk.ua
2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

nikitchenko@unicyb.kiev.ua, ivanov.eugen@gmail.com

Abstract. In the chapter basic properties of nominative data and func-
tions over nominative data (nominative functions) are investigated from
the perspective of abstract algebra. A set of all nominative data over arbi-
trary fixed sets of names and values together with basic operations which
include naming, denaming, and overlapping is considered as an algebraic
structure and its main properties are studied. Nominative data with com-
plex names satisfy the principle of associative naming and processing.
For such data a natural equivalence relation is introduced. Properties of
nominative functions (mathematical models of programs over nomina-
tive data) and predicates are studied. A notion of nominative stability of
nominative functions and predicates is considered. A two-sorted algebra
of nominative functions and predicates which generalizes Glushkov algo-
rithmic algebras is introduced and it is proved that the set of nominative
stable functions and the set of nominative stable predicates constitute
its sub-algebra. The obtained results form a mathematical basis for nom-
inative program logic construction.

Keywords: Glushkos algorithmic algebra · Program algebra · Nomina-
tive data · Nominative set · Named set · Nominative function

1 Introduction

To increase software system reliability a number of mathematically based
approaches for software (and hardware) development can be used. These
approaches are usually referred to as formal methods. Such methods are grounded
on different branches of mathematical logic, set theory, automata theory, univer-
sal algebra, formal language theory, and other fundamental areas of mathematics.
The central idea of formal methods can be described as follows: first, a formal
specification of a software system (abstract system model) is described, then this

This work was supported in part by the research project No. 11BF015-02 “For-
mal specifications and methods of development of reliable software systems”, Taras
Shevchenko National University of Kyiv, Ukraine.

c© Springer International Publishing Switzerland 2014
V. Ermolayev et al. (Eds.): ICTERI 2014, CCIS 469, pp. 117–138, 2014.
DOI: 10.1007/978-3-319-13206-8 6

118 V.G. Skobelev et al.

specification is successively transformed to a concrete specification (system real-
ization), and, at last, correctness of transformations can be proved. The majority
of formal methods are based on algebraic approach. This approach has the fol-
lowing two characteristics: (1) the formalism of many-sorted algebras is used to
model software systems; (2) special logics based on such many-sorted algebras
are used to reason about systems and their transformations. In the literature
various kinds of such algebras and logics are described (for instance, see [1]).

In this chapter we use composition-nominative approach [2] to construct alge-
bras of nominative data and function, considered as formal models of program,
and investigate properties of these algebras. This approach is grounded on several
principles [2–4] including the Development principle (from abstract to concrete),
Principle of integrity of intensional and extensional aspects, Principle of priority
of semantics over syntax, Compositionality principle, Nominativity principle.

The latter Nominativity principle states that nominative data [2] are ade-
quate mathematical models of various forms of data that are processed and
stored in computing systems. There are several types of nominative data [5,6],
and all of them are based on naming relations that associate names and values.
The simplest type of nominative data is a nominative set (or named set) [2,5]
which is defined as a partial function from an arbitrary set of names to an arbi-
trary class values. Other types of nominative data represent hierarchical data
organizations with simple or complex names.

On the abstract level a computing system is modeled as a partial function
that maps nominative data (input data) to nominative data (output data).
Such functions are called binominative. More generally, one can consider func-
tions which map nominative data to arbitrary values. Nominative functions
can be composed in various ways, e.g. by sequential composition, branching,
etc. Operations that construct composed systems from constituents are called
compositions.

A set of compositions available to a system developer together with a set
of functions obtained from some chosen set of basic functions by applications
of compositions form a certain algebraic system (program algebra) which is
considered as a semantic model of a computing system development language.
A syntax of this development language follows naturally from this semantic
model: programs are represented as terms of the described algebra.

The relation of the above mentioned notions to semantics of programming
languages can be illustrated on a simple educational programming language
WHILE described in [7]. This is an imperative language in which programs
are composed from statements that involve boolean and arithmetic expressions.
A program state is an assignment of values to variable names. It can be modeled
as a nominative set (which is defined on assigned variables and is undefined on
unassigned variables). Semantics of a statement can be represented as a (partial)
binominative function (a mapping from states to states) and semantics of a
boolean or arithmetic expression can be represented as a function on nominative
data which takes boolean or, respectively, integer values. Semantics of statements
are composed to obtain semantics of a program.

On Algebraic Properties of Nominative Data and Functions 119

The described approach allows one to investigate semantic properties of
programs and develop methods of synthesis of systems with desired properties.
In particular, in the works on the composition-nominative approach [2–4] various
logical systems for reasoning about properties of computing systems (functions)
and solving verification problems have been proposed. Some of them [4] are based
on the classical Floyd-Hoare logic [8,9], but extend it to handle a larger class of
pre- and post-conditions that includes partial predicates.

Although applications are important for the composition-nominative app-
roach, it is largely a mathematical framework, so it gives a rise to various theo-
retical questions.

One such question is definition and investigation of algebras of programs
over nominative data. This question is the topic of this chapter. A set of func-
tions and a set of predicates over nominative data which can be obtained from
basic functions and predicates using compositions such as branching, cycle, etc.
[2,6,10] form a two-sorted algebraic structure [11] which generalizes Glushkov
algorithmic algebras [12]. However, its main difference and advantage is that its
functions are defined over nominative data which give a natural representation of
data structures commonly used in programming. We will define and investigate
some properties of this algebra in this chapter.

The chapter is organized in the following way: in Sect. 2 we will introduce
the necessary notation; in Sect. 3 we will give an overview of the composition-
nominative approach; in Sect. 4 we will introduce the formal definition and classi-
fication of nominative data; in Sect. 5 we will describe representation of various
concrete data structures by nominative data; in Sect. 6 we will introduce the
main operations over nominative data; in Sect. 7 we will introduce algebras of
nominative data; in Sect. 8 we will consider the notion of nominative equivalence
and its relation to algebras of nominative data; in Sect. 9 we will introduce the
main compositions of functions and predicates over nominative data and intro-
duce a generalization of Glushkov algorithmic algebras which we call Associative
Nominative Glushkov Algorithmic Algebras; in Sect. 10 we introduce the notion
of nominative stability of nominative predicates and functions and prove that
the sets of nominative stable functions and predicates form a sub-algebra of
an Associative Nominative Glushkov Algorithmic Algebra and discuss practical
implications of this result.

