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Abstract. Nowadays, high volumes of valuable uncertain data can be
easily collected or generated at high velocity in many real-life applica-
tions. Mining these uncertain Big data is computationally intensive due
to the presence of existential probability values associated with items
in every transaction in the uncertain data. Each existential probability
value expresses the likelihood of that item to be present in a particular
transaction in the Big data. In some situations, users may be interested
in mining all frequent patterns from these uncertain Big data; in other
situations, users may be interested in only a tiny portion of these mined
patterns. To reduce the computation and to focus the mining for the
latter situations, we propose a tree-based algorithm that (i) allows users
to express the patterns to be mined according to their intention via the
use of constraints and (ii) uses MapReduce to mine uncertain Big data
for only those frequent patterns that satisfy user-specified constraints.
Experimental results show the effectiveness of our algorithm in mining
probabilistic databases of uncertain Big data.

1 Introduction and Related Works

Nowadays, high volumes of valuable data are easily collected or generated in var-
ious real-life application areas such as bioinformatics, e-commerce, healthcare,
mobile sensing, security, and social networks. This leads us into the new era
of Big data [20]. Intuitively, Big data refer to high-velocity, high-value, and/or
high-variety data with volumes beyond the ability of commonly-used software
to capture, curate, manage, and process within a tolerable elapsed time. Hence,
new forms of processing data are needed to deliver high veracity (and low vulner-
ability) and to enable enhanced decision making, insight, knowledge discovery,
and process optimization. This drives and motivates research and practices in
business analytics and optimization, which require techniques like Big data min-
ing and analytics [12,14]. Having developed systematic or quantitative processes
to mine and analyze Big data allows us to continuously or iteratively explore,
investigate, and understand the past business performance so as to gain new
insight and drive business planning.

To handle Big data, researchers proposed the use of a high-level programming
model—called MapReduce—to process high volumes of data by using parallel and
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distributed computing [25] on large clusters or grids of nodes (i.e., commodity
machines), which consist of a master node and multiple worker nodes. As implied
by its name, MapReduce involves two key functions: “map” and “reduce”. An
advantage of using the MapReduce model is that users only need to focus on (and
specify) these map and reduce functions—without worrying about implementa-
tion details for (i) partitioning the input data, (ii) scheduling and executing the
program across multiple machines, (iii) handling machine failures, or (iv) man-
aging inter-machine communication. Over the past few years, several algorithms
have been proposed to use the MapReduce model—which applies distributed
or parallel computing—for different Big data mining and analytics tasks [5,10].
Examples of these tasks include clustering [6], outlier detection [9], and structure
mining [24]. An equivalently important mining and analytics task is pattern min-
ing [3,18,23], which aims to analyze valuable data for the discovery of implicit,
previously unknown, and potentially useful knowledge in the form of patterns.
For example, frequent patterns help reveal collections of popular merchandise
items, frequently co-occurring objects, or frequently co-located events.

Since the introduction of pattern mining [1], numerous algorithms have been
proposed to mine precise data such as shopper market basket transaction data-
bases. With these databases, users definitely know whether an item is present
in—or is absent from—a transaction. In this notion, each item in a transaction tj
in databases of precise data can be viewed as an item with a 100 % likelihood
of being present in tj . However, data in many real-life applications are riddled
with uncertainty [2,16,19]. It is partially due to inherent measurement inaccura-
cies, sampling and duration errors, network latencies, and intentional blurring of
data to preserve anonymity. Hence, users are usually uncertain about the pres-
ence or absence of items. As a concrete example, a meteorologist may suspect
(but cannot guarantee) that severe weather phenomena will develop during a
thunderstorm. The uncertainty of such suspicions can be expressed in terms of
existential probability. For instance, a thunderstorm may have a 60 % likelihood
of generating hail, and only a 15 % likelihood of generating a tornado, regardless
of whether or not there is hail. To handle uncertain data, several pattern mining
algorithms—such as the U-Apriori [4], UF-growth [15], and PUF-growth [16]
algorithms—were proposed in previous PAKDD conferences.

Furthermore, in many real-life applications, users may have some particular
phenomena in mind on which to focus the mining (e.g., a meteorologist may want
to find only those weather records about thunderstorms with hail). However,
the aforementioned algorithms mine patterns without user focus. Consequently,
users often need to wait for a long period of time for numerous patterns, out of
which only a tiny fraction may be interesting to the users. Hence, constrained
pattern mining [11]—which aims to find valid patterns (i.e., patterns that satisfy
the user-defined constraints)—is needed.

