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Abstract. We propose a decidable formal theory which describes high-
level properties of abstract continuous-time dynamical systems called
Nondeterministic Complete Markovian Systems (NCMS). NCMS is a
rather general class of systems which can represent discrete and/or con-
tinuous evolutions in continuous time and which is sufficient for modeling
a wide range of real-time information processing and cyber-physical sys-
tems (CPS). We illustrate the obtained results with a proof of the mutual
exclusion property of a CPS which implements Peterson’s algorithm.
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1 Introduction

A large amount of computing systems used today act as agents interacting with
physical processes. They are now frequently called cyber-physical systems [1,2].
Examples include autonomous automotive systems, robotics, process control,
medical devices, energy conservation, etc. [3]. Let us give some quotes from the
Cyber-Physical Systems (CPS) concept map [4] by S.S. Sunder of NIST (USA),
E.A. Lee of UC Berkeley (USA) and others:

“CPS integrates the dynamics of the physical processes with those of the soft-
ware and networking, providing abstractions and modeling, design, and analysis
techniques for the integrated whole” [4].

“Classical models of computation in computer science, rooted in Turing-
Church theories for non-concurrent systems, and in nondeterministic transition
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systems and process algebras for concurrent systems, do not handle temporal
dynamics well” [4].

“A key CPS challenge is to conjoin the engineering abstractions for continu-
ous dynamics (such as differential equations) with computer science abstractions
(such as algorithms)” [4].

Besides, the following research needs in CPS are outlined in [1]: Abstrac-
tion and Architectures, Distributed Computations and Networked Control, and
Verification and Validation. With regard to the first aspect (Abstraction and
Architectures) it is stated that

“Innovative approaches to abstraction and architectures that enable seamless
integration of control, communication, and computation must be developed for
rapid design and deployment of CPS” [1].

The mentioned challenges imply the importance of development of adequate
system models of various levels of abstraction and generality with emphasis on
system’s temporal behavior which should not be restricted to a purely discrete
or purely continuous evolution.

Although not aimed specifically at solving the mentioned challenges, many
concrete models that combine a discrete and continuous behavior in some way
were studied in control theory, theory of differential equations, and computer sci-
ence, e.g. variable structure systems [5–7], impulsive differential equations [8,9],
differential equations with discontinuous right hand sides [10], switched systems
[11], hybrid control systems [12–16], hybrid automata [17–19], phase transition
systems [20], hybrid reactive modules [21], hybrid I/O automata [22]. The men-
tioned models may be useful for solving certain CPS-related problems, but they
do not handle well such important aspects of CPS as levels of abstractions and
distributed organization. As a result, high-level properties of CPS (e.g. mutual
exclusion of access to a shared resource by different components within a CPS)
are difficult to validate (and even formalize) in such models.

A possible solution to this problem is application of temporal [23–26] and
dynamic logics [27–29] which allow reasoning about continuous-time systems
(e.g. Temporal Logic of Reals [23], Duration Calculus [25], Monadic Second Order
Logic over the structure of boolean finitely variable signals [24], continuous-time
interpretation of Temporal Logic of Action [30], Real-time Temporal Logic [31],
Differential Dynamic Logic [29], etc.). One can specify common high-level prop-
erties of interest of CPS rather straightforwardly in such logics and prove them.
However, for expressive logics of this kind [24,27–29] the validity problem is
known to be undecidable (which is frequently related to the undecidability of
the reachability problem for various classes of hybrid systems), so the search for
decidable but useful fragments is still a relevant topic of research. It should be
noted that most logics (fragments) that are known to be decidable are concerned
with reasoning about systems which satisfy a kind of a finite variability assump-
tion (non-Zenoness) [24,32]: discrete-valued time-varying quantities of interest
associated with the system can be modeled as piecewise constant functions (with
finite sets of discontinuities over each bounded time segment). Although this
assumption is reasonable in many practical cases, some real-world systems have
adequate mathematical models which violate it (the simplest example is a hybrid
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automaton with Zeno executions which models of the dynamics of a bouncing
ball [33]). This makes the problem of investigation of decidable formal theories
which allow reasoning about more general classes of continuous-time dynamical
systems important.

In this paper we will define and prove decidability of one such formal the-
ory. For this purpose we need to select a sufficiently general class of dynami-
cal systems. As we are interested in high-level properties, we will require such
dynamical systems to be abstract models of CPS (which do not reflect exces-
sive details about their structure and operation). We will also use the following
informal assumption: each logically possible realization of the run-time behavior
of a CPS can be modeled as an evolution of a (single) global state in the global
continuous time (although the global state and time may be treated as purely
mathematical objects with no physical manifestation). This suggests that the
overall behavior of a CPS can be modeled as a set of functions (trajectories)
from the global time domain to the set of global states which represent logi-
cally possible realizations of the system’s run-time behavior. On the other hand,
well-known types of continuous-time dynamical systems have associated sets of
trajectories as functions from a time domain to a state space. So in this paper
we will consider a dynamical system to be a model of a CPS, if its associated
set of trajectories represents the set of possible run-time behaviors of this CPS.

Classes of continuous-time dynamical systems of various levels of generality
were considered in many works [5,34–44]. Classical approaches to the definition
of a dynamical system, such as those proposed by A.A. Markov, V.V. Nemytskii
and V.V. Stepanov [35] and others (an overview can be found in [43]) can be
considered as axiomatizations of properties of systems described by differential
equations. As was noted in the work [38], the following properties of ordinary
differential equations were of main concern in various axiomatizations: (1) local
existence of solutions, (2) indefinite prolongability (global existence) of solutions,
(3) unicity of solutions, (4) autonomness (the right-hand side of the equation
does not depend explicitly on time). However, in a number of works [5,37–
40,43,45,46], etc., there was a tendency to remove some of these properties
from basic assumptions and consider increasingly general classes of dynamical
systems (a comparison of many such approaches is given in [43]). In particular,
in [38] it was proposed to eliminate the properties (1)–(4) mentioned above
from the axiomatization to obtain a far-reaching generalization of dynamical
systems. Variants of such a generalization include the notion of a process [38,47]
and the (process-independent) notion of a solution system [38] by O. Hájek.
Similar ideas also appeared in some other works [40,43,44]. The general notion
of a solution system by O. Hájek was used as basis of a more restricted notion
of a Nondeterminisitc Complete Markovian System (NCMS) introduced in [48]
for the purpose of studying the relation between the existence of global and
local trajectories of dynamical systems. A NCMS is associated with a set of
trajectories which are partial functions on the non-negative real time domain
which satisfies certain assumption [48]. Although the class of NCMS is more
restricted than the class of solution systems, it is sufficient for representing a
very general class of causal (nonanticipative) systems which interact with the
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external environment using continuous-time input and output signals [49,50],
so we assume it to be sufficient for high-level modeling of real-time information
processing systems and cyber-physical systems. For the reasons mentioned above,
we will assume that the class of NCMS is sufficiently general, does not impose
restrictions on the dynamics like the finite-variability assumption, and is suitable
as a class of high-level models of CPS.

