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Abstract. This paper deals with the investigations of increasing dependability
of computing operations for fuzzy numbers with triangular and bell-shape
membership functions (MFs). Special attention is paid to the synthesis of ana-
lytic models of the MFs for the results of fuzzy arithmetic operations. New
analytical models of the result’s MFs with the description of synthesis proce-
dures for the multiplication operation with triangular fuzzy numbers in R+ and
R are presented in a universal style. The general analytic models for determi-
nation of a-cuts parameters (direct and inverse approaches) for result fuzzy sets
are given. Modeling results confirm the efficiency of the proposed models and
fuzzy arithmetic algorithms for fuzzy information processing.
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1 Introduction

While performing the tasks of organizational control there always happen such situa-
tions when the original conditions of decision making are not clearly defined and
characterized by insufficient awareness of the person who makes decisions, particularly
in conflict situations or under extreme conditions. For mathematical formalization of
processes and systems of this class there appeared a need to create a new mathematical
approach. This approach is a theory of fuzzy sets developed by professor Zadeh [19].
Since the theory of fuzzy sets appeared, the specialists have had a great interest in it in
terms of practical applications of mathematical methods in all fields of science and
technology. The scientists around the world are aware of fundamental theoretical
developments in the theory of fuzzy sets and fuzzy logic [2, 3, 11, 15, 17, 18].

Fuzzy set theory has a special notion of membership function [12, 15, 19] that
exists in the interval [0,1]. Each element x of the fuzzy set, for example set A� , cor-

responds to a specific value of the membership function lA�
ðxÞ 2 ½0; 1�. Thus, fuzzy set
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A� that is specified on the basis of the universal set E, is called [19] the set of pairs

ðx; l A�
ðxÞÞ, where x ∈ E, l A�

ðxÞ 2 ½0; 1�.
Fuzzy sets and fuzzy logic are used for tasks of decision making and control in

uncertainty, in particular for problems of routes and trajectory optimization [8]. The
solution of the problems causes the necessity of fulfilling the operations of fuzzy
arithmetic, in particular operations with fuzzy sets including addition, subtraction,
multiplication and division.

Inverse models of resulting membership functions that are based on using a-cuts [4]
do not always provide high performance of computing operations and often lead to
complications in solving control problems in real time. Thus, the development of
generalized analytic models, based on the direct approach that allow to formalize fuzzy
arithmetic operations to improve their operating speed and accuracy is an important
direction of research that is associated with increased dependability [5] of intelligent
systems.

One of the most difficult fuzzy arithmetic operations in terms of its mathematical
formalization is an operation of multiplication.

Computational algorithms for the operations of multiplication on the basis of using
a-cuts of the relevant fuzzy sets [4, 5, 9] (inverse approach) have high computational
complexity, as it is performed in turn for all a- levels (ai 2 ½0; 1�; i ¼ 0; 1; 2; . . .; r;
a0 ¼ 0; ar ¼ 1) with the step of discreteness Da; which value, taking into consideration
that aiþ1 ¼ ai þ Da; significantly affects the accuracy and operating speed of the
performance of computational procedures [5]. Therefore, a- cuts of the fuzzy set A� 2 R

is ordinary (in terms of conditions l A�
ðxÞ� a) subset that contains elements x 2 R

whose degree of membership to a set A� is not less than value a; that is Aa ¼
fx l A�

ðxÞ� a
��� g; a 2 ½0; 1�.
Subsets Aa тa Ba that determine the appropriate a-cuts of fuzzy sets A� and B� can be

written as follows: Aa ¼ a1ðaÞ; a2ðaÞ½ �; Ba ¼ b1ðaÞ; b2ðaÞ½ �; where a 2 0; 1½ �; A� ; B� 2
Rþ; and arithmetic operation of multiplication can be written as [4, 5, 9, 12, 15, 19]

Aa �ð ÞBa ¼ a1ðaÞ; a2ðaÞ½ � �ð Þ b1ðaÞ; b2ðaÞ½ �
¼ a1ðaÞb1ðaÞ; a2ðaÞb2ðaÞ½ �: ð1Þ

In addition to calculations based on the mentioned above a-cuts [4, 5] for imple-
mentation of fuzzy arithmetic operations where computational algorithms are often
used that are realized through the use of max-min or min-max convolutions [4, 14] that
in some cases leads to increased complexity and reduced operating speed of perfor-
mance or to the moment of obtaining the resulting MFs that do not meet the
requirements of convexity and normality of fuzzy sets.

The aim of this work is a synthesis of analytical models of resulting MFs. Their use
in fuzzy arithmetic will give the opportunity to significantly reduce the volume,
complexity and accuracy, and to improve their operating speed. Then a more detailed
analysis of the properties of arithmetic operation of multiplication of fuzzy triangular
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numbers will be given. These properties are the most common while using the theory
of fuzzy sets for designing control systems, decision making support systems and
intelligence expert systems. This fuzzy triangular number is called fuzzy number A�
whose MF l A�

xð Þ is of triangular shape and mathematical presentation of triangular

fuzzy number has the form

A� ¼ a1; a0; a2ð Þ;

where l A�
a1ð Þ ¼ 0; l A�

a0ð Þ ¼ 1; l A�
a2ð Þ ¼ 0.

Generalized model Aa; synthesized on the basis of inverse approach, and direct
model in a form of a triangular membership function l A�

xð Þ of triangular fuzzy number
A� are determined by the appropriate relevant dependencies (2) and (3):

Aa ¼ a1 að Þ; a2 að Þ½ � ¼ a1 þ a a0 � a1ð Þ; a2 � a a2 � a0ð Þ½ �; ð2Þ

l A�
xð Þ ¼

0; 8 x� a1ð Þ [ x� a2ð Þ
x� a1ð Þ= a0 � a1ð Þ; 8 a1\x� a0ð Þ
a2 � xð Þ= a2 � a0ð Þ; 8 a0\x\a2ð Þ

8><
>: : ð3Þ

2 Universal Analytical Models for Multiplication
of Triangular Fuzzy Numbers in R+

2.1 Synthesis of Inverse Model for Multiplication of Two Fuzzy Numbers

We shall illustrate the methods of forming inverse Ca ¼ c1 að Þ; c2 að Þ½ � and direct lCðxÞ
generalized analytical models of resulting MF for the operation of fuzzy triangular
numbers multiplication C� ¼ A� ð�ÞB� .

