
Efficient Task Decomposition in Crowdsourcing

Huan Jiang and Shigeo Matsubara

Department of Social Informatics, Kyoto University, Kyoto 606-8501, Japan
jiang@ai.soc.i.kyoto-u.ac.jp, matsubara@i.kyoto-u.ac.jp

Abstract. In order to facilitate crowdsourcing-based task solving, com-
plex tasks are decomposed into smaller subtasks that can be executed ei-
ther sequentially or in parallel by workers. These two task decompositions
attract a plenty of empirical explorations in crowdsourcing. However the
absence of formal study makes difficulty in providing task requesters with
explicit guidelines on task decomposition. In this paper, we formally
present and analyze those two task decompositions as vertical and horizon-
tal task decomposition models. Our focus is on addressing the efficiency
(i.e., the quality of the task’s solution) of task decomposition when the
self-interested workers are paid in two different ways — equally paid and
paid based on their contributions. By combining the theoretical analyses
on worker’s behavior and simulation-based exploration on the efficiency of
task decomposition, our study 1) shows the superiority of vertical task de-
composition over horizontal task decomposition in improving the quality
of the task’s solution; 2) gives explicit instructions on strategies for opti-
mal vertical task decomposition under both revenue sharing schemes to
maximize the quality of the task’s solution.

Keywords: Task decomposition, task dependence, task difficulty, solu-
tion quality, efficient crowdsourcing.

1 Introduction

Crowdsourcing is admired as one of the most lucrative paradigm of leveraging
collective intelligence to carry out a wide variety of tasks with various complexity.
This very success is dependent on the potential for decomposing the complex
tasks into smaller pieces of subtasks, such that each subtasks becomes low in
complexity, requires little cognitive effort to be completed by an individual.

After decomposing a complex task into multiple small subtasks, a collective
of crowds (or workers) execute the subtasks either independently or dependently.
When the subtasks are structured independently, multiple workers are recruited
to collaborate in parallel, and subtask’s quality depends only upon the effort of
the worker who performs it. By contrast, when there are dependencies among
the subtasks, workers are organized to collaborate sequentially, and subtask’s
quality depends on efforts of multiple workers who jointly produce output. In
the sequential process, subtask dependence mainly characterized in the striking
feature that one worker’s output is used as the starting point for the following
worker, which makes the assumption that following worker can do better based

H.K. Dam et al. (Eds.): PRIMA 2014, LNAI 8861, pp. 65–73, 2014.
c© Springer International Publishing Switzerland 2014



66 H. Jiang and S. Matsubara

on quality solution provided by previous worker hold (see [4]). CrowdForge [1]
and Soylent [2] delineate case studies on article writing and word processing
respectively with sequential process, and they both come up with high quality
final outcomes. It is worth noting that, TurKit [3] presents iterative workflow for
complex tasks solving. However, such iterative workflows without task decom-
position are beyond the scope of this paper.

We define two task decompositions as horizontal task decomposition for in-
dependent subtasks, and vertical task decomposition for dependent subtasks. To
illustrate the concepts, we refer to the following crowdsourcing-based proofread-
ing task as example, wherein an article containing three paragraphs requires
spelling, style and grammar error correction. In this context, the article could
be horizontally decomposed into three pieces of subtasks that each has one para-
graph and be performed by one worker independently. Meanwhile, the original
article could also be vertically decomposed into three sequential subtasks, as
“Find-Fix-Verify” proposed by Bernstein et al. [2].

Our research focuses on the complex tasks decomposition in crowdsourcing,
wherein the complex tasks can be decomposed and executed in both independent
and dependent way. Of particular interest are the work that aim at analyzing
workers’ strategic behaviors, comparing the efficiency of two task decomposi-
tions, in terms of final quality, and finally generating explicit instructions on
strategies for optimal task decomposition. Different from the works that provide
efficient solutions for applications with independent subtasks (e.g., [6]), Long et
al. [5] first investigates the interdependent subtask allocation in crowdsourcing
systems, which has the most relevant background to our research.

