

A. Mellouk et al. (Eds.): WWIC 2014, LNCS 8458, pp. 1–14, 2014.
© Springer International Publishing Switzerland 2014

An Automated Application-Independent Approach
to Anomaly Detection in Wireless Sensor Networks

André Rodrigues1,2, Jorge Sá Silva1, and Fernando Boavida1

1
Centre of Informatics and Systems of the University of Coimbra, Coimbra, Portugal

2
Polytechnic Institute of Coimbra, ISCAC, Coimbra, Portugal

{arod,sasilva,boavida}@dei.uc.pt

Abstract. As Wireless Sensor Networks (WSN) gain momentum in what con-
cerns applications and deployment, monitoring is becoming crucial in order to
guarantee that anomalies are promptly detected. Unfortunately, current WSN
monitoring solutions have several limitations, such as being tailored for specific
applications, requiring dedicated or specific hardware, consuming precious
energy and/or processing resources, or relying on manual or offline interven-
tion. In this paper we propose an approach to anomaly detection in WSNs that
addresses these limitations. The approach is based on two very simple metrics,
a logging tool, and a data-mining algorithm, thus leading to the following key
characteristics: very low resource consumption, application independency, very
good potential for multi-WSN monitoring, and automation and simplification of
the detection process. The proposed approach was validated by implementation,
which showed that it is quite effective in detecting several typical anomalies.

Keywords: wireless sensor networks; anomaly detection; monitoring, testing
and debugging.

1 Introduction

Detecting and diagnosing problems in Wireless Sensor Networks (WSNs) is now
considered essential, due to the fact that the installed basis of this type of networks is
growing at a fast pace. Numerous deployments exist, either of experimental or of
commercial nature.

One such example, pertaining to the research area, is a recent deployment by Intel,
which equipped a few hundred homes with devices that enabled the collection of a set
of parameter values (environmental, physiological and behavioral), with the objective
of assessing the potential of the WSN technology in the study of aging and chronic
diseases [1]. One of the conclusions of the study was the need for tools for managing
research infrastructures characterized by a large number of geographically dispersed
facilities, where their direct users (in this case the elderly) do not have enough tech-
nological expertise to assist in diagnosing and solving problems that inevitably occur
in the installed systems.

In what concerns commercial deployments, it is expected that WSN technology
will be extensively used for supporting real time monitoring of multiple installations

2 A. Rodrigues, J.S. Silva, and F. Boavida

belonging to the same or different entities. For instance, one can easily foresee its use
in farms to support animal health condition monitoring. As an example, a WSN-based
system could support the collection of several parameters (e.g. environmental, physio-
logical and behavioral parameters) and, based on their values and on a set of rules,
generate alarms if something abnormal happened. Such a system could easily be dep-
loyed at several facilities and, naturally, would require adequate monitoring in order
to ensure its proper functioning. This is clearly an example of a scenario in which the
entity that commercializes / supports the system must also have the capability to real-
time monitor the installations in operation at the various customers.

Although the scenarios for the monitoring of multiple and/or large scale WSN in-
stallations are rapidly emerging, existing tools have not yet met the requirements of
simple, effective, automated, distributed, and general anomaly detection. Typically,
monitoring tools are application-specific, resource-consuming, complex to configure
and/or use, or restricted to a single WSN.

The work presented in the current paper is an attempt to prove that it is possible to
explore anomaly detection approaches that meet the above-mentioned requirements
by using two simple metrics, an existing logging tool, and a data-mining algorithm.
Note that the main contribution of this paper is not the presentation of a monitoring
tool but, rather, the demonstration that it is possible to develop general, application-
independent, lightweight WSN monitoring tools that use simple metrics.

The paper is organized as follows. Section 2 identifies the set of requirements that
should be met by WSN monitoring tools. Section 3 is dedicated to the detailed presen-
tation of the developed approach, namely in what concerns its hardware and software
platforms, used metrics, logs collection and parsing, data transformation, and detec-
tion and diagnosis. The proof-of-concept implementation was subject to evaluation in
two simple scenarios comprising several anomalous conditions. Evaluation results are
discussed in section 4. Section 5 identifies related work, by briefly presenting and
discussing a representative set of WSN monitoring tools. Section 6 provides the con-
clusions and guidelines for further work.

