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Abstract. Many real world optimization problems involve multiple cri-
teria that should be considered separately and optimized simultaneously.
A Multi-Objective Distributed Constraint Optimization Problem (MO-
DCOP) is the extension of a mono-objective Distributed Constraint Op-
timization Problem (DCOP). A DCOP is a fundamental problem that
can formalize various applications related to multi-agent cooperation.
Solving an MO-DCOP is to find the Pareto front which is a set of cost
vectors obtained by Pareto optimal solutions. In MO-DCOPs, even if a
constraint graph has the simplest tree structure, the size of the Pareto
front (the number of Pareto optimal solutions) is often exponential in
the number of agents. Since finding all Pareto optimal solutions becomes
easily intractable, it is important to consider fast but approximate algo-
rithms. Various sophisticated algorithms have been developed for solving
a DCOP and an MO-COP. However, there exists few works on an MO-
DCOP. The Bounded Multi-Objective Max-Sum (B-MOMS) algorithm
is the first and only existing approximate MO-DCOP algorithm. In this
paper, we develop a novel approximate MO-DCOP algorithm called Dis-
tributed Iterated Pareto Local Search (DIPLS) and empirically show
that DIPLS outperforms the state-of-the-art B-MOMS algorithm.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) [10, 16] is a funda-
mental problem that can formalize various applications related to multi-agent
cooperation. A DCOP consists of a set of agents, each of which needs to decide
the value assignment of its variables so that the sum of the resulting costs is min-
imized. Many application problems in multi-agent systems can be formalized as
DCOPs, in particular, distributed resource allocation problems including meet-
ing scheduling [6], sensor networks [5], and synchronization of traffic lights [4].

Many real world optimization problems involve multiple criteria that should
be considered separately and optimized simultaneously. A Multi-Objective Dis-
tributed Constraint Optimization Problem (MO-DCOP) [1, 9, 12] is the exten-
sion of a mono-objective DCOP and a Multi-Objective Constraint Optimization
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Problem (MO-COP) [7, 18, 19]. In MO-DCOPs, since trade-offs exist among ob-
jectives, there does not generally exist an ideal assignment, which minimizes all
objectives simultaneously. Therefore, the “optimal” solution of an MO-DCOP
is characterized by using the concept of Pareto optimality. An assignment is a
Pareto optimal solution if there does not exist another assignment that weakly
improves all of the objectives. Solving an MO-DCOP is to find the Pareto front
which is a set of cost vectors obtained by all Pareto optimal solutions. Compared
to DCOPs and MO-COPs, there exists few works on MO-DCOPs. The Bounded
Multi-Objective Max-Sum (B-MOMS) algorithm [1] is the first and only existing
approximate MO-DCOP algorithm which is an extension of the bounded max-
sum algorithm [17] for solving a mono-objective DCOP. The B-MOMS works
on a factor graph. It removes less important edges from a factor graph to make
it cycle-free and obtains optimal solutions for the remaining cycle-free graph. A
distributed search method with bounded cost vectors [9] is a complete algorithm
which can guarantee to find all Pareto optimal solutions. This algorithm is a gen-
eralized ADOPT algorithm [10] that performs tree-search and partial dynamic
programming. The Multi-Objective Lp-norm based Distributed Pseudo-tree Op-
timization Procedure (MO-DPOPLp) [12] is an incomplete algorithm which finds
a subset of the Pareto front. The MO-DPOPLp uses a widely used scalarization
method and can guarantee to find a set of Pareto optimal solutions but not all.

Since finding all Pareto optimal solutions of MO-DCOPs becomes easily in-
tractable for large-scale problem instances, it is important to consider fast but
approximate algorithms. In MO-DCOPs, even if a constraint graph has the sim-
plest tree structure, the number of all Pareto optimal solutions is often expo-
nential (i.e. all assignments are Pareto optimal solutions in the worst case).

