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Abstract. Massive amounts of data are generated daily at a rapid rate. As a
result, the world is faced with unprecedented challenges and opportunities on
managing the ever-growing data. These challenges are prevalent in time series for
obvious reasons. Clearly, there is an urgent need for efficient solutions to mine
large-scale time series databases. One of such data mining tasks is periodicity
mining. Efficient and effective periodicity mining techniques in big data would be
useful in cases such as finding animal migration patterns, analysis of stock market
data for periodicity, and outlier detection in electrocardiogram (ECG), analyses
of periodic disease outbreak etc. This work utilizes the notion of time series
motifs for approximate period detection. Specifically, we present a novel and
simple method to detect periods on time series data based on recurrent patterns.
Our approach is effective, noise-resilient, and efficient. Experimental results
show that our approach is superior compared to a popularly used period detection
technique with respect to accuracy while requiring much less time and space.
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1 Introduction

Periodicity is the tendency of a pattern to recur at regular intervals, which are referred
to as periods. Periodic patterns occur in many natural phenomena or human activities.
Examples include an employee’s daily work schedule, yearly migration pattern of
animals, regional sunspot cycle etc. These data can be so large and complex that it
becomes difficult to process using traditional database management tools or data
processing applications. Such data is typically referred to as big data. The fact that we
are in the era of big data cannot be overemphasized especially with the large amount of
available data from the internet and ubiquitous computing devices that are now parts of
our everyday lives. Detecting the period in data, big or “not so big”, can provide useful
insight on the data, help make better predictions, detect anomalies and improve sim-
ilarity matching [16] among other things. It’s imperative to point out that the focus of
this work being time series makes it suitable for other kinds of data such as multimedia
because they can be converted to time series e.g. the extraction of MFCC from audio as
it is used for one of the datasets in our experiments. Several methods have been
proposed to detect periods in data. Most of the existing methods are particularly
suitable for perfect periods, which is hardly the case in most natural phenomena. While
the related problem of finding the exact period of a time series is a simpler one to solve,
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it may be too restrictive for real-world phenomena. Periods in real datasets are typically
noisy and incomplete. That is, while the periodic patterns exhibit tangible similarity,
they may not always be identical and equally distributed. These factors warrant robust
approximate period detection schemes like our solution and it has even been shown that
in many applications, approximate solutions are sufficient [30]. A robust solution
should also be able to detect periods in an efficient manner. In general, three types of
periodic patterns can be detected in a time series as illustrated by Rasheed et al. [1] and
they are described as follows:

• a time series exhibits partial periodicity if at least one symbol in addition to at least
one variable symbol is periodic. For instance, in time series T = wxyz wxxy wxyy
wxwz, the sequence wx is periodic with period p = 4; and the partial periodic
pattern wx ** exists in T, where * denotes a variable symbol.

• a time series exhibits symbol periodicity if at most one symbol is repeated peri-
odically. For example, in time series T = xyz xzy xxy xyy, symbol x is periodic with
period p = 3. We consider this to be a special case of partial periodicity when the
periodic subsequence has one symbol and argue that a technique that can detect
subsequence periodicity can detect symbol periodicity.

• a time series exhibits segment periodicity if an entire pattern is periodic. For
instance, the time series T = wxyz wxyz wxyz wxyz has a segment period p = 4.
The periodic segment is wxyz.

Most techniques are suitable for discrete sequences. However, time series are
real-valued data. To adapt the periodicity definitions described above, we need a pre-
processing step that discretizes the real-valued time series into a symbolic represen-
tation. The standard pre-processing approach is to use SAX (Symbolic Aggregate
approXimation) [2], a well-known discretization technique, to convert a time series into
a string or a set of strings [3]. In this work, we propose a novel technique to detect
periods in time series data by learning the repeated patterns (motifs) from data. To the
best of our knowledge, this work is the first to use motif discovery as a means to period
detection in time series.

A time series motif is a pattern that consists of two or more similar subsequences
based on some distance threshold [3]. While our approach can work with any motif
discovery algorithms, in this work we focus on a recently proposed variable-length
motif algorithm based on grammar induction called GrammarViz1 [3]. GrammarViz
consists of two major steps: (1) extracting subsequences via a sliding window con-
verting them to strings via SAX; and (2) infers a set of context-free grammar rules on
the sequence of strings using Sequitur [4]. The grammar rules represent repeated
patterns in the sequence, each of which can be regarded a time series motif.
GrammarViz is an ideal basis for our work because of its simplicity, space- and time-
efficiency, and most importantly, its ability to detect variable-length motifs, as these
properties are transferred to our periodicity detection method.

