
Pre-automata and Complex Event Processing

Grygoriy Zholtkevych, Boris Novikov, and Volodymyr Dorozhinsky(B)

Department of Theoretical and Applied Computer Science, V.N. Karazin Kharkiv
National University, 4, Svobody Sqr., Kharkiv 61022, Ukraine

g.zholtkevych@karazin.ua, vdorozhinsky@gmail.com

Abstract. In the paper complex event processing systems are consid-
ered. The survey of problems and approaches to their solutions associated
with this technology is contained in the paper. Based on this survey a
mathematical model for complex event processing systems is proposed.
Samples of such a model are called a CEP-machines. Authors have
demonstrated that this model is closely related with the notion of a pre-
automaton introduced in their earlier papers. The proposed model pro-
vides rigorous formulations of problems associated with complex event
processing. Authors have proved that processing ability of such systems
is determined by some compromise between the class of processed event
stream and a number of complex events. Further in the paper the prob-
lem of CEP-machine synthesis basing on the formal specification has
been solved. Authors have established the conditions ensuring possibil-
ity of algorithmic realisation for CEP-machines.

Keywords: Pre-automaton · Complex event · Mathematical model ·
Event processing · Response function · Computable function · Decidable
set

1 Introduction

A modern development trend of information and communication technology
demonstrates a stable growth of importance to monitor and analyse continu-
ous information streams. These processes require execution “on-the-fly” thereby
they should have the ability to respond in a real time mode.

As a rule, a continuous information stream is not continuous in the mathe-
matical sense of this word. A continuous information stream can be considered
rather as a sequence of elementary (atomic) events such that each of them carries
some information fragment. A finite segment of an event stream is a complex
event if this segment has semantic meaning in the context of our interest.

Complex Event Processing (CEP) is a method of tracking and analysing
streams of data about things that happen (they are called events) [11, p.3] and
about effects caused by them. The goal of complex event processing is to identify

Grygoriy Zholtkevych and Volodymyr Dorozhinsky regret inform about the sudden
death of Prof. Boris Novikov.

c© Springer International Publishing Switzerland 2014
V. Ermolayev et al. (Eds.): ICTERI 2014, CCIS 469, pp. 100–116, 2014.
DOI: 10.1007/978-3-319-13206-8 5

Pre-automata and Complex Event Processing 101

meaningful events (such as opportunities or threats) and respond to them as
quickly as possible [2]. These events may be happening across the various layers
of an organization as sales leads, orders or customer service calls. Or, they may
be news items [3], text messages, social media posts, stock market feeds, traffic
reports, weather reports, or other kinds of data [11].

Important application areas of CEP are the following [7]:

– “Business Activity Monitoring aims at identifying problems and opportunities
in early stages by monitoring business process and other critical resources. To
this end, it summarizes events into so-called key performance indicators such
as, e.g., the average run time of a process”;

– “Sensor Networks transmit measured data from the physical world to, e.g.,
Supervisory Control and Data Acquisition Systems that are used for monitor-
ing of industrial facilities. To minimize measurement and other errors, data of
multiple sensors has to be combined frequently. Further, high-level situations
(e.g., fire) usually have to be derivative from raw numerical measurements
(e.g., temperature, smoke, etc.)”;

– “Market Data such as stock or commodity prices can also be considered as
events. They have to be analysed in a continuous and timely fashion in order
to recognize trends early and to react to them automatically, for example, in
algorithmic trading.”

The concepts of “timelines” and “flow processing” are critical to explain
the need of a new class of systems. Truly, traditional Data Base Management
Systems (DBMSs):

– require data to be (persistently) stored and indexed before it could be processed;
– process data only when explicitly asked by the users, i.e., asynchronously with

respect to its arrival.

Both aspects contrast with the requirements of modern monitoring systems [4].
To fulfill the requirements two main concepts are used:

– The Data Stream Processing Model [1] represents the information flow process-
ing problem as processing streams of data coming from different sources to
generate new data streams as an output, and considers this problem as an
extension of traditional data processing, as supported by Data Base Manage-
ment Systems. Therefore, Data Stream Management Systems (DSMSs) have
their roots in DBMSs but introduce essential differences. While traditional
DBMSs are designed to work on persistent data, where updates are relatively
infrequent, DSMSs are specialized in dealing with transient data that is contin-
uously updated. The same way, while DBMSs run queries just once to return
a complete answer, DSMSs execute standing queries, which run continuously
and provide updated answers as new data arrives;

– The Complex Event Processing Model [10] considers flowing information items
as notifications of events happening in the external world, which have to be
filtered and combined to understand what is happening in terms of higher-
level events. Therefore, the focus of this model is on detecting occurrences of

102 G. Zholtkevych et al.

particular patterns of (low-level) events that represent the higher-level events
whose occurrences has to be notified to the interested parties [4].