In this paper, we develop a novel approximate algorithm called Distributed
Iterated Pareto Local Search (DIPLS) algorithm for solving an MO-DCOP. This
algorithm is the extension of the well-known Pareto Local Search (PLS) [14],
and we use it iteratively to generate an approximation of the Pareto front of
an MO-DCOP. The PLS is the generalization of the hill-climbing method for
optimization problems with multiple criteria. The DIPLS is the extension of this
method for MO-DCOPs. In the experiments, we evaluate the performance of
DIPLS with different problem settings and show that the local search technique
is suitable for solving an MO-DCOP. We also compare DIPLS with the state-
of-the-art approximate MO-DCOP algorithm B-MOMS, and empirically show
that our proposed algorithm DIPLS outperforms the state-of-the-art B-MOMS.

About application domains of MO-DCOPs, we believe that sensor networks
would be a promising area [11]. This problem is a kind of resource allocation
problems which is a representative application problem for DCOPs. For example,
consider a sensor network in a territory, where each sensor can sense a certain
area in this territory. When we consider this problem with multiple criteria,
e.g., data management, quality and quantity of observation data, and electrical
consumption, this problem can be formalized as an MO-DCOP. Furthermore,
when we consider a scheduling problem with several criteria, e.g., working hours,
salary, and profit, it can be represented as an MO-DCOP. The other application
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s1 s2 cost s2 s3 cost s1 s3 cost

a a 5 a a 0 a a 1
a b 7 a b 2 a b 1
b a 10 b a 0 b a 0
b b 12 b b 2 b b 3

Fig. 1. Example of mono-objective DCOP

problem for MO-DCOPs is wireless network of unmanned aerial vehicles [20].
Moreover, we believe that many DCOP application problems (concerned about
“privacy”) can be represented as MO-DCOPs by considering additional criteria.

The rest of the paper is organized as follows. In the next section, the formal-
izations of a DCOP and an MO-DCOP are introduced. The following section
introduces a new approximate algorithm for MO-DCOPs. Afterwards, we com-
pare our proposed algorithm with the state-of-the-art algorithm for MO-DCOPs.
Just before the concluding section, some related works are discussed.

2 Preliminaries

In this section, we briefly describe the formalizations of Distributed Constraint
Optimization Problems (DCOPs) and Multi-Objective Distributed Constraint
Optimization Problems (MO-DCOPs) which is the extension of a DCOP.

2.1 Distributed Constraint Optimization Problem

A Distributed Constraint Optimization Problem (DCOP) [10, 16] is a funda-
mental problem that can formalize various applications related to multi-agent
cooperation. In this paper, we assume all cost values are non-negative. Without
loss of generality, we make the following assumptions for simplicity. Relaxing
these assumptions to general cases is relatively straightforward:

– Each agent has exactly one variable.
– All constraints are binary.
– Each agent knows all constraints related to its variable.

A DCOP consists of a set of agents, each of which needs to decide the value
assignment of its variables so that the sum of the resulting costs is minimized.
This problem is defined by a set of agents S, a set of variables X , a set of
constraint relations C, and a set of cost functions F . An agent i has its own
variable xi. A variable xi takes its value from a finite, discrete domain Di. A
constraint relation (i, j) means there exists a constraint relation between xi and
xj . For xi and xj , which have a constraint relation, the cost for an assignment
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Table 1. Example of bi-objective DCOP

s1 s2 cost vector s2 s3 cost vector s1 s3 cost vector

a a (5,2) a a (0,1) a a (1,0)
a b (7,1) a b (2,1) a b (1,0)
b a (10,3) b a (0,2) b a (0,1)
b b (12,0) b b (2,0) b b (3,2)

{(xi, di), (xj , dj)} is defined by a cost function fi,j(di, dj) : Di ×Dj → R. For a
value assignment to all variables A, let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj,dj)}⊆A

fi,j(di, dj), (1)

where di ∈ Di and dj ∈ Dj. Then, an optimal assignment A∗ is given as
argminA R(A), i.e., A∗ is an assignment that minimizes the sum of the value
of all cost functions. A DCOP can be represented using a constraint graph, in
which a node corresponds to an agent and an edge represents a constraint.

Definition 1 (Total Ordering among Agents). A total ordering among
agents is a permutation of a sequence of agents 〈s1, s2, ..., sn〉. We say agent
si+1 has higher priority than si (1 ≤ i ≤ n− 1).