1 Although not explicitly named in the paper, the authors refer to it as GrammarViz on their website:
http://www.cs.gmu.edu/*jessica/GrammarViz.html.
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In summary, we propose a simple and elegant approximate periodicity detection
algorithm, Motif-Based Period Detection (MBPD). Our work makes the following
novel contributions:

• We propose to use time series motif discovery on the string representation as an
antecedent to approximate periodicity detection on the original time series.

• Our algorithm is both time- and space-efficient, and is suitable for streaming data.
• We introduce a simple ranking method for the most significant period.
• We extended GrammarViz and implemented the periodicity visualization feature

that allows users to navigate and sort the detected periods.
• We conducted experiments to compare the performance of our technique against

other popular techniques on synthetic and real datasets.

The rest of the paper is organized as follows. Section 2 discusses related work while
Sect. 3 outlines preliminaries. We describe our approach in Sect. 4. Section 5 describes
the experiments performed. We conclude with limitations of our approach and make
recommendations for improvement as future work in Sect. 6.

2 Related Work

Existing periodicity detection methods can be categorized based on a number of factors
[1, 5–14, 16, 24, 25]. These factors include parameter dependency, the type of peri-
odicity detected, the span of periodicity detected and the domain in which the peri-
odicity is detected. Some methods require the specification of the period value [12–14].
This is not ideal as the detection of the period value is in itself a task worthy of due
consideration. Some of these methods detect only symbol periodicity [8, 26]. Yang
et al. [9, 24] proposed a linear time distance-based technique for discovering the
potential periods in a time series. However, their method fails to detect some valid
periods because only adjacent intervals are considered. Rasheed et al. [1] proposed an
algorithm to detect periodicity in time series using suffix trees. The time requirement
for their proposed method can rise to the order of O(n3). Most algorithms detect only a
subset of the types of periodicity (symbol, sequence or segment) mentioned earlier. The
method proposed by Han et al. in [7] detects only segment periodicity. Certain tech-
niques [12, 13], which are based on another technique, ParPer [14], are suitable for
detecting sequence periodicity in time series. ParPer makes use of peculiar properties
e.g. apriori property related to sequence periodicity in a time series for periodicity
detection. Most of the aforementioned techniques suffer from noise sensitivity. WARP
[11] was developed to be noise resilient but it detects only segment periodicity. Few
techniques [12, 14] detect subsection periodicity while most are meant for full-cycle
periodicity detection.

Periodicity detection algorithms can also be classified into time domain and fre-
quency domain methods. Time domain methods are based on autocorrelation functions
while frequency domain methods are based on spectral density functions. The premise
for using time domain methods is that the autocorrelation function of a periodic data
has the same period as the data with peaks obtained at time t = 0, period T, and
multiples of T. Time domain methods are suitable for sinusoidal signals and they are

MBPD: Motif-Based Period Detection 795



not noise resilient. Frequency domain methods, on the other hand, decompose signals
into constituent frequency components. The result of frequency domain methods is a
power spectral density with impulses determined by the corresponding Fourier coef-
ficients. These Fourier coefficients can be extracted to create a periodogram [17].

Autocorrelation and Fourier Transforms are two of the most popular periodicity
detection techniques [15]. Autocorrelation is able to detect short and long periods, but
creates difficulty in identifying the true period due to the fact that the multiples of the
true period will have the same power as the true period. On the other hand, Fourier
transforms suffer from a number of problems: spectral leakage, which causes a lot of
false positives in the periodogram, and poor estimation of long periods due to issues
with low frequency regions or sparseness in data [18]. Some methods combine both
autocorrelation and Fourier transforms [6, 16].

Our method is able to detect the most significant period in a dataset without
requiring the period value as a parameter and this is done in the time domain. Our
method also detects the different types of periodicity.

3 Preliminaries

In this section we define periodicity, approximate periodicity and the problem
addressed in this work.

Definition 1. Let S ¼ t0; t1. . .tn�1 be a string representation of a time series with length
of n, i.e. |S| = n. S is said to be periodic if S(t) = S(t + p), where t 2 N; t� 0; t\n� p, T
is a subsequence of S such that, T ¼ t0; t1. . .tp�1; Tj j ¼ p; p� 1 and p ≤ n/2. The
smallest such subsequence T is called the period of S. If no such period T can be found
in S, S is said to be aperiodic. For example, if S = wxywxywxy, the period T = wxy,
p = 3.