In this paper we will define a language for expressing various essential prop-
erties of NCMS, define a language interpretation, and show that the associated
formal theory (the set of sentences which are valid in all interpretations) is decid-
able. To prove the decidability result we will use a reduction to the decidability
of the monadic second-order theory of order of the real segment [0, 1] with quan-
tification over Fσ-subsets (countable unions of closed sets) which was proved
by M.O. Rabin [51] (as a consequence of the decidability of S2S, the monadic
second-order theory of two successors). Then we will describe an example of an
application of the obtained results for proving the mutual exclusion property of
a CPS which implements Peterson’s algorithm. This example is an extension of
the approach to proving properties of distributed algorithms which was proposed
in [52].

2 Preliminaries

2.1 Notation

We use the following notation: N = {1, 2, 3, ...}, N0 = N ∪ {0}, R is the set of
real numbers, R+ is the set of nonnegative real numbers, f : A → B is a total
function from A to B, f : A→̃B is a partial function from A to B, 2A is the
power set of a set A, f |X is the restriction of a function f to a set X. If A,B
are sets, then BA denotes the set of all total functions from A to B and AB
denotes the set of all partial function from A to B. For a function f : A→̃B the
symbol f(x) ↓ (f(x) ↑) means that f(x) is defined (respectively undefined) on
the argument x. We do not distinguish formally the notion of a function and a
functional binary relation. When we write that a function f : A→̃B is total or
surjective, we mean that f is total on A specifically (i.e. f(x) ↓ for all x ∈ A), or,
respectively, is onto B (i.e. for each y ∈ B there exists x ∈ A such that y = f(x)).
The domain and range of a partial function f : A→̃B are dom(f) = {x | f(x) ↓}
and range(f) = {y | ∃x f(x) ↓ ∧ y = f(x)} respectively (note that in some areas
of mathematics and computer science, including category theory, it is assumed
that the domain and range of a partial function from A to B are A and B
respectively, but we do not follow this convention in this paper and instead use
the definitions given above). For partial functions f , g,f(x) ∼= g(x) denotes the
strong equality (where x is a fixed value): f(x) ↓ if and only if g(x) ↓, and
f(x) ↓ implies f(x) = g(x). By f ◦ g we denote the functional composition:
(f ◦ g)(x) ∼= f(g(x)).

By T we denote the non-negative real time scale [0,+∞), equipped with a
topology induced by the standard topology on R and by Bool = {true, false}
we denote the set of boolean values equipped with the discrete topology.
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The symbols ¬, ∨, ∧, ⇒, and ⇔ denote the logical operations of negation,
disjunction, conjunction, implication, and equivalence respectively.

2.2 Nondeterministic Complete Markovian Systems (NCMS)

Let T = R+ be the non-negative real time scale. Denote by T the set of all
intervals (connected subsets) in T which have cardinality greater than one (i.e.
which are non-empty and non-singleton sets).

Let Q be a set (a state space) and Tr be some set of functions of the form
s : A → Q, where A ∈ T. Let us call its elements trajectories.

Definition 1. [48,49] A set of trajectories Tr is closed under proper restrictions
(CPR), if s|A ∈ Tr for each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Definition 2. [48,49]

(1) A trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted as s1 � s2), if
dom(s1) ⊆ dom(s2) and s1 = s2|dom(s1).

(2) A trajectory s1 ∈ Tr is a proper subtrajectory of s2 ∈ Tr (denoted as s1 �
s2), if s1 � s2 and s1 �= s2.

The set (Tr,�) is a (possibly empty) partially ordered set (poset).

Definition 3. [48,49] A CPR set of trajectories Tr is

(1) Markovian (Fig. 1), if for each s1, s2 ∈ Tr and t ∈ T such that
t = sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t),
the following function s belongs to Tr:
s(t) = s1(t), if t ∈ dom(s1), and
s(t) = s2(t), if t ∈ dom(s2).

(2) complete, if each non-empty chain in (Tr,�) has a supremum.

Fig. 1. Markovian property of NCMS. If one trajectory ends and another begins in a
state q at time t, then their concatenation is a trajectory.

Definition 4. [48] A nondeterministic complete Markovian system (NCMS) is
a triple (T,Q, Tr), where Q is a set (state space) and Tr (trajectories) is a
set of functions s : T→̃Q such that dom(s) ∈ T, which is CPR, complete, and
Markovian.



On a Decidable Formal Theory 83

This is an intensional definition. An alternative extensional definition (or an
overview of the class of all NCMS) can be given using the notion of an LR
representation of NCMS which is described below.

Definition 5. Let s1, s2 : T→̃Q. Then s1 and s2 coincide:

(1) on A ⊆ T , if s1|A = s2|A and A ⊆ dom(s1) ∩ dom(s2) (this is denoted as
s1

.=A s2);
(2) in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t) such that

s1
.=(t′,t] s2 (this is denoted as s1

.=t− s2);
(3) in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1

.=[t,t′) s2
(this is denoted as s1

.=t+ s2).

Let Q be a set. Denote by ST (Q) the set of pairs (s, t) where s : A → Q for
some A ∈ T and t ∈ A.

Definition 6. [48,49] A predicate p : ST (Q) → Bool is called

(1) left-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q) and
s1

.=t− s2, and, moreover, p(s, t) whenever t is the least element of dom(s);
(2) right-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q), s1

.=t+ s2,
and, moreover, p(s, t) whenever t is the greatest element of dom(s).

Denote by LR(Q) the set of all pairs (l, r), where l : ST (Q) → Bool is a left-local
predicate and r : ST (Q) → Bool is a right-local predicate.

Definition 7. [49] A pair (l, r) ∈ LR(Q) is called a LR representation of a
NCMS Σ = (T,Q, Tr), if Tr = {s : A → Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

Theorem 1. [49, Theorem1]

(1) Each pair (l, r) ∈ LR(Q) is a LR representation of a NCMS with the set of
states Q.

(2) Each NCMS has a LR representation.

Although an LR representation of a given NCMS needs not be unique, there
always exists a unique least LR representation.

Definition 8. The least LR representation (l∗, r∗) of a NCMS Σ = (T,Q, Tr)
is a LR representation (l, r) of Σ such that l∗(s, t) ⇒ l(s, t) and r∗(s, t) ⇒ r(s, t)
for all (s, t) ∈ ST (Q).

Theorem 2. (1) Each NCMS has a unique least LR representation (l∗, r∗).
(2) If Σ = (T,Q, Tr) is a NCMS and (l∗, r∗) is its least LR representation, then

for all (s, t) ∈ ST (Q),

l∗(s, t) ⇔ t = 0 ∨ (∃t′ ∈ (0, t) s|(t′,t] ∈ Tr ∪ {s|{t}});
r∗(s, t) ⇔ ∃t′ ∈ (t,+∞) s|[t,t′) ∈ Tr ∪ {s|{t}}.

Proof (Sketch).
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(1) Let Σ = (T,Q, Tr) be a NCMS. Let us define predicates l∗ : ST (Q) → Bool
and r∗ : ST (Q) → Bool as follows: l∗(s, t) if and only if l(s, t) holds for
each LR representation (l, r) of Σ, and r∗(s, t) if and only if r(s, t) holds for
each LR representation (l, r) of Σ. It is easy to check that a pointwise con-
junction of any non-empty set of left-local predicates on ST (Q) is left-local
and a pointwise conjunction of any non-empty set of right-local predicates
on ST (Q) is right-local. By Theorem 1, Σ has a LR representation, so l∗ is
left-local and r∗ is right-local, so (l∗, r∗) ∈ LR(Q). Moreover, for any A ∈ T
and s : A → Q, l∗(s, t)∧r∗(s, t) holds for all t ∈ A if and only if l(s, t)∧r(s, t)
holds for all t ∈ A and all LR representations (l, r) of Σ, i.e. if and only if
s ∈ Tr. Thus (l∗, r∗) is a LR representation of Σ and is the least LR rep-
resentation. Uniqueness of the least LR representation of a NCMS follows
straightforwardly from its definition.