2 Notation

We will use the following notation:

– 2A is the power set of a set A;
– |A| means the cardinality of a set A;
– A→̃B is the class of partial functions from A to B;
– f(x) ↓ (or f(x) ↑) means that a partial function f is defined (or respectively,

undefined) on an argument x. The notation f(x) ↓ R y, where R is a binary
relation e.g. equality (=), inclusion (∈), etc. means that f(x) is defined and
the relation f(x)R y holds;

120 V.G. Skobelev et al.

– Dom f denotes the domain of a function, i.e. if f : A→̃B, then Domf = A;
– dom(f) denotes the set of arguments on which f is defined (domain of defined-

ness), i.e. dom(f) = {x | f(x) ↓};
– im(f) = {f(x) |x ∈ dom(f)} is the image of a function f ;
– f |A is the restriction of a function f to a set A;
– f−1(A) = {x | f(x) ↓∈ A} is the preimage of a set A under a function f ;
– f(x) ∼= g(y) means the strong equality: if at least one of the values f(x) and

g(y) is defined, then the another one is defined and they both are equal.

3 Composition-Nominative Approach to Program
Formalization

In order to discuss role of data in programming we should construct adequate
models of programs. To tackle this problem we use composition-nominative app-
roach to program formalization [4]. This approach aims to construct a hierarchy
of program models of various abstraction levels and generality and is based on
the following main principles:

– Development principle (from abstract to concrete): program notions should
be introduced as a process of their development that starts from abstract
understanding and proceeds to more concrete considerations.

– Principle of integrity of intensional and extensional aspects: program notions
should be presented in the integrity of their intensional and extensional aspects.
The intensional aspects in this integrity play a leading role.

– Principle of priority of semantics over syntax : program semantic and syntac-
tical aspects should be first studied separately, then in their integrity in which
semantic aspects prevail over syntactical ones.

– Compositionality principle: programs can be constructed from simpler pro-
grams (functions) with the help of special operations, called compositions,
which form a kernel of program semantics structures.

– Nominativity principle: nominative (naming) relations are basic ones in con-
structing data.

According to the composition-nominative approach program models are spec-
ified as composition-nominative systems (CNS). These systems are composed of
simpler systems: composition, description, and denotation systems. Composition
system defines semantic aspects of programs, description system defines program
descriptions (syntactical aspects), and denotation system specifies meanings of
descriptions.

We consider semantics of programs as partial functions over class of data
processed by programs; compositions are n-ary operations over functions. Thus,
a composition system can be specified as two algebras: data algebra and function
algebra. Function algebra is the main semantic notion in program formalization.
Terms of this algebra define syntax of programs (descriptive system), and ordi-
nary procedure of term interpretation gives a denotation system.

On Algebraic Properties of Nominative Data and Functions 121

CNS can be used to construct formal models of various programming, speci-
fication, and database languages [4,5]. The program models represented by CNS
are mathematically simple, but specify program semantics rather adequately.
They are classified in accordance with the levels of abstraction of their parame-
ters: data, functions, and compositions. Usually abstraction levels of program
models are induced by abstraction levels of data.

Data are considered on three levels: abstract, boolean, and nominative. On
the abstract level data are treated as “black boxes”, thus no information can
be extracted. On the boolean level to abstract data new data considered as
“white boxes” are added. Usually, these are logical values T (true) and F (false)
from the set Bool. On the nominative level data are considered as “grey boxes”,
constructed of “black boxes” (values) and “white boxes” (names) with the help
of naming relations. The last level is the most interesting for programming. Data
of this level are called nominative data.

Concretizations of nominative data can represent various data structures,
such as records, arrays, lists, relations, etc. Thus, we can formulate the following
data representativity principle: program data can be represented as concretiza-
tions of nominative data. To support this principle later in the chapter we will
give representations of various data structures using nominative data.

We start with rigorous definitions of various classes of nominative data.

4 Classification of Nominative Data

Nominative data are built over classes of names V and atoms (basic values)
A with the help of naming relations. Thus in the first approximation, a nomi-
native data d is either an atom from A, or has the form [v1 �→ d1, ..., vn �→ dn],
where v1, ..., vn are distinct names from V and d1, d2, ...dn are atoms or possibly
other nominative data.

To define nominative data let us denote by V
n→B the class of all partial

functions from a set of names V to a set of values B which have a finite graph.
Nominative data are classified in accordance with the following parameters:

– values can be simple (unstructured) or complex (structured),
– names can be simple (unstructured) or complex (structured).

The described parameters give 4 types of nominative data. There can be dif-
ferent ways to define the notion of a complex name. We will follow the principle
of development from abstract to concrete and consider the simplest case of name
construction and processing. This means that we will consider complex names
as sequences of simple names that satisfy the associativity property. In other
words, names are constructed with the help of concatenation operation which is
associative by definition. This allows us to formulate the principle of associative
construction and processing of complex names: complex names are constructed
from simple names using concatenation and data with complex names have to be
processed by operations that take into account associativity of names. Besides,

122 V.G. Skobelev et al.

we will require that data with complex names satisfy the principle of unam-
biguous associative naming which means that one complex name should have at
most one corresponding value in any given data.

The formal definitions of nominative data of different types and the corre-
sponding examples are given below.

– D0 = V
n→A. This is the simplest type of nominative data. For example,

[u �→ 1, v �→ 2].

We will say that members of D0 are data of the type TNDSS (data with
simple names and simple values).

– D1 = ND(V,A), where ND(V,A) is defined as

ND(V,A) =
⋃

k≥0
NDk(V,A),

where
ND0(V,A) = A ∪ {∅},

NDk+1(V,A) = A ∪
(
V

n−→NDk(V,A)
)

, k ≥ 0.

Note that here we denote by ∅ the empty nominative data (this notation is
also used for the empty set). For the empty nominative data we will also use
the notation [].
Data from this class are hierarchically constructed, for example,

[u �→ 1, v �→ [w �→ 2]].

Such data can be represented by oriented trees (of varying arity) with arcs
labelled by names and with leafs labelled by atoms. A path is a nonempty
finite sequence (v1, v2, ..., vk) of names v1, ..., vk ∈ V . For a given data d a
value of a path (v1, v2, ..., vk) in d is defined by the following expression

d(v1, v2, ..., vk) ∼= (...((d(v1))(v2))...(vk)).

We say that a path (v1, v2, ..., vk) is a path in a data d ∈ ND(V,A), if a
value of (v1, v2, ..., vk) in d is defined, i.e. d(v1, v2, ..., vk) ↓ (a path in data
corresponds to a path from the root to a node in an oriented tree).
A terminal path in a data d ∈ ND(V,A) is a path in d such that its value
belongs to A ∪ {∅}.
The least k such that d ∈ NDk(V,A) is called the rank of a data d.
We will say that members of D1 are data of the type TNDSC (data with
simple names and complex values).

– D2 = NDV S(V,A), where NDV S(V,A) is the set of all elements of A ∪
(V + n→A) such that either d ∈ A, or d ∈ V + n→A and all strings from dom(d)
are pairwise incomparable in the sense of the prefix relation (the principle of
unambiguous associative naming).