For clarity, we do not consider the substring of length (m*p) to be a period of S for any
m such that m ≠ 1.

Definition 2. Let S be n-long string over alphabet Σ. Let r be an error function defined
on strings. S is called periodic with k error on T if there exists a string T over Σ, such
that r(S, T) = k i.e. r evaluate the error of assuming T is the period of S. The string T
that evaluates to smallest such k is called the approximate period of S. For example, let
S = wxywxywxy, r(S, A) ≥ r(S, B) where A = wxy occurring at positions 0, 3 and 6,
and B = wxy occurring at positions 0 and 6, A and B are candidate periods, A is the
approximate period of S otherwise referred to as the most significant period of S.

Problem Definition. Given a string function r, and String S of length n over alphabet
compute the approximate period T under the function r.

3.1 Motif Discovery

Time series motifs are repeated similar patterns. We argue that detecting the frequent
patterns could serve as an antecedent to periodicity detection. Many algorithms have
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been proposed to find motifs in time series data [3, 19–22]. In this work, we focus on
GrammarViz, a fast, approximate variable-length motif discovery algorithm based on
grammar induction [3]. The factors we considered in choosing a motif discovery method
for this work include efficiency with respect to space and time, the ability to detect the
motifs in a streaming fashion, the ability to detect variable length motifs, the ability to
detect periodicity in string representation of time series, and simplicity. GrammarViz
utilizes Sequitur [4], a context-free grammar induction technique, to derive rules con-
sidered to be motifs from string representation of time series. These motifs are mapped
back to the original time series to show their occurrences. A benefit derived from the
ability to work on string representation is the fact that the technique is applicable to
many kinds of data whose dimensionality can be reduced by discretization to string
symbols. GrammarViz is the first time series motif discovery algorithm that can detect
variable-length motifs in an effective and efficient manner, and it is able to do so in a
streaming fashion. The authors of GrammarViz also created a visualization tool for
clarity and easy navigation of the produced results. GrammarViz achieves variable-
length motif discovery as a result of numerosity reduction, thus making MBPD suitable
for cases where a periodic pattern may occur with variable lengths in a time series.

4 Our Approach

The fundament premise of our approach is to first discover the motifs in the time series
with high efficiency and effectiveness and then detect the most periodic motif.

INPUT:  String S of length n over alphabet Σ. 
OUTPUT:  The approximate period of S, T. 
1.   /* Find the rule/motif objects M = {m1, m2, . . . md} from GrammarViz algorithm */ 
2.   M = grammarViz(S); 
3.   /* Compute periods and errors for each motif, return the one with the smallest error*/ 
4.   m1 = periodicity(m1); 
5.   p1 = m1.getPeriod(); 
6.   r1 = m1.getError();  
7.   rMin = r1   // store the minimum error in rMin 
8.   for each mi  M do 
9.       mi = periodicity(mi); 
10.     pi = mi.getPeriod(); 
11.     ri = mi.getError();  
12.     if (ri < rMin) 
13.         approxP = pi; 
14.         rMin = ri; 
15. end for 
16. return approxP;

Algorithm 1 shows the pseudocode for the MBPD algorithm. The motif objects
returned in Line 2 are stored along with the start and stop positions of each occurrence
in the time series. We consider only periods that occur at least 3 times in a time series
for this work since anything less has a higher probability of being a false positive but
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it’s trivial to modify the algorithm to detect periods that occur twice if desired. Lines
3–7 and the loop from Lines 8–14 computes the period of each motif, the error (our r
function from Definition 2) defined by the standard deviation of the intervals of all
occurrences and the approximate period. The period of each motif is calculated as the
mean of intervals (between the start positions of two consecutive occurrences) of all
occurrences in the time series. Both computations of the approximate period and error
are done on the original time series after the derived string motifs are mapped back to
the original time series. The approximate period of the time series is the period cor-
responding to the lowest error. The periodicity function called on Lines 4 and 9 of
Algorithm 1 is shown in Algorithm 2.

The efficiency of MBPD largely depends on the efficiency of GrammarViz (Line 2),
which has Sequitur at its core. GrammarViz has linear time and space complexity. As a
result, the time complexity of MBPD is O(n*k) for a time series of size n, where k is
the average number of instances for each motif rule produced by Sequitur. The space
complexity is still O(n) because the memory space needed for variables used in
Algorithms 1 and 2 are negligible. Compared to most existing methods for time series
periodicity detection, MBPD has a competitive space and time complexity.