(2) Let us introduce predicates l0, r0 : ST (Q) → Bool such that for all s, t:

l0(s, t) ⇔ t = 0 ∨ (∃t′ ∈ (0, t) s|(t′,t] ∈ Tr ∪ {s|{t}});
r0(s, t) ⇔ ∃t′ ∈ (t,+∞) s|[t,t′) ∈ Tr ∪ {s|{t}}.

Using the Markovian and CPR properties of Tr is straightforward to show
that l0 is left-local, r0 is right-local, and a function s : T→̃Q such that
dom(s) ∈ T belongs to Tr if and only if l0(s, t) ∧ r0(s, t) for all t ∈ dom(s).
Then (l0, r0) ∈ LR(Q) and (l0, r0) is a LR representation of Σ. Moreover, for
any LR representation (l, r) of Σ, it is easy to show that l0(s, t) ⇒ l(s, t) and
r0(s, t) ⇒ r(s, t) for each (s, t) ∈ ST (Q) by noting that s ∈ Tr if and only if
l(s, t′) ∧ r(s, t′) for all t′ ∈ dom(s). Then (l0, r0) is a least LR representation
of Σ. From the item (1) of this theorem, a least LR representation of Σ is
unique, so l0 = l∗ and r0 = r∗. �

For each NCMS Σ denote by LRmin(Σ) the least LR representation of Σ. Let
LR∗(Q) be the set of all pairs (l, r) ∈ LR(Q) such that for each (s, t) ∈ ST (Q):

(1) if l(s, t) and t is a non-minimal element of dom(s), then there exists t′ ∈ (0, t)
such that l(s, t′′) ∧ r(s, t′′) for all t′′ ∈ (t′, t);

(2) if r(s, t) and t is a non-maximal element of dom(s), then there exists t′ > t
such that l(s, t′′) ∧ r(s, t′′) for all t′′ ∈ (t, t′).

Theorem 3. (1) If (l, r) ∈ LR∗(Q), then there exists a NCMS Σ = (T,Q, Tr)
such that (l, r) = LRmin(Σ).
(2) If Σ = (T,Q, Tr) is a NCMS, then LRmin(Σ) ∈ LR∗(Q).

Proof (Sketch).

(1) Follows straightforwardly from Theorem 1(1) and Theorem 2.
(2) Let Σ = (T,Q, Tr) be a NCMS and (l∗, r∗) = LRmin(Σ). Then (l∗, r∗) ∈

LR(Q), (l∗, r∗) is a LR representation of Σ, and from Theorem 2(2) it follows
immediately that (l∗, r∗) ∈ LR∗(Q). �
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NCMS can be used as an abstraction of concrete mathematical models. Some
examples are given below. More examples (including various discrete-continuous
models) can be obtained using Theorem1.

Example 1. Let d ∈ N, Q = R
d, and f : R × R

d → R
d. Let Tr be the set of

all functions s : A → Q, A ∈ T such that s is locally absolutely continuous on
A (i.e. is absolutely continuous on every segment [a, b] ⊆ A) and satisfies the
differential equation ds(t)

dt = f(t, s(t)) almost everywhere on A (in the sense of
Lebesgue measure), i.e. s is a Caratheodory solution.

Then (T,Q, Tr) is a NCMS.
The proof of this follows from the definition of NCMS.

Example 2. Let (Q,→) be a state transition system, i.e. Q is a set and →⊆ Q×Q
is a binary relation. Assume that Q is equipped with the discrete topology (i.e.
all subsets are open). Let Tr be the set of all piecewise-constant left-continuous
functions s : A → Q which for all non-maximal t ∈ A satisfy the condition
s(t+) ↓ and {

s(t+) = s(t), t /∈ N0,

s(t) → s(t+), t ∈ N0,

where s(t+) denotes the right limit at t (see Fig. 2).
Then (T,Q, Tr) is a NCMS.
The proof of this follows from the definition of NCMS.

Fig. 2. A trajectory which models an execution of a (discrete-time) state transition
system (Q, →). At the integer time moments the system changes its current state q to
a next state q′ such that q → q′.

3 Main Result

We will define a formal language in which one can express relations between
a finite set of arbitrary distinguished trajectories and a finite set of arbitrary
NCMS. In particular, membership of a distinguished trajectory in the set of tra-
jectories of a given NCMS and certain forms of partial coincidence of a distin-
guished trajectory with one of the trajectories of a given NCMS can be expressed
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in this language. The partial coincidence of trajectories can be considered as a
“pattern matching”-like mechanism for specification of the behavior of dynami-
cal systems and proving their properties.

Taking into account the properties of NCMS mentioned in Sect. 2.2, testing
the existence of a trajectory of a NCMS which coincides with a given function
on a given time interval or in a neighborhood of a given time moment can be
done rather straightforwardly using the least LR representation. This suggests
that a language should be able to express in some form the components of the
least LR representations of a NCMS. We implement this approach as follows.

Let T = {ti | i ∈ N}, C = {Ci | i ∈ N}, and F = {Fi | i ∈ N} be countable
pairwise-disjoint sets of variable names (it is assumed that the symbols within
each set are identified by their indices).

Let A be the set of all atomic formulas of the forms Di(tk), E−
i,j(tk), E+

i,j(tk),
Li,j(tk), Ri,j(tk), ti < tj , ti = tj , ti ∈ Cj , ti ∈ Fj (i, j, k ∈ N), where Di for
all i ∈ N and E−

i,j , E+
i,j , Li,j , Ri,j for all i, j ∈ N are distinct unary predicate

symbols (identified by their indices) and <, =, ∈ are binary predicate symbols.
Let L be the set of all well-formed (second-order) formulas (a formal lan-

guage) composed of atomic formulas from A, symbols of logical connectives (¬,
∧, ∨, →, ↔), and variable names from T , C, F bound by existential and universal
quantifier symbols (∃ti, ∀ti, ∃Ci, ∀Ci, ∃Fi, ∀Fi).

Let Lc be the set of all sentences (closed formulas) in L.
To define an interpretation of formulas, let us introduce the following notions

and notations.

– Cl(X) and Fσ(X), where X ⊆ R is a nonempty set, denote the sets of all
closed subsets and Fσ-subsets of X respectively (in the sense of the induced
topology on X).

– S is the set of all algebraic structures of the form

(T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N),

where T = R+, < is the standard strict order on T , and Di, E−
i,j , E+

i,j Li,j ,
Ri,j for all i, j ∈ N are unary predicates on T .