We summarize our main contribution in the following. In Section 2, we for-
mally construct the models for both vertical and horizontal task decomposi-
tions. The dependence among subtasks is formalized as the degree to which a
subtask’s difficulty depends on the qualities of the other subtasks. In Section
3, we rigorously analyze the strategic behaviors of the workers, and find that
contribution-based sharing scheme provides more incentives for workers to exert
higher efforts on difficult subtasks. In Section 4, we conduct simulations to an-
alyze and compare the efficiency of two task decomposition. We conclude that
in general, vertical task decomposition strategy outperforms the horizontal one
in improving the quality of the final solution, and give explicit instructions the
optimal strategy (i.e., arrangement of subtasks with different difficulties for final
quality maximization) under vertical task decomposition situation from the task
requester’s point of view.

2 The Model

In this section we consider the complex task, e.g., proofreading, that can be
both vertically and horizontally decomposed into N (N > 1) subtasks. In both
situations, N workers contribute their efforts, such as time and resources, to N
subtasks respectively. The amount of effort exerted by worker i to subtask i is
characterized by ei, which is normalized to scale [0, 1].



Efficient Task Decomposition in Crowdsourcing 67

2.1 Vertical Task Decomposition

Find-Fix-Verify: The output of Find stage is the patches that may have spelling
and grammar errors and need corrections or edits. The quality of patches could
be evaluated by how well they cover the true positions [5]. The output of Fix
stage is the corrections of the errors in those patches. The quality of fix task
could be evaluated by the number and the average validity of the proposed
corrections. Last, in Verify stage, workers accept or reject the corrections and
edit to improves the proofreading result. The quality of the final solution can be
viewed as the cumulative qualities obtained from all subtasks.

Definition 1 (Final quality). The quality of the final solution (Q) to the com-
plex task is the cumulative qualities of all the N decomposed subtasks, i.e.,

Q(e) =
∑N

i=1
qivertical (1)

where e = (e1, · · · , eN ), and qivertical is the quality function of subtask i.

Since each subtask takes the output from the previous subtask as input, the
quality of each subtask is also positively related to the quality of the previous
subtask. Formally, the subtask quality function is governed by the following form.

Assumption 1. The quality of subtask i’s solution depends not only on the
effort exerted by worker i, but also on the quality of previous subtask’s solution,
i.e.,

qivertical = f i(qi−1
vertical, ei) (2)

where f i increases with ei at a decreasing rate, i.e.,

∂f i/∂ei > 0 and ∂2f i/∂ei∂ei < 0 (3)

Remark 1. The recursive definition of f i directly implies that the quality of
subtask i’s solution depends also on the efforts from all the prior workers. Hence,
we can rewrite Eq. (2) equivalently as qivertical = f i(e1, · · · , ei), and any increase
in the efforts from the previous workers also leads to an improvement on the
quality of subtask i, i.e., ∀k ∈ {1, · · · , i}, ∂f i/∂ek > 0. Last, note that, for
the first subtask (i = 1), the quality function is simplified as q1vertical = f1(e1).

Before we illustrate how does qivertical depend on qi−1
vertical, we first introduce

the concept of subtask difficulty. Take Find stage for example, articles that con-
sist more frequent in long and compound sentences, indicate more grammatical
errors, and thus require considerable effort for locating the true positions. Thus,
low difficulty indicates high marginal contribution based on the same level of
effort, which is formalized as follows.

Definition 2 (Subtask difficulty). We endow subtask i with weight ωi ∈ (0, 1)
as its difficulty. Subtask i is said to be more difficult than subtask j (i.e., ωi >
ωj), iff for any effort level l

f i
ei(ei, e−i = eN−1) | ei=l < f j

ej (ej , e−j = eN−1) | ej=l (4)

whereeN−1 is the effort levels of all otherN−1workers.Furthermore,
∑N

i=1 ωi = 1.