Algorithm 2. Periodicity Algorithm 
INPUT:  Motif M with start positions A = {a1, a2, . . . ab} for all b occurrences 
OUTPUT:  Motif M with the period and error set respectively 
1.   sum_Interval = 0, sqd = 0; 
2.   for each ai  A do 
3.      sum_Intervals = sum_Intervals + ai - ai-1;  
4.   end for 
5.   M.period = sum_Intervals/(b-1); 
6.   for each ai  A do 
7.       sqd = sqd + ((ai - ai-1 - M.period) ^ 2);  
8.   end for
9.   M.error = (sqd/(b-1)) ^ 0.5; 
10. return M;

5 Experiment

In this section we evaluate MBPD on synthetic, pseudo-synthetic and real datasets. Our
periodicity detection and visualization software is an extension of GrammarViz. More
details about the visualization tool and the GrammarViz algorithm in line 2 of Algo-
rithm 1 can be found in [3]. Experiments were performed on a 2.7 GHz, Intel Core i7,
MAC OS X version 10.7.5 with 8 GB memory.

Figure 1 is a snapshot of the visualization tool showing the approximate periodicity
detected in an ECG dataset in the data display section of the figure. Other periods can
be viewed by navigating the list of rules in the sequitur grammar section of the figure.

We compare our method with Fast Fourier Transform (FFT). The frequency with
the highest spectral power from FFT of the dataset is converted into time domain and
considered as the most significant period. FFT is chosen for its suitability for real-
valued datasets.
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It is worth mentioning that while we considered other state-of-the-art techniques
such as STNR [1], WARP [11], and the probability-based method in [18] for com-
parison, we found that they are not suitable for our purpose for the following reasons
other than their unsuitableness for real values. WARP caused an out of memory
exception for the large datasets (65636 data points) used in our experiments and
returned unintuitive results for most of the other datasets e.g. 515 (43 years) for the
Zürich sunspot dataset whereas the proper period for the dataset is 132 (11 years). The
out of memory exception is most probably due to WARP’s O(m2) space complexity for
a time series of size m.; STNR on the other hand returns many candidate periods even
with the pruning techniques suggested, which deviates from our goal of finding the
most significant period. Finally the method proposed in [18] is meant for binary
sequences representation of Boolean-type observations and not real-valued sequences.

5.1 Datasets

We used 12 datasets of various periodicity, noises, and lengths in our experimental
evaluation. We ensured the length of each dataset is a power of 2 to avoid introducing
bias by padding the dataset with zeros in order to use FFT for comparison. A subplot of
all 12 datasets is shown in Fig. 2. Figures 3 and 4 show the periodicity detected in 2 of
the datasets used in our experiments.

Synthetic Datasets. We created 6 synthetic datasets with various properties that could
affect performance.

• S_ONE: 65636 points to depict perfect segment periodicity by repeating 10000
points 7 times except for the last 4364 points.

• S_TWO: 65636 points to depict perfect segment periodicity by repeating 10000
points 7 times and except for the last 4364 points.

• S_THREE: 65636 points to demonstrate sensitivity to noise by introducing noise in
the form of insertion, deletion and replacement into S_ONE, 10 % each.

Fig. 1. Snapshot of MBPD visualization tool detecting periodicity in ECG dataset.
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• S_FOUR: 65636 points to demonstrate sensitivity to noise by introducing noise in
the form of insertion, deletion and replacement into S_TWO, 10 % each.

• S_FIVE: 65636 points to depict subsequence periodicity by repeating a portion of
the repeated 10000 points in S_ONE and leaving the remaining as variable points.

• S_SIX: 65636 points to depict subsequence periodicity by repeating a portion of the
repeated 10000 points in S_TWO and leaving the remaining as variable points.

Real Datasets. We used 5 real datasets.

• ECG: 4096 points of ECG (electrocardiogram) data
• POWER: 16384 points of power consumption data

Fig. 2. A subplot of all 12 datasets used for experiments

Fig. 3. Snapshot of MBPD visualization tool detecting periodicity in S_ONE dataset.

Fig. 4. Snapshot of MBPD visualization tool detecting periodicity in MFCC dataset.
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• MFCC: 262144 points of MFCC (Mel-Frequency Cepstral Coefficients) extracted
from Rufous-collared Sparrow bird song which can be found at http://www.xeno-
canto.org/120810

• SOLAR: 8192 points of solar data
• SUNSPOT: 2048 points of sunspots on Zürich.