A natural question to ask is: Can we use MapReduce to perform constrained
pattern mining from uncertain Big data? In response to this question, we propose
an algorithm—called BigSAM—to mine uncertain Big data for frequent patterns
that satisfy a particular type of user-specified constraints called succinct



782 F. Jiang et al.

anti-monotone (SAM) constraints. Our algorithm discovers patterns from prob-
abilistic databases of uncertain Big data in a pattern-growth fashion for Big data
analytics. Such an algorithm—which is a non-trivial integration of (i) mining for
patterns, (ii) mining from uncertain data, (iii) mining from Big data, and (iv) min-
ing with constraints—is our key contribution of this paper.

The remainder of this paper is organized as follows. The next section gives
background about uncertain data, SAM constraints, and the MapReduce model.
In Sect. 3, we propose our BigSAM algorithm for mining uncertain Big data
for patterns that satisfy the user-specified SAM constraints using MapReduce.
Evaluation results and conclusions are presented in Sects. 4 and 5, respectively.

2 Background

In this section, we give some background information about (i) uncertain data,
(ii) SAM constraints, and (iii) the MapReduce model.

2.1 Uncertain Data: Existential Probability and Expected Support

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a pattern
comprising k items (i.e., a k-itemset), where X ⊆ Item and 1 ≤ k ≤ m. Then,
each item xi in a transaction tj = {x1, x2, . . . , xh} ⊆ Item in a probabilistic
database of uncertain data is associated with an existential probability value
P (xi, tj) [13], which represents the likelihood of the presence of xi in tj . Note
that 0 < P (xi, tj) ≤ 1. The existential probability P (X, tj) of a pattern X in tj
is the product of the corresponding existential probability values of every item x
within X (when these items are independent) [13]: P (X, tj) =

∏
x∈X P (x, tj).

The expected support expSup(X) of X in the probabilistic database is the
sum of P (X, tj) over all n transactions in the database:

expSup(X) =
n∑

j=1

P (X, tj) =
n∑

j=1

(
∏

x∈X

P (x, tj)

)

, (1)

where P (x, tj) is the existential probability value of item x in transaction tj .
With this definition of expected support, existing tree-based algorithms [8] such
as UF-growth [15] and PUF-growth [16] mine frequent patterns from a prob-
abilistic database of uncertain data as follows. The algorithms first scan the
database once to compute the expected support of all domain items (i.e., sin-
gleton itemsets). Infrequent items are pruned as their extensions/supersets are
guaranteed to be infrequent. The algorithms then scan the database a second
time to insert all transactions (with only frequent items) into a tree (i.e., UF-
tree [15] or PUF-tree [16]). Each node in the tree captures (i) an item x, (ii) its
existential probability value P (x, tj), and (iii) its occurrence count. At each step
during the mining process, the frequent patterns are expanded recursively.

Given such a database and a user-specified minimum support threshold min-
sup, the research problem of frequent pattern mining from uncertain data is to
discover from the probabilistic database of uncertain data all those frequent pat-
terns (i.e., patterns having expected support ≥ minsup).
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2.2 Succinct Anti-monotone (SAM) Constraints

To mine interesting patterns from precise data, the Constrained Apriori (CAP)
framework [21] allows the user to specify his interest via the use of SQL-style
constraints to guide the mining process so that only those frequently occurring
sets of shopper basket items satisfying the user constraints are returned. This
avoids unnecessary computation for mining those uninteresting frequent pat-
terns. Examples of user-specified constraints include (i) max(X.Price) ≤ $500,
which expresses the user’s interest in finding every frequent pattern X such that
the maximum price of all shopper market basket items in X is at most $500, and
(ii) X.Type �= snack, which expresses the user’s interest in finding every frequent
pattern X such that every shopper market basket item in X is not a snack item.

In general, user-specified constraints can be categorized into several over-
lapping classes according to the properties that they possess. The two afore-
mentioned constraints in particular can be categorized into a popular class of
constraints called succinct anti-monotone (SAM) constraints, which possess the
properties of both succinctness and anti-monotonicity.