68 H. Jiang and S. Matsubara

Now, we continue with the Find-Fix-Verify example to illustrate how does
qi−1
vertical affect qivertical by altering the difficulty of subtask i. As Find stage,
Fix stage also has its own intrinsic difficulty. Nevertheless, its difficulty can be
altered by the quality of the Find task. For example, high quality of Find task
due to phrase-level error location reduces the difficulty of Fix task, however, low
quality due to the noisy patches can make Fix task more difficult.

Assumption 2 (Quality dependency). The difficulty of subtask i decreases
as the efforts on previous subtasks increase, i.e., ∀k ≤ i− 1, if ek < e′k, then

f i
ei(e−k, ek) < f i

ei(e−k, e
′
k) (5)

Remark 2. It is worth noting that an increase in the effort previous subtasks not
only increases the quality of subtask i in quantity (Eq. (3)), but also, according
to Eq. (5), enables greater marginal increase on subtask i’s quality.

2.2 Horizontal Task Decomposition

In horizontal task decomposition, the complex task is decomposed intoN subtasks
with no interdependencies, which implies ∂2f i/∂ej∂ei=0 (i �= j). N workers de-
vote efforts independently to their own subtasks for individual utility maximiza-
tion. The quality function of the final solution is defined as Eq. (1), i.e., Q(e) =∑N

i=1 q
i
horizontal, where q

i
horizontal is the quality function of subtask i.

In contrast to vertical task decomposition, where each worker concentrates
on a single stage of the workflow (take proofreading for example, Find, Fix or
Verify), in horizontal task decomposition, each worker gives considerations to
all stages. This makes the worker have to divide his effort among all stages.
We assume that the effort ei, exerted by worker i to subtask i, can be viewed as
being distributed amongN stages as in the vertical task decomposition situation,
proportionally to the difficulties of the stages. This assumption simplifies the
results without sacrificing much in terms of generality.

Assumption 3 (Horizontal subtask quality function). The quality of the
solution to subtask i only depends on the effort exerted by worker i, which is dis-
tributed among N stages proportionally to their difficulties. Hence, qihorizontal =∑N

k=1 f
k(ω1ei, · · · , ωkei).

2.3 Revenue Sharing Schemes

Definition 3 (Group-based revenue sharing). Under the group-based rev-
enue sharing scheme, each worker receives an equal share of the total revenue
given by the task requester, i.e., Ri = Q(ei)/N . Therefore, worker i’s utility is
π(ei) = Q(e)/N − c(ei).

Definition 4 (Contribution-Based revenue sharing). Under the contribu-
tion-based revenue sharing scheme, each worker receives reward determined by
his/her marginal contribution to the final task solution, i.e., Ri(ei) = Qei(ei) ·ei.
Thus, worker i’s utility is π(ei) = Qei(ei) · ei − c(ei).



Efficient Task Decomposition in Crowdsourcing 69

Assumption 4 (Cost function). In order to execute subtask i, worker i exerts
an effort level ei with a cost c(ei). The cost increases with the effort, and it

increases at an increasing rate, i.e., cei =
dc
dei

> 0 and ceiei =
d2c
de2i

> 0.

3 Strategic Behaviors

Proposition 1. Under both vertical and horizontal task decomposition strate-
gies, for individual utility maximization, 1) when group-based sharing scheme is
applied, workers devote higher efforts to easy subtasks than difficult subtasks. On
the contrary, 2) under contribution-based sharing scheme, workers devote efforts
to easy subtasks no less than difficult subtasks.

According to Proposition 1, although contribution-based revenue sharing may
provide workers with more incentives to perform difficult subtasks than group-
based revenue sharing, they both indicate the fact that workers are more inclined
to perform easy subtasks. This is consistent with findings in worker behavior
studies in crowdsourcing, and highlights the need for task decomposition design.