On Algebraic Properties of Nominative Data and Functions 123

For example
[uv �→ 1, uw �→ 2, w �→ 3].

Data of this class have complex names i.e. names that are strings in
alphabet V.
We will say that members of D2 are data of the type TNDCS (data with
complex names and simple values).

– D3 = NDV C(V,A), whereNDV C(V,A) is the class of all data d ∈ ND(V +, A)
such that for any two paths (u1, u2, ..., uk) and (v1, v2, ..., vl) in d, neither of
which is a prefix of another, the words u1u2...uk and v1v2...vl are incompara-
ble is sense of the prefix relation (principle of unambiguous associative naming).
Such data are also called complex-named data [6]. For example,

[uv �→ 1, w �→ [uw �→ ∅]].

These data are hierarchically constructed data with complex names and unam-
biguous naming.
We will say that members of D3 are data of the type TNDCC (data with
complex names and complex values).

5 Examples of Representations of Data Structures
by Nominative Data

In this section we present some concrete examples to support data representa-
tivity principle: program data can be adequately represented as concretizations
of nominative data.

Below we describe representations of various commonly used data structures
by nominative data. Representations are chosen in such way that the basic opera-
tions over data structures correspond to simple combinations of basic operations
over nominative data.

– Array (a1, a2, ..., an) of elements of type T0.
Nominative data type: TNDSS , V = {1, 2, . . .}, A = T0.
Representation:

[1 �→ a1, 2 �→ a2, . . . , n �→ an].

– Two-dimensional array

⎛

⎝
a1,1 a1,2 ... a1,m

...
an,1 an,2 ... an,m

⎞

⎠ of elements of type T0.

Nominative data type: TNDCS (complex names), V = {1, 2, . . .}, A = T0.
Representation:

[i.j �→ ai,j | i = 1, . . . , n, j = 1, . . . ,m]

(in this notation the dot “.” separates symbols in a complex name).

124 V.G. Skobelev et al.

– Jagged array ((ai,j)mj=1)
n
i=1 of elements of type T0.

Nominative data type: TNDSC , V = {1, 2, . . .}, A = T0.
Representation:

[i �→ [j �→ ai,j | j = 1, . . . , m] | i = 1, . . . , n].

– Associative array (ak)k∈K of elements of type T0, where K is a set of keys.
Nominative data type: TNDSS , V = K, A = T0.
Representation:

[k �→ ak | k ∈ K].

– Table of the form (with Key being a key attribute):

Key Attr1 Attr2

key1 val11 val21

key2 val12 val22

Nominative data type: TNDSC , V = {Attr1, Attr2}.
Representation:

[key1 �→ [Attr1 �→ val11, Attr2 �→ val12],

key2 �→ [Attr1 �→ val21, Attr2 �→ val22]].

– A list of elements e1, e2, . . . en.
Nominative data type: TNDSC , V = {data, next}.
Representation:

[data �→ e1, next �→ [data �→ e2, next �→ [. . . data �→ en, next �→ ∅ . . .]]].

– A circular list of elements e1, e2, ...en.
Nominative data type: TNDSC , V = {head,memory, data, next}∪{loc1, loc2,
loc3, . . . locn}.
Representation:

[head �→ loc1,memory �→ [
loc1 �→ [data �→ e1, next �→ loc2],
loc2 �→ [data �→ e2, next �→ loc3],

· · ·
locn �→ [data �→ en, next �→ loc1]]].

– A binary tree with nodes labelled by elements e1, e2, e3, ...
Nominative data type: TNDSC , V = {data, left, right}.
Representation:

[data �→ e1,

left �→ [data �→ e2, left �→ [. . .], right �→ [. . .]],
right �→ [data �→ e3, left �→ [. . .], right �→ [. . .]

]].

On Algebraic Properties of Nominative Data and Functions 125

– Data types based on free algebras (simple forms of inductive data types [13]).
Such data are widely used in (partly) functional programming languages (e.g.
ML, Haskell). They are suitable for representing list- and tree-like data. Such
types can be interpreted as carrier sets of (many-sorted) free algebras or as
sets of terms.

Let S be a finite set of elements called sorts. Let Σ be finite signature
{c1, c2, ..., cn}, where ci are (names of) constructors. Suppose that each con-
structor ci has (unique) associated type of the form s1 × . . . × sm → s, where
si, s ∈ S, m ≥ 0. Let D be a free algebra with the signature Σ which is freely
generated by some set A. Then the members of the carrier set of D can be
considered as elements of an inductive data type. Data of such type can be
processed by means of application of constructors and pattern matching (for
data decomposition).

Then one can define a mapping τ which gives a representation of data from
D by nominative data of the type TNDSC over the classes of names
V = {constructor, 1, 2, 3, . . .} and the basic values A:

• τ(x) = x, if x ∈ A.
• τ(x) = [constructor �→ c, 1 �→ τ(x1), 2 �→ τ(x2), ..., n �→ τ(xn)], if x has a

form c(x1, x2, . . . , xn), where c ∈ Σ.

Applications of constructors and pattern matching on inductive data types
correspond to naming and denaming (and name equality checking) on nomi-
native data.

6 Operations over Nominative Data

The main operations over nominative data are the operations of denaming (tak-
ing the value of a name), naming (assigning a new value to a name), and over-
lapping.

In this section we will define these operations for data of the types TNDCS ,
TNDSC , and TNDCC . Analogous operations can be rather straightforwardly
defined on data of the type TNDSS , but we will not consider them in this
chapter.

We will use the same symbols for denoting denaming, naming, and overlap-
ping for each type of data TNDCS , TNDSC , and TNDCC . The interpretation
of the operation symbols should be clear from the context.

Let V and A be fixed sets of names and values.

Definition 1 (Denaming).

(1) For nominative data of the type TNDSC , (associative) denaming is an unary
operation v ⇒a with a parameter v ∈ V + defined by induction by the length
of v (denoted as |v|) as follows:
– if |v| = 1, then v ⇒a (d) ∼= d(v);
– if |v| = n > 1, then v ⇒a (d) ∼= v1 ⇒a (x ⇒a (d)), where v = xv1, x ∈ V ,

v1 ∈ V n−1.

126 V.G. Skobelev et al.

(2) For nominative data of the types TNDCS and TNDCC , (associative) denam-
ing is an unary operation v ⇒a with a parameter v ∈ V + defined by induction
by the length of v:
– if |v| = 1, then

v ⇒a (d) ∼=

⎧
⎪⎨

⎪⎩

d(v), if d(v) ↓;
d/v, if d(v) ↑ and d/v �= ∅;
undefined, if d(v) ↑ and d/v = ∅,

where
d/u = [v1 �→ d(v) | d(v) ↓, v = uv1, v1 ∈ V +]

(division of a data by a name);
– if |v| = n > 1, then

v ⇒a (d) ∼= v1 ⇒a (x ⇒a (d)),

where v = xv1, x ∈ V , v1 ∈ V +, |v1| = n − 1.