The situations (specified as complex events) that need to be detected in
the applications mentioned above and the information associated with these
situations are distributed over several events. Thus CEP can only derive such
situations from a number of correlated (simple) events. To this end many dif-
ferent languages and formalisms for querying events, the so-called Event Query
Languages (EQLs), have been developed in the past. Today the following EQL
styles are used [7]:

– Composition Operators build complex event queries from simple event queries
using composition operators. Complex event queries are expressed by compos-
ing single events using different composition operators. Typical operators are
conjunction of events (all events must happen, possibly at different times),
sequence (all events happen in the specified order), and negation within a
sequence (an event does not happen in the time between two other events);

– Data Stream Query Languages are based on the database query language
SQL and the following general idea: Data Streams carry events represented as
tuples. Each data stream corresponds to exactly one event type. The streams
are converted into relations which essentially contain (parts of) the tuples
received so far. On these relations a (almost) regular SQL query is evaluated.
The result (another relation) is then converted back into a data stream;

– Production Rules are very flexible and well integrated with existing program-
ming languages. However, it entails working on a low abstraction level that
is – since it is primarily state and not event oriented – somewhat different
from other EQLs. Especially aggregation and negation are therefore hard to
express. Production rules are considered to be less efficient then data stream
query languages; this is however tied to the flexibility they add in terms of
combining queries (in rule conditions) and reactions (in rule actions);

– Timed State Machines are usually used to model the behavior of a stateful
system that reacts to events. The system is modelled as a directed graph. The
nodes of the graph represent the possible states of the system. Directed edges
are labelled with events and temporal conditions on them. The edges specify
the transitions between states that occur in reaction to in-coming events. State
machines are founded formally on deterministic or non-deterministic finite
automata. Since states in a state machine are reached by particular sequence
of multiple events occurring over time, they implicitly define complex events;

– Logic Languages express event queries in logic-style formulas. Logic languages
offer a natural and convenient way to specify event queries. The main advan-
tage of logic languages is their strong formal foundation, an issue which is
neglected by many languages of other styles. Thanks to the separation of dif-
ferent dimensions of event processing, logic languages are highly expressive,
extensible and easy to learn and use.

CEP depends on a number of techniques, [8] including: event-pattern detec-
tion; event abstraction; event filtering; event aggregation and transformation;

Pre-automata and Complex Event Processing 103

modelling event hierarchies; detecting relationships (such as causality, member-
ship or timing) between events; abstracting event-driven processes.

The presented survey shows that there are a number of technical solutions
and software tools for implementing the concept of CEP. But some principal
problems for theoretical substantiation of the concept remain open. Among
them, e.g. the existence problem for unhandled event streams, which has an
important value for system design. The problem of CEP-system synthesis in
accordance with its input/reaction specification is the following example of such
open problems.

The main objective of this paper is to construct a mathematical model for
complex event processing systems to create a theoretical background for formal
analysis such systems.

The mathematical model proposed by authors is closely related with the
notion of a pre-automaton, which was introduced in [6] and studied further in
[12,14–16].

This paper consists of this introduction, seven sections, and conclusion.
Section 2 introduces basic notion and notations. Section 3 contains the compar-
ison of architectures for simple event processing and complex event processing.

Section 4 is devoted to constructing a mathematical model of a system for
complex event processing. This model is called a CEP-machine. Elementary
properties of a CEP-machine are studied in Sect. 5. The CEP-machine synthesis
problem is considered in Sect. 6.

Finally, in Sect. 7 the problem of algorithmic realising for a CEP-machine is
studied.

2 Basic Notions and Notations

Let X and Y be sets and f be a partial mapping from X into Y then the notation
f : X ��� Y is used to specify that f is a partial mapping in contrast to the
notation X → Y , which is used to specify everywhere defined mappings.

Let f : X ��� Y be a partial mapping from a set X into a set Y , x be some
element of X then the notation f(x) ↓ is used to indicate that x belongs to the
domain of the mapping f . Moreover, if x belongs to the domain of the mapping
f and it is known that f(x) = y then the denotation f(x) ↓ y is used to express
this fact. Similarly, the notation f(x) ↑ is used to indicate that x does not belong
to the domain of the mapping f . As usually, we use the denotation D(f) for the
domain of f .

Let Σ be a finite alphabet. As usually, we use the notation Σ∗ to refer to
the free monoid generated by Σ. The unit of this monoid is denoted by ε. The
semigroup of all non-empty words over an alphabet Σ is denoted by Σ+. Hence,
Σ∗ = Σ+

⋃{ε}.
For any u ∈ Σ+ we denote by |u| the length of u, i.e. a number of symbols

containing in u, and set that |ε| = 0.
Any set L consisting of words over alphabet Σ is called prefix-free if assertions

uv ∈ L and u ∈ L for u, v ∈ Σ∗ imply the equality v = ε. For any L ⊂ Σ+ we
denote by C(L) the following set

104 G. Zholtkevych et al.

C(L) = {w ∈ L | w = uv and u ∈ L imply v = ε} .

One can easily see that L ⊂ Σ+ is prefix-free if and only if C(L) = L .
In addition to words over some alphabet we consider infinite sequences of

alphabet symbols. Therefore we use the notation Σω for the set of all one-way
infinite sequences of symbols belonging to the alphabet Σ. For π ∈ Σω and n ∈ N

we use the notation π[1..n] to refer to the word that has a length n and coincides
with the beginning of the sequence π. We denote also by π(n..) the sequence
belonging to Σω that is defined by the equality π = π[1..n]π(n..).