Definition 1 (Succinctness [11]). Let Item be the set of m domain items.
Then, an itemset SSj ⊆ Item is a succinct set if SSj can be expressed as a
result of selection operation σp (Item), where σ is the usual SQL-style selection
operator and p is a selection predicate. A powerset of items SP ⊆ 2Item is a
succinct powerset if there is a fixed number of succinct sets SS1, . . . , SSk ⊆ Item
such that SP can be expressed in terms of the powersets of SS1, . . . , SSk using
set union and/or set difference operators. A constraint C is succinct provided
that the set of patterns satisfying C is a succinct powerset. �

Definition 2 (Anti-monotonicity [11]). A constraint C is anti-monotone
if and only if all subsets of a pattern satisfying C also satisfy C. �

2.3 The MapReduce Programming Model

MapReduce [7] is a high-level programming model for processing vast amounts of
data. Usually, MapReduce uses parallel and distributed computing on clusters or
grids of nodes (i.e., computers). The ideas behind MapReduce can be described
as follows. As implied by its name, MapReduce involves two key functions: “map”
and “reduce”. The input data are read, divided into several partitions (sub-
problems), and assigned to different processors. Each processor executes the
map function on each partition (subproblem). The map function takes a pair
of 〈key, value〉 data and returns a list of 〈key, value〉 pairs as an intermediate
result:

map: 〈key1, value1〉 �→ list of 〈key2, value2〉,
where (i) key1 & key2 are keys in the same or different domains, and (ii) value1 &
value2 are the corresponding values in some domains. Afterwards, these pairs are
shuffled and sorted. Each processor then executes the reduce function on (i) a
single key value from this intermediate result together with (ii) the list of all
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values that appear with this key in the intermediate result. The reduce function
“reduces”—by combining, aggregating, summarizing, filtering, or transforming—
the list of values associated with a given key (for all k keys) and returns a list
of k values:

reduce: 〈key2, list of value2〉 �→ list of value3,

or returns a single (aggregated or summarized) value:

reduce: 〈key2, list of value2〉 �→ value3,

where (i) key2 is a key in some domains, and (ii) value2 & value3 are the
corresponding values in some domains. Examples of MapReduce applications
include the construction of an inverted index as well as the word counting of a
document.

Early works on MapReduce focused either on data processing [7] or on
some data mining tasks other than frequent pattern mining (e.g., outlier detec-
tion [9], structure mining [24]). Recently, three Apriori-based algorithms called
SPC, FPC and DPC [17] were proposed to mine frequent patterns from precise
data. Like these three algorithms, our proposed BigSAM algorithm also uses
MapReduce. However, unlike these three algorithms (which mine frequent pat-
terns from precise data using the Apriori-based approach), our proposed BigSAM
mines frequent patterns from uncertain data using a tree-based approach. The
search/solution space for pattern mining from uncertain data is much larger than
that for pattern mining from precise data due to the presence of the existential
probabilities.

Moreover, a parallel randomized algorithm called PARMA [22] was proposed
to mine approximations to the top-k frequent patterns and association rules from
precise data using MapReduce. Although PARMA and our BigSAM algorithm
both use MapReduce, one key difference between the two algorithms is that
we aim to mine for truly frequent (instead of approximately frequent) patterns.
Another key difference is that we mine from uncertain data (instead of precise
data). The third key difference is that we mine with constraints so that we
focus our computation on finding only those frequent patterns that satisfy the
use-specified SAM constraints (instead of all frequent patterns).

3 Our BigSAM Algorithm that Mines Uncertain Big
Data for Frequent Patterns Satisfying SAM Constraints

Given (i) a probabilistic database of uncertain Big data, (ii) a user-specified SAM
constraint, and (iii) a user-specified minimum support threshold minsup, our
proposed BigSAM algorithm uses the MapReduce programming model to mine
uncertain Big data—in a tree-based pattern-growth fashion—for all patterns
satisfying the SAM constraint and having expected support ≥ minsup (i.e., valid
frequent patterns).