2 Requirements

This section briefly presents and discusses the requirements that a WSN monitoring
tool should address. These requirements were divided into two categories: scenario-
related requirements, and performance/usage requirements.

2.1 Scenario-Related Requirements

• Scalability – the tool should be able to scale, both in terms of the number of nodes
per WSN and the number of supported WSNs. As mentioned before, scenarios
comprising the monitoring of several WSNs are likely to appear.

• Support for inter-WSN homogeneity and intra-WSN heterogeneity – in
any given WSN there is often some heterogeneity at hardware and firmware
levels; nevertheless, when looking at multiple WSNs run or supported by a given

 An Automated Application-Independent Approach to Anomaly Detection 3

organization, one can see that they mostly run the same applications on the same
platforms. Thus, monitoring tools should enable to take advantage of this inter-
WSN homogeneity, and also support intra-WSN heterogeneity.

• Support geographically dispersed WSNs – the existence of WSNs located at
several locations is a factor that must be taken into consideration in the design of a
monitoring tool, as suitable communication mechanisms must be in place.

• Support for mobile nodes – in WSNs it is quite common to have mobile nodes;
this type of nodes has no negligible impact on data collection strategies and on
communications; monitoring tools should be able to cope with these nodes.

2.2 Performance/Usage Requirements

• Support all application paradigms – in order to not be limited by the application
paradigm (i.e., schedule-driven, query-driven, event-driven) the tool must not rely
on the existence of specific operation patterns.

• Support diverse hardware platforms and operating systems (OSs) – WSN
technology is fast changing, so it is important to ensure that a tool can be used with
multiple OSs and platforms in order to cope with current and future needs.

• Minimize the use of WSN resources – typically, WSN nodes are resource con-
strained; thus, monitoring tools should minimize WSN resource consumption, such
as energy, processing, and memory.

• Easy to install and to use – the effort required for integrating a monitoring tool in
a WSN or a set of WSNs should be minimized. The same applies to the effort re-
quired to use the tool.

• Flexibility and extensibility – it is important to support mechanisms that allow the
manager to tailor the tool to its needs (at deployment and at runtime) in order to
enable wider applicability.

3 Proposed Approach

Having in mind the requirements identified in the previous section, we set out to
demonstrate that it is possible to construct a simple, effective, automated, and applica-
tion-independent anomaly detection tool.

To this effect, we developed a proof-of-concept implementation. This section pro-
vides details on this implementation, namely, on the used hardware and software plat-
forms and on the overall design, including metrics calculation, logs collection, logs
parsing, data transformation, anomalous events detection, and anomalous events
diagnosis.

3.1 Selected Platform and Operating System

The tool prototype was implemented using TinyOS [2] on a new hardware platform
called Hermes [3]. This platform includes a recent MSP430, an 868 MHz band radio,

4 A. Rodrigues, J.S. Silva, and F. Boavida

an SD card reader, an accelerometer, a gyroscope, a thermometer, an heartbeat
receiver, and a power management system.

Having used an event-based operation system, the metrics that will be used as the
basis for anomaly detection will be collected during event procedure instances. An
event procedure instance [4] is the sequence that begins with a hardware interrupt and
ends with the execution of the last code associated with the initial event.

It should also be noted that, although they are essential, the collected metrics must
be complemented with additional information in order to effectively pinpoint the rea-
sons for anomalous behavior. In the case of this proof-of-concept implementation, we
decided to additionally collect call traces for the application code, and also log the
executed tasks.

As a final remark, it should be noted that despite the specific choice of hardware
platform, operating system, and implementation, the principles that guided the tool’s
construction (i.e., simple metrics, application-independence, logging, and data-
mining) are general and can easily be implemented using other OSs and platforms.