3 Event Processing Versus Complex Event Processing

In this section we are going to consider specificity of CEP in contrast to simple
event processing.

Definition 1 (Atomic and Complex Events). We shall say that an event is
atomic if it can not be represented as a complex of sub-events that are essential
for the domain of our interest.

In contrast, we shall say that an event is complex if it can be represented as
a complex of sub-events that are essential for the domain of our interest.

Fig. 1. Simple event processing

Pre-automata and Complex Event Processing 105

Example 1. Language Java distinguishes low-level events and semantic events.
A keyboard, a mouse and other input devices produce the low-level events.

In contrast to low-level events semantic events are produced as a result of
some sequence of low-level events, e.g. SelectItemEvent is a result of the sequence:
GetFocusEvent, DownButtonEvent, and UpButtonEvent.

Definition 2 (Simple Event Processing). Simple event processing is based
on the suggestion that each event is directly related to specific, measurable changes
of condition and can be processed standalone.

In the case of simple event processing each notable happened event initiates
immediately the corresponding action.

Simple event processing is commonly used to drive the real-time work-flow
thereby reducing lag time and cost [13].

As shown in Fig. 1 event handler processes atomic events as soon as notifica-
tions about them being received.

=

Fig. 2. Complex event processing

106 G. Zholtkevych et al.

Definition 3 (Complex event processing). Complex event processing is
based on the suggestion that each atomic event carries too small volume of infor-
mation to determine the adequate reaction.

Complex event processing evaluates a confluence of events, determines an
event pattern and then takes the corresponding action.

Complex events may have different types and may occur over a long period of
time. The event dependencies may be different also and be causal, temporal,
or spatial. CEP requires to use sophisticated event interpreters, event pattern
definitions and recognition mechanisms [13].

As shown in Fig. 2 complex event handler is searching through the event
buffer to recognise a complex event. And if the complex event was recognised then
handler processes it and clears the event buffer. Thus the main difference between
Simple Event Processing and Complex Event Processing is that in the first case
a processing system reacts on each atomic event immediately while in the second
case a processing system is trying to detect and process some meaningful complex
event by analysing the buffer of atomic events. Facts mentioned above and results
obtained in [12,14–16] show that concept of the Pre-Automata can be widely
used in mathematical modelling of Complex Event Processing Systems.

4 Formal Model of Complex Event Processing System

In this section some mathematical model of an abstract machine for complex
event processing is built. To do this we choose and fix two finite alphabets Σ
and A to describe atomic events and system responses respectively.

Definition 4 (a handler). A partially defined map h : Σ+ ��� A we shall call
a handler if its domain D(h) is a prefix-free set.

To explain the necessity of the equation C(D(h)) = D(h) note that the require-
ment to accumulate a sequence of atomic events until it is recognised as a
processed sequence, is described by this equation.

Definition 5 (a pattern). Let h : Σ+ ��� A be a handler and a ∈ A be some
response then the prefix-free set Ph(a) = {w ∈ D(h) | h(w) = a} is called an
h, a-pattern.

A definition of an abstract machine for complex event processing should answer
the informal description given by Fig. 2.

Definition 6 (CEP-machine). An abstract machine for complex event proce-
ssing (below a CEP-machine) is a quadruple M = (Σ,A,H, δ) where Σ and
A are finite alphabets of events and responses respectively, H is a finite set of
handlers, and δ : A → H is a total map, which is called a transition map.

One can easily see that each handler h in the model corresponds to the method
handle() of the class Handler and the map δ corresponds to the method succ() of
the class Dispatcher (see Fig. 2).

Pre-automata and Complex Event Processing 107

To define a behaviour of a CEP-machine let us consider the set Σω containing
all infinite sequences of elements belonging Σ. Such sequences will be called event
streams.

Let us define the partial function Th : Σω ��� N for any handler h ∈ H by
the following conditions

Th(π) ↓ t if π[1..t] ∈ D(h) ;
Th(π) ↑ if (∀ t ∈ N) h(π[1..t]) ↑ .

(1)

Informally, Th(π) is the first response time of the handler h under processing the
event stream π.

Definition 7 (an evolutionary operator of CEP-machine). Let M =
(Σ,A,H, δ) be a CEP-machine then the partial map S : H × Σω ��� H × Σω

defined by the conditions

S〈h, π〉 ↓ 〈δ(h(π[1..t])), π(t..)〉 if Th(π) ↓ t
S〈h, π〉 ↑ if Th(π) ↑

will be called an evolutionary operator of the CEP-machine.

Now to specify a correct behaviour of a CEP-machine we define its valid scenarios
called work-flows.

Definition 8 (a work-flow). Let M = (Σ,A,H, δ) be a CEP-machine and
〈〈h(t), π(t)〉 | t = 0, 1, . . . 〉 be a sequence over H × Σω then it is called a work-
flow if the following equality holds

〈h(t+1), π(t+1)〉 = S〈h(t), π(t)〉 for all t ≥ 0 .

5 Elementary Properties of CEP-machines

Simple, but very important properties of CEP-machines are a consequence of
the existence of some natural topology on the set Σω.