– |=⊆ S × L is a logical validity relation defined as follows: for each Φ ∈ L and
S = (T,<, (Di)i∈N, (E−

i,j)i,j∈N, (E+
i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N) ∈ S, S |= Φ

if and only if the universal closure of Φ holds in the structure S under the
interpretation which assumes that the variables t1, t2, ... range over T , the
variables C1, C2, ... range over Cl(T ), the variables F1, F2, ... range over Fσ(T ),
the symbol < is interpreted as the relation < on T , the symbol = is interpreted
as the equality on T , the symbol ∈ is interpreted as set membership, the
symbols Di, E−

i,j , E+
i,j , Li,j , Ri,j , for i, j ∈ N are interpreted as the predicates

Di, E−
i,j , E+

i,j , Li,j , Ri,j on T respectively.
– M is the class of all tuples ((si)i∈N, (Σi)i∈N) such that there exists a set Q

(states) such that:
(1) for each i ∈ N si : T→̃Q (i-th distinguished trajectory) is a function such

that dom(si) ∈ T ∪ {∅} (note that a nowhere defined function is not a
trajectory of any NCMS, but we allow it here for convenience);
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(2) each Σi, i ∈ N is a NCMS with the set of states Q (i-th distinguished
NCMS ).

We will call the elements of M models (of formulas).
– A structure associated with M = ((si)i∈N, (Σi)i∈N) ∈ M is a unique tuple

(T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N) ∈ S such that:
(1) Di(t) ⇔ t ∈ dom(si) for all i, j ∈ N and t ∈ T ;
(2) E−

i,j(t) ⇔ si=̇t−sj for all i, j ∈ N and t ∈ T ;
(3) E+

i,j(t) ⇔ si=̇t+sj for all i, j ∈ N and t ∈ T ;
(4) Li,j(t) ⇔ l∗i (sj , t) and Ri,j(t) ⇔ r∗

i (sj , t) for each i, j ∈ N and t ∈
dom(sj), where (l∗i , r∗

i ) = LRmin(Σi);
(5) ¬Li,j(t) and ¬Ri,j(t) for all i, j ∈ N and t ∈ T such that t /∈ dom(sj).
This structure is denoted as St(M).

– |=m⊆ M×L is a logical validity relation defined as follows: for each Φ ∈ L and
M ∈ M, M |=m Φ if and only if St(M) |= Φ. This is interpreted as follows: Φ
is assumed to be valid in a model M (M |=m Φ), if Φ is valid in the structure
associated with M .

– Th = {Φ ∈ Lc | ∀M ∈ M M |=m Φ} is a formal theory which consists of all
sentences valid in all models.

In short, Th consists of the sentences Φ valid in all models M ∈ M which
consist of a sequence of distinguished trajectories (si)i∈N and a sequence of dis-
tinguished NCMS (Σi)i∈N under the assumption that in Φ the variables t1, t2, ...
range over T , C1, C2, ... range over Cl(T ), F1, F2, ... range over Fσ(T ), the sym-
bols < and = mean the standard strict order and equality on T , ∈ means set
membership, the atomic formula Di(tk) means tk ∈ dom(si), E−

i,j(tk) means
si=̇tk−sj , E+

i,j(tk) means si=̇tk+sj , and Li,j(tk), Ri,j(tk) mean that sj(tk) ↓ and
l∗i (sj , tk) and r∗

i (sj , tk) hold, where (l∗i , r∗
i ) = LRmin(Σi).

Informally, the formulas in Th express valid relations between trajectories
and NCMS that hold for arbitrary distinguished trajectories and arbitrary
NCMS.

Theorem 4. The formal theory Th is decidable.

We will prove this theorem in the next section.

4 Proof of Decidability

In this section we give a proof of Theorem4 using a series of lemmas.

Definition 9. A predicate P : T → Bool is called

– right-stable, if for each t ∈ T , P (t) implies that there exists t′ > t such that
P (t′′) holds for all t′′ ∈ [t, t′);

– left-stable, if for each t ∈ T\{0}, P (t) implies that there exists t′ < t such that
P (t′′) holds for all t′′ ∈ (t′, t].

Note that a truth set of a predicate is the set of arguments on which it holds.
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Lemma 1. (1) The truth set of a right-stable predicate is an Fσ-set.
(2) The truth set of a left-stable predicate is an Fσ-set.

Proof. (1) Let P : T → Bool be right-stable and A = {t | P (t)} be the truth
set of P . Then for each t ∈ T there exists b(t) > t such that P (t) implies
P (t′) for all t′ ∈ [t, b(t)). Then A =

⋃
t∈A[t, b(t)) is an open set in the sense

of the Sorgenfrey (right half-open interval) topology on R [53]. The latter
topology is hereditarily Lindelöf [53], which implies that every open cover of
A (as an open subspace of the Sorgenfrey line) has a countable sub-cover.
The sets {[t, b(t)) | t ∈ A} form an open cover of A in this sense, so there is
a countable subset C ⊆ {[t, b(t)) | t ∈ A} such that A =

⋃
C. All elements

of C are Fσ sets in the sense of the topology on T , so A is an Fσ-set in the
same sense.

(2) Analogous to the proof of the item (1). �

One of the consequences of the theorem on the decidability of S2S by M.O. Rabin
is decidability of a second order theory of a real segment [0, 1] with quantification
over closed subsets and over Fσ-subsets [51].

More specifically, let A2
< be the set of atomic formulas of the forms ti < tj ,

ti = tj , ti ∈ Cj , ti ∈ Fj (i, j ∈ N), where ti ∈ T , Ci ∈ C, Fi ∈ F and <, =, ∈ are
binary predicate symbols.

Let L2
< be the set of all well-formed (second-order) formulas composed of

atomic formulas from A2
<, symbols of logical connectives (¬, ∧, ∨, →, ↔), and

variable names from T , C, F bound by existential and universal quantifier sym-
bols (∃ti, ∀ti, ∃Ci, ∀Ci, ∃Fi, ∀Fi).

For each nonempty set X ⊆ R let Th2
<(X) be the set of all sentences

(closed formulas) in L2
< which are valid in the structure (X,<X), where <X

is the restriction of the standard order on reals to X, under the interpretation
which assumes that t1, t2,... range over X, the variables C1, C2,... range over
Cl(X), F1, F2,... range over Fσ(X), the symbol < is interpreted as <X , the sym-
bol = is interpreted as equality on X, and the symbol ∈ is interpreted as set
membership.

Lemma 2. The theory Th2
<(T ) is decidable.

Proof (Sketch). The theory Th2
<([0, 1]) is known to be decidable [51, Theorem

2.9]. Using this result it is straightforward to prove that Th2
<([0, 1)) is decidable,

because in the language L2
< one can express the following predicates P1, P2, the

truth sets of the interpretations of which are Cl([0, 1)) and Fσ([0, 1)):

P1(C1) := ∀t1 (t1 ∈ C1 → (∃t2 t1 < t2));
P2(F1) := ∀t1 (t1 ∈ F1 → (∃t2 t1 < t2)).