4 Task Decomposition Strategy Analysis and Comparison

We construct simulation aiming at explicitly evaluating and comparing the ef-
ficiencies, in terms of the final quality (Eq. (1)), of two task decomposition
strategies. It is worth noting that, besides the 2-subtask and 3-subtask situa-
tion presented in the following, we also explored the situations for N = 4,· · · , 9,
which not shown here due to limited space but generate the similar results. It is
worth noting that by considering the existing applications such as Soylent, N=9
for the vertical decomposition seems not small.

Subtask Quality Functions. We simulate the task solving process under the
assumption of subtask quality functions in the Cobb-Douglas form. We assume
there are N workers for N subtasks, and for subtask i, the quality functions
under vertical and horizontal task decompositions are respectively defined as

qivertical(e1, · · · , ei)=
i∏

k=1

eωk

k and qihorizontal(ei)=

N∑

k=1

k∏

r=1

(ωrei)
ωr
N

where ωi∈(0, 1) is the difficulty of subtask i, and
∑N

i=1 ωi=1.

Cost Functions. We specify the cost function for worker i as c(ei) = e2i .

4.1 Efficiency Comparison of Two Task Decompositions

Two-subtask situation is depicted in Fig. 1 to illustrate the efficiency difference
between vertical and horizontal task decomposition strategies. We endow each
of two subtasks with a weight (ω1, ω2 ∈ (0, 1)), which is restricted to one decimal



70 H. Jiang and S. Matsubara

2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Weights

F
in

a
l Q

u
a
lit

y 
o
f 

C
o
n
tr

ib
u
tio

n
−

b
a
se

d
 R

e
ve

n
u
e
 S

h
a
ri
n
g

Vertical Task Decomposition

Horizontal Task Decomposition

2 4 6 8
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Weights

F
in

a
l Q

u
a
lit

y 
o
f 

G
ro

u
p
−

b
a
se

d
 R

e
ve

n
u
e
 S

h
a
ri
n
g

Vertical Task Decomposition

Horizontal Task Decomposition

(b) Final quality comparison 
under group−based revenue sharing. 

(a) Final quality comparison 
under contribution−based revenue sharing. 

X-axis ω1 ω2

1 1 9
2 2 8
3 3 7
4 4 6
5 5 5
6 6 4
7 7 3
8 8 2
9 9 1

Note: weight = ωi/10

Fig. 1. Comparison of vertical and horizontal task decompositions. Generally, vertical
decomposition outperforms horizontal decomposition in terms of final quality.

place. Then, we exhaustively examine the final quality under all the combinations
of two weights, as given in the table in Fig. 1. As can be seen in Fig. 1 (a) and
(b), vertical task decomposition strategy is superior to the horizontal one, under
both group-based and contribution-based revenue sharing schemes.

4.2 Vertical Task Decomposition Strategy

As the qualities of the prior subtasks improve, the positive support they provide
become strong, which makes the subsequent subtasks more dependent on the
prior ones. Further, in the extreme situation where all subtasks have the highest
qualities with all workers exert their highest efforts (e=1), the dependence among
subtasks become strongest, which can be viewed as the intrinsic dependence
among the sequential subtasks.

Definition 5. Given a succession of N subtasks, the sequential dependence be-
tween subtasks i− 1 and i is defined as

∂2qi/∂ei−1∂ei|e1=···=ei−1=ei=1 = ωi−1ωi, (6)

and the total dependence among all subtask is
∑N

i=2 d(ei−1, ei).

As we do for the two-subtask situation, we respectively endow 3 subtasks
with weights ω1, ω2, ω3, which are restricted to one decimal place as well, and
then exhaustively examine all combinations of the weights, i.e., a permutation
of {0.1,0.2,· · · ,0.9} with a restriction that the sum of three weights equals 1. As
shown in Table 1, for 3-subtask situation, there are a total of 36 combinations,
and they are sorted in a lexicographic manner, i.e., (ω1, ω2, ω3) occurs before
(ω′

1, ω
′
2, ω

′
3) iff ω1<ω′

1, or ω1=ω′
1 and ω2<ω′

2, or ω1=ω′
1 and ω2=ω′

2 and ω3<ω′
3.