3.2 Metrics Calculation

When considering the issue of what metrics to use for characterizing behavior as
normal or abnormal, one should take into account aspects such as impact on node
resources, applicability to diverse application paradigms, descriptive power, and
hardware platforms and OSs specificity. Metrics with the following characteristics
should thus be avoided:

• Application dependent (e.g., using statists on specific application events);
• Requiring detailed logs (e.g., complete call traces, or vectors of instruction coun-

ters as in [4]);
• Application paradigm dependent (e.g., counters on traffic);
• Requiring dedicated hardware or OS support (e.g., dedicated energy measurement

devices, OS-integrated logging mechanisms).

From the above, one can conclude that elapsed time, processing, and energy are good
candidates to characterize what happens between two consecutive application level
events. These metrics are general, light to compute, and do not require sophisticated
support mechanisms.

In the case of the proof-of-concept implementation, the selected metrics were proc-
essing and energy. The main reason for excluding the elapsed time was that, for typi-
cal WSN applications, it does not provide much information about the used process-
ing resources, as the majority of time between two application level events is sleep
time. This also means that, for instance, an anomaly leading to an increase in active
time could easily be “concealed” by a slight variation in sleep time without much
impact on the elapsed time metric value.

Each metric is calculated in the following way. At boot time the metric counter is
reset. When the next application event happens the metric counter value is logged and
associated to the previous application event. Finally, the metric counter is reset.

 An Automated Application-Independent Approach to Anomaly Detection 5

Processing Metric. The first approach to calculate a processing metric was to count
the microcontroller (MCU) instructions (or the MCU cycles) executed between two
consecutive application level events. Unfortunately, the Hermes platform does not
directly support this.

The followed approach was to count the MCU (i.e. MSP430F2618) sub-main clock
(SMCLK) cycles between consecutive application level events. The SMCLK in Her-
mes is defined to be based on the master clock (MCLK) divided by 4. The MCU
TimerA was configured to be sourced by the SMCLK, resulting that when the MCU
is not sleeping the SMCLK is running and TimerA is incremented.

This is an extremely light metric as the only processing required is to read or up-
date the counter-associated variable. For simplicity reasons, from this point onward
this metric will be called MCU cycles.

Energy Metric. In iCount [5] the authors explained how a carefully selected switch-
ing regulator used to provide regulated power to a sensor node can be used to provide
energy consumption measurements, almost for free. Because the regulator they se-
lected uses pulse frequency modulation, the switching frequency is almost directly
related to the load current. Their idea was to connect the output of the regulator induc-
tor to the MCU input clock (INCLK) line that can be used to source the TimerA. In
this way, each time the voltage at the inductor crosses zero in the ascending direction,
TimerA is incremented as a new switching cycle was detected.

Hermes uses a Power Management System (PMS) that includes two switching
regulators based in the Pulse Wide Modulation (PWM) technique. Those regulators
also support pulse skipping at light loads.

Being a PWM-based part, it does not enable to directly use the iCount approach.
However, at light loads, the PMS supports a burst mode where energy is provided in a
burst of pulses to minimize switching losses. During this operation mode it is possible
to count the pulses (using an approach similar to iCount) to obtain an estimation
of the consumed energy. From now on, for simplicity reasons, this metric is called
energy consumption.

3.3 Logs Collection and Parsing

Logging mechanisms are required to collect the metrics and the information on the exe-
cuted application events calls and tasks from the sensor nodes, and to forward it to the
management system in order to support the detection and diagnostics functionality.

The logging mechanism should be flexible and expandable, avoid application source
code modifications, be easy to install and use, take advantage of main application com-
munication capabilities, introduce small latency, be light in terms of resources usage, be
easily portable to other OSs / platforms, and support node heterogeneity.

Having to decide between developing a logging system according to the previous
requirements or using an already available one, the decision was to use LIS [6], as it
supports most of the requirements.

6 A. Rodrigues, J.S. Silva, and F. Boavida

In LIS, a developer has to produce a LIS script using a declarative language,
describing the logging mechanisms to be deployed and their location in the WSN
application source code. Then, a PC-based instrumentation engine modifies the WSN
application source code, according to the LIS script, in order to include logging
statements. Also added to the sensor node code are a runtime library that supports
the node logging function calls, and a code module supporting log data storage and
retrieving functionality.