Example 1 (DCOP). Figure 1 shows a DCOP with three agents s1, s2 and s3.
Each agent/variable takes its value assignment from a discrete domain {a, b}.
The table shows three cost tables among three agents. The optimal solution of
this problem is {(s1, a), (s2, a), (s3, a)}, and the optimal value is six.

2.2 Multi-objective Distributed Constraint Optimization Problem

A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP)
[1, 9, 12] is the extension of a mono-objective DCOP. An MO-DCOP is de-
fined with a set of agents S, a set of variables X , multi-objective constraints
C = {C1, . . . , Cm}, i.e., a set of sets of constraint relations, and multi-objective
functions O = {O1, . . . , Om}, i.e., a set of sets of objective functions. For an ob-
jective l (1 ≤ l ≤ m), a cost function f l

i,j : Di×Dj → R, and a value assignment
to all variables A, let us denote

Rl(A) =
∑

(i,j)∈Cl,{(xi,di),(xj,dj)}⊆A

f l
i,j(di, dj), (2)

where di ∈ Di and dj ∈ Dj. Then, the sum of the values of all cost functions for
m objectives is defined by a cost vector, denoted R(A) = (R1(A), . . . , Rm(A)).
Finding an assignment that minimizes all objective functions simultaneously is
ideal. However, in general, since trade-offs exist among objectives, there does not
exist such an ideal assignment. Therefore, the optimal solution of an MO-DCOP
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is characterized using the concept of Pareto optimality. Since this possible trade-
off between objectives, the size of the Pareto front is exponential in the number
of variables, i.e., every possible assignment can be Pareto optimal solution in the
worst case. An MO-DCOP can be also represented using a constraint graph.

Definition 2 (Dominance). For an MO-DCOP and two cost vectors R(A)
and R(A′), we call that R(A) dominates R(A′), denoted by R(A) ≺ R(A′), iff
R(A) is partially less than R(A′), i.e., it holds

– Rl(A) ≤ Rl(A′) for all objectives l, and
– there exists at least one objective l′, such that Rl′(A) < Rl′(A′).

Definition 3 (Pareto Optimal Solution). For an MO-DCOP, an assign-
ment A is said to be the Pareto optimal solution, iff there does not exist another
assignment A′, such that R(A′) ≺ R(A).

Definition 4 (Pareto Front). For an MO-DCOP, a set of cost vectors ob-
tained by Pareto optimal solutions is said to be the Pareto front. Solving an
MO-DCOP is to find the Pareto front.

Example 2 (MO-DCOP). Table 1 shows a bi-objective DCOP, which is an exten-
sion of a DCOP in Figsure 1. Each agent takes its value from a discrete domain
{a, b}. The Pareto optimal solutions of this problem are {{(s1, a), (s2, a), (s3, a)}
and {(s1, a), (s2, b), (s3, b)}}, and the Pareto front is {(6, 3), (10, 1)}.

2.3 Local Search

Local search algorithms are one of the most successful method for solving a
wide variety of single objective optimization problems. However, it is really easy
to adapt this notion to the multi-objective optimization problems. As in the
first case, we use the same notion of neighborhood. But we need to redefine the
criterion of acceptance for one solution. For the single-objective case, a solution
is usually accepted if it is better than the current one, it is important to take
into account several objectives. A simple approach may be to use the notion of
dominance defined earlier. A solution is now accepted if and only if it is non
dominated by another already discovered. All the solutions that are dominated
by this new one are then deleted from the set of current solutions. Finally, the
obtained set of non-dominated solutions is an approximation of the Pareto Front.

3 Distributed Iterated Pareto Local Search Algorithm

In this section, we develop a novel approximate algorithm called Distributed It-
erated Pareto Local Search (DIPLS) algorithm for solving an MO-DCOP. This
algorithm is the extension of the Pareto Local Search (PLS) [14], and we use it
iteratively to generate an approximation of the Pareto front of an MO-DCOP.
The PLS is the generalization of the hill-climbing method for optimization prob-
lems with multiple criteria. DIPLS is the distributed extension of this method.