The following examples illustrate this definition:

u ⇒a ([u �→ 1, v �→ 2]) = 1;

(uv) ⇒a ([u �→ [vw �→ 1, u �→ 2]]) = [w �→ 1].

The name of this operation originates from the following property (associa-
tivity) [6]:

u ⇒a (d) ∼= un ⇒a (un−1 ⇒a (... u1 ⇒a (d)...))

for all complex names u, u1, u2, ..., un ∈ V + such that u = u1u2...un.

Definition 2 (Naming).

(1) For nominative data of the type TNDSC , naming is an unary operation ⇒ v
with a parameter v ∈ V + defined inductively by the length of v as follows:
⇒ v(d) = [v �→ d], if v ∈ V ;
⇒ v(d) = [v1 �→ (⇒ v2(d))], if v = v1v2, v1 ∈ V and v2 ∈ V +.

(2) For nominative data of the type TNDCS, naming is an unary operation ⇒ v
with a parameter v ∈ V + defined as follows:
⇒ v(d) = [v �→ d], if d ∈ A ∪ {∅};
⇒ v(d) = [vu �→ d(u) | u ∈ dom(d)], if d /∈ A ∪ {∅}.

(3) For nominative data of the type TNDCC , naming is an unary operation ⇒ v
with a parameter v ∈ V + such that ⇒ v(d) = [v �→ d].

Overlapping can be intuitively treated as an updating operation which updates
values in the first argument with the values of the second argument taking into
account their names.

For the types of nominative data with complex names and/or values different
overlapping operations can be considered. We will define two kinds of overlap-
ping: global and local overlapping. Global (associative or structural) overlapping

On Algebraic Properties of Nominative Data and Functions 127

∇a updates several values while the local one ∇v
a (with a parameter name v)

updates only one value with complex name v.
The global overlapping can be used for formalization of procedures calls and

the local operation formalizes the assignment operator in programming lan-
guages. Intuitively, this operation joins two data and resolves name conflicts
in favour of its second argument.

Definition 3 (Global overlapping).

(1) For nominative data of the type TNDSC , global overlapping is a partial
binary operation ∇a such that
d1∇ad2 = d2 ∪ d1|dom(d1)\dom(d2), if d1 /∈ A and d2 /∈ A;
d1∇ad2 ↑, if d1 ∈ A or d2 ∈ A.

(2) For nominative data of the type TNDCS, global overlapping is a binary oper-
ation ∇a such that
d1∇ad2 = d2 ∪ d1|dom(d1)\(dom(d2)V ∗);
d1∇ad2 ↑, if d1 ∈ A or d2 ∈ A.
where dom(d2)V ∗ denotes the all words of the form uv, where u ∈ dom(d2)
and v ∈ V ∗ (i.e. an arbitrary, possibly empty word in the alphabet V).

(3) For nominative data of the type TNDCC , (global) overlapping is a binary
operation ∇a defined inductively by the rank of the first argument as follows.
Let

NDV Ck(V,A) = NDV C(V,A) ∩ NDk(V +, A)

be the data from the set NDV C(V,A) the rank of which is less than or equal
to k.
Induction base of the definition. If d1 ∈ NDV C0(V,A), then

d1∇ad2 ∼=
{

d2, if d1 = ∅ and d2 ∈ NDV C(V,A)\A;
undefined, if d1 ∈ A or d2 ∈ A.

Induction step of the definition. Assume that the value d1∇ad2 is already
defined for all d1, d2 such that d1 ∈ NDV Ck(V,A). Let

d1 ∈ NDV Ck+1(V,A)\NDV Ck(V,A).

Then d1∇ad2 = d, where d is defined by its values on names u ∈ V + as
follows:
(1) d(u) = d2(u), if u ∈ dom(d2) and u does not have a proper prefix which

belongs to dom(d1);
(2) d(u) = d1(u)∇a(d2/u), if d1(u) is defined and does not belong to A and

u is a proper prefix of some element of dom(d2), where d2/u = [v1 �→
d2(v) | d2(v) ↓, v = uv1, v1 ∈ V +] is the division of a data by a name;

(3) d(u) = d2/u, if d1(u) is defined and belongs to A and u is a proper prefix
of some element of dom(d2);

(4) d(u) = d1(u), if d1(u) is defined and u is not comparable (in the sense
of the prefix relation) with any element of dom(d2);

(5) d(u) ↑, otherwise.

128 V.G. Skobelev et al.

The global overlapping on the data of the type TNDCC has the following prop-
erties [6]:

– [u �→ d1]∇a[v �→ d2] = [u �→ d1, v �→ d2], u, v ∈ V, u �= v;
– [uv �→ d1]∇a[u �→ d2] = [u �→ d2], u, v ∈ V +, i.e. the value under a name u in

second argument overwrites the value under names in first argument, which
are extensions of u;

– [u �→ d1]∇a[uv �→ d2] = [u �→ (d1∇a[v �→ d2])], if u, v ∈ V +, d1 /∈ A, i.e. the
value under a name uv in second argument modifies values under prefixes of
uv in first argument;

– ∅∇ad = d∇a∅ = d, if d /∈ A;
– d1∇ad2 ↑, if d1 ∈ A or d2 ∈ A.

Definition 4 (Local overlapping).

(1) For nominative data of the type TNDCS local overlapping is a binary oper-
ation ∇v

a with a parameter v ∈ V + defined as follows:

d1∇v
ad2

∼= d1∇a(⇒ v(d2)).

(2) For nominative data of the type TNDSC local overlapping is a binary oper-
ation ∇v

a with a parameter v ∈ V + defined inductively by the length of v as
follows:

– if v ∈ V , then
d1∇v

ad2
∼= d1∇a[v �→ d2];

– if v = v1v2, where v1 ∈ V and v2 ∈ V +, and d1(v1) ↓ and d1(v1) /∈ A,
then

d1∇v
ad2

∼= d1∇a[v1 �→ d1(v1)∇v2
a d2];

– if v = v1v2v3...vn, where vi ∈ V , and d1(v1) ↑ or d1(v1) ∈ A, then

d1∇v
ad2

∼= d1∇a[v1 �→ [v2 �→ ... �→ [vn �→ d2]...].

(3) For nominative data of the type TNDCC local overlapping is a binary oper-
ation ∇v

a with a parameter v ∈ V + defined as follows:

d1∇v
ad2

∼= d1∇a(⇒ v(d2)).