Firstly we shall form the inverse generalized model Aa ¼ a1 að Þ; a2 að Þ½ � for a given
(Fig. 1a) triangular fuzzy number A� ¼ a1; a0; a2ð Þ in the set of non-negative real

numbers Rþ [4, 5, 6, 9, 10] for the case a1\a0\a2ð Þ.
Let us analyze the left branch of the triangular fuzzy number A� for a- cut on the

basis (2).
It is possible to write

a ¼ a1 að Þ � a1ð Þ= a0 � a1ð Þ;

where one can define

a1 að Þ ¼ a1 þ ða0 � a1Þa;

where a1 ¼ a1 0ð Þ� 0; a0 � a1 [ 0; as a0 [ a1; since A� 2 Rþ
0 .
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Let us introduce the designations: K1 ¼ a0 � a1; K2 ¼ a1; where K1 [ 0 and
K2 � 0; regarding this it can be written as:

a1 að Þ ¼ K2 þ K1a:

Let us similarly analyze the right branch of a fuzzy number A� :

a ¼ a2 að Þ � a2ð Þ= a0 � a2ð Þ;

a2 að Þ ¼ a2 þ ða0 � a2Þa:

Having marked K3 ¼ a0 � a2; K4 ¼ a2 K3\0; because a2 ¼ a2 0ð Þ[ a0;ð
k4 [ 0; as A� 2 Rþ

0 Þ, we shall receive

a2 að Þ ¼ K4 þ K3a:

However, as there is inequality a2 [ a0 � a2j j; then K4 [ K3j j; respectively.
The a- cut for the left and right branches of the triangular fuzzy number A� can be

represented as follows (taking into account coefficients Ki; i ¼ 1. . .4 : K1 [ 0; K2 [ 0;
K3\0; K4 [ 0; K4 [ K3j j):

Fig. 1. Triangular Fuzzy Number A� : (a) A� 2 Rþ; (b) A� 2 R
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Aa ¼ a1 að Þ; a2 að Þ½ � ¼ K2 þ K1a; K4 þ K3a½ �: ð4Þ

Corresponding a� cut for triangular fuzzy number B� ¼ b1; b0; b2ð Þ has the form

Ba ¼ b1 að Þ; b2 að Þ½ �

Having marked for the case b1\b0\b2ð Þ :

S1 ¼ b0 � b1; S2 ¼ b1; S3 ¼ b0 � b2; S4 ¼ b2;

we shall receive the modified a� cut Ba (taking into account the coefficients Si; i ¼
1. . .4 : S1 [ 0; S2 � 0; S3\0; S4 [ 0; S4 [ S3j j):

Ba ¼ b1 að Þ; b2 að Þ½ � ¼ S2 þ S1a; S4 þ S3a½ �: ð5Þ

Based on (4) and (5) we shall receive an inverse model for a� cut of a fuzzy set
C� ¼ A� ð�ÞB� :

Ca ¼ Aað�ÞBa ¼ a1 að Þ; a2 að Þ½ � �ð Þ b1 að Þ; b2 að Þ½ �
¼ a1 að Þb1 að Þ; a2 að Þb2 að Þ½ �
¼ K2 þ K1að Þ S2 þ S1að Þ; K4 þ K3að Þ S4 þ S3að Þ½ �
¼ K1S1a

2 þ K1S2 þ K2S1ð Þaþ K2S2; K3S3a
2 þ K3S4 þ K4S3ð Þaþ K4S4

� �
¼ C1 að Þ;C2 að Þ½ �:

ð6Þ

2.2 Synthesis of Direct Model for Multiplication of Two Fuzzy Numbers

Left branch of resulting MF. For the direct model lC
�

xð Þ on the basis of proposed

approach we shall consider in a more detailed way a constituent C1 að Þ for a� cut (6) of
the resulting fuzzy set C� , formed by the operation of multiplying C� ¼ A� ð�ÞB� :

C1 að Þ ¼ K1S1a
2 þ K1S2 þ K2S1ð Þaþ K2S2:

The solution of the equation

K1S1a
2 þ K1S2 þ K2S1ð Þaþ K2S2 � C1 að Þð Þ ¼ 0

will have the following roots

a1;2 ¼ � K1S2 þ K2S1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1S2 � K2S1ð Þ2þ4K1S1C1 að Þ

q� �
= 2K1Sð Þ: ð7Þ
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Let us analyze the roots a1 and a2 according to (7), which can be written as

a1;2 ¼ �V1 �
ffiffiffiffiffiffi
Q1

p� 	
=W1 ¼ �V1=W1 �

ffiffiffiffiffiffi
Q1

p
=W1;

taking into consideration the following signs:

V1 ¼ K1S2 þ K2S1;

Q1 ¼ K1S2 � K2S1ð Þ2þ 4K1S1C1 að Þ;

W1 ¼ 2K1S1:

To form a direct model of the resulting nonlinear membership function l c�
xð Þ it is

necessary to check the performance of the condition a1;2 2 0; 1½ �.
Let us consider in details [8] the components V1;Q1;W1 :

(a) V1 ¼ K1S2 þ K2S1; taking into account correlations K1 [ 0; K2 [ 0; S1 [ 0;
S2 [ 0 where there inequality V1 [ 0 takes place and respectively inequality
�V1\0;

(b) Q1 ¼ K1S2 � K2S1ð Þ2þ4K1S1C1 að Þ : C1 að Þ[ 0 as A� ; B� 2 Rþ
0 because K1 [ 0;

S1 [ 0; then always Q1 [ 0;
(c) W1 ¼ 2K1S1; as K1 [ 0; S1 [ 0; then W1 [ 0:

As �V1=W1\0; and the roots a1;2 have requirements a1;2 2 0; 1½ �; then the root that
satisfies the given condition under V1 [ 0; Q1 [ 0; W1 [ 0 will be

a1 ¼ �V1 þ
ffiffiffiffiffiffi
Q1

p� 	
=W1;

that is

a1 ¼ � K1S2 þ K2S1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1S2 � K2S1ð Þ2þ 4K1S1C1 að Þ

q� �
= 2K1S1ð Þ: ð8Þ

The root

a2 ¼ �V1 �
ffiffiffiffiffiffi
Q1

p� 	
=W1

does not satisfy the condition a2 2 0; 1½ �, as there is always a condition a2\0.
The transition from inverse to direct approach [4, 5, 6, 8] shows that x is a

parameter of the function a ¼ f C1 að Þð Þ; that is a ¼ f xð Þ; where x ¼ C1 að Þ 2 c1; c0½ �;
and then (8) can be represented as

a1 ¼ � K1S2 þ K2S1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1S2 � K2S1ð Þ2þ 4K1S1x

q� �
= 2K1S1ð Þ: ð9Þ
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Right branch of resulting MF. Let us consider in detail the second component of the
inverse model (6)

C2 að Þ ¼ K3S3a
2 þ K3S4 þ K4S3ð Þaþ K4S4:

The solution of the corresponding equation

K3S3a
2 þ K3S4 þ K4S3ð Þaþ K4S4 � C2 að Þð Þ ¼ 0

will be the roots

a3;4 ¼ � K3S4 þ K4S3ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3S4 � K4S3ð Þ2þ 4K3S3C2 að Þ

q� �
= 2K3S3ð Þ:

The analysis of roots a3 and a4 shows, that the root a3 [ 1 does not satisfy the
condition

a3 2 0; 1½ �

and therefore the only acceptable root will be the root a4
The transition from inverse to direct approach [4, 5, 6, 8] allows to transform

a ¼ f C2 að Þð Þ into a ¼ f xð Þ, x ¼ C2 að Þ 2 c0; c2½ �, and thus

a4 ¼ � K3S4 þ K4S3ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3S4 � K4S3ð Þ2þ 4K3S3x

q� �
=ð2K3S3Þ: ð10Þ

The direct model of resulting MF and modeling results. The analysis of the roots a1
and a4 allows to make a conclusion that nonlinear dependence a ¼ f xð Þ under intervals
x 2 c1; c0½ �; x 2 c0; c2½ � is one-valued function.

The investigations allow to form a direct analytical model for one-valued nonlinear
resulting membership function lC�

xð Þ of fuzzy set C� ¼ A� �ð ÞB� that is formed by mul-

tiplying triangular fuzzy numbers A� and B� in Rþ:

lC�
xð Þ ¼

0;

for 8x�K2S2ð ÞS 8x�K4S4ð Þ
� K1S2 þK2S1ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1S2 �K2S1ð Þ2 þ 4K1S1x

p
2K1S1

;

for 8x 2 K2S2;K1S1 þ K1S2 þ K2S1 þ K2S2½ �
� K3S4 þK4S3ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3S4 �K4S3ð Þ2 þ 4K3S3x

p
2K3S3

;

for 8x 2 K3S3 þ K3S4 þ K4S3 þ K4S4;K4S4½ �
1;

for 8x ¼ c0 ¼ K1S1 þ K1S2 þ K2S1 þ K2S2

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

; ð11Þ
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where c0 ¼ K1S1 þ K1S2 þ K2S1 þ K2S2 ¼ K3S3 þ K3S4 þ K4S3 þ K4S4.
The given direct approach allows to form nonlinear resulting membership function

lC�
xð Þ on the basis of known coefficients Ki; Si i ¼ 1::4ð Þ of fuzzy numbers A� (4) and

B� (5) in Rþ.

By substituting previously set marks

K1 ¼ a0 � a1;K2 ¼ a1;K3 ¼ a0 � a2;K4 ¼ a2;

S1 ¼ b0 � b1; S2 ¼ b1; S3 ¼ b0 � b2; S4 ¼ b2;

we shall get (Table 1) a direct model lC�
xð Þ that is realized directly on the basis of

parameters a0; a1; a2ð Þ; b0; b1; b2ð Þ of triangular fuzzy numbers A� and B� in Rþ.

The chart of the corresponding resulting membership function lC�
xð Þ under the

realizing the operation of multiplication of triangular fuzzy numbers

A� ¼ ð5; 7; 12Þ

and

B� ¼ ð2; 9; 14Þ

using a developed direct model, presented in Table 1, shown in Fig. 2.

3 Direct and Inverse Analytical Models of Fuzzy Sets
with Bell-Shape Membership Functions

Let’s consider the class of bell-shape membership functions with following direct
model [14, 15], for example for fuzzy set A� ,

l A�
xð Þ ¼ 1= 1þ x� b

c

� �2
 !

ð12Þ

Table 1. Analytical model lC�
xð Þ: direct approach.

Resulting membership function lC�
xð Þ ¼

8 x\a1b1 [ x[ a2b2ð Þ; ¼ 0
8x 2 a1b1; a0b0½ Þ;
¼ �½ða0�a1Þb1þa1ðb0�b1Þ�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða0�a1Þb1�a1ðb0�b1Þ�2þ4ða0�a1Þðb0�b1Þx

p
2ða0�a1Þðb0�b1Þ

8x ¼ a0b0;¼ 1

8x 2 a0b0; a2b2ð �;¼ � ða0�a2Þb2þa2ðb0�b2Þ½ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða0�a2Þb2�a2ðb0�b2Þð Þ2þ4ða0�a2Þðb0�b2Þx

p
2ða0�a2Þðb0�b2Þ
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and a synthesis procedure for analytic models of membership functions as results of
arithmetic operations implementation. We will consider the cases when parameters of
bell-shape MFs in model (12) are positive (b[ 0; c[ 0) and the approach is based on
using a-cut models.

First of all, we form the inverse (horizontal) model of fuzzy set A�

Aa ¼ a1ðaÞ; a2ðaÞ½ �; a 2 0; 1½ �;

taking into account the equivalence relation between notations [4] in direct and inverse
models and substituting the next parameters l A�

xð Þ ¼ a; x ¼ a1;2 að Þ in direct

model (12):

a ¼ 1= 1þ a1;2 að Þ � b
c


 �2 !
; ð13Þ

where a1;2ðaÞ 2 a1ðaÞ; a2ðaÞf g.
At the next step it is necessary to find the roots of the Eq. (13) based on the

following transformations (14)–(16)

Fig. 2. Implementation of the direct model lC�
xð Þ

Soft Computing Algorithm for Arithmetic Multiplication 57



a ¼ c2

c2 þ a1;2 að Þ � b
� �2 ; ð14Þ

a ¼ c2

c2 þ a21;2 að Þ � 2ba1;2 að Þ þ b2
; ð15Þ

c2 ¼ c2aþ a21;2 að Þa� 2ba1;2 að Þaþ b2a: ð16Þ

As result we can obtain the square Eq. (17) corresponding to parameters a1;2 að Þ

aa21;2 að Þ � 2aba1;2 að Þ þ b2aþ c2a� c2
�  ¼ 0: ð17Þ

The roots of (17) can be calculated as (18)

a1;2 að Þ ¼ 2ab� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2b2 � 4a b2aþ c2a� c2ð Þp

2a
ð18Þ

or as (19)

a1;2 að Þ ¼ 2ab�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac2 � 4a2c2

p

2a
ð19Þ

The formula (19) can be transformed to (20)

a1;2 að Þ ¼ b� c

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
; ð20Þ

that means that roots of Eq. (17) can be finally calculated as:

a1 að Þ ¼ b� c

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
ð21Þ

and

a2 að Þ ¼ bþ c

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
: ð22Þ

In this case the inverse (horizontal) model (17) of fuzzy set A� can be written in the

following form:

Aa ¼ a1ðaÞ; a2ðaÞ½ � ¼ b� c

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
; bþ c

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r" #
: ð23Þ
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4 Universal Analytical Models for Multiplication
of Bell-Shape Fuzzy Numbers in R+