During runtime, execution traces and state are saved on local memory and can be
sent to the sink node using either wired communication (i.e., SerialActiveMessages),
or wireless communication (i.e., TinyOS CTP for multi-hop, or ActiveMessages for
single-hop). When the packets arrive at the sink node they are parsed using a generic
LIS parser and the LIS script information to produce meaningful information.

The LIS language can be used directly or as an intermediate language supporting
reusable high-level task definitions. One of these high-level tasks is Region Of In-
terest (ROI) call trace monitoring, where the developer specifies a ROI (e.g. one
TinyOS subsystem) and the system generates the corresponding LIS script that will
enable to create a log of the function calls inside that subsystem. This functionality is
very useful because it enables to avoid the need for manually creating a LIS script.

In the case of the current proof-of-concept implementation, it was necessary to
modify the Python scripts associated with the ROI analysis functionality, in order to
enable LIS to automatically instrument the application source code with the objective
of generating call traces and metrics logs.

Finally, collecting the logs is done via the “timestampedlisten” console command,
provided by TinyOS, which collects the packets sent by the sensor nodes where the
logging mechanism is running. The collected packets are submitted to the LIS parser,
which makes use of the LIS script information to output an easy-to-read listing of the
logged call traces and collected metrics.

3.4 Data Transformation

The data file produced by the LIS parser is filtered to remove incomplete application
event level details that resulted from packet losses. This is necessary because if some
packets are lost they can compromise the parsing of the next log entries. LIS supports
a mechanism to discard incomplete log entries. However, it was necessary to enhance
this mechanism, as incorrect application event information was found in the parsed
logs.

After this phase, the logs are parsed in order to generate an application-level event
list file with the intended data format. This new file also contains additional informa-
tion required to support further diagnosis of the anomalous events. To support all
these transformations, a set of Python-based scripts was developed.

Each line in the generated file has the following format:

<class> <m1>:<v1> <m2>:<v2> # <event> <begin> <end>

 An Automated Application-Independent Approach to Anomaly Detection 7

In this format, <class> designates the class the event belongs to, <m1>:<v1> desig-
nates a metric/value pair, <event> is the name of the application-level event, and <be-
gin> and <end> identify, respectively, the line of the LIS parsed file where log entries
related to this event begin, and the line where they end.

The data before the “#” is used by the classification algorithm used to identify
anomalous events. The data after the “#” is ignored by the classification algorithm,
but is used to locate, in the LIS parsed file, the log information related to the detected
anomalous events.

3.5 Anomalous Events Detection and Diagnosis

The selected classification algorithm is based on a machine learning technique, called
Support Vector Machines (SVM) [7], which generates a model that can be used to
predict the class of an instance. In this case, an instance is an application level event
instance that has metrics values as attributes, and can be classified as normal or
anomalous.

In the present scenario there are, nevertheless, two issues. First, a labeled training
set is not available. Second, it is expected that the anomalous application level events
represent a small fraction of all application level events (as the goal is to detect
sporadic problems).

Considering this scenario, the selected approach (also followed by [4]) was to use
an SVM variant called one-class SVM, and to assume that the training set only con-
tains normal events, knowing that a small percentage of them may have been misclas-
sified as such. By defining the percentage of misclassified events in the training set,
one-class SVM will create a model that places the majority of the events in normal
class side of the hyper-plane, while the remaining are placed on the anomalous class
side. This learned model is then used to predict the class of future received application
level events. The learned model can be periodically updated, in case it is required
that the anomalous event detection mechanism has some flexibility to adapt to envi-
ronment / system changes.

The reasons to select this technique were the following: it does not require previ-
ously labeled data, it can work with unbalanced data sets (i.e. sets with classes not
equality represented), and the existence of a well documented and easy to use code
library (LIBSVM [8]). This library includes Python scripts for simplifying its use,
namely scaling data sets, selecting optimized kernel function parameters, training the
model, and testing the data.

The output of LIBSVM is a classification for each application level event. An
analysis script was developed that uses this information to locate, in the LIS parsed
file, the logged information related to the application level events classified as anoma-
lous. This enables the responsible person to analyze them in order to identify possible
reasons for their classification.