7 Algebras of Nominative Data

The operations on nominative data of different classes defined earlier give a rise to
algebraic structures defined below. We will focus on the types TNDCS , TNDSC ,
TNDCC , because the type TNDSS is rather simple and it is straightforward to
define an algebra on it.

Let V and A be fixed sets of names and basic values.

On Algebraic Properties of Nominative Data and Functions 129

Definition 5. An algebra of nominative data of the type TNDSC is an algebra

NDASC(V,A) =< ND(V,A); (v ⇒a)v∈V + , (⇒ v)v∈V + , (∇v
a)v∈V + >

with the carrier set ND(V,A) (data) and the following operations:

– a family of partial unary associative denaming operations
v ⇒a: ND(V,A)→̃ND(V,A), v ∈ V +;

– a family of unary complex naming operations
⇒ v : ND(V,A) → ND(V,A), v ∈ V +;

– a family of partial binary local overlapping operations
∇v

a : ND(V,A) × ND(V,A)→̃ND(V,A), v ∈ V +.

Definition 6. An algebra of nominative data of the type TNDCS is an algebra

NDACS(V,A) =< NDV S(V,A); (v ⇒a)v∈V + , (⇒ v)v∈V + , (∇v
a)v∈V + >

with the carrier set NDV S(V,A) (data) and the following operations:

– a family of partial unary associative denaming operations
v ⇒a: NDV S(V,A)→̃NDV S(V,A), v ∈ V +;

– a family of unary complex naming operations
⇒ v : NDV S(V,A) → NDV S(V,A), v ∈ V +;

– a family of partial binary local overlapping operations
∇v

a : NDV S(V,A) × NDV S(V,A)→̃NDV S(V,A), v ∈ V +.

Definition 7. An algebra of nominative data of the type TNDCC is an algebra

NDACC(V,A) =< NDV C(V,A); (v ⇒a)v∈V + , (⇒ v)v∈V + , (∇v
a)v∈V + >

with the carrier set NDV C(V,A) (data) and the following operations:

– a family of partial unary associative denaming operations
v ⇒a: NDV C(V,A)→̃NDV C(V,A), v ∈ V +;

– a family of unary complex naming operations
⇒ v : NDV C(V,A) → NDV C(V,A), v ∈ V +;

– a family of partial binary local overlapping operations
∇v

a : NDV C(V,A) × NDV C(V,A)→̃NDV C(V,A), v ∈ V +.

8 Nominative Equivalence

Complex-named data have an inherent associated hierarchical naming struc-
ture. However, from the viewpoint of their information content that can be
obtained from such data using the operation of associative denaming, some pairs
of complex-named data like [v1 �→ [v2 �→ [v3 �→ 1]]] and [v1v2v3 �→ 1] that have
different hierarchical naming structure are essentially equivalent.

The following equivalence relation on complex-named data called nominative
equivalences formalizes this observation.

130 V.G. Skobelev et al.

Definition 8 (Paths and terminal paths in data).

(1) A path in a complex-named data d ∈ NDV C(V,A) is a nonempty sequence
(v1, v2, ..., vn) of words from V + such that ((d(v1))(v2)...)(vn) is defined. The
value ((d(v1))(v2)...)(vn) is called the value of the path (v1, v2, ..., vn) in d.

(2) A path in a complex-named data d ∈ NDV C(V,A) is called a terminal path,
if its value in d belongs to A ∪ {∅}.

Definition 9 (Nominative inclusion and equivalence).

(1) A complex-named data d1 ∈ NDV C(V,A) is nominatively included in a
complex-named data d2 ∈ NDV C(V,A), if either d1, d2 ∈ A and d1 = d2,
or d1, d2 /∈ A and for each terminal path (v1, v2, ..., vn) in d1 there exists a
terminal path (v′

1, v
′
2, ..., v

′
m) in d2 such that v1v2...vn = v′

1v
′
2...v

′
m and the

values of (v1, v2, ..., vn) in d1 and (v′
1, v

′
2, ..., v

′
m) in d2 coincide.

(2) Two complex-named data d1, d2 ∈ NDV C(V,A) are nominative equivalent
(denoted as d1 ≈ d2), if d1 is nominatively included in d2 and d2 is nomi-
natively included in d1.

It is known [5] that nominative inclusion is a preorder on NDV C(V,A) and
nominative equivalence is an equivalence relation on NDV C(V,A).

Nominative equivalent data may have different hierarchical naming struc-
tures, but they turn into the same TNDCS data when they are flattened, e.g.:

– [v1 �→ [v2v3 �→ 1, v2v4 �→ 2]] ≈ [v1v2v3 �→ 1, v1v2v4 �→ 2];
– [v1v2 �→ [v3 �→ 1, v4 �→ 2]] ≈ [v1v2v3 �→ 1, v1v2v4 �→ 2].

Theorem 1. Nominative equivalence is a congruence on NDACC(V,A).

Proof. From [5] it follows that for each pair of d1, d2 ∈ NDV C(V,A) the opera-
tions of naming and associative denaming satisfy the following property (called
nominative stability): if d1 ≈ d2 and an operation is defined on d1, then it
is defined on d2 and its values on d1 and d2 are nominative equivalent. Simi-
larly, from [5] it follows that if v ∈ V +, d1, d2 /∈ A, d1 ≈ d′

1, d2 ≈ d′
2, then

d1∇v
ad2 ≈ d′

1∇v
ad

′
2. This implies that nominative equivalence is a congruence on

NDACC(V,A). �

This result allows us to construct a factor (quotient) algebra of NDACC(V,A).
Let us denote by NDA≈

CC(V,A) the factor algebra of NDACC(V,A) by the
nominative equivalence ≈.

Lemma 1. NDASC(V,A) is isomorphic to NDA≈
CC(V,A).

Proof (Sketch). Let us define a function ι≈13 : ND(V,A) → 2NDV C(V,A) such that
ι≈13(d) = {d′ ∈ NDV C(V,A) | d′ ≈ d} (note that ND(V,A) ⊂ NDV C(V,A)). It
is easy to show that each class of nominative equivalence has a unique member
from ND(V,A) and the operations on equivalence classes correspond to the
operations on TNDCS data under this mapping. Then ι≈13 is an isomorphism
from NDACS(V,A) to NDA≈

CC(V,A). �

On Algebraic Properties of Nominative Data and Functions 131

Lemma 2. NDACS(V,A) is isomorphic to NDA≈
CC(V,A).

Proof (Sketch). Let us define a function ι≈23 : NDV S(V,A) → 2NDV C(V,A) as
follows: ι≈23(d) = {d′ ∈ NDV C(V,A) | d′ ≈ d} (note that NDV S(V,A) ⊂
NDV C(V,A)). It is easy to show that each class of nominative equivalence has
a unique member from NDV S(V,A) and the operations on equivalence classes
correspond to the operations on TNDSC data under this mapping. Then ι≈23 is
an isomorphism from NDASC(V,A) to NDA≈

CC(V,A). �

Theorem 2. Algebras NDASC(V,A), NDACS(V,A), and NDA≈
CC(V,A) are

isomorphic.