4.1 Synthesis of Inverse Analytical Model for Resulting Fuzzy Set

For analytic models synthesis of fuzzy sets which can result in fuzzy sets after fuzzy
arithmetic operations implementation let’s consider two fuzzy sets A� and B� with

membership functions of type (12), which are presented by models of a-cuts [4]:

Aa ¼ a1ðaÞ; a2ðaÞ½ � ð24Þ

Ba ¼ b1ðaÞ; b2ðaÞ½ �: ð25Þ

Using the designations b ¼ p1; c ¼ s1 for model Aa in (24) and b ¼ p2; c ¼ s2 for
model Ba in (25) and using the general horizontal model (23) we can determine:

Aa ¼ a1ðaÞ; a2ðaÞ½ � ¼ p1 � s1

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
; p1 þ s1

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r" #
; ð26Þ

Ba ¼ b1ðaÞ; b2ðaÞ½ � ¼ p2 � s2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
; p2 þ s2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r" #
: ð27Þ

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2
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1
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fuzzy B

Fig. 3. Fuzzy sets A� ; B� with parameters of bell-shape membership functions: p1 ¼ 30; p2 ¼ 21;

s1 ¼ 5; s2 ¼ 3
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Let’s consider the arithmetic operation of multiplication C� ¼ A� �ð ÞB� for two fuzzy
numbers A� 	 Rþ and B� 	 Rþ with bell-shape membership functions (12) according to
the algorithm used in [2, 7, 11]:

Ca ¼ Aa �ð ÞBa ¼ a1ðaÞ �ð Þb1ðaÞ; a2ðaÞ �ð Þb2ðaÞ½ �
¼ c1 að Þ; c2 að Þ½ �: ð28Þ

Substituting the horizontal models (26) and (27) into (28) we can form the inverse
model of resulting membership function for implementation of multiplication operation
C� ¼ A� �ð ÞB� for fuzzy sets A� 	 Rþ and B� 	 Rþ:

Ca ¼ Aa �ð ÞBa ¼
p1 � s1

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r !
�ð Þ p2 � s2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r !
;

p1 þ s1

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r !
�ð Þ p2 þ s2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r !
2
666664

3
777775

¼
p1p2 �

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
p1s2 þ s1p2ð Þ þ s1s2

1
a
� 1

� �
;

p1p2 þ
ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
p1s2 þ s1p2ð Þ þ s1s2

1
a
� 1

� �
2
66664

3
77775

¼ c1 að Þ; c2 að Þ½ �:

ð29Þ

The resulting fuzzy set, which was created on the basis of model (29) after mul-
tiplication C� ¼ A� �ð ÞB� of two fuzzy sets (Fig. 3), is represented in Fig. 4.

4.2 Synthesis of Direct Model for Resulting MF

Let’s introduce new designations:

k1 ¼ p1p2; k2 ¼ p1s2 þ s1p2; k3 ¼ s1s2;

where k1 [ 0; k2 [ ; k3 [ 0; as b[ 0; c[ 0 in (12) and correspondently, pi [ 0;
si [ 0; ði ¼ 1; 2Þ in (26) and (27).

In this case we can represent resulting membership function (29) for implemen-
tation of multiplication operation as following

Ca ¼ k1 � k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
þ k3

1
a
� 1

� �
; k1 þ k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
þ k3

1
a
� 1

� �" #

¼ c1 að Þ; c2 að Þ½ �:
ð30Þ

60 Y. Kondratenko and V. Kondratenko



Investigation of the left branch and its properties for resulting MF. Let’s consider
in more details a left branch of Eq. (30)

c1ðaÞ ¼ k1 � k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
þ k3

1
a
� 1

� �
; ð31Þ

which may be transformed to the form

k1 þ k3
1
a
� 1

� �
� c1ðaÞ ¼ k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
: ð32Þ

Square the left and right sides of the Eq. (32)

k1 þ k3
1
a
� 1

� �
� c1ðaÞ

� �2

¼ k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r !2

: ð33Þ

At the next step it is necessary to simplify the Eq. (33) based on the following
transformations (34)–(36)

k21 þ k23
1
a
� 1

� �2

þc21ðaÞ þ 2k1k3
1
a
� 1

� �
� 2k1c1ðaÞ � 2k3

1
a
� 1

� �
c1ðaÞ

¼ k22
1
a
� 1

� � ð34Þ
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Fig. 4. Resulting fuzzy set for multiplication C� ¼ A� �ð ÞB� based on the inverse model (29) with

Da ¼ 0; 01

Soft Computing Algorithm for Arithmetic Multiplication 61



k21 þ
k23
a2

� 2
k23
a
þ k23 þ c21ðaÞ þ

2k1k3
a

� 2k1k3

� 2k1c1ðaÞ � 2k3
a

c1ðaÞ þ 2k3c1ðaÞ � k22
a
þ k22 ¼ 0

; ð35Þ

k23
a2

þ 2k1k3 � 2k23 � 2k3c1ðaÞ � k22
�  1

a
þ k21 þ k23 þ c21ðaÞ

� 2k1k3 � 2k1c1ðaÞ þ 2k3c1ðaÞ þ k22 ¼ 0
: ð36Þ

Multiplying the left and right sides of the Eq. (36) for a2

ðk21 þ k23 þ c21ðaÞ � 2k1k3 � 2k1c1ðaÞ þ 2k3c1ðaÞ þ k22Þa2
þ 2k1k3 � 2k23 � 2k3c1ðaÞ � k22
� 

aþ k23 ¼ 0
ð37Þ

and find the roots a1;2 of Eq. (37)

a1;2 ¼
� 2k1k3 � 2k23 � 2k3c1 að Þ � k22
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1k3 � 2k23 � 2k3c1 að Þ � k22
� 2�4 k21 þ k23 þ

�
þ c21 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22


k23

s

2 k21 þ k23 þ c21 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22
� 

or

a1;2 ¼ �v1 � ffiffiffiffiffi
q1

p� 
=w1; ð38Þ

where indicated:

v1 ¼ 2k1k3 � 2k23 � 2k3c1 að Þ � k22 ; ð39Þ

q1 ¼ 2k1k3 � 2k23 � 2k3c1 að Þ � k22
� 2
� 4 k21 þ k23 þ c21 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22
� 

k23

¼ 2k1k3 � 2k23 � 2k3c1 að Þ � k22
� 2�4 k3 þ c1 að Þ � k1ð Þ2þ k22

� 	
k23

; ð40Þ

w1 ¼ 2 k21 þ k23 þ c21 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22
� 

¼ 2 k3 þ c1 að Þ � k1ð Þ2þ k22
� 	 : ð41Þ

To form a direct model of the resulting nonlinear membership function l c�
xð Þ it is

necessary to check the performance of the condition a1;2 2 0; 1½ �.
Let us consider in details the components (39)–(41) in roots (38), in particular,

v1; q1;w1:
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(a) for value v1 the two cases should be considered:
(1) v1 [ 0; if 2k1k3 [ 2k23 þ 2k3c1 að Þ þ k22

� 
and

(2) v1\0; if 2k1k3\ 2k23 þ 2k3c1 að Þ þ k22
� 

;

(b) the value q1 theoretically may be positive or negative, but taking into account that
it is necessary to calculate

ffiffiffiffiffi
q1

p
and roots (38) are real numbers, then q1 should be

only positive number: q1 [ 0;
(c) analyzing (41) we may conclude that for any cases w1 [ 0.