More precisely, for a finite alphabet Σ the family B = {u · Σω | u ∈ Σ+} of
subsets over Σω holds characteristic properties of a topological base. Therefore,
we consider Σω as a topological space and the corresponding topology is called
Tychonoff topology on sequence space. It is well-known that this topological
space is a bicompact.

Proposition 1. Let M = (Σ,A,H, δ) be a CEP-machine then for any h ∈ H
the function Th : Σω ��� N defined by (1) is continuous function on the set
{π ∈ Σω | Th(π) ↓} under the assumption that the topology on N is discrete.

Proof. One can easily see that for any t ∈ N the equality

T−1
h (t) =

⋃

u∈D(h):|u|=t

u · Σω

is true. But the right side of this equality is a union of sets belonging to B, hence
T−1(t) is an open set. ��

108 G. Zholtkevych et al.

Corollary 1. The function Th : Σω ��� N is a piecewise constant function.

Corollary 2. Let M = (Σ,A,H, δ) be a CEP-machine, S be its evolutionary
operator, and D(S) be domain of S then

D(S) =
⋃

h∈H

Dh(S) ,

where each Dh(S) ⊂ Σω is an open set in Tychonoff topology on Σω.

Theorem 1. Let M = (Σ,A,H, δ) be a CEP-machine, S be its evolutionary
operator, and h ∈ H be some handler then S〈h, π〉 ↓ for all π ∈ Σω if and only
if D(h) is finite and Σω =

⋃
u∈D(h) u · Σω.

Proof. Indeed, suppose that S〈h, π〉 ↓ for any event stream π then the statement
Th(π) ↓ is true for all π ∈ Σω. It means that

Σω =
∞⋃

t=1

T−1(t) =
∞⋃

t=1

⎛

⎝
⋃

u∈D(h):|u|=t

u · Σω

⎞

⎠ .

Further, taking into account Proposition 1 and Weierstrass Boundedness The-
orem one can conclude that there exists M ∈ N such that Th(π) ≤ M for all
π ∈ Σω. Hence, we obtain that

Σω =
M⋃

t=1

⎛

⎝
⋃

u∈D(h):|u|=t

u · Σω

⎞

⎠ .

Thus, the set D0(h) = {u ∈ D(h) | 1 ≤ |u| ≤ M} is finite.
Let D0(h) = {u1, . . . , um} then

1. ui ∈ D(h) for all i = 1, . . . , m and
2. Σω =

⋃m
i=1 ui · Σω.

We claim that ui · Σω
⋂

uj · Σω = ∅ for 1 ≤ i �= j ≤ m. Indeed, suppose that
there exists some π ∈ ui · Σω

⋂
uj · Σω then there are three possibilities:

– |ui| = |uj | and in this case we have the equality ui = uj that contradicts the
assumption i �= j;

– |ui| < |uj | and ui is a prefix of uj that contradicts the equality C(D(h)) =
D(h);

– |ui| > |uj | that is impossible too (reasoning is similar to the previous item).

Further, let u be an arbitrary element in D(h) then taking into account properties
1 and 2 of D0(h) we can conclude the following statement: for each π ∈ u ·
Σω there exists the unique 1 ≤ i(π) ≤ m such that π ∈ ui(π) · Σω. As above
the assumption |u| �= |ui(π)| contradicts the equality C(D(h)) = D(h) and the
equality |u| = |ui(π)| means u = ui(π). Hence, D(h) = D0(h) and the direct
statement of the theorem is proved.

The converse statement of the theorem is evident. ��

Pre-automata and Complex Event Processing 109

Remark 1. Theorem 1 is not complicated but it grounds the following important
alternative: either a handler is able to provide a response to an infinite number
of complex events and, in such a case, it can not provide processing of any event
stream, or the handler is able to provide processing of any event stream and, in
such a case, its behaviour consists in responding to a finite number of complex
events.

6 CEP-machines and Pre-automata

As it noted above, the concept of a pre-automaton is closely related with the
concept of a CEP-machine. This section is devoted to explaining of the mentioned
relation.

Definition 9. (see [6]). A triple (X,Σ, μ), where X is a set, Σ is a finite alpha-
bet, and μ : X × Σ∗ ��� X is a partial mapping, is called a pre-automaton if the
following conditions hold

1. the equality μ(x, ε) ↓ x holds for all x ∈ X ;
2. if the assertions μ(x, u) ↓ and μ(μ(x, u), v) ↓ are true for some x ∈ X and

u, v ∈ Σ∗ then the assertion μ(x, uv) ↓ μ(μ(x, u), v) is true too;
3. if the assertions μ(x, u) ↓ and μ(x, uv) ↓ are true for some x ∈ X and u, v ∈

Σ∗ then the assertion μ(μ(x, u), v) ↓ μ(x, uv) is true too.

In this context μ is called a transition function.

Now we describe a manner to associate a pre-automaton with a CEP-machine.
The origin point for our construction is a CEP-machine M = (Σ,A,H, δ). We
will find the target pre-automaton as the triple M̂ = (H,Σ, μ) such that the
partial mapping μ : H × Σ∗ ��� H satisfies the following condition

for any h ∈ H, w ∈ D(h), and π ∈ Σω

the conjunction of μ(h,w) ↓ and S〈h,w · π〉 ↓ 〈μ(h,w), π〉 is true (2)

where S is the evolutionary operator of the CEP-machine M.

