
 

W.T. Ooi et al. (Eds.): PCM 2014, LNCS 8879, pp. 284–293, 2014. 
© Springer International Publishing Switzerland 2014 

Data-Dependent Locality Sensitive Hashing 

Hongtao Xie1, Zhineng Chen2, Yizhi Liu3, Jianlong Tan1, and Li Guo1 

1 Institute of Information Engineering, Chinese Academy of Sciences,  
National Engineering Laboratory for Information Security Technologies,  

Beijing, China, 100093 
2 Interactive Digital Media Technology Research Center, Institute of Automation, 

Chinese Academy of Sciences, Beijing, China, 100190 
3 School of Computer Science and Engineering, Hunan University of Science and Technology, 

Xiangtan, China, 411201 
{xiehongtao,tanjianlong,guoli}@iie.ac.cn,  

zhineng.chen@ia.ac.cn, liuyizhi928@gmail.com 

Abstract. Locality sensitive hashing (LSH) is the most popular algorithm for 
approximate nearest neighbor (ANN) search. As LSH partitions vector space 
uniformly and the distribution of vectors is usually non-uniform, it poorly fits 
real dataset and has limited performance. In this paper, we propose a new data-
dependent LSH algorithm, which has two-level structures to perform ANN 
search in high dimensional spaces. In the first level, we first train a number of 
cluster centers, then use the cluster centers to divide the dataset into many clus-
ters and the vectors in each cluster has near uniform distribution. In the second 
level, we construct LSH tables for each cluster. Given a query, we first deter-
mine a few clusters that it belongs to with high probability, and then perform 
ANN search in the corresponding LSH tables. Experimental results on the ref-
erence datasets show that the search speed can be increased by 48 times com-
pared to E2LSH, while keeping high search precision. 

Keywords: Locality sensitive hashing, approximate nearest neighbor. 

1 Introduction 

Nearest neighbor search in high-dimensional space is the core problem in database 
management, data mining and computer vision [1]. Traditional tree-based indexing 
methods can return accurate results, but they are time consuming for data with high 
dimensionalities. It has been shown that when the dimensionality exceeds 10, existing 
tree-based indexing structures are slower than the linear-scan [2], which is known as 
“dimensionality curse”. To solve this problem, hash-based methods are proposed [3] 
for approximate nearest neighbor (ANN) search.  

Among all the hash-based algorithms, locality sensitive hashing (LSH) [4] is one 
of the most widely used ANN search methods. It first takes a number of random pro-
jection functions to group or collect items close to each other into the same buckets 
with a high probability. In order to perform similarity query, LSH hashes the query 
item into some buckets and uses the data items within those buckets as potential can-
didates for the final results. Moreover, the items in the buckets are ranked according 



 Data-Dependent Locality Sensitive Hashing 285 

 

to the exact distance to the query item to compute the nearest neighbor. The final 
ranking computation among the candidates is called short-list search. LSH is an algo-
rithm based on random projection, so it partitions the vector space uniformly. In con-
trast, the distribution of the items in vector space is usually non-uniform. Consequent-
ly, the distribution of randomly projected values is far from being uniform. In such a 
situation, querying will cost a lot of time for many disturbance points are probed and 
it severely limits its search performance. 

 

Fig. 1. The framework of our two-level index. In the first level, we group the dataset into clus-
ters though the centers that are trained beforehand. During the second level, we apply E2LSH 
[4] to each cluster. 

To solve aforementioned problem, improved hash algorithms have been proposed 
[5][6][7]. These methods use more candidates, estimate optimal parameters or use 
improved hash functions. As they only consider the average runtime or quality of the 
search process over randomly sampled hash functions, which may result in large de-
viations in runtime cost or the quality of k-nearest neighbor results [8], they still can-
not solve the problem well. In this paper, we present a novel data-dependent LSH 
algorithm, which is composed of two-level structures. During the first level, we first 
train a number of centers through K-means algorithm [9] on the training set and then 
divide the dataset into a number of clusters which are corresponding to these centers. 
This step gets the similar points together. Within each cluster, the distribution of items 
is more uniform than that of the items in the whole dataset. During the second level, 
we apply E2LSH technique to each cluster to construct LSH tables. The uniform 
distribution of points within clusters results in the uniform distribution of point indi-
ces in the corresponding hash tables. The framework of proposed data-dependent 
LSH algorithm is illustrated in Figure 1.  