Pseudo-Real Dataset (P_REAL). This dataset has 512 points. We use this dataset to
depict periodicity detection in a short dataset. It’s a sea surface temperature dataset for
North Atlantic Ocean (simulated data for 1000 years) with 10-year moving average
smoothing.

5.2 Results

We evaluated the performance of our method against FFT with respect to the ranking
error rates on both the synthetic and real datasets as shown in Table 1. In Table 2, we
show the error rates of the period value detected on the synthetic datasets.

Ranking error rate is computed by dividing the rank position, i (starting from zero)
of the most significant period by the size of the time series e.g. if the candidate periods
returned by MBPD are 3, 4, 7 and 9 in that order when ranked and 4 is the most
significant period, the ranking error rate of MBPD for this dataset is ¼ (0.2500). Error
rate of the period values is computed as follows in Eq. 1:

Error rate of period ¼ Expected value�Actualvaluej j
Actual value

ð1Þ

Since we do not know the exact periods in the real datasets, we did not evaluate the
error rate of the period values. Table 3 contains the periods detected on the real datasets
as well as the expected range of values. As shown in Tables 1 and 2, MBPD ranks the
most significant period better and detects the period more accurately than FFT. Since
we are concerned with the most significant period, an improper ranking otherwise

Table 1. Ranking error rate on synthetic and real datasets.

Datasets MBPD FFT

S_ONE 0.0000 0.0000
S_TWO 0.0000 0.0000
S_THREE 0.0000 0.0000
S_FOUR 0.0000 0.0000
S_FIVE 0.0000 0.0000
S_SIX 0.0000 0.0000
P_REAL 0.0000 0.0000
ECG 0.0000 0.0002
POWER 0.0000 0.0001
MFCC 0.0000 –

SOLAR 0.0000 0.0001
SUNSPOT 0.0000 0.0005

MBPD: Motif-Based Period Detection 801

http://www.xeno-canto.org/120810
http://www.xeno-canto.org/120810


referred to as false dismissal experienced by using FFT is undesirable. Even though we
do not know the exact period for the real datasets, the visualization tool helps by
allowing us to visualize the results, e.g. the highlighted patterns in Figs. 1, 3, and 4.

For some of the real datasets, we have some prior knowledge on what to expect for
the periodicity. The Zürich sunspot data, for example, is known to have a period of
about 11 years (132 months) as described in [28]. All three techniques produced
reasonable approximations for the dataset. The MFCC data is extracted from a bird
song, which has a period between 30 K–40 K when visualized in the software and
listened to meticulously. As seen in Table 3, all 3 techniques performed competitively
on 4 of the real datasets but only MBPD detected the period in the MFCC extraction.
This also makes MBPD stand out as a superior technique. We did not record the period
and ranking error rate for FFT on the MFCC dataset because the 10 most significant
periods (3.33, 4.00, 3.33, 4.00, 2.86, 2.86, 2.86, 3.33, 3.34, 4.00) were spurious
altogether and we don’t know which of them should be selected for evaluation as they
are all far from the expected period. We consider only the first 10 coefficients in this
work because the first 10 coefficients are known to contain approximately 90 % of the
energy [29]. We attribute the poor result of FFT to the known issue of FFT regarding
the low frequency regions which translates to issues in detecting long periods as is the
case with the MFCC dataset (35000–36000).

6 Conclusion and Future Work

We present an approximate periodicity detection scheme in this work. We evaluated
our approach against popular techniques on synthetic and real datasets. Our technique

Table 2. Period error rate on synthetic datasets.

Datasets MBPD FFT

S_ONE 0.0000 0.0637
S_TWO 0.0000 0.0637
S_THREE 0.0009 0.0637
S_FOUR 0.0011 0.0637
S_FIVE 0.0000 0.0637
S_SIX 0.0000 0.0923

Table 3. Period values on real datasets.