According to (38) we can rewrite

a1;2 ¼ �v1=w1 � ffiffiffiffiffi
q1

p
=w1: ð42Þ

Let’s analyze the situation when v1 [ 0 and in this case we have inequality

k1 � k3 [ c1 að Þ þ k22
2k3

: ð43Þ

The Eq. (40) can be represented as

q1 ¼ z� y; ð44Þ

where components z and y may be transformed in the following way:

z ¼ 2k1k3 � 2k23 � 2k3c1 að Þ � k22
� 2

¼ 4k21k
2
3 � 8k1k33 � 8k1k23c1 að Þ � 4k1k22k3 þ 4k43

þ 8k33c1 að Þ þ 4k22k
2
3 þ 4k23c

2
1 að Þ þ 4k22k3c1 að Þ þ k42

; ð45Þ

y ¼ 4 k3 þ c1 að Þ � k1ð Þ2þ k22
� 	

k23

¼ 4k21k
2
3 þ 4k43 þ 4k23c

2
1 að Þ � 8k1k33 � 8k1k23c1 að Þ þ 8k33c1 að Þ þ 4k22k

2
3

: ð46Þ

Substituting (45) and (46) into (44) we can obtain

q1 ¼ 4k22k3 c1 að Þ þ k22
4k3

� k1

� �
: ð47Þ

Analyzing (43) and taking into account that k3 [ 0 it is possible to conclude

k1 [ c1 að Þ þ k22
2k3

and respectively

c1 að Þ þ k22
2k3

� k1\0: ð48Þ
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The condition (48) means that in this case according to (47) we have

q1\0: ð49Þ

Taking into account that q1 should be always a positive number it is necessary to say
the considered situation v1 [ 0ð Þ is uncorrected.

Let’s analyze the second situation when v1\0 for roots (42) and correlation
between v1 and w1:

�v1 ¼ �2k1k3 þ 2k23 þ 2k3c1 að Þ þ k22 ; ð50Þ

w1 ¼ 2 k3 þ c1 að Þ � k1ð Þ2þ k22
� 	

¼ 2 c1 að Þ � k1ð Þ2þ2k23 � 4k1k3 þ 4k3c1 að Þ þ 2k22
: ð51Þ

First of all, it is necessary to check the condition

w1 [ � v1

or

w1 þ v1 [ 0: ð52Þ

Substituting (50) and (51) into (52) we will obtain

w1 þ v1 ¼ 2 c1 að Þ � k1ð Þ2þ2k23 � 4k1k3 þ 4k3c1 að Þ þ 2k22
þ 2k1k3 � 2k23 � 2k3c1 að Þ � k22

¼ 2 c1 að Þ � k1ð Þ2�2k1k3 þ 2k3c1 að Þ þ k22 [ 0

: ð53Þ

Taking into account that

k1 [ 0; k3 [ 0; k2 [ 0; c1ðaÞ[ 0

in the inequality (53), such components will be always positive

2 c1 að Þ � k1ð Þ2 [ 0; 2k3c1 að Þ[ 0; k22 [ 0; 2k1k3 [ 0

and only one component is negative

�2k1k3\0:

Let’s compare one of the positive components in (53)

k22 ¼ p1s2 þ p2s1ð Þ2¼ p1s2ð Þ2 þ 2p1s2p2s1 þ p2s1ð Þ2

with negative component in (53)
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�2k1k3 ¼ �2 p1p2ð Þ s1s2ð Þ ¼ �2p1p2s1s2

in the following way

k22 � 2k1k3 ¼ p1s2ð Þ2þ2p1s2p2s1 þ p2s1ð Þ2�2p1p2s1s2 ¼ p1s2ð Þ2þ p2s1ð Þ2 [ 0: ð54Þ

The inequality (54) confirms that in (53)

2 c1 að Þ � k1ð Þ2þ 2k3c1 að Þ þ k22 [ 2k1k3

and inequalities and correlations

w1 þ v1 [ 0; w1 [ � v1 ð55Þ

are correct.
In this case we can see that

�v1=w1\1 ð56Þ

and at the same time taking into account that v1\0; w1 [ 0 we have

�v1=w1 [ 0 ð57Þ

and finally

0\ �v1=w1ð Þ\1; �v1=w1 2 0; 1½ �:

Analyzing (39)–(41) we may represent q1 and
ffiffiffiffiffi
q1

p
in following forms

q1 ¼ v21 � 2k23w1;

ffiffiffiffiffi
q1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � 2k23w1

q
:

Comparing
ffiffiffiffiffi
q1

p
and �v1 (for case, when v1\0) we can see that �v1 [

ffiffiffiffiffi
q1

p
and,

correspondently,

�v1 � ffiffiffiffiffi
q1

p
[ 0: ð58Þ

Let’s check the condition

a2 2 0; 1½ � ð59Þ

for root a2 ¼ �v1 � ffiffiffiffiffi
q1

p� 
=w1 according to (38) and (42).
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Based on (56)–(58) we can obtain the next inequalities:

w1 [ � v1 � ffiffiffiffiffi
q1

p
;

0\ �v1 � ffiffiffiffiffi
q1

p� 
=w1\1

and, correspondently, 0\a2\1 or a2 2 0; 1½ �:
Let’s check the condition

a1 2 0; 1½ � ð60Þ

for root a1 ¼ �v1 þ ffiffiffiffiffi
q1

p� 
=w1 according to (38) and (42).