Recall from Sect. 2.2 that users can express their interests by specifying con-
straints. Our BigSAM algorithm does not confine the user-specified constraints



BigSAM: Mining Interesting Patterns from Probabilistic Databases 785

to only shopper market basket items. We allow users to specify constraints that
can be imposed on items, events, or objects in other domains. For example,
constraint C1 ≡ max(X.Temperature) ≤ 20◦C expresses the meteorologist’s
interest in finding every frequent pattern X such that the maximum tempera-
ture of all meteorological records in a pattern X is at most 20◦C. In other domain
(e.g., healthcare sector), constraint C2 ≡ min(X.WBC) ≥ 4.3×109/L expresses
the physician’s interest in finding every group X such that the minimum white
blood cell (WBC) counts among all patients in X is at least 4.3 × 109/L. For
mobile sensing, constraint C3 ≡ X.Location=Tainan expresses the user interest
in finding every frequent pattern X such that all events in X are held in the
city of Tainan; constraint C4 ≡ X.Location=(Tainan ∨ Kaohsiung) expresses the
user interest in finding every frequent pattern X such that all events in X are
held in Tainan or Kaohsiung. Constraint C5 ≡ X.Location �=Winnipeg expresses
the user interest in finding every frequent pattern X such that all events in X
are held outside Winnipeg.

We observed that, due to anti-monotonicity, if a pattern does not satisfy the
SAM constraints, all its supersets are guaranteed not to satisfy the SAM con-
straints. Thus, any pattern that does not satisfy the SAM constraints can be
pruned. Moreover, due to succinctness, we can precisely enumerate all and only
those patterns that satisfy the constraints by using a member generating func-
tion. For example, the set of patterns satisfying C1 ≡ max(X.Temperature) ≤
20◦C is a succinct powerset. Thus, the set of patterns satisfying C1 can be
expressed as 2σTemperature≤20◦C(Item). The corresponding member generating func-
tion can be represented as {X | X ⊆ σTemperature≤20◦C(Item)}, which precisely
enumerates all and only those valid patterns (i.e., patterns that satisfy C1): All
these patterns must comprised only items with individual temperature ≤ 20◦C.
Consequently, valid frequent patterns for C1 would be those frequent ones among
the valid patterns satisfying C1.

3.1 Exploiting SAM Constraints in the Reduce Function

With the above observations, our BigSAM algorithm exploits the properties of
succinctness and anti-monotonicity. The key idea of our algorithm—which uses
two sets of the map and reduce functions to mine uncertain Big data for frequent
patterns satisfying SAM constraints—can be described as follows. BigSAM first
reads high volumes of uncertain Big data. As each item in the volumes is asso-
ciated with an existential probability, BigSAM aims to compute the expected
support of all domain items (i.e., singleton patterns) by using MapReduce. The
expected support of any pattern can be computed by using Eq. (1). Moreover,
for any singleton pattern {x}, such an equation can be simplified to become the
following:

expSup({x}) =
n∑

j=1

P (x, tj), (2)

where P (x, tj) is the existential probability of item x in transaction tj . Specif-
ically, BigSAM divides the uncertain data into several partitions and assigns
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them to different processors. The map function receives 〈transaction ID, con-
tent of that transaction〉 as input. For every transaction tj , the map function
emits an 〈x, P (x, tj)〉 pair for each item x ∈ tj (cf. when mining precise data, each
occurrence leads to an actual support of 1 and would yield a corresponding 〈x, 1〉
pair). When mining uncertain data, the occurrence of x can be different from the
expected support of x. For instance, consider an item a with existential probabil-
ity value of 0.9 that appears only in transaction t1. Its expected support may be
higher than item b that appears seven times but with an existential probability
value of 0.1 in each appearance. Then, expSup({a}) = 0.9 > 0.7 = expSup({b}).
Hence, instead of emitting 〈x, 1〉 for each occurrence of x ∈ tj , BigSAM emits
〈x, P (x, tj)〉 for each occurrence of x ∈ tj . In other words, the map function can
be specified as follows:

For each transaction tj ∈ partition of the uncertain Big data do
for each item x ∈ tj do

emit 〈x, P (x, tj)〉.
This results in a list of different 〈x, P (x, tj)〉 pairs.

Afterwards, these 〈x, P (x, tj)〉 pairs are shuffled and sorted. Each proces-
sor then executes the reduce function on the shuffled and sorted pairs to apply
constraint checking on every item x and obtain the expected support only for
valid x (i.e., {x} that satisfies CSAM). In other words, the reduce function can
be specified as follows:

For each x ∈ {〈x, list of P (x, tj)〉} do
if {x} satisfying CSAM then

set expSup({x}) = 0;
for each P (x, tj) ∈ list of P (x, tj) do

expSup({x}) = expSup({x}) + P (x, tj).
if expSup({x}) ≥ minsup then emit 〈{x}, expSup({x})〉.