Taking into account that any continuous increasing bijection [0,+∞) → [0, 1)
is a homeomorphism between T and [0, 1) as topological spaces and is an order-
isomorphism between T and [0, 1) as ordered sets, it is straightforward to show
that Th2

<([0, 1)) = Th2
<(T ). Thus Th2

<(T ) is decidable. �
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Let us fix some injective computable functions d : N → N, en : N × N → N,
ep : N×N → N, l : N×N → N, r : N×N → N, e : N×N → N, and f : N → N with
pairwise disjoint ranges. We will use them to map the predicate symbols Di, E−

i,j ,
E+

i,j , Li,j , Ri,j of L to distinct Fσ-variable names Fd(i,j), Fen(i,j), Fep(i,j), Fl(i,j),
Fr(i,j) of L2

<, to have distinct intermediate Fσ-variable names Fe(i,j), i, j ∈ N,
and to map variable names Fi of L to variable names Ff(i) of L2

<.
For each i, j, k ∈ N let us define the following L2

<-formulas:

Domj(Fd(j)) :=
((¬∃t1 t1 ∈ Fd(j)) ∨ (∃t1∃t2(t1 ∈ Fd(j) ∧ t2 ∈ Fd(j) ∧ t1 < t2)))∧
∧ ∀t1∀t2∀t3(t1 ∈ Fd(j) ∧ t2 ∈ Fd(j) ∧ t1 < t3 ∧ t3 < t2 → t3 ∈ Fd(j))

Eqi,j,k(Fd(i), Fe(i,i), Fe(i,j), Fe(j,i), Fe(j,k), Fe(i,k), Fd(j), Fen(i,j), Fep(i,j)) :=
∀t1 (t1 ∈ Fd(i) → t1 ∈ Fe(i,i))∧

∧∀t1 (t1 ∈ Fe(i,j) → t1 ∈ Fe(j,i))∧
∧∀t1 (t1 ∈ Fe(i,j) ∧ t1 ∈ Fe(j,k) → t1 ∈ Fe(i,k)))∧
∧∀t1 (t1 ∈ Fe(i,j) → t1 ∈ Fd(i) ∧ t1 ∈ Fd(j))∧
∧∀t1 (t1 ∈ Fen(i,j) ↔

↔∃t2(t2 < t1 ∧ ∀t3(t2 < t3 ∧ (t3 < t1 ∨ t3 = t1) → t3 ∈ Fe(i,j))))∧
∧∀t1 (t1 ∈ Fep(i,j) ↔

↔ ∃t2(t1 < t2 ∧ ∀t3((t1 < t3 ∨ t1 = t3) ∧ t3 < t2 → t3 ∈ Fe(i,j))))

Lloci,j,k(Fd(i), Fen(i,j), Fl(k,i), Fl(k,j)) :=
∀t1 (t1 ∈ Fen(i,j) → (t1 ∈ Fl(k,i) ↔ t1 ∈ Fl(k,j)))∧

∧ ∀t1 (t1 ∈ Fd(i) ∧ (¬∃t2 (t2 < t1 ∧ t2 ∈ Fd(i))) → t1 ∈ Fl(k,i))∧
∧ ∀t1 (¬t1 ∈ Fd(i) → ¬t1 ∈ Fl(k,i))

Rloci,j,k(Fd(i), Fep(i,j), Fr(k,i), Fr(k,j)) :=
∀t1 (t1 ∈ Fep(i,j) → (t1 ∈ Fr(k,i) ↔ t1 ∈ Fr(k,j)))∧

∧ ∀t1 (t1 ∈ Fd(i) ∧ (¬∃t2 (t1 < t2 ∧ t2 ∈ Fd(i))) → t1 ∈ Fr(k,i))∧
∧ ∀t1 (¬t1 ∈ Fd(i) → ¬t1 ∈ Fr(k,i))

Mini,j(Fd(j), Fl(i,j), Fr(i,j)) :=
∀t1 (t1 ∈ Fl(i,j) ∧ t1 ∈ Fd(j) ∧ ∃t2(t2 < t1 ∧ t2 ∈ Fd(j)) →
→ ∃t3(t3 < t1 ∧ ∀t4(t3 < t4 ∧ t4 < t1 → t4 ∈ Fl(i,j) ∧ t4 ∈ Fr(i,j))))∧

∧ ∀t1 (t1 ∈ Fr(i,j) ∧ t1 ∈ Fd(j) ∧ ∃t2(t1 < t2 ∧ t2 ∈ Fd(j))) →
→ ∃t3(t1 < t3 ∧ ∀t4(t1 < t4 ∧ t4 < t3 → t4 ∈ Fl(i,j) ∧ t4 ∈ Fr(i,j)))

Informally, Domj expresses that Fd(j) is the domain of a distinguished tra-
jectory j (the empty set or a non-degenerate interval), Eqi,j,k is intended to
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express the properties of the relations of left and right coincidence of trajecto-
ries, Lloci,j,k and Rloci,j,k are intended to express left-locality and right-locality
of predicates, and Mini,j is intended to express the properties of the members
of LR∗(Q) for arbitrary Q (least LR representations of NCMS).

For each Φ ∈ L denote by m(Φ) the maximal value of among all indices i, j
of the predicate symbols of the forms Di, E−

i,j , E+
i,j , Li,j , Ri,j which appear in

Φ, or 1, if no such symbols appears in Φ.
For each Φ ∈ Lc let us define an associated formula Trans(Φ) as follows. Let

Φ ∈ Lc and u1, u2, ..., um be an increasing sequence of all elements of the set

{d(j), l(i, j), r(i, j), ep(i, j), en(i, j), e(i, j)} | i, j ∈ {1, 2, ...,m(Φ)}},

and Φ′ be the formula obtained from Φ by renaming all variable names of the form
Fi to Ff(i) and subsequent replacement of all atomic sub-formulas of Φ of the
forms Di(tk), E−

i,j(tk), E+
i,j(tk), Li,j(tk), Ri,j(tk) (i, j, k ∈ N) with tk ∈ Fd(i,j),

tk ∈ Fen(i,j), tk ∈ Fep(i,j), tk ∈ Fl(i,j), tk ∈ Fr(i,j) respectively.
Then Trans(Φ) denotes the following formula:

∀Fu1∀Fu2 ...∀Fum

m(Φ)∧
j=1

Domj(Fd(j)) ∧
m(Φ)∧
i=1

m(Φ)∧
j=1

m(Φ)∧
k=1

(

Eqi,j,k(Fd(i), Fe(i,i), Fe(i,j), Fe(j,i), Fe(j,k), Fe(i,k), Fd(j), Fen(i,j), Fep(i,j))∧
∧ Lloci,j,k(Fd(i), Fen(i,j), Fl(k,i), Fl(k,j))∧
∧ Rloci,j,k(Fd(i), Fep(i,j), Fr(k,i), Fr(k,j)))∧

∧
m(Φ)∧
i=1

m(Φ)∧
j=1

Mini,j(Fd(j), Fl(i,j), Fr(i,j)) → Φ′

Obviously, Trans(Φ) is a closed formula in L2
<.

Informally, Trans translates L-sentences into L2
<-sentences for the purpose

of reduction of testing membership in Th to testing membership in Th2
<(T ).