Fig. 1 summarizes the activities involved in the anomalous events detection and di-
agnosis functionality detailed in this section.

8 A. Rodrigues, J.S. Silva, and F. Boavida

Fig. 1. Detection and diagnosis fluxogram

4 Evaluation

The presented proof-of-concept implementation was subject to several tests, in order
to assess the effectiveness and efficiency of the underlying concepts. This section
begins by describing and presenting the results of a set of experiments carried on for
evaluating the tool’s detection and diagnosis capabilities. Subsequently, the tool is
evaluated under the light of the initial requirements.

 An Automated Application-Independent Approach to Anomaly Detection 9

4.1 Experimental Results

Two sets of tests were carried out. In the first group of experiments the goal was to
assess the MCU cycles metric for detecting anomalous behaviors.

The selected application was RadioCountToLeds (a standard TinyOS application
where two nodes periodically broadcast packets containing a counter, and each time a
node receives a packet it displays the counter’s last 3 bits on the LEDs). This applica-
tion was selected because it has a simple behavior and is publicly available, enabling
the community to validate the paper results. The application code includes the events
MilliTimer.fired, Receive.receive, and AMSend.sendDone. These are regularly
triggered during normal application execution.

In the scenario used for the experiments two nodes executed RadioCountToLeds,
and another one just collected the packets with the logs and send them, via USB, to
the management station (Fig. 2).

The application source code was automatically transformed to include the logging
mechanisms required to generate the call traces and the MCU cycles metric for the
application level events, and to generate the call traces for the executed tasks.

For obtaining the training set, the RadioCountToLeds application was executed
during 15 minutes under normal conditions, then the collected packet trace was parsed
by LIS, transformed to remove incomplete application level events and to provide the
event list in the LIBSVM format, and finally submitted to the LIBSVM script. This
script scaled the data, selected the kernel function parameters (by using a grid-search
approach and cross-validation), and finally outputted the learned model and the used
scale data. The percentage of misclassified events in the training set was set at 1%.
The events set used to train the classifier included 1486 events instances.

LIS m
essages

Fig. 2. Evaluation scenario

All the experiments had 5 minutes duration and the results are presented in Table 1.
Before proceeding to analyse the results, two aspects should be highlighted. Firstly, it
should be noted that, in the absence of problems, the percentage of events classified
as normal should be around 99% (as the defined threshold for misclassified events in
the training phase was 1%). Secondly, in Table 1, the ‘Remarks’ column presents the
details found in anomalous events logs that provided clues for events classification.

10 A. Rodrigues, J.S. Silva, and F. Boavida

Experiment #1 was designed to evaluate how the anomaly detection functionality
reacted to a permanent failure, such as the remote node stopping to broadcast its
counter messages. The low percentage of normal events, with more than 40% of the
events being classified as anomalous, clearly points to some kind of error. This was
easily diagnosed by observing the absence of Receive.receive events in the logs.

The goal of experiments #2 and #3 was to determine if a logic error (that resulted
in additional execution of code) could be detected. The MilliTimer.fired event code
was changed to contain a cycle that incremented a counter from 1 to 100 (or to 1000
in the case of experiment #3). This cycle was executed in 10% of the MilliTimer.fired
event executions. In both cases, the anomalous events (an excess of MilliTimer.fired
events with a high MCU cycles value) were detected, as indicated by a percentage of
normal events below 99%.

The goal of experiment #4 was slightly more ambitious, namely to determine if an-
other type of logic error (specifically, in this case, the counter for the broadcast mes-
sage being incorrectly increment twice in 10% of the cases) could be detected. This
was done by modifying the MilliTimer.fired event code. The impact on the applica-
tion executing in the local node was minimal and, thus, was not detected.

Another set of experiments aimed at evaluating the efficacy of the energy con-
sumption metric in the detection of anomalous behaviors. In these experiments the
timer used to send the counter messages was increased from 1.9 s to 5 s. and the
experiments duration was 10 minutes. Table 2 presents the experiments’ results.