To recap, when using a high-level description, this first set of “map” and
“reduce” functions can be defined as follows:

map1: 〈ID of transaction tj , content of tj〉 �→ list of 〈x, P (x, tj)〉,
reduce1: 〈x, list of P (x, tj)〉 �→ 〈valid frequent{x}, expSup({x})〉.

Here, the master node first reads and divides uncertain Big data in partitions.
The worker node corresponding to each partition then outputs 〈x, P (x, tj)〉 pairs
for each domain item x. The reduce function then sums all existential probabil-
ity values of x for each x to compute its expected support in the probabilistic
database of uncertain Big data.

Example 1. Consider a probabilistic database of uncertain data with auxiliary
information as shown in Table 1. Let (i) C1 ≡ max(X.Temperature) ≤ 20 ◦C,
which means that domain items a, b, c, d (but not e) satisfy CSAM, and (ii) min-
sup=1.0 Then, from transaction t1, the map function outputs 〈a, 0.7〉, 〈b, 1.0〉,
〈c, 0.8〉 and 〈e, 0.9〉. Similarly, from transaction t2, the map function outputs
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Table 1. A sample set of uncertain Big data (with auxiliary information)

TID Content

t1 {a:0.7, b:1.0, c:0.8, e:0.9}
t2 {a:0.9, b:1.0, c:0.6, e:0.7}
t3 {a:0.8, c:0.2, d:0.8}

Item Temp. Item Temp.

a 5◦C d 20◦C
b 10◦C e 25◦C
c 15◦C

〈a, 0.9〉, 〈b, 1.0〉, 〈c, 0.6〉 and 〈e, 0.7〉; from transaction t3, the map function out-
puts 〈a, 0.8〉, 〈c, 0.2〉 and 〈d, 0.8〉. These pairs are then shuffled and sorted. The
reduce function reads 〈a, [0.7, 0.9, 0.8]〉, 〈b, [1.0, 1.0]〉, 〈c, [0.8, 0.6, 0.2]〉, 〈d, [0.8]〉 &
〈e, [0.9, 0.7]〉, and outputs 〈a, 2.4〉, 〈b, 2.0〉 &〈c, 1.6〉 (i.e., valid frequent items and
their corresponding expected support). Note that the reduce function does not
sum the existential probabilities values for item e, let alone compute its expected
support, because {e} does not satisfy CSAM. Although the reduce function sums
the existential probabilities values for item d (as it satisfies CSAM), it does not
output its expected support because d is infrequent. �

3.2 Exploiting SAM Constraints in the Map Function

Alternatively, to handle the user-specified SAM constraint CSAM, we can push
CSAM into the map function so that we only emit 〈x, P (x, tj)〉 for each item
x ∈ tj that satisfies CSAM. See the corresponding map function:

For each transaction tj ∈ partition of the uncertain Big data do
for each item x ∈ tj and {x} satisfies CSAM do

emit 〈x, P (x, tj)〉.
This results in a list of different 〈valid x, P (x, tj)〉 pairs.

Afterwards, these 〈valid x, P (x, tj)〉 pairs are shuffled and sorted. Each proces-
sor then executes the reduce function on the shuffled and sorted pairs to obtain the
expected support of x:

For each x ∈ {〈valid x, list of P (x, tj)〉} do
set expSup({x}) = 0;
for each P (x, tj) ∈ list of P (x, tj) do

expSup({x}) = expSup({x}) + P (x, tj).
if expSup({x}) ≥ minsup then emit 〈{x}, expSup({x})〉.

To recap, when using a high-level description, this alternative first set of
“map” and “reduce” functions can be defined as follows:

map1′ : 〈ID of tj , content of tj〉 �→ list of 〈valid x, P (x, tj)〉,
reduce1′ : 〈valid x, list of P (x, tj)〉 �→ 〈valid frequent {x}, expSup({x})〉.