The condition (60) is correct for �v1 [ 0;
ffiffiffiffiffi
q1

p
[ 0; w1 [ 0, if

w1 � �v1 þ ffiffiffiffiffi
q1

p� 
; ð61Þ

w1 þ v1ð Þ� ffiffiffiffiffi
q1

p

or, correspondently, for

w1 þ v1ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 � 2k23w1

q
: ð62Þ

Square the left and right sides of the inequality (62)

w1 þ v1ð Þ2 � v21 � 2k23w1
� 

and make the following sequence transformations

w2
1 þ 2w1v1 þ v21 � v21 � 2k23w1;

w2
1 þ 2w1v1 � � 2k23w1;

w1 þ 2v1 þ 2k23 � 0: ð63Þ

Substituting (39) and (41) into (63) we can obtain

2ððk3 þ C1ðaÞ � k1Þ2 þ k22Þ þ 2 2k1k3 � 2k23 � 2k3C1ðaÞ � k22
� þ 2k23 � 0: ð64Þ

After dividing both sides of inequality (64) by 2, exponentiation and reduction of
similar the expression (64) takes the following form

k21 þ c21ðaÞ � 2k1c1ðaÞ� 0;

c1ðaÞ � k1ð Þ2 � 0: ð65Þ
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As inequality (65) and corresponding inequality (61) are confirmed, then

�v1 þ ffiffiffiffiffi
q1

p� 
=w1\1;

and condition (60) is satisfied.
Taking into account that both conditions (59) and (60)

a1 2 ½0; 1�; a2 2 ½0; 1�

are satisfied for roots a1; a2 of left branch’s Eq. (31), the resulting value a
L can be find
in the following way

a
L ¼ max a1; a2f g : ð66Þ

a
L ¼
� 2k1k3 � 2k23 � 2k3c1 að Þ � k22
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1k3 � 2k23 � 2k3c1 að Þ � k22
� 2�4 k21 þ k23

� þ
þ c21 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22


k23

s

2 k21 þ k23 þ c1 að Þ � 2k1k3 � 2k1c1 að Þ þ 2k3c1 að Þ þ k22
�  :

Investigation of the right branch and its properties for resulting MF. Using pro-
posed approach it is possible to make all similar transformation for right branch of
Eq. (30)

c2ðaÞ ¼ k1 þ k2

ffiffiffiffiffiffiffiffiffiffiffi
1
a
� 1

r
þ k3

1
a
� 1

� �
; ð67Þ

which has two roots a3; a4.
As result we will obtain that both conditions

a3 2 ½0; 1�; a4 2 ½0; 1�

are satisfied for roots a3; a4 of right branch of Eq. (30) and the resulting value a
R can
be find in the following way

a
R ¼ max a3; a4f g : ð68Þ

ð68Þ

Generalized direct model of resulting MF for multiplication of two bell-shape
fuzzy sets. The transition from inverse to direct approach allows to transform (66)
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a
L ¼ f c1 að Þð Þ into a
L ¼ f xð Þ for interval x 2 0; k1½ � and (68) a
R ¼ f c2 að Þð Þ into a
R ¼
f xð Þ for interval x 2 k1;1½ �:

The analysis of the roots a
L and a
R allows to make a conclusion that nonlinear
dependence a ¼ f xð Þ for x 2 Rþ is one-valued function.

The investigations allow to form a direct analytical model (69)–(71) for one-valued
nonlinear resulting membership function lC�

xð Þ of fuzzy set C� ¼ A� �ð ÞB� that is formed
by multiplying bell-shape fuzzy numbers A� тa B� in Rþ:

(a) 8x 2 0; p1p2½ � :

ð69Þ

(b) for x ¼ p1p2 :

lC
�

xð Þ ¼ 1; ð70Þ

(c) 8x 2 p1p2;1½ � :

ð71Þ

5 Inverse and Direct Analytic Models for Multiplication
of Two Fuzzy Sets with Triangular Membership
Functions in R

5.1 Synthesis of Inverse Model of Resulting MF

The task of synthesis of inverse and direct analytical models becomes complicated
while performing the operation of multiplication of triangular fuzzy numbers A�
(Fig. 1b) and B� , that exist in the set of all real numbers R. We shall use the approach

discussed above that is based on the analysis of the corresponding square roots for
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synthesis of inverse and direct models while implementing the operation of multipli-
cation in R.

The algorithm of implementing the multiplication operation for triangular fuzzy
numbers [4, 5, 9, 11]

A� ¼ a1; a0; a2ð Þ
and

B� ¼ b1; b0; b2ð Þ
while using a-cuts

Aa ¼ a1ðaÞ; a2ðaÞ½ � ¼ a1 þ ða0 � a1Þa; a2 þ ða0 � a2Þa½ �

and

Ba ¼ b1ðaÞ; b2ðaÞ½ � ¼ b1 þ ðb0 � b1Þa; b2 þ ðb0 � b2Þa½ �

is based on the next inverse model:

Ca ¼ c1ðaÞ; c2ðaÞ½ �

¼
min a1 að Þb1 að Þ; a2 að Þb1 að Þ; a1 að Þb2 að Þ; a2 að Þb2 að Þf g;
max a1 að Þb1 að Þ; a2 að Þb1 að Þ; a1 að Þb2 að Þ; a2 að Þb2 að Þf g

" #

¼
min

a1 þ ða0 � a1Þa½ � b1 þ ðb0 � b1Þa½ �; a2 þ ða0 � a2Þa½ � b1 þ ðb0 � b1Þa½ �;
a1 þ ða0 � a1Þa½ � b2 þ ðb0 � b2Þa½ �; a2 þ ða0 � a2Þa½ � b2 þ ðb0 � b2Þa½ �

8<
:

9=
;;

max
a1 þ ða0 � a1Þa½ � b1 þ ðb0 � b1Þa½ �; a2 þ ða0 � a2Þa½ � b1 þ ðb0 � b1Þa½ �;
a1 þ ða0 � a1Þa½ � b2 þ ðb0 � b2Þa½ �; a2 þ ða0 � a2Þa½ � b2 þ ðb0 � b2Þa½ �

8<
:

9=
;

2
66666664

3
77777775

ð72Þ

Where c1 0ð Þ ¼ min a1b1; a2b1; a1b2; a2b2f g;

c2 0ð Þ ¼ max a1b1; a2b1; a1b2; a2b2f g;

c1 1ð Þ ¼ c2 1ð Þ ¼ a0b0:

5.2 Synthesis of Direct Model of Resulting MF

Proposition 1. Using inverse model of resulting MF (72), we can form the direct model
lCðxÞ ¼lA �ð ÞBðxÞ in the following way:
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lCðxÞ ¼
0; 8x\G1ð ÞS 8x[G2ð Þ
a
 a
 2 ai;f gj ; i ¼ 1. . .8; 8x 2 G1; a0b0½ Þð ÞS 8x 2 a0b0;G2ð �ð Þ
1; 8x ¼ a0b0

8><
>: ; ð73Þ

Where G1 ¼ min a1b1; a2b1; a1b2; a2b2f g;

G2 ¼ max a1b1; a2b1; a1b2; a2b2f g:

In the direct model (73) the roots of four square equations are used. These equations
are formed while analyzing every of four components of the inverse model (72). In
particular:

(a) for component

½a1ðaÞb1ðaÞ� ¼ ½a1 þ aða0 � a1Þ�½b1 þ aðb0 � b1Þ�
¼ a2ða0 � a1Þðb0 � b1Þ þ a½ða1ðb0 � b1Þ þ b1ða0 � b1Þ� þ a1b1

we form the equation

a2 a0 � a1ð Þ b0 � b1ð Þ þ a a1 b0 � b1ð Þ þ b1 a0 � a1ð Þ½ � þ a1b1 � xð Þ ¼ 0;

the roots of which are

a1;2 ¼ � a1 b0 � b1ð Þ þ b1 a0 � a1ð Þ½ �
2 a0 � a1ð Þ b0 � b1ð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 b0 � b1ð Þ þ b1 a0 � a1ð Þ½ �2�4 a0 � a1ð Þ b0 � b1ð Þ a1: b1 � xð Þ

q
2 a0 � a1ð Þ b0 � b1ð Þ ;

ð74Þ

(b) for the component

a2ðaÞb1ðaÞ½ � ¼ a2 þ ða0 � a2Þa½ � b1 þ ðb0 � b1Þa½ �

the roots of the formed equation

a2ðb0 � b2Þða0 � a1Þ þ a½a1ðb0 � b2Þ þ b2ða0 � a1Þ� þ ða1b2 � xÞ ¼ 0

are

a3;4 ¼ � b2ða0 � a1Þ þ a1ðb0 � b2Þ½ �
2ðb0 � b2Þða0 � a1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b2ða0 � a1Þ þ a1ðb0 � b2Þ�2 � 4ðb0 � b2Þða0 � a1Þða1b2 � xÞ

q
2ðb0 � b2Þða0 � a1Þ

ð75Þ
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(c) for the component

a1ðaÞb2ðaÞ½ � ¼ a1 þ ða0 � a1Þa½ � b2 þ ðb0 � b2Þa½ �

the roots of the formed equation

a2ða0 � a2Þðb0 � b1Þ þ a½a2ðb0 � b1Þ þ b1ða0 � a2Þ� þ ða2b1 � xÞ ¼ 0

are

a5;6 ¼ � a2ðb0 � b1Þ þ b1ða0 � a2Þ½ �
2ða0 � a2Þðb0 � b1Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a2ðb0 � b1Þ þ b1ða0 � a2Þ�2 � 4ða0 � a2Þðb0 � b1Þða2b1 � xÞ

q
2ða0 � a2Þðb0 � b1Þ ;

ð76Þ

(d) for component

a2ðaÞb2ðaÞ½ � ¼ a2 þ ða0 � a2Þa½ � b2 þ ðb0 � b2Þa½ �

the roots of the formed equation

a2ðb0 � b2Þða0 � a1Þ þ a½a1ðb0 � b2Þ þ b2ða0 � a1Þ þ ða1b2 � xÞ ¼ 0

are

a7;8 ¼ � a2ðb0 � b2Þ þ b2ða0 � a2Þ½ �
2ða0 � a2Þðb0 � b2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a2ðb0 � b2Þ þ b2ða0 � a2Þ�2 � 4ða0 � a2Þðb0 � b2Þða2b2 � xÞ

q
2ða0 � a2Þðb0 � b2Þ

: ð77Þ

The algorithm according to which the value of a
 is selected based on (74)–(77) has
the following interpretation.

We define a subset of indices I1 2 I under the condition

I1 ¼ i i 2j I \ ai 2 0; 1½ �f g

The subset of indices I1 belongs to the set of indices

I ¼ 1; 2; 3; 4; 5; 6; 7; 8f g

of all roots (74)–(77) defined above: ai; i ¼ 1. . .8.

Proposition 2. The investigations made by the authors show that the presence of some
roots that satisfy the condition ai 2 0; 1½ � the parameter a
 is defined as follows
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a
 ¼ max
i2I1

aif g: ð78Þ

5.3 Modeling Results

Functional dependences of the roots ai ¼ fi xð Þ; i ¼ 1. . .8 from the parameter x while
implementing the operation of multiplication of triangular fuzzy numbers in R :

A� ¼ ð�3; 1; 8Þ

and
B� ¼ ð�2; 2; 4Þ

are given in Fig. 5, and the chart of the resulting membership function for model (73) –
in Fig. 6.

Figure 6 illustrates that during the process of changing x from −16 to 32, the
thunking a (Alpha) takes place according to the chain

a5 � a3 � a1 � a8:

(points 1, 2, 3 and 4 in Fig. 6).

6 Applied Aspects of Universal Analytic Models
Implementation in Decision Support Processes

The multiplication of fuzzy sets is very important operation which is most complicated
operation in fuzzy arithmetic and requires a lot of time for calculation processes. The
implementation of developed direct analytic models for calculation of resulting

Fig. 5. Functional dependences of ai ¼ fi xð Þ; i ¼ 1. . .8
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membership functions lC�
xð Þ according to Table 1 and (70) allows using one step

automation mode for operation C� ¼ A� ð�ÞB� . In some cases such direct analytic models

lC�
xð Þ ¼ l A� ð�Þ B�

xð Þ may have efficient introducing to evaluation, decision making and

decision support processes.

Let’s consider several examples of real life problems solving [10] for decision
support processes, where E is a set of alternatives

E ¼ E1;E2;E3; . . .;Ei; . . .;ELf g: ð79Þ

6.1 Transportation Problem

The transportation problem is well-known operation research problem [7, 8] where it is
necessary to find the best alternative solution E
 	 E for cargo transportation from
several depots N ¼ N1;N2; . . .;Nmf g to several customers S ¼ S1; S2; . . .; Snf g.

The ship transportation problem (STP) can be formulated as a classical transpor-
tation problem which can be solved by linear programming methods with some
modifications taking into account real conditions of marine environment.

At the general statement STP minimizes of the cost (goal/objective) function Z c; xð Þ
concerning to the transportation of various kind of cargoes (oil, coal, fuel etc.) from
several (or one) supplying ports (deports) to various receiving ports (nodes):

Min Z c; xð Þ¼
Xm
i¼1

Xn
j¼1

cijxij; ð80Þ

where: xij is a quantity of cargo which can be transported from deport i to port
j; i ¼ 1; . . .;m; j ¼ 1; 2; . . .; n;;

Fig. 6. Resulting fuzzy set C� ¼ A� ð�ÞB� : A� 	 R; B� 	 R
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cij is associated with a transported cost of cargo unit (for example, one ship’s
capacity) for cargo transportation from deport i to port j; i ¼ 1; . . .;m; j ¼ 1; 2; . . .; n.