Local Search Based Approximate Algorithm for Multi-Objective DCOPs 395

Algorithm 1. Distributed Random Solution Generator for si
1: Required : a fixed total ordering on the agents: 〈s1, ..., sn〉
2: terminated: false
3: cpai: current partial solution
4: ci: cost vector of cpai
5: if i = 1 then
6: Assigns a random value and compute the cost c1
7: Send message (PATH, cpa1, c1) to agent s2
8: Set terminated true
9: end if

10: while si not terminated do
11: si receive message M
12: if M = (PATH, cpai−1, ci−1) then
13: cpai ← cpai−1 // Update cpa
14: Choose a random value and compute ci of cpai
15: if (i 	= n) then
16: Send message (PATH, cpai, ci) to si+1
17: else
18: randomSol ← cpan
19: end if
20: Set terminated true
21: end if
22: end while
23: Ensure randomSol : a random solution.

The DIPLS uses local search approaches that have been already addressed in
DCOPs [2, 3] and also been extended to Multi-Objective Optimization Prob-
lems (MOOP) [14, 21]. The basic idea of this algorithm is to try to evolve an
initial population generated randomly by the agents, toward the Pareto front.
The DIPLS has the following two phases:

Phase 1 : Generate the Initial solutions.
Phase 2 : Use a distributed PLS to evolve non-dominated solutions.

Let us describe phase 1. The initial solutions generation phase is trivial. The
agents pick randomly some value for their variable. Then, each agent sends its
value to its neighbors in the constraint graph and receives the assignments of its
neighbors. The cost vector associated to the solution is computed. Algorithm 1
shows the pseudo-code to be executed by each agent in order to generate a
random solution. This algorithm requires a total ordering on agents. Agents,
starting by the first, choose randomly the value for their variable (lines 6 and
14) and pass around a single PATH message that includes the current partial
assignment to the higher-priority agents and the current associated cost vector
(lines 7 and 16). The algorithm stops once all agents assigned a value to their
variable, and the process is repeated for each new random solution needed.

In phase 2, the obtained random solutions are iteratively evolved toward the
Pareto front using a distributed iterated Pareto local search technique which is
an extension of the local search algorithm to the distributed and multi-objective
case. This algorithm uses the same notion of neighborhood as in the mono-
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Algorithm 2. Distributed Pareto Local Search for si
1: Require a fixed total ordering on agents: 〈s1, ..., sn〉
2: listRand: a list of random solutions
3: archive: empty
4: terminated: false
5: if i = n then
6: archive ← filter listRand by dominance
7: Broadcast message (ARCHIV E, archive)
8: end if
9: while si is not terminated do

10: si receives message M
11: if M = TERMINATE then
12: Set terminated true
13: end if
14: if M = (ARCHIV E, archive) then
15: neighbors ← createNeighbors(archive)
16: Send message (MERGE, neighbors) to sn
17: end if
18: if M = (MERGE, neighbors) then
19: Merge archive and neighbors
20: if all merge messages received then
21: Filter archive by dominance
22: if new non-dominated solution in archive then
23: Broadcast message (ARCHIV E, archive)
24: else
25: Broadcast message (PF, archive) // Pareto front approximation
26: Broadcast message (TERMINATE)
27: end if
28: end if
29: end if
30: end while
31: Ensure archive, a Pareto front approximation.

objective case. However, the acceptance criterion of the mono-objective local
search algorithms needs to be changed to take into account several objectives.
The pseudo-code of the distributed Pareto local search algorithm is given in
Algorithm 2. This algorithm requires a total ordering on agents and the list
of randomly generated solutions, and executes as follows : one agent, the con-
troller (last agent), initially filters the list of random solutions by removing the
dominated solutions and adds the non-dominated to an archive (line 6). It then
broadcasts an ARCHIVE message that includes the archive (line 7). For each
ARCHIVE message received (line 14), agents generates neighbors (line 15) and
send MERGE messages including a list of generated neighbors to the controller.
For each MERGE message received, the controller adds the received list of neigh-
bors to the archive (line 18-19). After receiving MERGE messages from all the
agents (line 20), the controller filters (by dominance) the archive (line 21) and
if a new non-dominated solution has been added into the archive, it broadcasts
an ARCHIVE message (line 22,23) and the process is repeated until no new
non-dominated neighbor can be found starting from a solution of the archive.
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Algorithm 3. Create neighbors for si
1: Require archive: a list of solutions
2: for each solution sj in archive do
3: neighborj ← copy of sj
4: for each value vk in si’s domain do
5: in neighborj, si assigns vk to its variable and create neighborj,k
6: Compute cost of neighborj,k
7: Add neighborj,k to Neighborsi
8: end for
9: end for

10: Filter by dominance Neighborsi
11: Ensure Neighborsi, the list of non-dominated neighbors of si.