Theorem 2. Let M = (Σ,A,H, δ) be a CEP-machine and μ : H × Σ∗ ��� H
be defined in the following manner

1. μ(h, ε) = h for any h ∈ H;
2. for any h ∈ H, u ∈ D(h), and v ∈ Σ∗ the truth of the assertion μ(δ(h(u)), v) ↓

implies that μ(h, uv) ↓ is true and in this case μ(h, uv) = μ(δ(h(u)), v);
3. μ(h,w) ↑ for all other cases,

then the triple M̂ = (H,Σ, μ) is a pre-automaton and the mapping μ satisfies
(2).

To prove the Theorem 2 the following lemma is needed.

110 G. Zholtkevych et al.

Lemma 1. Let μ be as in Theorem 2, h ∈ H, and w ∈ Σ+ be a word such that
μ(h,w) ↓ then there exists the unique alternating sequence h0 ∈ H, u0 ∈ Σ+,
h1 ∈ H, u1 ∈ Σ+, . . . , un−1 ∈ Σ+, hn ∈ H such that

1. w = u0 . . . un−1;
2. ui ∈ D(hi) for all i = 0, . . . , n − 1;
3. h0 = h and hi+1 = μ(hi, ui) for all i = 0, . . . , n − 1.

Proof. To prove the lemma let us consider the following algorithm.

1: let us assign h0 ← h, w0 ← w, and i ← 0;
2: if wi ∈ D(hi) then assign hi+1 ← μ(hi, wi), ui ← wi, and halt;
3: choose ui ∈ D(hi) and wi+1 ∈ Σ+ so as to satisfy the equality wi = uiwi+1;
4: let assign hi+1 ← μ(hi, ui) and i ← i + 1;
5: go to item 2.

Taking into account that μ(h,w) ↓ and the definition of μ one can obtain that
for any i either wi ∈ D(hi) and algorithm terminates or wi can be represented
in accordance to item 3. In the last case the definition of μ guaranties that
μ(hi, wi) ↓. Moreover, the inequality |wi| < |wi−1| holds.

Thus, an algorithm execution is terminated because each its step decreases
length of the current word wi. After such a termination we evidently obtained
the required alternating sequence. ��
Corollary 3. Any word w ∈ Σ+ such that μ(h,w) ↓ can be uniquely represented
in the form w = uv where u is a word satisfying the condition μ(h, u) ↓ and
v ∈ D(μ(h, u)).

Proof (of Theorem 2). Primarily, let us check that μ satisfies conditions 1 – 3 of
Definition 9. The validity of condition 1 is evident.

To check condition 2 of the theorem assume that μ(h, u) ↓ and μ(μ(h, u), v) ↓.
Using Lemma 1 one can construct the alternating sequence

h0 = h, u0, . . . , um−1, hm = μ(h, u), um, . . . , um+n−1, hm+n = μ(μ(h, u), v)

such that the sequence h0 = h, u0, . . . , um−1, hm = μ(h, u) is the sequence
for μ(h, u) and hm = μ(h, u), um, . . . , um+n−1, hm+n = μ(μ(h, u), v) is the
sequence for μ(μ(h, u), v). Thus u = u0 . . . um−1, v = um . . . um+n−1, and
uv = u0 . . . um−1um . . . um+n−1. It is evident that conditions 2 and 3 of Lemma 1
hold therefore the constructing sequence is the sequence for μ(uv, h). This means
that μ(h, uv) ↓ μ(μ(h, u), v).

To check condition 3 of the theorem is similarly to check condition 2.
The validity of (2) is evident. ��

Definition 10 (the dual pre-automaton for a CEP-machine). Let M =
(Σ,A,H, δ) be a CEP-machine and M̂ = (H,Σ, μ) be the pre-automaton deter-
mined by Theorem 2 then M̂ will be called the dual pre-automaton for the CEP-
machine M.

Pre-automata and Complex Event Processing 111

We can carry out the converse construction too and associate with any pre-
automaton P a CEP-machine M so as to satisfy the equality P = M̂.

Proposition 2. Suppose that a pre-machine P = (X,Σ, μ) is given and let us
define the quadruple P̂ = (Σ,X,H, δ) such that

H = {hx : Σ+ ��� X | x ∈ X} where

D(hx) = {w ∈ Σ+ | μ(x,w) ↓ and if w = uv ∧ μ(x, u) ↓ then v = ε} ,

hx(w) = μ(x,w) for w ∈ D(hx) ;

δ(x) = hx .

Then P̂ is a CEP-machine and ̂̂P is isomorphic to P.