Proof. Follows immediately from Lemmas 1 and 2. �

Let us denote by D3/≈ the carrier set of NDA≈
CC(V,A).

Let ι≈13 and ι≈23 be the isomorphisms defined in the proofs of Lemmas 1 and 2.
We will call (ι≈13)

−1 the layering operation and (ι≈23)
−1 the flatting operation.

For each d ∈ D3 let ι≈3 (d) be the ≈-equivalence class of d.
Let us introduce the following inclusion maps for classes of nominative data:

ι01 : D0 ↪→ D1, ι02 : D0 ↪→ D2, ι13 : D1 ↪→ D3, ι23 : D2 ↪→ D3.

Fig. 1. Classes of nominative data and mappings between them.

Then it is easy to check that the diagram shown in Fig. 1 is commutative. This
diagram illustrates the types of nominative data and mappings between them.

9 Compositions of Functions and Predicates over
Nominative Data

Let V and A be fixed sets of basic names and values.
Denote

PrCC(V,A) = NDV C(V,A)→̃{T, F},

FnCC(V,A) = NDV C(V,A)→̃NDV C(V,A),

132 V.G. Skobelev et al.

where T and F denote logical constants (true and false). We will assume that
they do not belong to NDV C(V,A).

We will call the elements of PrCC(V,A) (partial nominative) predicates and
the elements of FnCC(V,A) (partial binominative) functions.

Similarly, let us denote the following sets of functions and predicates on data
of the types TNDSC and TNDCS :

PrSC(V,A) = ND(V,A)→̃{T, F},

FnSC(V,A) = ND(V,A)→̃ND(V,A),

P rCS(V,A) = NDV S(V,A)→̃{T, F},

FnCS(V,A) = NDV S(V,A)→̃NDV S(V,A).

Let us consider conventional logical and programming compositions of pred-
icates and functions. These compositions are defined analogously for functions
and predicates over each type of nominative data, so below we give a common
definition in which the symbol Fn should be understood as one of FnCC , FnCS ,
or FnSC , and the symbol Pr should be understood as one of PrCC , PrCS , PrSC

However, within each definition of a composition below all occurrences of the
symbols Fn, Pr refer to sets of functions and predicates over nominative data
of the same type, i.e. either TNDCC , or TNDCS , or TNDSC .

Let us denote by Ū the set of all tuples (u1, u2, ..., un), n ≥ 1 of complex
names from V + such that whenever i �= j, ui and uj are incomparable in the
sense of the prefix relation.

– Sequential composition of functions (denoted using the infix notation)

• : Fn(V,A) × Fn(V,A) → Fn(V,A)

is defined as follows: for all f, g ∈ Fn(V,A) and data d

(f • g)(d) ∼= g(f(d)).

– Prediction composition [12] (denoted using the infix notation)

· : Fn(V,A) × Pr(V,A) → Pr(V,A)

is defined as follows: for all f ∈ Fn(V,A), p ∈ Pr(V,A), and data d

(f · p)(d) ∼= p(f(d)).

– Assignment composition Asgu : Fn(V,A) → Fn(V,A) with a parameter u ∈
V + is defined as follows: for each f ∈ Fn(V,A) and data d,

(Asu(f))(d) ∼= d∇u
af(d)

(where ∇u
a refers to the local overlapping on the corresponding type of nomi-

native data).

On Algebraic Properties of Nominative Data and Functions 133

– The composition of superposition into a function

Su1,u2,...,un

F : Fn(V,A) × (Fn(V,A))n → Fn(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈ Ū is
defined as follows:

Su1,u2,...,un

F (f, f1, ..., fn)(d) ∼= f(...((d∇u1
a f1(d))∇u2

a f2(d))...∇un
a fn(d))...).

We will also use the following notation for this composition: for each tuple
ū = (u1, u2, ..., un) ∈ Ū , Sū

F denotes Su1,u2,...,un

F .
– The composition of superposition into a predicate

Su1,u2,...,un

P : Pr(V,A) × (Fn(V,A))n → Pr(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈ Ū is
defined as follows:

Su1,u2,...,un

P (p, f1, ..., fn)(d) ∼= p(...((d∇u1
a f1(d))∇u2

a f2(d))...∇un
a fn(d))...).

We will also use the following notation for this composition: for each tuple
ū = (u1, u2, ..., un) ∈ Ū , Sū

P denotes Su1,u2,...,un

P .
– Branching composition IF : Pr(V,A) × Fn(V,A) × Fn(V,A) → Fn(V,A) is

defined as follows: for each p ∈ Pr(V,A) and f, g ∈ Fn(V,A):

IF (p, f, g)(d) ∼=

⎧
⎪⎨

⎪⎩

f(d), if p(d) ↓= T ;
g(d), if p(d) ↓= F ;
undefined, if p(d) ↑ .

– Cycle composition WH : Pr(V,A) × Fn(V,A) → Fn(V,A) is defined as
follows: for each p ∈ Pr(V,A), f ∈ Fn(V,A), and data d:
WH(p, f)(d) ↓= f (n)(d), if there exists n ≥ 0 such that (f (i) · p)(d) ↓= T for
all i ∈ {0, 1, ..., n − 1} and (f (n) · p)(d) ↓= F , where f (n) denotes a n-times
sequential composition of f with itself (assuming that f (0) is the identity
function), and WH(p, f)(d) is undefined otherwise.

– Negation ¬ : Pr(V,A) → Pr(V,A) is a composition such that for each p ∈
Pr(V,A) and data d:

(¬p)(d) ∼=

⎧
⎪⎨

⎪⎩

T, if p(d) ↓= F ;
F, if p(d) ↓= T ;
undefined, if p(d) ↑ .

– Disjunction ∨ : Pr(V,A) × Pr(V,A) → Pr(V,A) is a composition defined as
follows: for each p1, p2 ∈ Pr(V,A) and data d:

(p1 ∨ p2)(d) ∼=

⎧
⎪⎨

⎪⎩

T, if p1(d) ↓= T or p2(d) ↓= T ;
F, if p1(d) ↓= F and p2(d) ↓= F ;
undefined, otherwise.

134 V.G. Skobelev et al.

– Identity composition Id : Fn(V,A) → Fn(V,A) is defined as follows:
Id(f) = f for all f ∈ Fn(V,A).

– True constant predicate (null-ary composition) True ∈ Pr(V,A) is defined as
follows: True(d) ↓= T for all data d.