The algorithm 3 presents the pseudo-code that allows an agent to gener-
ate neighbors when it receives an ARCHIVE message. For each solution in the
archive, the agent assigns each domain value to its variable and computes the
new corresponding cost vector. Each modification of the variable assignment
leads to the creation of a neighbor which is added to a list of neighbors (line
1-9). At the end, the agent filters its list of neighbors by dominance and only the
non-dominated neighbors will be send via the MERGE message to the controller.

Figure 2 shows the example of the behavior of DIPLS, how it finds the ap-
proximation of the Pareto front of an MO-DCOP. It starts with an initial set of
solutions (Figure 2(a)). The square points on the figures represent the contents
of the ARCHIVE messages sent by the controller to all the agents (Figure 2(b)),
while the blue points represent the set of all the generated neighbors sent by each
agent to the controller (MERGE messages) (Figure 2(c)). The algorithm is exe-
cuted iteratively while a new non-dominated solution is found (Figure 2(d)-(e)).
At the end, DIPLS provides an approximation of Pareto front (Figure 2(f)).

4 Experimental Evaluation

Experimental Setting

In this section, we compare the performances of DIPLS and the state-of-the-
art approximate MO-DCOP algorithm B-MOMS. In our evaluations, we use the
following problem instances: the domain size of each variable is two, and the cost
values are randomly chosen from the range [0,100] for each objective. We solve bi-
objective problem instances. Each data point in a graph represents an average of
100 problem instances. We generate random graphs varying the number of nodes
and densities (δ ∈ [0.1, 1.0]). The density is the constraint tightness of a problem
instance by controlling the number of edges as follows. |E| = δ × 1

2 |S|(|S| − 1),
where |S| is the number of agents. We implemented these algorithms in Java.
All the experiments were carried out on 2.3GHz core with 4GB of RAM.

In order to evaluate the performances of DIPLS and B-MOMS, we define the
following three metrics: Let PO be a set of all Pareto optimal solutions of an
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(a) initial population (b) iteration 2

(c) iteration 3 (d) iteration 4

(e) iteration 5 (f) Approximation of Pareto front

Fig. 2. Behavior of DIPLS. By Algorithm 1, the agents pick randomly some value
for their variable (a). The square points on the figures represent the contents of the
ARCHIVE messages (b). The new cross points represent the set of all the generated
neighbors (c). DIPLS executes (b) and (c) iteratively while a new non-dominated so-
lution is found (d)-(e). At the end, it provides an approximation of Pareto front (f).
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MO-DCOP and P̃O be an approximation of PO obtained by DIPLS and B-
MOMS. The metric 1 represents the ratio of the Pareto optimal solutions over
the set of obtained solutions by DIPLS and B-MOMS. The metric 2 shows the
ratio of the obtained Pareto optimal solutions by DIPLS and B-MOMS over
the whole set of Pareto optimal solutions of an MO-DCOP. The metric 3 is the
required CPU runtime to compute P̃O.

– Metric 1 =
|P̃O ∩ PO|

|P̃O|
.

– Metric 2 =
|P̃O ∩ PO|

|PO| .

– Metric 3 = runtime to compute P̃O.

In our experiments, we use the similar setting as in [1]. For metric 1 and 2, it
is required to compute a set of all Pareto optimal solutions (PO). To compute
the PO of an MO-DCOP, we use a brute-force optimal algorithm like [1]. Since
finding all Pareto optimal solutions is exponential in the number of agents (|S|),
we only report these three metrics for problem instances with |S| ≤ 16. To go
further, we show the quality solutions obtained by DIPLS for 3 and 4 objectives.