Example 2. Revisit Example 1. Again, let (i) domain items a, b, c, d (but not e)
satisfy CSAM and (ii) minsup=1.0. Then, from transaction t1, the map function
outputs 〈a, 0.7〉, 〈b, 1.0〉 and 〈c, 0.8〉. Similarly, from transaction t2, the map func-
tion outputs 〈a, 0.9〉, 〈b, 1.0〉 and 〈c, 0.6〉; from transaction t3, the map function
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outputs 〈a, 0.8〉, 〈c, 0.2〉 and 〈d, 0.8〉. Note that constraint checking was brought
from the reduce function (as in Example 1) to the map function, which does
not output the existential probability values for item e because {e} does not
satisfy CSAM. All the output pairs are then shuffled and sorted. Afterwards, the
reduce function reads 〈a, [0.7, 0.9, 0.8]〉, 〈b, [1.0, 1.0]〉, 〈c, [0.8, 0.6, 0.2]〉 & 〈d, [0.8]〉,
and outputs 〈a, 2.4〉, 〈b, 2.0〉 & 〈c, 1.6〉 (i.e., valid frequent items and their cor-
responding expected support). Note that, although the reduce function sums
the existential probabilities values for item d (as it satisfies CSAM), it does not
output its expected support because d is infrequent. �

As observed from the above two examples, exploiting SAM constraints in the
reduce function requires fewer constraint checks because it only checks at most
m domain items to see if they satisfy CSAM. In contrast, exploiting SAM con-
straints in the map function checks all occurrences of items in every transaction
in the Big data set, which are normally 
 m. Hence, the former is time-efficient
when the data set consisting of only a few domain items such as DNA or RNA
sequences in bioinformatics. On the other hand, the latter requires less bookkeep-
ing because it emits 〈valid x, P (x, tj)〉 only for those items that satisfy CSAM.
Hence, it is space-efficient when high volumes of data come at a high velocity
such as data streams.

3.3 Mining Valid Frequent Non-singleton Patterns

Once our BigSAM algorithm finds valid frequent singleton patterns (with their
associated expected support), it rereads each transaction in the probabilistic data-
base of uncertain Big data to form an {x}-projected database (i.e., a collection of
transactions containing x) for each valid frequent item x in the list returned by
the first reduce function. Due to the succinctness &anti-monotonicity, all valid
patterns must comprise only valid singleton items. Hence, our BigSAM algorithm
keeps only those valid singleton items in each {x}-projected database. The worker
node corresponding to each projected database then (i) builds appropriate local
trees (e.g., UF-trees or PUF-trees)—based on the projected database assigned to
the node—to mine every valid frequent pattern X of higher cardinality k (i.e., k-
itemsets for k ≥ 2) and (ii) outputs 〈X, expSup(X)〉 (i.e., every valid frequent
pattern X with its expected support). In other words, BigSAM executes the sec-
ond set of “map” and “reduce” functions as follows:

map2: 〈ID of tj , content of tj〉
�→ list of 〈valid frequent{x},prefix of tjthat ends with x〉,

reduce2: 〈valid frequent{x}, {x} − projected database〉
�→ list of 〈valid frequent pattern X, expSup(X)〉.

Example 3. Continue with Example 1 or 2. After reading t1, BigSAM emits
〈b, {a:0.7, b:1.0}〉 & 〈c, {a:0.7, b:1.0, c:0.8}〉. BigSAM also emits 〈b, {a:0.9, b:1.0}〉
& 〈c, {a:0.9, b:1.0, c:0.6}〉 after reading t2, and emits 〈c, {a:0.8, c:0.2}〉 after read-
ing t3. Note that the map function of BigSAM does not emit any pairs containing
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infrequent item d or invalid item e. After all the emitted pairs are shuffled and
sorted, the reduce function of BigSAM then forms the {b}-projected database
(comprising {a:0.7, b:1.0} & {a:0.9, b:1.0}) and the {c}-projected database (com-
prising {a:0.7, b:1.0, c:0.8}, {a:0.9, b:1.0, c:0.6} & {a:0.8, c:0.2}), from which valid
frequent patterns {a, b}:1.8, {a, c}:1.26, {a, b, c}:1.1 and {b, c}:1.4 are found. �

4 Experimental Results

To evaluate our proposed BigSAM algorithm in mining uncertain Big data for
frequent patterns that satisfy user-specified SAM constraints, we used different
datasets—which include real-life datasets (e.g., accidents, connect4, and mush-
room) from the UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml/) and the FIMI repository (http://fimi.ua.ac.be/). We also used IBM syn-
thetic data, which were generated using the IBM Quest Dataset Generator [1].
The generated data ranges from 2M to 5M transactions with an average transac-
tion length of 10 items from a domain of 1K items. As these datasets originally
contained only precise data, we assigned to each item in every transaction an
existential probability value in the range (0,1]. All experiments were run on
either (i) a single machine with an Intel Core i7 4-core processor (1.73 GHz) and
8 GB of main memory running a 64-bit Windows 7 operating system, or (ii) the
Amazon EC2 cluster—specifically, 11 m2.xlarge computing nodes (http://aws.
amazon.com/ec2/). All versions of the algorithm were implemented in the Java
programming language. The stock version of Apache Hadoop 0.20.0 was used.