Denote I0 = N and In = {1, 2, ..., n} for each n ∈ N.
For each n ∈ N ∪ {0} let Sn be the set of all structures

(T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N) ∈ S

such that there exists an indexed family (Ei,j)i,j∈In of predicates on T which
satisfy the following conditions:

(1) for each i, j ∈ In the truth sets of Di, E−
i,j , E+

i,j , Li,j , Ri,j , Ei,j are in Fσ(T );
(2) for each i ∈ In the truth set of Di belongs to T ∪ {∅};
(3) for each i, j, k ∈ In and t ∈ T the following properties of Ei,j hold:

– Di(t) ⇒ Ei,i(t);
– Ei,j(t) ⇒ Ej,i(t);
– Ei,j(t) ∧ Ej,k(t) ⇒ Ei,k(t);
– Ei,j(t) ⇒ Di(t) ∧ Dj(t);
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– E−
i,j(t) ⇔ ∃t′ ∈ [0, t) ∀t′′ ∈ (t′, t] Ei,j(t′′);

– E+
i,j(t) ⇔ ∃t′ > t ∀t′′ ∈ [t, t′) Ei,j(t′′);

(4) for each i, j, k ∈ In and t ∈ T the following properties of Lk,i hold:
– E−

i,j(t) ⇒ (Lk,i(t) ⇔ Lk,j(t));
– if t is a minimal element of {t′ | Di(t′)}, then Lk,i(t);
– ¬Di(t) ⇒ ¬Lk,i(t);

(5) for each i, j, k ∈ In and t ∈ T the following properties of Rk,i hold:
– E+

i,j(t) ⇒ (Rk,i(t) ⇔ Rk,j(t));
– if t is a maximal element of {t′ | Di(t′)}, then Rk,i(t);
– ¬Di(t) ⇒ ¬Rk,i(t);

(6) for each i, j ∈ In and t ∈ T the following holds:
– if Li,j(t) and t is a non-minimal element of {t′ | Dj(t′)}, then there exists

t′ ∈ [0, t) such that Li,j(t′′) ∧ Ri,j(t′′) for all t′′ ∈ (t′, t);
– if Ri,j(t) and t is a non-maximal element of {t′ | Dj(t′)}, then there exists

t′ > t such that Li,j(t′′) ∧ Ri,j(t′′) for all t′′ ∈ (t, t′).

Lemma 3. Let Φ ∈ Lc. Then Trans(Φ) ∈ Th2
<(T ) if and only if S |= Φ for all

S ∈ Sm(Φ).

Proof (Sketch). Follows straightforwardly from the definition of Trans, Sm(Φ),
and the interpretation of L2

< formulas. �

Lemma 4. Let Φ ∈ L, n ∈ N, n ≥ m(Φ). Then S |= Φ for all S ∈ Sn if and
only if S |= Φ for all S ∈ S0.

Proof (Sketch).

“If”: Assume that S |= Φ for all S ∈ Sn. Using the definition of S0, it is easy
to check that S0 ⊆ Sn. Then S |= Φ for all S ∈ S0.

“Only if”: Assume that S |= Φ for all S ∈ S0. Let

S′ = (T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N) ∈ Sn

be an arbitrary element. Then there exists a family (Ei,j)i,j∈In of predicates
on T such that the properties (1)–(6) of Sn hold for S′ and (Ei,j)i,j∈In .
Let us prove that S′ |= Φ.
For each i, j ∈ In let D′

i = Di, E′−
i,j = E−

i,j , E′+
i,j = E+

i,j . For each i, j ∈ N

such that (i, j) /∈ In × In let us define unary predicates D′
i, E′−

i,j , E′+
i,j on T

such that ¬D′
i(t), ¬E′−

i,j(t), ¬E′+
i,j(t) for all t ∈ T .

For each i, j ∈ N let us define unary predicates L′
i,j , R′

i,j on T such that
– if (i, j) ∈ In × In, then L′

i,j = Li,j , otherwise for all t ∈ T , L′
i,j(t) if and

only if t is a minimal element of the truth set of D′
j ;

– if (i, j) ∈ In × In, then R′
i,j = Ri,j , otherwise for all t ∈ T , R′

i,j(t) if and
only if t is a maximal element of the truth set of D′

j .
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Let

S′′ = (T,<, (D′
i)i∈N, (E′−

i,j)i,j∈N, (E′+
i,j)i,j∈N, (L′

i,j)i,j∈N, (R′
i,j)i,j∈N).

Obviously, S′′ ∈ S. The structures S′ and S′′ have the same carrier set. Also,
because n ≥ m(Φ), the symbols of all predicates which appear in Φ have the
same interpretations in S′ and S′′, so S′′ |= Φ if and only if S′ |= Φ.
Let us show that S′′ ∈ S0. Let (E′

i,j)i,j∈I0 be an indexed family of predicates
such that for each i, j ∈ N, if (i, j) ∈ I0 × I0, then E′

i,j = Ei,j , and if
(i, j) /∈ I0 × I0, then ¬E′

i,j(t) for all t ∈ T .
It is easy to check that the properties (1)–(3) and (6) of S0 hold for S′′ and
(E′

i,j)i,j∈I0 . Let us prove the property (4) of S0 for S′′ and (E′
i,j)i,j∈I0 .

Let i, j, k ∈ I0 and t ∈ T .

– Let us show that E′−
i,j(t) ⇒ (L′

k,i(t) ⇔ L′
k,j(t)). Assume that E′−

i,j(t).
Then i, j ∈ In, so E−

i,j(t). If k ∈ In, then Lk,i(t) ⇔ Lk,j(t), because
the property (4) of Sn holds for S′ and (Ei,j)i,j∈In , so L′

k,i(t) ⇔ L′
k,j(t).

Otherwise, k /∈ In and from the property (3) of Sn for S′ and (Ei,j)i,j∈In

it follows that t is not a minimal element of the truth set of E−
i,j and

is not a minimal element of the truth sets of Di = D′
i and Dj = D′

j .
Then ¬L′

k,i(t) and ¬L′
k,j(t), whence L′

k,i(t) ⇔ L′
k,j(t). We conclude that

E′−
i,j(t) ⇒ (L′

k,i(t) ⇔ L′
k,j(t)).

– Let us show that if t is a minimal element of {t′ | D′
i(t

′)}, then L′
k,i(t).

Let t be a minimal element of {t′ | D′
i(t

′)}. Then D′
i(t), so i ∈ In and t is

a minimal element of {t′ | Di(t′)}. If k ∈ In, then Lk,i(t) by the property
(4) of Sn for S′ and (Ei,j)i,j∈In , so L′

k,i(t). Otherwise, k /∈ In and t is a
minimal element of {t′ | D′

i(t
′)}, so L′

k,i(t). In both cases, L′
k,i(t).

– Let us show that ¬D′
i(t) ⇒ ¬L′

k,i(t). Assume that ¬D′
i(t). If i ∈ In and

k ∈ In, then ¬Di(t) ⇒ ¬Lk,i(t), Di = D′
i, and Lk,i = L′

k,i, so ¬L′
k,i(t).

Otherwise, i /∈ In or k /∈ In, whence ¬L′
k,i(t), because t is not an element

of the truth set of D′
i. In both cases, ¬L′

k,i(t).
Thus the property (4) of S0 holds for S′′ and (E′

i,j)i,j∈I0 . The property (5)
of S0 can be proven for S′′ and (E′

i,j)i,j∈I0 analogously.
We conclude that S′′ ∈ S0. Then S′′ |= Φ by assumption. Thus S′ |= Φ.

Because S′ is arbitrary, we have S′ |= Φ for all S′ ∈ Sn. �

Lemma 5. St(M) ∈ S0 for each M ∈ M.

Proof. Let M = ((si)i∈N, (Σi)i∈N) ∈ M and Q be the (common) set of states of
all Σi, i ∈ N. Let

S = St(M) = (T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N).