Lessons Learned on Group-Based Revenue Sharing Scheme. In Fig. 2,
we explore 3-subtask situation under group-based revenue sharing scheme.

Table 1. Weight combinations for 3-subtask situation

(a) (b)

X-axis 1 2 · · · 8 9 10 · · · 15 16 · · · 21 22 23 1 · · · 3 4 5 6 7 8 · · · 10 11 12 13

ω1 1 1 · · · 1 2 2 · · · 2 3 · · · 3 4 4 4 · · · 4 5 5 5 5 6 · · · 6 7 7 8
ω2 1 2 · · · 8 1 2 · · · 7 1 · · · 6 1 5 2 · · · 4 1 2 3 4 1 · · · 3 1 2 1
ω3 8 7 · · · 1 7 6 · · · 1 6 · · · 1 5 1 4 · · · 2 4 3 2 1 3 · · · 1 2 1 1

Note: weight = ωi/10



Efficient Task Decomposition in Crowdsourcing 71

1 8 9 1516 21 2322

0.1

0.2

0.3

0.4

0.5

Weights

Final Quality

Task Dependence

1 3 4 7 8 10 11 12 13

0.1

0.2

0.3

0.4

0.5

0.6

Weights

Final Quality

Task Dependence

(b) When the first subtask is the most difficult subtask.(a) When the first subtask is not the most difficult subtask.

Fig. 2. Efficiency estimation of vertical task decomposition strategy under group-based
revenue sharing scheme. In general, series of subtasks begin with high difficulties gen-
erate high efficiency with respect to the final quality.

Lesson 1. The highest final quality brought by the series of subtasks begin with
high difficulty is superior to that brought by the series of subtasks begin with low
difficulty under group-based revenue sharing scheme. (See Fig. 2 (a).)

Lesson 2. When the first subtask is the most difficult subtask, for the series of
subtasks begin with the same difficulty, the highest task dependence given by the
convex weights (i.e., ω1≥ω2 and ω2≤ω3) leads to the highest final quality.

As can be observed in Fig. 2 (b), in four series of subtasks begin with weight
0.5, there are two with convex weights (4.(0.5,0.1,0.4) and 5.(0.5,0.2,0.3), with
task dependence 0.09 and 0.16), and the higher task dependence (x-axis value
5), gives us the highest final quality among these four series of subtasks.

Example 2. Suppose the task requester has to choose among three very similar
task decompositions, as (0.3,0.4,0,3), (0.4,0.3,0.3) and (0.4,0.4,0.2). According to
Lesson 1, he would prefer the series of subtasks start with a more difficult subtask
and eliminate option (0.3,0.4,0,3). Furthermore, according to Lesson 2, convex
weights (0.4,0.3,0.3) is the decomposition, among all series of subtasks starts
with difficulty 0.4, that leads to the highest final quality. So the task requester
can construct his preference as (0.4,0.3,0.3)�(0.4,0.4,0.2)�(0.3,0.4,0,3).

Lessons Learned on Contribution-Based Revenue Sharing Scheme.
We explore the 3-subtask situation under contribution-based sharing scheme in
Fig. 3.

Lesson 3. When the first subtask is not the most difficult subtask, given a seg-
ment of weights on the first k (k < N) subtasks, the highest weight of all the
possible weights on the (k+1)−th subtask leads to the highest final quality.

As in Fig. 3 (a), given the weight on the first subtask equaling 0.1 (X axis
scale is 1 to 8), all possible weights on the second subtask are 0.2, 0.3, · · · 0.8,
then the highest weight on the second subtask which equals 0.8 gives us the
highest final quality among all the series of subtasks begin with weight 0.1.