Proof. Let μ̂ : H×Σ∗ ��� H be the transition function for the pre-automaton ̂̂P.
Then for w ∈ D(hx) we have μ̂(hx, w) = δ(hx(w)) = hμ(x,w). Extending the
mapping μ̂(x,w) for w ∈ Σ∗ in according with the conditions of Theorem 2 we
obtain μ̂(hx, w) ↓ if and only if μ(x,w) ↓ and in this case μ̂(hx, w) = hμ(x,w).
Hence, the mapping such that x �→ hx is an isomorphism of pre-automata [6]. ��

7 Synthesis of CEP-machines with Specified Behaviour

The real engineering practice requires methods to provide improving of devel-
opment processes, in particular, for synthesis of CEP-systems. The key notion
for this synthesis problem is the notion of “a CEP-machine behaviour”. In this
section we propose a generalization for the notion “a behaviour”, which was
defined for automata, and solve the corresponding synthesis problem.

In this context the first problem is to set a method to specify a CEP-machine
behaviour. We suggest that to specify the behaviour of the CEP-machine and to
specify a mapping associating an input event stream with a sequence of responses
of the CEP-machine are the solutions of the same problem. These considerations
lead us to the following definitions.

Definition 11 (an initial CEP-machine). A quintuple M = (Σ,A,H, δ, h∗),
where h∗ ∈ H, is called an initial CEP-machine if the quadruple (Σ,A,H, δ) is
a CEP-machine.

In other words, an initial CEP-machine is a CEP-machine with the marked
handler, which is called an initial handler. This handler is chosen as the active
handler under initialization the CEP-machine.

Definition 12 (the response function of a CEP-machine). For an arbit-
rary initial CEP-machine M = (Σ,A,H, δ, h∗) let us define the partial mapping
β : Σ+ ��� A in the following manner

1. the domain of β is defined by the equality D(β) = {w ∈ Σ+ | μ(h∗, w) ↓}
where μ is the transition function of the pre-automaton M̂;

112 G. Zholtkevych et al.

2. for w ∈ D(β) using Corollary 3 represent w = uv such that μ(h∗, u) ↓ and
v ∈ D(μ(h∗, u)) then define β(w) = μ(h∗, u)(v).

The constructed mapping β is called the response function of the CEP-machine
M.

In the following proposition the main property of response functions is estab-
lished.

Proposition 3. Let M = (Σ,A,H, δ, h∗) be an initial CEP-machine and
β : Σ+ ��� A be its response function then the following condition is true for
any u, v ∈ D(β) such that β(u) = β(v) and any w ∈ Σ∗

uw ∈ D(β) implies vw ∈ D(β) and β(uw) = β(vw) . (3)

Proof. Let u, v ∈ D(β) and β(u) = β(v). Taking into account the last equality
and representation μ(h∗, u) = δ(β(u)) one can conclude that μ(h∗, u) = μ(h∗, v).
If uw ∈ D(β) then μ(h∗, uw) ↓ and using condition 3 of Definition 9 we obtain
that μ(μ(h∗, u), w) ↓ and, hence,

μ(h∗, uw) = μ(μ(h∗, u), w) = μ(δ(β(u)), w) = μ(δ(β(v)), w) = μ(μ(h∗, v), w) .

Therefore, μ(μ(h∗, v), w) ↓ and using condition 2 of Definition 9 we obtain that
μ(h∗, vw) ↓ i.e. vw ∈ D(β).

Further, β(u) = β(v) implies μ(h∗, u) = μ(h∗, v) and we can use the decom-
position from Corollary 3 for h = μ(h∗, u) = μ(h∗, v) and w. Let w = w′w′′ be
the corresponding decomposition then μ(h,w′) ↓ and w′′ ∈ D(μ(h,w′)). Defi-
nition 9 and the equality β(u) = β(v) ensure that the statements μ(h∗, uw′) ↓
and μ(h∗, vw′) ↓ are true both and the equality μ(h∗, uw′) = μ(h∗, vw′) hold.
Therefore, we have

β(uw) = μ(h∗, uw′)(w′′) = μ(μ(h∗, u), w′)(w′′) = μ(h,w′)(w′′) =
μ(μ(h∗, v), w′)(w′′) = μ(h∗, vw′)(w′′) = β(vw) .

Thus, proof is complete. ��
The converse statement to the previous proposition is true too.

Theorem 3. (about synthesis of a CEP-machine). Let Σ and A be finite
alphabets and β : Σ+ ��� A be a partial mapping satisfying (3) then there exists
an initial CEP-machine M = (Σ,A,H, δ, h∗ ∈ H) whose response function coin-
cides with β.

Proof. Let us prove the theorem in two stages. Primarily construct a CEP-
machine Mβ using the mapping β and then prove that its response function
coincides with β.

To realise the first stage of the proof let us consider on the set D(β) ⊂ Σ∗

the binary relation ≡β defined by the next way: u ≡β v means that β(u) = β(v)
is true. It is evident that this relation is an equivalence.

Pre-automata and Complex Event Processing 113

Now let us consider H = {h∗}
⋃{h[u]β | u ∈ D(β)} where [u]β is the

equivalence class of u with respect to equivalence ≡β . Taking into account that
β|[u]β is a constant mapping for each u ∈ D(β) one can conclude that |H| ≤
|A| + 1. Therefore H is a finite set.

Let us define h∗(w) ↓ if w ∈ C(D(β)) and in this case h∗(w) = β(w). The
definition of C(D(β)) ensure that h∗ is a handler.