Datasets MBPD FFT EXPECTED VALUES

P_REAL 77.00 85.33 75–85
ECG 290.80 292.57 290–295
SOLAR 870.60 910.22 870–875
MFCC 36340 – 36000–36500
POWER 328.98 334.37 325–330
SUNSPOT 135.85 136.53 132–137
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is highly competitive with respect to efficiency and effectiveness as well as being robust
to noise. We also utilized a visualization tool for this work. Even though the intention is
to detect the most significant approximate period in the dataset, our visualization tool
permits the navigation of other periods. As future work, we would like to extend the
work to detect the exact or at least approximate span of the periods detected in addition
to detecting the periodic pattern with high confidence. As this work seeks to motivate
the use of motif discovery as an antecedent to periodicity detection, we do not claim
that GrammarViz is the best choice of algorithm for motif discovery. Since Gram-
marViz is an approximate motif discovery algorithm, it may not find all of the motifs,
which in turn may impact the quality of periods detected by our algorithm. We believe
that using a better grammar induction algorithm or, more generally, a more aggressive
motif discovery technique as an antecedent could enhance the performance of MBPD.
Nevertheless, the benefit of finding variable-length patterns and the ability to do so
efficiently as permitted by GrammarViz is highly desirable and beneficial to our
algorithm.

References

1. Rasheed, F., Al-Shalalfa, M., Alhajj, R.: Efficient periodicity mining in time series databases
using suffix trees. In: TKDE (2011)

2. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with
implications for streaming algorithms. In: Workshop on Research Issues in DMKD (2003)

3. Li, Y., Lin, J., Oates, T.: Visualizing variable-length time series motifs. In: SDM (2012)
4. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-

time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)
5. Amir, A., Eisenberg, E., Levy, A.: Approximate periodicity. In: Cheong, O., Chwa, K.-Y.,

Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 25–36. Springer, Heidelberg
(2010)

6. Berberidis, C., Aref, W., Atallah, M., Vlahavas, I., Elmagarmid, A.: Multiple and partial
periodicity mining in time series databases. In: ECAI (2002)

7. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time related databases.
In: KDD (1998)

8. Ma, S., Hellerstein, J.: Mining partially periodic event patterns with unknown periods. In:
ICDE (2001)

9. Yang, J., Wang, W., Yu, P.: Mining partial periodic patterns with gap penalties. In: ICD
(2002)

10. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection in time series databases.
In: ICDE (2005)

11. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: WARP: time warping for periodicity
detection. In: ICDM (2005)

12. Sheng, C., Hsu, W., Lee, M.L.: Mining dense periodic patterns in time series data. In: ICDE
(2006)

13. Sheng, C., Hsu, W., Lee, M.L.: Efficient Mining of Dense Periodic Patterns in Time Series.
Technical report, Nat’l Univ. of Singapore (2005)

14. Han, J., Yin, Y., Dong, G.: Efficient mining of partial periodic patterns in time series
database. In: ICDE (1999)

MBPD: Motif-Based Period Detection 803



15. Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, London (1981)
16. Vlachos, M., Yu, P.S., Castelli,V.: On periodicity detection and structural periodic

similarity. In: SDM (2005)
17. Stoica, P., Moses, R.L.: Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle River

(1997)
18. Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations. In: KDD

(2012)
19. Lam, H.T., Pham, N.D., Calders, T.: Online discovery of top-k similar motifs in time series

data. In: SIAM Conference on Data Mining, SDM (2011)
20. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Proceedings of

2nd Workshop on Temporal Data Mining at KDD (2002)
21. Mueen, A., Keogh, E.J.: Online discovery and maintenance of time series motifs. In: KDD

(2010)
22. Nunthanid, P., Niennattrakul, V., Ratanamahatana, C.: Discovery of variable length time

series motif. In: ECTICON (2011)
23. Smyth, W.F.: Computing periodicities in strings — a new approach. In: Proceedings of the

16th Australasian Workshop on Combinatorial Algorithms (2007)
24. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series data. In:

KDD (2000)
25. Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Using convolution to mine obscure periodic

patterns in one pass. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 605–620. Springer,
Heidelberg (2004)

26. Scargle, J.D.: Studies in astronomical time series analysis. II - statistical aspects of spectral
analysis of unevenly spaced data. In. Astrophys. J. 263, 835–853 (1982)

27. https://jmotif.googlecode.com
28. http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
29. Vlachos, M.: A practical time-series tutorial with matlab. In: PKDD (2005)
30. Arora, S.: Approximation schemes for np-hard geometric optimization problems: a survey.

Math. Prog. 97, 43–69 (2003)

804 R. Otunba et al.

https://jmotif.googlecode.com
http://solarscience.msfc.nasa.gov/SunspotCycle.shtml

	MBPD: Motif-Based Period Detection
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Motif Discovery

	4 Our Approach
	5 Experiment
	5.1 Datasets
	5.2 Results

	6 Conclusion and Future Work
	References