– Bottom function (null-ary composition) ⊥F∈ Fn(V,A) is defined as follows:
⊥F (d) ↑ for all data d.

– Bottom predicate (null-ary composition) ⊥P∈ Pr(V,A) is defined as follows:
⊥P (d) ↑ for all data d.

– Name checking predicate (null-ary composition) u! ∈ Pr(V,A) with a
parameter u ∈ V + is defined as follows:

u!(d) =

{
T, if u ⇒a (d) ↓;
F, if u ⇒a (d) ↑ .

– Empty constant function (null-ary composition) Empty ∈ Fn(V,A) is defined
as follows: Empty(d) = ∅ for all data d.

– Emptiness checking predicate (null-ary composition) IsEmpty ∈ Fn(V,A) is
defined as follows:

IsEmpty(d) =

{
T, if d = ∅;
F, if d �= ∅.

The compositions defined above allow us to specify a rather expressive pro-
gram language. This language generalizes several simple program algebras used
in the approaches such as Glushkov Algorithmic Algebras [12], Floyd-Hoare log-
ics [8,9], algorithmic logics [14], dynamic logics [15], etc. In Glushkov Algorith-
mic Algebras predicates and functions are considered as partial as we do here.
Therefore we consider our approach as a generalization of Glushkov Algorithmic
Algebras.

Definition 10. An Associative Nominative Glushkov Algorithmic Algebra of
predicates and functions over the nominative data of the type TNDCC is a two-
sorted algebra

NGAa
CC(V,A) =< PrCC(V,A), FnCC(V,A);∨,¬, •, IF,WH, ·, (Asgu)u∈V + ,

(Sū
F)ū∈Ū , (Sū

P)ū∈Ū , Id, T rue,⊥F ,⊥P , (u!)u∈V + , Empty, IsEmpty >

with the carrier sets PrCC(V,A) (predicates) and FnCC(V,A) (functions) for
some V and A with the following operations: the disjunction ∨ and the nega-
tion ¬ compositions on predicates, the sequential composition of functions •, the
branching composition IF , the cycle composition WH, the prediction composi-
tion ·, the family of assignment compositions Asgu, u ∈ V +, the families of
superposition compositions Sū

P , Sū
P for ū ∈ Ū , the identity composition on func-

tions Id, the true constant predicate True, and the following constant elements
of the carrier sets (null-ary compositions): the bottom predicate ⊥P , the bottom
function ⊥F , the family of name checking predicates u!, u ∈ V +, the empty
constant function Empty, and the emptiness checking predicate IsEmpty.

On Algebraic Properties of Nominative Data and Functions 135

Similarly, we can define algebras of functions and predicates over nominative
data of the types TNDCS and TNDSC :

Definition 11.

(1) An Associative Nominative Glushkov Algorithmic Algebra of predicates and
functions over the nominative data of the type TNDSC is a two-sorted alge-
bra

NGAa
SC(V,A) =< PrSC(V,A), FnSC(V,A);∨,¬, •, IF,WH, ·, (Asgu)u∈V + ,

(Sū
F)ū∈Ū , (Sū

P)ū∈Ū , Id, T rue,⊥F ,⊥P , (u!)u∈V + , Empty, IsEmpty >

(2) An Associative Nominative Glushkov Algorithmic Algebra of predicates and
functions over the nominative data of the type TNDCS is a two-sorted alge-
bra

NGAa
CS(V,A) =< PrCS(V,A), FnCS(V,A);∨,¬, •, IF,WH, ·, (Asgu)u∈V + ,

(Sū
F)ū∈Ū , (Sū

P)ū∈Ū , Id, T rue,⊥F ,⊥P , (u!)u∈V + , Empty, IsEmpty >

10 Nominative Stability

The type TNDCC of nominative data is the most rich and interesting among
other types of nominative data, so we will focus on it.

The binary relation of nominative stability is a formalization of the idea that
a program’s behavior does not change, if the hierarchical naming structure of
its data changes. It can be illustrated by the following feature of the Pascal pro-
gramming language: the two-dimensional array definitions var A: array [1..n,

1..m] of real and var A: array [1..n] of array [1..m] of real are equivalent
and both the A[i,j] and A[i][j] syntax can be used to access the array elements
regardless of the form of its definition. However, it should be noted that many
practical programming languages like C++ and Java do not have this feature.
This gives a rise to the following informal question: which properties a pro-
gramming language must satisfy in order to guarantee that its programs behave
correctly regardless of the hierarchical naming structure of their data?

We formalize such a notion of independence of a program behavior from the
hierarchical naming structure of data as nominative stability of functions and
predicates.

Definition 12. A predicate p ∈ PrCC(V,A) is called nominative stable, if for
each d1, d2 ∈ NDV C(V,A), if p(d1) ↓ and d1 ≈ d2, then p(d2) ↓ and p(d1) =
p(d2).

Definition 13. A function f ∈ FnCC(V,A) is called nominative stable, if for
each d1, d2 ∈ NDV C(V,A), if f(d1) ↓ and d1 ≈ d2, then f(d2) ↓ and f(d1) ≈
f(d2).

136 V.G. Skobelev et al.

Let us denote by PrNS(V,A) the set of all nominative stable predicates p ∈
PrCC(V,A) and by FnNS(V,A) the set of all nominative stable functions f ∈
FnCC(V,A).

Theorem 3. PrNS(V,A) and FnNS(V,A) form a sub-algebra of the Associa-
tive Nominative Glushkov Algorithmic Algebra NGAa

CC(V,A).

Proof (Sketch). Using the samemethodswhichwere used in [5] to showmonotonic-
ity of program compositions it is straightforward to show that FnNS(V,A) is
closed under the sequential composition • and the identity composition Id, and if
p ∈ PrNS(V,A) and f, g ∈ FnNS(V,A), then f · p ∈ PrNS(V,A), IF (p, f, g)
and WH(p, f) ∈ FnNS(V,A). Also, it is trivial to show that PrNS(V,A) is
closed under the negation and disjunction compositions.

From [5, Lemmas 7.3 and 7.4] it follows that the assignment composition
preserves nominative stability, i.e. if a function f ∈ FnN(V,A) is nominative
stable, then Asgu(f) is nominative stable, so if f ∈ FnNS(V,A), then Asgu(f) ∈
FnNS(V,A).