Then S ∈ S. Let us show that S ∈ S0. For each i ∈ N let (l∗i , r∗
i ) =

LRmin(Σi). By Theorem 3(2), (l∗i , r∗
i ) ∈ LR∗(Q). By the definition of St(M),

for all i, j ∈ N and t ∈ T , Di(t) ⇔ t ∈ dom(si), E−
i,j(t) ⇔ si=̇t−sj , and E+

i,j(t) ⇔
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si=̇t+sj . Moreover, if sj(t) ↓, then Li,j(t) ⇔ l∗i (sj , t) and Ri,j(t) ⇔ r∗
i (sj , t), and

if sj(t) ↑, then ¬Li,j(t) and ¬Ri,j(t).
For each t ∈ T let V (t) = {(i, j) ∈ N × N | E−

i,j(t) ∨ E+
i,j(t)} and V T (t) is a

transitive closure of V (t). Let (Ei,j)i,j∈N be an indexed family of predicates on
T such that Ei,j(t) ⇔ (i, j) ∈ V T (t) for all i, j ∈ N and t ∈ T .

Note that for each t ∈ T , V (t) is a symmetric binary relation, so V T (t) is
also a symmetric binary relation.

It is easy to check that the properties (2) and (3) of S0 hold for S and
(Ei,j)i,j∈N. Taking into account that for each i ∈ N, l∗i is left-local and r∗

i is
right-local, the properties (4) and (5) of S0 also hold for S and (Ei,j)i,j∈N. The
property (6) of S0 can be easily checked for S and (Ei,j)i,j∈N by taking into
account that (l∗i , r∗

i ) ∈ LR∗(Q) for all i ∈ N.
Let us prove the remaining property (1) of S0 for S and (Ei,j)i,j∈N, i.e. that

the truth sets of Di, E−
i,j , E+

i,j , Li,j , Ri,j , Ei,j belong to Fσ(T ) for all i, j ∈ N.
Let us fix i, j ∈ N. We have {t | Di(t)} = dom(si) ∈ T ∪ {∅} ⊂ Fσ(T ).
It is easy to see that E−

i,j is a left-stable predicate and E+
i,j is a right-stable

predicate. Then by Lemma 1, the truth sets of E−
i,j and E+

i,j belong to Fσ(T ).
Let Pj be a predicate on T such that Pj(t) if and only if t is a non-minimal

element of dom(sj). Let A, B be predicates on T such that A(t) ⇔ Li,j(t)∧Pj(t),
B(t) ⇔ Li,j(t) ∧ ¬Pj(t) for all t ∈ T . Because (l∗i , r∗

i ) ∈ LR∗(Q), A is a left-
stable predicate, so by Lemma 1 the truth set of A belongs to Fσ(T ). Moreover,
because ¬Li,j(t) for all t ∈ T\dom(sj), B(t) implies that t is a minimal element
of dom(sj), so the truth set of B is either empty or a singleton set, so it is in
Fσ(T ). Then {t | Li,j(t)} = {t | A(t)} ∪ {t | B(t)} ∈ Fσ(T ).

By analogy it is easy to prove that {t | Ri,j(t)} ∈ Fσ(T ).
Let us show that {t | Ei,j(t)} ∈ Fσ(T ). Let

W = {{t′ | E−
i,j(t

′)} | i, j ∈ N} ∪ {{t′ | E+
i,j(t

′)} | i, j ∈ N}.

From the arguments mentioned it follows that W ⊆ Fσ(T ). Using the definition
of Ei,j it is easy to check that {t | Ei,j(t)} can be represented as a countable
union of finite intersections of elements of W . As finite intersections of Fσ-sets
are Fσ-sets, it follows that {t | Ei,j(t)} ∈ Fσ(T ).

We conclude that the truth sets of Di, E−
i,j , E+

i,j , Li,j , Ri,j , Ei,j are in Fσ(T ).
The properties (1)-(6) of S0 hold for S and (Ei,j)i,j∈N, so S = St(M) ∈ S0. �

Lemma 6. For each S ∈ S0 there exists M ∈ M such that S = St(M).

Proof (Sketch). Let

S = (T,<, (Di)i∈N, (E−
i,j)i,j∈N, (E+

i,j)i,j∈N, (Li,j)i,j∈N, (Ri,j)i,j∈N) ∈ S0.

Then S ∈ S and there exists an indexed family (Ei,j)i,j∈N of predicates on T
such that the properties (1)–(6) of S0 hold for S and (Ei,j)i,j∈N.

Let Q = 2N and for each i ∈ N, si : T→̃Q be a function such that si(t) ↓=
{j ∈ N | Ei,j(t)} for each t ∈ T such that Di(t) and si(t) ↑ for each t ∈ T such
that ¬Di(t). For each k ∈ N let lk : ST (Q) → Bool and rk : ST (Q) → Bool be
predicates such that for each (s, t) ∈ ST (Q):
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– lk(s, t) if and only if either t is a minimal element of dom(s), or there exists
i ∈ N such that s

.=t− si and Lk,i(t).
– rk(s, t) if and only if either t is a maximal element of dom(s), or there exists

i ∈ N such that s
.=t+ si and Rk,i(t).

It follows immediately that lk is left-local and rk is right-local. Then (lk, rk) ∈
LR(Q). For each k ∈ N let Trk = {s : A → Q |A ∈ T∧(∀t ∈ A lk(s, t)∧rk(s, t))}
and Σk = (T,Q, Trk). Let M = ((si)i∈N, (Σk)k∈N). The property (2) of S0 for S
and (Ei,j)i,j∈N implies that dom(si) ∈ T ∪ {∅} for all i ∈ N and Theorem 1(1)
implies that Σk is a NCMS with the set of states Q for all k ∈ N. Thus M ∈ M.

For each k ∈ N let (l∗k, r∗
k) = LRmin(Σk).

Using the properties of S0 it is not difficult to check that for each i, j ∈ N

and t ∈ T , Di(t) ⇔ t ∈ dom(si), E−
i,j(t) ⇔ si=̇t−sj , E+

i,j(t) ⇔ si=̇t+sj , and
also if sj(t) ↓, then Li,j(t) ⇔ l∗i (sj , t) and Ri,j(t) ⇔ r∗

i (sj , t) and if sj(t) ↑, then
¬Li,j(t) and ¬Ri,j(t). Then S = St(M). �

Lemma 7. Let Φ ∈ Lc. Then Trans(Φ) ∈ Th2
<(T ) if and only if Φ ∈ Th.

Proof. By Lemma 3, Trans(Φ) ∈ Th2
<(T ) if and only if S |= Φ for all S ∈ Sm(Φ).

By Lemma 4, S |= Φ for all S ∈ Sm(Φ) if and only if S |= Φ for all S ∈ S0.
Lemmas 5, 6 imply that S |= Φ for all S ∈ S0 if and only if St(M) |= Φ (i.e.
M |=m Φ) for all M ∈ M. Thus Trans(Φ) ∈ Th2

<(T ) if and only if Φ ∈ Th. �

Now we can prove Theorem 4.

Proof of Theorem 4 (Sketch). Lemma 7 implies that Th = {Φ ∈ Lc | Trans(Φ) ∈
Th2

<(T )}. Then because Th2
<(T ) is decidable by Lemma 2, it is straightforward

to show that Th is decidable. �

5 Example of Application

Let us consider an example of application of the obtained results. Distributed
CPS often contain several components (e.g. information processing units) which
need an exclusive access to a single shared resource (e.g. an actuator) [2].