Further, for u ∈ D(β) define that h[u]β (w) ↓ if uw ∈ C(D(β)). Condition (3)
ensures that this definition does not depend on a choice of u′ ∈ [u]β . Moreover, in
the considered case the equality β(uw) = β(u′w) holds. Therefore, the formula
h[u]β (w) = β(uw) defines h[u]β correctly. To check that h[u]β is a handler let
assume that w′w′′ ∈ D(h[u]β) and w′ ∈ D(h[u]β) then uw′w′′ ∈ C(D(β)) and
uw′ ∈ C(D(β)) are true both. But the last conjunction means that w′′ = ε by
the definition of C(D(β)). Hence, h[u]β is a handler.

To define δ : A → H note that for any a ∈ β(D(β)) the equality β(u) = a
uniquely determines [u]β , hence we can define δ on β(D(β)) by the next way
δ(a) = [u]β where β(u) = a. On the set A \ β(D(β)) we can define the mapping
δ in arbitrary way, e.g. setting δ|(A \ β(D(β))) = h∗.

Thus, we have constructed the CEP-machine Mβ = (Σ,A,H, δ).
To complete proof it is need to check that the response function of the CEP-

machine Mβ coincides with β. Denote by β̂ the response function of the CEP-
machine Mβ and by μ the transition function of the pre-automaton M̂β .

By definition D(β̂) coincides with the set {w ∈ Σ+ | μ(h∗, w) ↓}. For such
a word w we can apply Lemma 1 and construct the alternating sequence h0 =
h∗, u0, h1 = h[u0]β , . . . , hn−1 = h[u0...un−2]β , un−1, hn = h[un−1]β such that
u0 . . . ui ∈ D(hi) for i = 0, . . . , n − 1 and w = u0 . . . un−1. Hence, β̂(w) =
β(u0 . . . un−2un−1) = β(w). ��

8 Complex Event Processing and Computability

Above we were considering the general properties of CEP-machines and the
theory was being constructed similar to finite automata theory. However, prob-
lems associated with CEP-machines are not automatically solvable in contrast
to problems associated with finite automata. Therefore computability for CEP-
machines is a special problem requiring its studying.

For use the described above approach to solve problems of designing software
systems, we restrict the class of handlers, namely, we consider computable han-
dlers only. Such a restriction is a key to provide processing of event streams using
a computational system. In the most general form the schema of complex event
processing is represented in Fig. 2. We should stress that there is a potential
problem in this schema. It is connected with applying the method handle(). This
method sequentially applies the corresponding handler to the current buffer con-
tents. But a computable function does not identify data which does not belong
to the domain of this function in general case. Therefore an attempt to execute
this method can lead to its infinite running. In this section we show that the
indicated anomaly can be eliminated.

114 G. Zholtkevych et al.

Theorem 4. (about Decidability of the Halting Problem for Handlers).
Let Σ and A be finite alphabets, h : Σ+ ��� A be a computable handler, and
π ∈ Σω be an event stream then the predicate M(π) ∼= ∃n h(π[1..n]) ↓ is decidable
relative to g(n) = π[1..n].

Proof. As it is established in computation theory the domain of a computable
function is a semidecidable set. Hence, the predicate w ∈ D(h) is semidecidable.
Such a predicate is represented as ∃ t R(w, t) for some decidable predicate R
(see [5, p.114,Theorem6.4]). As R one can be chosen, for example, the predicate
“a program to compute h executes at most t commands and is halted when the
input is w”.

Let us γ : N → N × N be the mapping defined by the formulae

γ1(n) = μk

(

n <
k(k + 1)

2

)

− 1

γ2(n) = n − γ1(n)
,

where μk (M(k, n)) means the minimal value of k that satisfies the condition
M(k, n). It is evident that γ = (γ1, γ2) is a computable bijection.

Now let us consider the following algorithm

1: let assign n ← 1;
2: let assign m, t ← γ(n);
3: if R(g(m), t) then return g(m) and halt;
4: let assign n ← n + 1;
5: go to item 2.

Taking into account that the domain of h is prefix-free one can easily check
the following sentence: either there exists m such that π[1..m] ∈ D(h) and the
algorithm finds it or the algorithm is executing infinitely. To complete proof it
is sufficient to transform this informal algorithm into the corresponding Turing
machine. ��
Corollary 4. If all handlers of a CEP-machine are computable then this
machine can be algorithmic realised.

Proof. Indeed, we can find π[1..m] ∈ D(h) using the algorithm of Theorem 4 if
such π[1..m] exists and then calculate h(π[1..m]). ��

9 Conclusion

In the paper a study of complex event processing systems has been conducted.
This study has based on known examples of software solutions for such sys-
tems and results of a generalisation of these examples. Therefore some survey of
complex event processing systems has been taken as a basis of the research.

Abstracting of invariants for these examples has led to the formulation of a
mathematical model, which has been called a CEP-machine. This model has been

Pre-automata and Complex Event Processing 115

described from two points of view: structural and behavioural. To specify the
behavioural part of the model a number of formal notions has been introduced.