First, we used (i) a database consisting of items all with existential probability
value of 1 (indicating that all items are definitely present in the database and
(ii) a user-specified SAM constraint. With this setting, we compared BigSAM
(which finds valid frequent patterns from uncertain data) with CAP [21] (which
also finds valid frequent patterns but from precise data). Experimental results
showed that, (i) in terms of accuracy, BigSAM returned the same collection of
valid frequent patterns as those returned by CAP. However, (ii) in terms of func-
tionality, CAP is confined to finding valid frequent patterns from datasets when
existential probability values of all items is 1, whereas our BigSAM algorithm is
capable of finding valid frequent patterns from datasets containing items with
various existential probability values ranging from 0 to 1.

Next, we used (i) a probabilistic database of uncertain data (containing items
with various existential probability values ranging from 0 to 1) and (ii) a SAM
constraint with 100 % selectivity (so that every item is selected). With this set-
ting, we compared UF-growth [15] (which mines unconstrained frequent patterns
from uncertain data) with BigSAM. Experimental results showed that, (i) in
terms of accuracy, both algorithms returned the same collection of frequent pat-
terns. (ii) In terms of runtimes, as shown in Fig. 1(a), both algorithms took
shorter to run when minsup increased because fewer patterns had expected sup-
port ≥ minsup. (iii) Between the two algorithms, BigSAM (which was run in the
MapReduce environment with 11 nodes) took much shorter runtimes than UF-
growth [15] (which is a sequential algorithm). This led to a significant speedup,

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://fimi.ua.ac.be/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
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Fig. 1. UF-growth [15] vs. our BigSAM algorithm

Fig. 2. Constraint handling by our BigSAM algorithm

especially for mining Big data. (iv) As observed from Fig. 1(b), when the number
of transactions increased, the gap between the runtimes of the two algorithms
increased, and thus the speedup became more significant. (v) In terms of func-
tionality, UF-growth [15] was not designed to handle constraints with selectivity
other than 100 %, whereas our BigSAM algorithm is capable of handling con-
straints of any selectivity.

To adapt UF-growth for handling user-specified SAM constraints with selec-
tivity other than 100 %, it first ignores the constraints and mines all frequent
patterns, and then applies constraint checking as a post-processing step to check
if each mined pattern is valid (i.e., satisfying the SAM constraints) and prune
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those uninteresting/invalid patterns (i.e., patterns that violate the SAM con-
straints). By doing so, the computation of this adapted algorithm is indepen-
dent of the selectivity of the SAM constraints. Hence, it would be time- and
space-consuming for handling uncertain Big data—especially when only a few
frequent patterns are valid (i.e., low percentage selectivity). In contrast, Fig. 2
shows that (i) runtimes of BigSAM decreased when the selectivity was lower
(i.e., when fewer frequent patterns were valid) on different datasets. Moreover,
(ii) the runtime was proportional to the computation, which was proportional
to the percentage selectivity. This illustrates the benefits of pushing constraint
checking in our BigSAM algorithm.

As ongoing work, we are conducting more experiments to evaluate other
aspects (e.g., the effect on the number of machines or cluster nodes, the com-
munication costs) and with other algorithms (e.g., PUF-growth [16]).

5 Conclusions

In this paper, we proposed the BigSAM algorithm that (i) allows users to express
their interest in terms of succinct anti-monotone (SAM) constraints and (ii) uses
the MapReduce programming model to mine uncertain Big data for frequent
patterns that satisfy user-specified constraints. As a result, our algorithm returns
all and only those patterns that are interesting to the users. Experimental results
show the effectiveness of our algorithm in mining these interesting patterns from
probabilistic databases of uncertain Big data with MapReduce. As ongoing work,
we are extending our algorithm for handling non-SAM constraints.
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