Consider a CPS which consists of three components (or processes), two of
which (component 1 and component 2) share a certain resource. The resource
may be accessed sequentially, but simultaneous access by two components is
prohibited. To guarantee absence of simultaneous access to the resource, the
components 1 and 2 communicate using shared memory and implement a vari-
ant of Peterson’s mutual exclusion algorithm. The components 1 and 2 can
read shared memory and the current state of another component at any time
(possibly simultaneously), but cannot write directly into the shared memory.
Instead, the component 3 has exclusive write access to the shared memory and
acts as an arbiter which receives write requests from the components 1 and 2.
If the component 3 receives one request at a given time moment, it satisfies it
immediately. If it receives two requests simultaneously, it chooses one of them
(arbitrarily), satisfies it, and declines another one.
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Let us model the behavior of the described CPS as a set of trajectories from
the time domain T to a set (global) states Q of the form A1 ×A2 ×A3 ×M ×R,
where Ai, i = 1, 2, 3 is the set of (individual) states of the component i, M is
the set of states of the shared memory, and R is the set of states of the shared
resource. For each q ∈ Q we denote by ai(q) the projections of q on the coordinate
i, i = 1, 2, 3, and by m(q) denote the projection of q on the 4-th coordinate.

Let us assume that A1 = Bool, A2 = Bool, A3 = Bool×Bool×Bool×Bool,
and M = Bool. The elements of Ai, i = 1, 2 indicate whether the component
i is interested in obtaining the access the shared resource. The elements of M
indicate which of the two components have the priority over another one. The
elements of A3 have the form (w1, v1, w2, v2), where for i = 1, 2, wi = true means
that the component i is asking the component 3 to write the value vi into the
shared memory, and wi = false means that the component i is not asking the
component 3 to change the shared memory. For each q ∈ A3 we will denote by
w1(q), v1(q), w2(q), v2(q) the projections of a3(q) on the 1, 2, 3, 4-th coordinate.

For each predicate P : Q → Bool let us denote

TrP = {s : A → Q | A ∈ T ∧ ∀t ∈ A P (s(t))}
and ΣP = (T,Q,ΣP ). Obviously, TrP is CPR, complete, and Markovian set of
trajectories, so ΣP is a NCMS.

For each predicate P : Q → Bool denote by P̄ the predicate on Q such that
P̄ (q) ⇔ ¬P (q) for all q ∈ Q.

We will specify the behavior and the mutual exclusion property of the
described CPS in terms of the properties of the following tuple of NCMS:

(Σi)i=1,2,...,14 =
= (Σa1 , Σā1 , Σa2 , Σā2 , Σm, Σm̄, Σw1 , Σw̄1 , Σw2 , Σw̄2 , Σv1 , Σv̄1 , Σv2 , Σv̄2).

Let us introduce the following names for the indices of the components of
the tuple: a1 = 1, ā1 = 2,a2 = 3, ā2 = 4,m = 5, m̄ = 6,w1 = 7, w̄1 = 8,w2 =
9, w̄2 = 10,v1 = 11, v̄1 = 12,v2 = 13, v̄2 = 14.

Let Ψ , Φ1, Φ2, Φ3 be the following formulas in the language L:

Ψ := ∀t1

7∧
k=1

¬(L2k−1,1(t1) ∧ L2k,1(t1)) ∧ ¬(R2k−1,1(t1), R2k,1(t1))

Φ1(t1) := (∃t2∃t3∃t4 t2 < t3 ∧ t3 < t4 ∧ t4 < t1∧
(∀t5(t2 < t5 ∧ (t5 < t1 ∨ t5 = t1) → Li1,1(t5)))∧

∧ Lw1,1(t3) ∧ Lv1,1(t3) ∧ Rv1,1(t3)∧
(∀t5((t3 < t5 ∨ t3 = t5) ∧ (t5 < t1 ∨ t5 = t1) → Rw̄1,1(t5))) ∧ (Rī2,1(t4) ∨ Rm,1(t4)) )

Φ2(t1) := (∃t2∃t3∃t4 t2 < t3 ∧ t3 < t4 ∧ t4 < t1∧
(∀t5(t2 < t5 ∧ (t5 < t1 ∨ t5 = t1) → Li2,1(t5)))∧

∧ Lw2,1(t3) ∧ Lv̄2,1(t3) ∧ Rv̄2,1(t3)∧
(∀t5((t3 < t5 ∨ t3 = t5) ∧ (t5 < t1 ∨ t5 = t1) → Rw̄2,1(t5))) ∧ (Rī1,1(t4) ∨ Rm̄,1(t4)) )



96 I. Ivanov et al.

Φ3 := ∀t1((Rw̄1,1(t1) ∧ Rw̄2,1(t1) → (Rm,1(t1) ∨ Rm̄,1(t1))∧
∧ (Rw1,1(t1) ∧ Rw̄2,1(t1) ∧ Rv1,1(t1) → Rm,1(t1))∧
∧ (Rw1,1(t1) ∧ Rw̄2,1(t1) ∧ Rv̄1,1(t1) → Rm̄,1(t1))∧
∧ (Rw̄1,1(t1) ∧ Rw2,1(t1) ∧ Rv2,1(t1) → Rm,1(t1))∧

∧ (Rw̄1,1(t1) ∧ Rw2,1(t1) ∧ Rv̄2,1(t1) → Rm̄,1(t1)))

Φ := ¬∃t1(Ψ ∧ Φ1(t1) ∧ Φ2(t1) ∧ Φ3)

Informally, we can interpret Φ(ti), i = 1, 2 as a statement that the component
i of the CPS described above can access the shared resource at time t1, and this
happens only if there exist three preceding time moments (t2 < t3 < t4 < t1)
such that the component i sets its individual state to True at time t2 (i.e. indi-
cates that it is interested in accessing the shared resource) and sends a request to
write the value true, if i = 1 or false, if i = 2 to the shared memory to the com-
ponent 3 at time t3, and at time t4, either the component 3 − i is not interested
in accessing the shared resource, or the value of the shared memory indicates
the priority of the component i over the component 3 − i. This statement can
be considered as a high-level expression of the Peterson’s algorithm. Also, infor-
mally, Φ3 expresses the algorithm of the component 3 and Ψ is a consistency
condition like “a predicate and its negation cannot hold simultaneously”.

Then Φ can be interpreted as the statement that there is no time moment t1
at which the components 1 and 2 of the CPS described above can simultaneously
access the shared resource.

One can prove that Φ ∈ Th directly using definitions. However, this can also
be checked by a decision procedure for Th described in the proof of Theorem 4,
which gives a mechanized proof of the mutual exclusion property of an abstract
version of Peterson’s algorithm in the case of CPS.

6 Conclusions and Future Work

We have proposed a decidable formal theory for describing high-level properties
of NCMS. The class of NCMS contains abstract dynamical systems which can
represent discrete and continuous evolutions in continuous time and are sufficient
for modeling a wide range of real-time information processing and cyber-physical
systems. In the future works we plan to extend the introduced theory and apply
it to verification of practical cyber-physical systems.

Acknowledgments. We would like to thank Dr. Martin Strecker and Prof. Louis
Féraud of Institut de Recherche en Informatique de Toulouse (IRIT), France for the
ideas which inspired this work.
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