It is very important to solve STP from the viewpoint of changeable character of
marine conditions as problem in fuzzy environment.

Really, it is well-known that marine environment under consideration may create
super-changeable conditions and the degree of fuzziness of such environment has very
high level. So, in marine (or sea) environment each coefficient cij of goal function
Z c; xð Þ is, in general case, uncertain. It depends on the various external factors because
each (ij)-separated service in STP includes transport penalty (cost) cTij , unload penalty

cLij, penalties c
S
ij and cEij , which represent, respectively, satisfaction of the safety’s and

ecology’s requirements at the j-th port (j=1,2,…,n) during unloading operations and
other components, for example, port’s sanitary penalty or custom’s penalty, which can
be included to the one of the abovementioned cost components cKij K ¼ ðT ;L; S;EÞð Þ.
In this case goal function (80) can be written as fuzzy function

Min Z� c; xð Þ ¼
Xm
i¼1

Xn
j¼1

c� ij
xij; ð81Þ

where all coefficients c� ij
i ¼ 1; 2; . . .m; j ¼ 1; 2; . . .nð Þ are fuzzy sets in the universal

set of positive numbers R+.
Let’s consider in detail abovementioned disturbed factors for marine environment

according to

c� ij
¼ c�

T

ij
� c�

L

ij
� c�

S

ij
� c�

E

ij
:

The distance between i-th deport and j-th port defines the value of transport penalty
c�
T

ij
. It is most uncertain component, which depends on, first of all, weather conditions

in served marine region:

(a) when weather is fine the captain of the supplied ship can choose the regular path
for his ship from i-th deport to j-th port and this regular path, as usual (if no
obstacles exist), has approximately straightforward character or, in the other
words, it should be, desirably, a shortest way;

(b) when the weather has a tendency to change into storm conditions according to
current meteorological prognosis the captain can choose another, from the
viewpoint of ship’s safety, path which as usual is more longer than regular path.
Captain should form this new ship’s path taking into account the distance between
ship and bay (or various bays, which lie in the nearest distances from the ship’s
path). Sometimes the captain makes a decision to interrupt ship movement from
the reason of ship’s safety and to stay at the nearest bay for uncertain period which
depends on improving of weather conditions.
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In some cases the captain changes course of ship according to appearances of some
temporary restrictive zones or dynamical obstacles etc. Finally, any type of time delay
influences to the increasing of total distance of ship’s path and fuel consumption and
leads to increasing of penalty component c�

T
ij
. The power (force) and directions of wind

and sea current have as usual changeable character that also influences to penalty
component c�

T
ij
, in some cases, by increasing or decreasing of c�

T
ij
according to value

c�
T
ij
with grade of membership function l c�

T

ij

ĉTij
� 	

¼ 1.

The uncertainness of unloading penalty c�
L
ij
depends on quantity of receiving cargo

at the j-th port and this parameter in STP is uncertain and “a priori” identified as
approximately in terms “about ĉLij ” or “average ĉLij ” for real situations.

Penalty components c�
S

ij
and c�

E

ij
depend on the j-th port rules as well as the weather

conditions also. It is often necessary to provide the certain requirements to ensure limits
of ship’s hill, trim and stress for hull e.g. [7, 8] to install a special type of floating
protection around sea’s unloaded area for restriction of fuel dissemination at the sear
surface if any damages may happen in unloading operations. Sometimes (and it
depends on cargo type) penalty c�

S

ij
includes the expenses for fire-ship providing a

safety of unloading operations during unloading time.
Analysing all coefficients c� ij

, we can form matrix C� ( c� ij
6¼ c� ij

; i ¼ 1; 2; . . .m;

j ¼ 1; 2; . . .n) as asymmetrical fuzzy matrix of penalties c� ij
for solving of STP

C� ¼ c� ij

����
����
ðm�nÞ

¼

c�
11

c�
12

. . . c�
1nc�

21
c�
22

. . . c�
2n: : . . . :

c�
m1

c�
m2

. . . c�
mn

���������

���������
: ð82Þ

It should be mentioned that in some real situations cargo demands
Pn
j¼1

x�
ij
of several

ports (destinations) are uncertain values (preplanned demand is a such uncertain type as
“about VALUE”, “Approximately VALUE”, “between VALUE_1 and VALUE_2”)
and respectively the value of total quantity of supplied cargo for each deport is also
uncertain.

In such situation the goal function (81) can be transformed to such fuzzy
function as

Min Z� c; xð Þ ¼
Xm
i¼1

Xn
j¼1

c�
ij
x�
ij
; ð83Þ

where both components c� ij
; x� ij

are corresponding fuzzy sets.
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Solving optimization problem (83) with corresponding restrictions for real trans-
portation task it is necessary multi-timely to calculate the results

c� ij
�ð Þ x� ij

of multiplication operation for different pairs of fuzzy sets c� ij
; x� ij

i ¼ 1. . .m;ð
j ¼ 1. . .nÞ.

In the cases of decision making process when the fuzzy sets c�
ij
; x�

ij
are represented

as triangular fuzzy numbers it is very efficient to use developed analytic models
lC�

xð Þ ¼ l A� ð�Þ B�
xð Þ in Sects. 2, 4 and 5 of this chapter.

6.2 Decision Making in Agriculture Sector

In some cases it is necessary to find best alternative from (79) based on the prognosis of
total profit after agriculture season using multiplication operation

C� i
¼ A� i

ð�ÞB� i
; ð84Þ

where A� i
is triangular fuzzy number which corresponds to future output value of i-th

agriculture product, ði ¼ 1. . .LÞ; B�
i
is triangular fuzzy number which corresponds to

future price value for a unit of i-th agriculture product, ði ¼ 1. . .LÞ; C�
i
is fuzzy number

which corresponds to future profit value at the end of agriculture season, in particular,
after realization of i-th agriculture product, ði ¼ 1. . .LÞ.

7 Conclusions

The usage of the developed analytical models (11), (69)–(71), (73), (78) has significant
advantage for accuracy of calculations, time of modeling and program implementation
of the formed models in comparison with step by step models of multiplication
operation of triangular fuzzy numbers based on the algorithms of sorting and max-min
convolutions [4, 12]. Suggested approach can be used for different types of MFs and
fuzzy models, in particular, for triangular MFs, bell-shape MFs, trapezoidal MFs, etc.
Modeling results for multiplication of different fuzzy numbers with triangular and bell-
shape membership functions confirm the efficiency of proposed universal analytic
models for different applications, in particular, for soft computing based on reconfig-
urable technology [13], risk analysis in the test diagnosis of the digital components for
systems of critical applications [1], and solving real life decision support problems
[2, 3, 6, 7, 16], partly presented in Sect. 6 of the chapter.
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