Experimental Results (Comparison with B-MOMS)

Figure 3 represents the results of metric 1 for constraint graphs with the density
0.1, 0.4, 0.7 and 1.0, varying the number of agents from 10 to 16. The line with

(a) Density 0.1 (b) Density 0.4

(c) Density 0.7 (d) Density 1.0

Fig. 3. Results of metric 1 for DIPLS and B-MOMS
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(a) Density 0.1 (b) Density 0.4

(c) Density 0.7 (d) Density 1.0

Fig. 4. Results of metric 2 for DIPLS and B-MOMS

triangle represents the results for our algorithm DIPLS and the line with square
represents the results for the state-of-the-art B-MOMS. The x axis shows the
number of agents/variables and the y axis represents the results of metric 1, i.e.,
the ratio of the Pareto optimal solutions over the set of obtained solutions by
DIPLS and B-MOMS. We can see that over 90% of all obtained solutions by
DIPLS are Pareto optimal solutions, and these results are independent on the
densities of constraint graphs (Figure 3(a)-(d)). Additionally, the quality (i.e.
the ratio) does not change when the number of agents increases for all densities.
When the number of agents is 16 for the density 0.1, the ratio is 0.94 for DIPLS,
while it is 0.98 for the density 1.0. On the other hand, for B-MOMS, by increasing
the density of the constraint graph, i.e., by increasing the number of constraints
in the problem, we can observe that the performances of B-MOMS become worse
(Figure 3(a)-(d)). When the number of agents is 16 for the density 0.1, the ratio
is 0.74 for B-MOMS, while it is 0.12 for the density 1.0. This can be explained
by the number of removed edges in B-MOMS which increases for dense graphs.
The experimental results reveal that DIPLS outperforms B-MOMS for metric
1. Furthermore, the performance of DIPLS is not affected by the density of a
constraint graph (i.e. the number of constraints) and the number of agents. Also,
the difference of the solution quality between DIPLS and B-MOMS becomes
larger when the density of a constraint graph and the number of agents increase.

Figure 4 shows the results of metric 2 for DIPLS and B-MOMS. We obtained
the similar results as in Figure 3, i.e., DIPLS outperforms B-MOMS for all cases
(Figure 4 (a)-(d)). DIPLS can obtain more than 75% over the whole set of Pareto
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(a) Density 0.1 (b) Density 0.4

(c) Density 0.7 (d) Density 1.0

Fig. 5. Runtime of DIPLS and B-MOMS

optimal solutions for all cases. On the other hand, B-MOMS can obtain more
than 50% of all Pareto optimal solutions for sparse graphs (i.e. constraint graph
with low density). However, by increasing the density (i.e. Figure 4 (b)-(d)),
the ratio becomes worse and the difference of the results between DIPLS and
B-MOMS become larger. When the number of agents is 16 and the density is
0.1, the ratio for DIPLS is 0.77 and the ratio for B-MOMS is 0.54. In the case
where density is equal to 0.4, the ratio obtained is 0.93 for DIPLS and 0.17 for
B-MOMS. For the density 0.7, it is 0.98 for DIPLS and 0.15 for B-MOMS, and,
finally, when the density is 1.0, it is 0.98 for DIPLS and 0.06 that for B-MOMS.
The experimental results reveal that DIPLS can obtain more Pareto optimal
solutions than B-MOMS. Also, the performance of DIPLS is not affected by the
density of a constraint graph and the number of agents as in Figure 3.

Figure 5 shows the results of the average runtime in DIPLS and B-MOMS
for constraint graphs with the density 0.1, 0.4, 0.7 and 1.0, varying the number
of agents from 10 to 100. In Figure 5(a), the average runtime of DIPLS and B-
MOMS increases significantly when the number of agents is upper than 60. We
can see the similar results for all densities (see (a)-(d)). Also, when the number
of agents is large (more than 60 agents), the average runtime of DIPLS is shorter
compared to those for B-MOMS. Additionally, in case the number of agents is
smaller than 60, we can see that both results are almost same for most cases,
and they are independent from the density. The experimental results for metric
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3 reveal that the average runtime in DIPLS is shorter compared to those in
B-MOMS for large-scale and complex (high density) problem instances.