Let us show that superposition into a function preserves nominative sta-
bility. Let n ≥ 1, f, f1, ..., fn ∈ FnN(V,A), and (u1, u2, ..., un) ∈ Ū . Let us
show that Su1,...,un

F (f, f1, ..., fn) ∈ FnNS(V,A). Let d1, d2 ∈ NDV C(V,W),
Su1,...,un

F (f, f1, ..., fn)(d1) ↓, and d1 ≈ d2. Then d1 /∈ A for all i ∈ {1, 2, ..., n}.
Thus d2 /∈ A and for all i ∈ {1, 2, ..., n}, fi(d2) ≈ fi(d1). Then

(...((d2∇u1
a f1(d2))∇u2

a f2(d2))...∇un
a fn(d2))...) ↓

and
(...((d1∇u1

a f1(d1))∇u2
a f2(d1))...∇un

a fn(d1))...) ≈
≈ (...((d2∇u1

a f1(d2))∇u2
a f2(d2))...∇un

a fn(d2))...),

because ≈ is a congruence in NDACC(V,A). Taking into account that f ∈
FnNS(V,A), we conclude that

Su1,u2,...,un

F (f, f1, ..., fn)(d2) ↓
and

Su1,u2,...,un

F (f, f1, ..., fn)(d2) ≈ Su1,u2,...,un

F (f, f1, ..., fn)(d1).

Thus Su1,u2,...,un

F (f, f1, ..., fn) ∈ FnNS(V,A).
Similarly it is straightforward to show that superposition into a predicate

preserves nominative stability.
Besides, it is easy to check that

{True,⊥P , IsEmpty} ∪ {u! | u ∈ V +} ⊂ PrNS(V,A)

and
{⊥F , Empty} ⊂ FnNS(V,A).

We conclude that PrNS(V,A) and FnNS(V,A) are closed under all com-
positions of NGAa

CC(V,A), so they form a sub-algebra. �

On Algebraic Properties of Nominative Data and Functions 137

Let us define the following equivalence relation on FnNS(V,A):

f ≡F g

(where f, g ∈ FnNS(V,A)), if d1 ≈ d2 and f(d1) ↓ implies f(d1) ≈ g(d2).
Also, let us define the following equivalence relation on PrNS(V,A):

p1 ≡P p2

(where p1, p2 ∈ PrNS(V,A)), if d1 ≈ d2 and p(d1) ↓ implies p1(d1) = p2(d2).
Let

NGANSa(V,A) =

< PrNS(V,A), FnNS(V,A);∨,¬, •, IF,WH, ·, (Asgu)u∈V + ,

(Sū
F)ū∈Ū , (Sū

P)ū∈Ū , Id, T rue,⊥F ,⊥P , (u!)u∈V + , Empty, IsEmpty >

be the sub-algebra mentioned in Theorem 3.

Theorem 4. The relations ≡F , ≡P are congruences on NGANSa(V,A).

We omit the proof, as it can be easily obtained from Theorem 1.
This theorem allows us to construct a factor algebra.
Let NGANSa

≡(V,A) be the factor algebra of NGANSa(V,A) by the con-
gruences ≡F and ≡P .

Theorem 5. The algebras NGAa
CS(V,A), NGAa

SC(V,A), and NGANSa
≡(V,A)

are isomorphic.

Proof (Sketch). Using Lemmas 1 and 2 it is straightforward to show that the alge-
bra NGANSa

≡(V,A) is isomorphic to NGAa
CS(V,A) and NGAa

SC(V,A). Thus
NGAa

CS(V,A) and NGAa
SC(V,A) are isomorphic. �

The obtained result has several interpretations and possible applications. Firstly,
a programmer can construct a nominative stable program oriented on a certain
hierarchical naming structure of input data, but this program would give equiva-
lent results, if input data were changed to equivalent data. Such stability simpli-
fies programming with complex data making it “softer” because the programmer
should not remember the current structure of data. Secondly, the class of such
programs can be correctly implemented using nominative data from the class
TNDSC (or TNDCS) only. Third, the obtained result gives a perspective for
reduction of formulas of a logic over hierarchical nominative data to formulas of
a logic over “flat” data, which is closer to classical logic.

11 Conclusions and Future Work

We have investigated basic properties of nominative functions and predicates
from the perspective of the abstract algebra. We have defined basic compositions
of such functions and predicates and introduced a two-sorted algebra which

138 V.G. Skobelev et al.

generalizes Glushkov algorithmic algebras. An advantage of this generalization
is that its functions are defined over nominative data which give a natural and
adequate representation of data structures commonly used in programming (as
we have demonstrated in Sect. 6). We have considered an equivalence relation on
nominative data with complex names and the notions of nominative stability of
nominative functions and predicates and proved the set of a nominative stable
functions and the set of nominative stable predicates form its sub-algebra.

In the forthcoming papers we plan to continue our study of theoretical aspects
of composition-nominative approach and describe practical applications of this
approach.

References

1. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, Heidelberg (2012)

2. Nikitchenko, N.S.: A composition-nominative approach to program semantics.
Technical report, IT-TR 1998–020, Technical University of Denmark (1998)

3. Nikitchenko, M., Tymofieiev, V.: Satisfiability in composition-nominative logics.
Cent. Eur. J. Comput. Sci. 2, 194–213 (2012)

4. Kryvolap, A., Nikitchenko, M., Schreiner, W.: Extending Floyd-Hoare logic for
partial pre- and postconditions. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M.,
Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 355–378.
Springer, Heidelberg (2013)

5. Nikitchenko, M., Ivanov, I.: Programming with nominative data. In: Proceedings
of CSE’2010 International Scientific Conference on Computer Science and Engi-
neering, Kosice, Slovakia, 20–22 September 2010, pp. 30–39 (2010)

6. Nikitchenko, M., Ivanov, I.: Composition-nominative languages of programs with
associative denaming. Visnyk (Bulletin) of the Lviv University Ser. Appl. Math.
Inform. 16, 124–139 (2010)

7. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction.
John Wiley & Sons Inc., New York (1992)

8. Floyd, R.: Assigning meanings to programs. Proc. Am. Math. Soc. Symp. Appl.
Math. 19, 19–31 (1967)

9. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 576–
580, 583 (1969)

10. Skobelev, V.: Local algorithms on graphs. Publishing house of Institute of Applied
Mathematics and Mechanics of NAS of Ukraine (in Russian) (2003)

11. Roman, S.: Lattices and Ordered Sets. Springer, New York (2008)
12. Glushkov, V.: Automata theory and formal transformations of microprograms.

Cybernetics (in Russian) 5, 3–10 (1965)
13. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.

(eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)
14. Mirkowska, G., Salwicki, A.: Algorithmic Logic. Springer, New York (1987)
15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge

(2000)

	On Algebraic Properties of Nominative Data and Functions
	1 Introduction
	2 Notation
	3 Composition-Nominative Approach to Program Formalization
	4 Classification of Nominative Data
	5 Examples of Representations of Data Structures by Nominative Data
	6 Operations over Nominative Data
	7 Algebras of Nominative Data
	8 Nominative Equivalence
	9 Compositions of Functions and Predicates over Nominative Data
	10 Nominative Stability
	11 Conclusions and Future Work
	References