Lesson 4. When the first subtask is the most difficult subtask, 1) the more dif-
ficult the first subtask is, the more efficient is the contribution-based revenue
sharing scheme; 2) for the series of subtasks begin with the same difficulty, high-
est task dependence leads to the highest final quality. (See Fig. 3 (b).)



72 H. Jiang and S. Matsubara

1 8 9 1516 212223

0.1

0.2

0.3

0.4

0.5

0.6

Weights

Final Quality

Task Dependence

1 3 4 7 8 10 11 12 13
0

0.2

0.4

0.6

0.8

Weights

Final Quality

Task Dependence

(a) When the first subtask is not the most difficult subtask. (b) When the first subtask is the most difficult subtask.

Fig. 3. Efficiency estimation of vertical task decomposition strategy under contribu-
tion-based revenue sharing scheme

From the incentive viewpoint, it is true that decomposing a task into subtasks
is worse than assigning the whole task to one worker. However, the latter makes
difficult to find a worker who is willing to choose this task due to its limited
resources. If we incorporate worker availability into discussions, Lesson 4 1) does
not necessarily reduce the demand of crowdsourcing.

Example 3. Suppose the task requester is restricted to start with the subtask
of a given difficulty. When the first subtask is not the most difficult subtask, (e.g.,
with difficulty 0.3), according to Lesson 3, the optimal decomposition is the one
whose second subtask’s difficulty is the highest among all possible difficulties (in
this case, 0.1,· · · , 0.6), so the optimal decomposition is (0.3,0.6,0.1). When the
first subtask is the most difficult subtask, (e.g., with difficulty 0.5), according to
Lesson 4, the optimal decomposition is (0.5,0.4,0.1) with the highest dependence
0.24 among all series of subtasks start with difficulty 0.5.

5 Conclusion

In this paper we have formally presented and analyzed vertical and horizontal
task decomposition models which respectively specify the relationship between
subtask quality and the worker’s effort level in the presence of positive and none
dependence among subtasks. We conclude that in general, vertical task decom-
position strategy outperforms the horizontal one in improving the quality of the
final solution, and furthermore give explicit instructions the optimal strategy
under vertical task decomposition from the task requester’s point of view.

Acknowledgments. The work is partially supported by a Grant-in-Aid for Sci-
entific Research (S) (24220002, 2012-2016) from Japan Society for the Promotion
of Science (JSPS).



Efficient Task Decomposition in Crowdsourcing 73

References

1. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: Crowdforge: crowdsourcing com-
plex work. In: Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, pp. 16–19 (2011)

2. Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger,
D.R., Crowell, D., Panovich, K.: Soylent: a word processor with a crowd inside. In:
Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
Technology, pp. 313–322 (2010)

3. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Exploring iterative and paral-
lel human computation processes. In: Proceedings of the ACM SIGKDD Workshop
on Human Computation, p. 25 (2010)

4. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows
with turkomatic. In: Proceedings of the ACM 2012 Conference on Computer Sup-
ported Cooperative Work, pp. 1003–1012 (2012)

5. Tran-Thanh, L., Huynh, T.D., Rosenfeld, A., Ramchurn, S.D., Jennings, N.R.:
Budgetfix: budget limited crowdsourcing for interdependent task allocation with
quality guarantees. In: AAMAS, pp. 477–484 (2014)

6. Tran-Thanh, L., Venanzi, M., Rogers, A., Jennings, N.R.: Efficient budget alloca-
tion with accuracy guarantees for crowdsourcing classification tasks. In: AAMAS,
pp. 901–908 (2013)


	Efficient Task Decomposition in Crowdsourcing
	1
Introduction
	2
The Model
	2.1
Vertical Task Decomposition
	2.2
Horizontal Task Decomposition
	2.3
Revenue Sharing Schemes

	3 Strategic Behaviors

	4
Task Decomposition Strategy Analysis and Comparison
	4.1
Efficiency Comparison of Two Task Decompositions
	4.2
Vertical Task Decomposition Strategy

	5
Conclusion