In summary, these experimental results reveal that (i) the quality of the ob-
tained solutions by DIPLS is better compared with B-MOMS, (ii) DIPLS can
obtain more Pareto optimal solutions than B-MOMS, and (iii) the required run-
time of DIPLS is shorter. Also, the differences of these results (i)-(iii) become
more significant when we increase the density and the number of agents.

Let us consider why our algorithm DIPLS can obtain better results compared
to B-MOMS. This is because B-MOMS obtains an optimal solution for a relaxed
problem, i.e., it looses the informations of the original problem by removing some
constraints, while DIPLS does not relax the original problem (we never remove
the constraints from the graph). If the relaxed problem is not so different from
the original problem, the both algorithms can find a better solution quickly.

Experimental Results (Quality Solutions)

In this section, we show the quality solutions obtained by DIPLS for three and
four objectives. Table 2 represents the results of the metrics 1 and 2 with three
objectives, and Table 3 shows those for four objectives. In both tables, we also
show the runtime and the number of all Pareto optimal solutions denoted #POS.
In Table 2, we can see that DIPLS can obtain good quality solutions, i.e. the
results of metric 1 and 2 are more than 90% for all densities, and also the results
are independent on the number of agents (see (a)-(d)). In Table 3, we can see
the similar results as in Table 2, i.e., all results of metric 1 and 2 exceed 90% for
all cases. These experimental results reveal that the quality solutions obtained
by DIPLS do not change by increasing the number of objectives. Furthermore,
we observed that the number of Pareto optimal solutions increases when we

Table 2. Results of DIPLS for MO-DCOPs with 3 objectives

(a) Density 0.1
#agents metrics1 metrics2 Runtime #POS

10 1.0 0.988 0.008 20
11 1.0 0.997 0.018 39
12 0.999 0.966 0.030 59
13 1.0 1.0 0.057 85
14 1.0 0.970 0.073 90
15 1.0 0.970 0.093 80
16 0.998 0.991 0.410 192

(b) Density 0.4
#agents metrics1 metrics2 Runtime #POS

10 1.0 0.989 0.010 13
11 1.0 1.0 0.037 66
12 1.0 0.994 0.035 55
13 1.0 0.986 0.037 41
14 0.974 0.915 0.065 55
15 1.0 0.996 0.167 114
16 0.997 0.997 0.323 161

(c) Density 0.7
#agents metrics1 metrics2 Runtime #POS

10 1.0 1.0 0.021 28
11 1.0 0.990 0.028 41
12 1.0 0.995 0.032 31
13 1.0 0.964 0.060 42
14 1.0 0.990 0.254 146
15 1.0 0.965 0.156 83
16 0.998 0.982 0.315 129

(d) Density 1.0
#agents metrics1 metrics2 Runtime #POS

10 1.0 1.0 0.025 31
11 1.0 1.0 0.064 74
12 1.0 0.994 0.072 64
13 1.0 0.992 0.120 83
14 1.0 0.985 0.113 64
15 1.0 0.958 0.126 55
16 1.0 1.0 0.430 40
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Table 3. Results of DIPLS for MO-DCOPs with 4 objectives

(a) Density 0.1
#agents metrics1 metrics2 Runtime #POS

10 1.0 1.0 0.089 190
11 1.0 0.978 0.104 46
12 1.0 0.998 0.069 119
13 1.0 1.0 0.109 147
14 1.0 1.0 0.194 187
15 1.0 1.0 1.576 538
16 1.0 0.998 2.322 572

(b) Density 0.4
#agents metrics1 metrics2 Runtime #POS

10 1.0 1.0 0.045 100
11 1.0 1.0 0.153 208
12 1.0 1.0 0.499 364
13 1.0 1.0 0.220 194
14 1.0 0.990 0.119 107
15 1.0 0.999 1.962 594
16 1.0 0.992 1.585 459

(c) Density 0.7
#agents metrics1 metrics2 Runtime #POS

10 0.999 0.996 0.043 61
11 1.0 1.0 0.228 208
12 1.0 0.998 0.086 86
13 1.0 1.0 0.140 117
14 1.0 0.993 0.295 178
15 1.0 0.991 0.286 147
16 0.999 0.995 1.268 370