Table 1. Classification summary (MCU cycles metric)

Condition Normal events % Events

(norm/total)

Remarks

1 remote node off 58.21% 163/280 no Receive.receive events
2 100 i++ 98.66% 443/449 MilliTimer.fired > 21750
3 1000 i++ 95.53% 406/425 MilliTimer.fired > 23600
4 extra op 99.04% 416/420 not detected

Table 2. Classification summary (energy metric)

Condition Normal events % Events

(norm/total)

Remarks

5 5 remote reboots 98.77% 322/326 AMSend = 6.213.697
6 1 local reboot 96.93% 347/358 Boot.booted
7 up 1 floor 91.97% 229/249 AMSend > 6.000.000
8 gyro ON 75.36% 260/345 AMSend ~ 3.200.000

In experiment #5, one node was rebooted 5 times. By analysing the logs from the

other node, it was possible to detect the existence of anomalous behaviour (as indi-
cated by a percentage of normal events below 99%), and subsequently identify AM-
Send.sendDone anomalous events with high-energy values. This seemed to indicate
that some messages were not sent by the rebooted node or that they got lost.

In experiment #6 the significantly lower percentage of normal events gives a hint
on some anomaly. After inspecting the logs for the anomalous events, a local node
reboot was detected (specifically, one of the anomalous events was a Boot.booted).

 An Automated Application-Independent Approach to Anomaly Detection 11

In experiment #7, one node was moved away from the other one floor up. The rela-
tively low percentage of normal events, in conjunction with fewer events in the data
set for the node that did not move, was a hint for problems. By inspecting the anoma-
lous events logs it was possible to identify several AMSend.sendDone anomalous
events with high-energy values. This suggested that packet losses had occurred, but
required an analysis of the other node logs.

Experiment #8 was designed to determine if a wrong power state in a device would
be detectable. Specifically, the gyroscope was not turned off at boot time in order to
create an anomaly. The considerably low percentage of normal events clearly indi-
cated that something was wrong. Also, the existence in the logs of several
AMSend.sendDone anomalous events with energy values higher than 3.000.000 con-
firmed it. Nevertheless, because this type of problem does not impact program execu-
tion, there was no information in the logs that helped diagnosing it.

In light of the achieved results, it is clear that the simple metrics approach com-
bined with logging analysis and data mining allowed the detection of most anomalous
conditions. It should be noted that the objectives of this proof-of-concept implementa-
tion and the associated experiments were the assessment of the efficacy of the auto-
matic anomaly detection, not the diagnosis itself.

4.2 Requirements Analysis

The goal of developing and evaluating the presented prototype implementation was,
on one side, to validate the concepts on which it was based – namely, the use of sim-
ple metrics, light logging tool, and data-mining – and, on the other hand, to assess its
ability to meet the identified requirements. In the previous sub-section, the tool was
assessed with respect to the former. In the current sub-section, an analysis pertaining
to the latter is presented.

• Scalability – in the current implementation, the parsing, data transformation, and
classification tasks required to process a 10 min log took less than 1.5 s (1.295 s,
0.172 s, and 0.023 s, respectively) per sensor node, in an Intel Core 2 Duo 2.4 GHz
computer with 3 MB of RAM. This is a low processing time. To maintain low
parsing times with a high number of nodes and with more components having their
function calls logged, an optimised implementation should only send the metrics at
detection time, locally saving the call trace logs, for on-request later inspection.

• Support sensor node heterogeneity – the tool can support WSN devices with
diverse hardware and software. This could be done by grouping logs, at the man-
agement system, according to their software and hardware configuration. In this
way, each group of log information contains events data from sensor nodes with
the same hardware / software. Each group is then analyzed individually according
to the fluxogram presented in Fig. 1.

• Support geographically dispersed WSNs – tools implemented according to the
presented principles can transparently work with monitoring data originating from
multiple WSNs, provided each WSN is connected to the Internet via a gateway de-
vice that communicates with the management system.

12 A. Rodrigues, J.S. Silva, and F. Boavida

• Support mobile nodes – LIS communications can use TinyOS Active Messages
or CTP. For WSN applications using these protocols, the tool will support the same
mobility pattern as the application.