Basing on these formal objects the elementary properties of a CEP-machine
have been studied. Theorem 1 expresses the principal result of such a study. It
consists in that either an event handler is able to provide a response to an infinite
number of complex events and, in such a case, it can not provide processing of
any event stream, or the handler is able to provide processing of any event stream
and, in such a case, its behaviour consists in responding to a finite number of
complex events.

Duality between of CEP-machines and pre-automata (see Theorem 2 and
Proposition 2) is the another important result obtained in the paper. It provides
some technique for studying of a CEP-machine behaviour.

The important problem for applications is the CEP-machine synthesis prob-
lem with the given behaviour, which is specified by a response function. Theo-
rem 3 describes and gives grounds for the method to solve this problem.

Finally, Theorem 4 gives a solution for the problem about the algorithmic
realisability of a CEP-machine. This theorem has established that the com-
putability condition of machine handlers is sufficient for the algorithmic realis-
ability of the CEP-machine.

Unfortunately, Theorem 3 does not establish any universal properties for the
constructed CEP-machine in contrast to the analogous construction for finite
state machine. Therefore the question about universality of this construction for
CEP-machines is open now.

The following statement “If a response function is computable then the cor-
responding CEP-machine is algorithmical realisable” is an example of the next
open problem.

We should indicate yet another direction of analysing of CEP-machines. The
necessity of this direction follows from the property of CEP-machines marked
above: if a CEP-machine is non-trivial then there exist event streams that can
be processed by this machine. Hence, studying of such anomalies is an important
problem. This studying would be carried out in the probabilistic context that
would be provide mean estimations for behavioural anomalies of CEP-machines.

References

1. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over
data streams. In: ICDE’04: Proceedings of the 20th International Conference Data
Engineering, pp. 350–361. IEEE CS, Washington (2004)

2. Bates, J.: Secrets Revealed: Trading Tools Uncover Hidden Opportunities.
Global Trading, 14 May 2012. http://fixglobal.com/home/secrets-revealed-
trading-tools-uncover-hidden-opportunities/

3. Crosman, P.: Aleri, Ravenpack to Feed News into Trading Algos. Wall Street
& Technology (2009). http://www.wallstreetandtech.com/data-management/
aleri-ravenpack-to-feed-news-into-tradin/217500395

4. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. CSUR 44(3), 15 (2012). ACM Press

http://fixglobal.com/home/secrets-revealed-trading-tools-uncover-hidden-opportunities/
http://fixglobal.com/home/secrets-revealed-trading-tools-uncover-hidden-opportunities/
http://www.wallstreetandtech.com/data-management/aleri-ravenpack-to-feed-news-into-tradin/217500395
http://www.wallstreetandtech.com/data-management/aleri-ravenpack-to-feed-news-into-tradin/217500395

116 G. Zholtkevych et al.

5. Cutland, N.: Computability: an introduction to recursive function theory.
Cambridge University Press, London (1980)

6. Dokuchaev, M., Novikov, B., Zholtkevych, G.: Alg. Discr. Math. 11(2), 51–63
(2011)

7. Eckert, Michael, Bry, François, Brodt, Simon, Poppe, Olga, Hausmann, Steffen: A
CEP babelfish: languages for complex event processing and querying surveyed. In:
Helmer, Sven, Poulovassilis, Alexandra, Xhafa, Fatos (eds.) Reasoning in Event-
Based Distributed Systems. SCI, vol. 347, pp. 47–70. Springer, Heidelberg (2011)

8. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications,
Stamford (2010)

9. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, New York (2001)

10. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, Boston (2002)

11. Luckham, D.C.: Event Processing for Business: Organizing the Real-Time Enter-
prise. John Wiley & Sons Inc., Hoboken (2012)

12. Mikhailova, I., Novikov, B., Zholtkevych, G.: Protoautomata as models of systems
with data accumulation. In: Ermolayev, V., et al. (eds.) Proceedings of the 9th
International Conference ICTERI 2013, pp. 582–589. CEUR-WS (2013)

13. Michelson, B.: Event-Driven Architecture Overview. Patricia Seybold Group,
Boston (2006)

14. Novikov, B., Perepelytsya, I., Zholtkevych, G.: Pre-automata as mathematical
models of event flows recognisers. In: Ermolayev, V., et al. (eds.) Proceedings
of the 7th International Conference ICTERI 2011, pp. 41–50. CEURS-WS (2011)

15. Perepelytsya, I., Zholtkevych, G.: On some class of mathematical models for static
analysis of critical-mission asynchronous systems. Syst. ozbr. ta viysk. tehn. 27(3),
60–63 (2011)

16. Perepelytsya, I., Zholtkevych, G.: Hierarchic decomposition of pre-machines as
models of software system components. Syst. upravl. navig. i zv’iazku. 20(4), 233–
238 (2011)

	Pre-automata and Complex Event Processing
	1 Introduction
	2 Basic Notions and Notations
	3 Event Processing Versus Complex Event Processing
	4 Formal Model of Complex Event Processing System
	5 Elementary Properties of CEP-machines
	6 CEP-machines and Pre-automata
	7 Synthesis of CEP-machines with Specified Behaviour
	8 Complex Event Processing and Computability
	9 Conclusion
	References