(d) Density 1.0
#agents metrics1 metrics2 Runtime #POS

10 1.0 1.0 0.082 111
11 1.0 1.0 0.113 119
12 1.0 1.0 0.388 269
13 1.0 0.999 0.664 319
14 1.0 0.990 0.444 213
15 1.0 0.999 1.637 450
16 1.0 0.999 2.890 577

increase the number of objectives. In Table 2 (a), when the number of agents is
16, the number of Pareto optimal solutions (#POS) is 192, while #POS is 572
for four objectives (Table 3 (a)). In Table 2 (d), in case the number of agents is
16, #POS is 40, while #POS is 577 for 4 objectives (Table 3 (d)). The runtime
of our algorithm increases, when the number of objectives increases. In Table 2
(a), when the number of agents is 16, the runtime is 0.4, while it is 2.3 for four
objectives (Table 3 (a)). In Table 2 (d), in case the number of agents is 16, the
runtime is 0.4, while it is 2.8 for four objectives (Table 3 (d)). We consider that
this is because the runtime depends on the number of Pareto optimal solutions.
For the relationship between the number of objectives and the quality solution,
and also the runtime, we will analyze more detailed in our future work.

5 Related Works

The Bounded Multi-Objective Max-Sum (B-MOMS) algorithm [1] is the first
and only existing approximate MO-DCOP algorithm which is an extension of
the bounded max-sum algorithm [17] for solving a mono-objective DCOPs. The
B-MOMS works on a factor graph. It considers the importance of edges and
removes less important edges from a factor graph to make it cycle-free, and
obtain optimal solutions for the remaining cycle-free graph. For approximate al-
gorithms, providing the bound of a solution is one of the important issues. The
B-MOMS can provide the bound of a solution a posteriori, i.e., the error bound
is obtained only after we actually run the algorithm and obtain an approxi-
mate solution. Having a priori bound, i.e., the error bound is obtained before
actually running the algorithm, is desirable, but a posteriori bound is usually
more accurate. Compared to B-MOMS, DIPLS cannot guarantee the quality
bound.
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Various approximate algorithms have been developed for solving a MO-COP,
e.g., Multi-Objective Mini-Bucket Elimination (MO-MBE) [18], Multi-objective
Best- First AND/OR search algorithm (MO-AOBF) [8], and Multiobjective A∗

search algorithm (MOA∗) [15]. MO-MBE computes a set of lower bounds of
MO-COPs. MO-AOBF and MOA∗ compute a relaxed Pareto front using ε-
dominance [13]. Most of these approximate algorithms are extension of the rep-
resentative search and inference based mono-objective COP algorithms. DIPLS
is the local search based algorithm, and our experimental results reveal that
the local search technique is suitable for solving a MO-DCOP. We consider
that this is because of the huge number of Pareto optimal solutions, i.e., small
local change has a big chance to obtain the Pareto optimal solution in MO-
DCOPs.

6 Conclusion

Many real world optimization problems involve multiple criteria that should be
considered separately and optimized simultaneously. An MO-DCOP is a DCOP
which involves multiple criteria. In MO-DCOPs, since finding all Pareto opti-
mal solutions is not realistic, it is important to consider fast but approximate
algorithms. In this paper, we developed a novel approximate algorithm called
Distributed Iterated Pareto Local Search (DIPLS) algorithm. DIPLS use PLS
iteratively to generate an approximation of the Pareto front of an MO-DCOP. In
the experiments, we evaluated the performance of DIPLS with different problem
settings. We compared DIPLS with the state-of-the-art approximate algorithm
B-MOMS and empirically showed that DIPLS outperforms B-MOMS. Our ex-
perimental results reveal that (i) the quality of the obtained solutions by DIPLS
is better compared with B-MOMS, (ii) DIPLS can obtain more Pareto optimal
solutions than B-MOMS, and (iii) the required runtime of DIPLS is shorter.
Our future works include developing an approximate algorithm which can pro-
vide the bound of a solution a priori and a posteriori. Also, we will extend
approximate DCOP algorithms for solving an MO-DCOP, and compare the per-
formances of these algorithms with DIPLS. Furthermore, we intend to apply
DIPLS on challenging real world problems, e.g., sensor network and scheduling
problems.
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