• Support all application paradigms – the detection functionality is based on the
occurrence of application level events on the monitored sensor nodes and uses gen-
eral metrics. In this way, it supports all type of application paradigms. Neverthe-
less, for WSNs applications where sensor nodes sleep for long periods of time and
only wakeup on rare events, this approach alone will not work. This is a common
problem, not specific to the presented approach, and the usual solution is to support
mechanisms, either initiated by sensor nodes or by the sink, that enable to know if
a sensor node is alive.

• Support diverse hardware platforms and OSs – most of the detection function-
ality at sensor nodes is based on LIS, the exception being the metrics calculation.
Currently, LIS is directly supported by Mica2/Z, TelosB, and Hermes. Using it
with other OSs, like Contiki, should not be too difficult, given that LIS operates by
modifying C language based applications.

• Minimize the use of WSN resources – MCU, RAM, and ROM consumption are
minimized because LIS is a very efficient log tool and because the metrics calcula-
tion is very light. The impact in energy and bandwidth is mostly related to the
number of components having its function calls logged. Only sending call traces on
demand will enable further savings.

• Be easy to install and to use – in the case of this proof-of-concept implementa-
tion, deploying the tool on a sensor node just requires compiling the WSN applica-
tion with an option stating which components should have their activity logged (in
the presented evaluation experiments, these were the application and the scheduler
components). Usability can only be evaluated with an integrated platform and not
with a proof-of-concept prototype implementation. However the experiments did
not require much analysis work.

• Be flexible and extensible – post deployment configuration of the logging func-
tionality at sensor nodes was not supported in the current implementation. The im-
plemented functionality was based on an enhanced version of the ROI mechanism
provided by LIS. This work can be easily extended by using the LIS script lan-
guage, more metrics, and additional classification algorithms. Most of the work
would be in enhancing the parser to support the new metrics, and on developing
Python scripts to support the data formats required by the new classification
algorithms.

5 Related Work

Several pieces of work have addressed the problem of WSN monitoring. They are
briefly mentioned in this section, with a focus on the ones that had a higher impact on
the presented proof-of-concept design and implementation.

 An Automated Application-Independent Approach to Anomaly Detection 13

MANNA [9] was one of the first management frameworks for WSNs. In spite of
being a very flexible and general architecture, it did not target the support of auto-
matic detection and diagnosis mechanisms for the joint management of WSNs.

SWARMS [10] target the management of wide area WSNs in diverse geographic
locations, providing diagnostic and programming functionalities. It was designed to
be scalable, flexible, and extensible. The major concern with this architecture is the
fact that it requires each sensor node to be directly connected to a computer that
executes a node mate process. Moreover, there are no provisions for supporting
automatic detection and diagnosis.

MARWIS [11] targets the management of a heterogeneous WSN by dividing it
into homogeneous WSNs connected by a mesh network. It was designed to be scal-
able, flexible, and extensible. The major problem with this architecture is that sup-
porting sensor node heterogeneity by dividing a WSN in a set of homogenous WSNs
does not fit well when there is a need to manage several heterogeneous WSNs belong-
ing to diverse organizations. Moreover, MARWIS assumes sensor nodes are execut-
ing Contiki-based applications and there are no provisions for supporting automatic
detection and diagnosis.

Sentomist [4] is a tool for identifying potential transient bugs in WSN applications,
which also uses SVM to identify anomalous events. Nevertheless, by using a metric
based on information from the specific processor instructions executed in each event,
it requires the use of the Avrora emulator, which restricts it to lab use.

Finally, there are several tools developed to help diagnose WSNs operating in the
field. We have realized an extensive survey [12] that describes, analyses, and com-
pares a representative set of them. This work guided us in the development of
the current approach to WSN anomaly detection, and in identifying LIS as a good
candidate to be used.

6 Conclusion

This paper proposed a simple approach to anomaly detection in wireless sensor net-
works, based on the use of two general metrics, a light logging strategy, and a ma-
chine learning technique. The thesis was that these underlying concepts would be
enough to develop an automated, application-independent, light tool, capable of moni-
toring multiple WSNs. In order to assess this, a proof-of-concept implementation was
developed and subject to testing. The results have shown that the proposed approach
has very good potential and characteristics, being able to detect hardware and soft-
ware anomalies in a very effective way, and without compromising the identified
requirements, such as scalability, heterogeneity, applicability, generality and ease of
use.

The presented work opens many lines for further work. First and foremost, a more
extensive and broader scope evaluation should be done. In addition, other general
metrics should be identified and explored. The development of a full implementation
for use in existing, deployed WSNs would also very interesting, as well as the support
for IPv6 (6LoWPAN) in order to increase the tool’s applicability.

14 A. Rodrigues, J.S. Silva, and F. Boavida

Acknowledgment. We would like to thank Roy Shea (from UCLA) for clarifying
several aspects of the LIS operation. This work was partially financed by the iCIS
project (CENTRO-07-ST24-FEDER-002003).

References

1. Hayes, T., Pavel, M., Kaye, J.: Gathering the Evidence: Supporting Large-Scale Research
Deployments. Intel Technology Journal 13(3) (2009)

2. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill,
J., Welsh, M., Brewer, E., Culler, D.: Tinyos: An operating system for wireless sensor
networks. In: Weber, W., Rabaey, J., Aarts, E. (eds.) Ambient Intelligence. Springer
(2004)

3. Rodrigues, A., Silva, M., Camilo, T., Blanco, N., Pedro, J., Martins, J., Silva, J.S.,
Boavida, F.: Hermes: A versatile platform for wireless embedded systems. In: Proceedings
of the IEEE WoWMoM 2012. IEEE, San Francisco (2012)

4. Zhou, Y., Chen, X., Lyu, M., Liu, J.: Sentomist: Unveiling Transient Sensor Network
Bugs via Symptom Mining. In: Proceedings of the IEEE ICDCS, pp. 784–794 (2010)

5. Dutta, P., Feldmeier, M., Paradiso, J., Culler, D.: Energy Metering for Free: Augmenting
Switching Regulators for Real-Time Monitoring. In: Proceedings of the IPSN 2008, pp.
283–294. IEEE (2008)

6. Shea, R., Cho, Y., Srivastava, M.: LIS is More: Improved Diagnostic Logging in Sensor
Networks with Log Instrumentation Specifications. TR-UCLA-NESL-200906-01 (2009)

7. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification.
Technical Report, Department of Computer Science, National Taiwan University (2010),
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

8. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology 2(3), article no. 27 (2011)

9. Ruiz, B., Nogueira, J., Loureiro, A.: MANNA: A management architecture for wireless
sensor networks. IEEE Communications Magazine 41(2), 116–125 (2003)

10. Gruenwald, C., Hustvedt, A., Beach, A., Han, R.: SWARMS: A sensornet wide area re-
mote management system. In: Proceedings of the TridentCom (2007)

11. Wagenknecht, G., Anwander, M., Braun, T., Staub, T., Matheka, J., Morgenthaler, S.:
MARWIS: A management architecture for heterogeneous wireless sensor networks. In:
Harju, J., Heijenk, G., Langendörfer, P., Siris, V.A. (eds.) WWIC 2008. LNCS, vol. 5031,
pp. 177–188. Springer, Heidelberg (2008)

12. Rodrigues, A., Camilo, T., Silva, J.S., Boavida, F.: Diagnostic Tools for Wireless Sensor
Networks: A Comparative Survey. Journal of Network and Systems Management 21(3),
408–452 (2013), doi:10.1007/s10922-012-9240-6

	An Automated Application-Independent Approach to Anomaly Detection in Wireless Sensor Networks
	1 Introduction
	2 Requirements
	2.1 Scenario-Related Requirements
	2.2 Performance/Usage Requirements

	3 Proposed Approach
	3.1 Selected Platform and Operating System
	3.2 Metrics Calculation
	3.3 Logs Collection and Parsing
	3.4 Data Transformation
	3.5 Anomalous Events Detection and Diagnosis

	4 Evaluation
	4.1 Experimental Results
	4.2 Requirements Analysis

	5 Related Work
	6 Conclusion
	References