286 H. Xie et al. 

 

To further improve the search speed, we propose a novel search pruning method, 
based on a new distance metric which utilizes information about the relative positions 
and sizes of all clusters. Given a query, we first compute its distances to all cluster 
centers and take a few clusters as the candidates. Then, we apply E2LSH search algo-
rithm to the candidate clusters and get the nearest neighbors to the query. The experi-
ments conducted on benchmark datasets show that our algorithm can obviously  
improve the search speed while keeping high precision.    

The rest of this paper is organized as follows. Section 2 gives a review of previous 
works. Section 3 presents the proposed data-dependent LSH method. Section 4 shows 
the experimental comparisons. In section 5, we give the conclusion and future work.  

2 Literature Review 

As the basic LSH algorithm cannot deal with non-uniformly distributed dataset, many 
techniques have been proposed for improvement. These methods are classed into data 
independent and data dependent. 

Data independent methods do not use the base dataset for building index. Lv et al. 
propose multi-probe LSH [12], which systematically probes the buckets near the query 
points in a query-dependent manner, instead of only probing the bucket that contains the 
query point. It can obtain a higher recall ratio with fewer hash tables, but may result in 
larger selectivity from additional probes. Bawa et al. propose LSH-forest [13], which 
avoids tuning of the parameter by representing the hash table as a prefix tree and the 
parameter is computed based on the depth of the corresponding prefix-tree leaf node. 
Dong et al. [14] construct a statistical quality and runtime model using a small sample 
dataset, and then compute parameters that can result in a good balance between high 
recall ratio and low selectivity. Pan et al. propose Bi-level LSH [8]. In the first level, it 
uses a RP-tree to partition the dataset into sub-groups with bounded aspect ratios and is 
used to compute well-separated clusters. During the second level, it builds a single LSH 
hash table for each sub-group along with a hierarchical structure based on space-filling 
curves. Bi-level LSH is similar to our method in this paper, but as it uses RP-tree to 
partition the dataset randomly, it has limited performance. 

Data dependent methods use the base dataset for building index. Babenko et al. pro-
pose inverted multi-index [15], which generalizes the inverted index by replacing the 
standard quantization within inverted indices with product quantization. In some meth-
ods, data are represented by binary codes to reduce memory usage and computation 
times, as the calculations in Hamming space can be executed by efficient bitwise XOR 
operation. Among these schemes, spectral hashing [6] is a representative method. It de-
fines a hard criterion for a good code that is related to graph partitioning and uses a spec-
tral relaxation to obtain an eigenvector solution. Using binary codes can improve the 
efficiency of indexing [16]. However, we only focus on using pure floating-point vector. 

3 Data-Dependent Locality Sensitive Hashing 

In this section, we first elaborate the details of our data-dependent LSH framework 
and propose a distance metric. Then we present a new search algorithm for data-
dependent LSH. 



 Data-Dependent Locality Sensitive Hashing 287 

 

3.1 Constructing Data-Dependent LSH Index 

As LSH cannot deal with non-uniform distribution dataset, it has limited search effi-
ciency. K-means is a popular clustering algorithm and can partition n items into k 
clusters, in which each item belongs to the cluster with the nearest mean [9]. To make 
the distribution of the items in the hash tables much more uniform, we use K-means 
algorithm to divide the dataset into several clusters. Then, we apply E2LSH method to 
each cluster to build the two-level index. 

The procedure of constructing data-dependent LSH hash tables is given in Algo-
rithm 1. We first apply the K-means algorithm to the training dataset n

TD , and get a 

number of cluster centers ( 1,2 )j j kμ =  . Then we assign the points in the dataset 
nD to these centers and partition the dataset into k clusters. Finally, we adopt E2LSH 

algorithm [4] to each cluster for building LSH tables. 
 

Algorithm 1. Building data-dependent LSH 

Input: A set of data items { } n
ix R∈ (n is the dimension of each item.) 

Output: A set of E2LSH structures{ }iT . Each E2LSH structure is com-

posed of multiple LSH tables, and there are many hash buckets in each 

table. The indices of the points are preserved in corresponding buckets. 

Notations: nD , the index dataset; n
ix D∈ ( 1,2 )i M=  ; n

TD , the training 
set; ( 1,2 )j j kμ =  , the centers gotten by K-means algorithm 

on n
TD ; ( 1,2 )jA j k=  , the clusters which nD is grouped into. 

Operation: 
1. ( 1,2 )j j kμ = ← apply K-means algorithm to n

TD  

2. for 1 i M≤ ≤ do 

3.   2arg min || ||j i j
j

A x μ← −  
4. end for 

5. for 1 j k≤ ≤ do 

6.   jT ← apply E2LSH to jA  
7. end for 

Because we apply K-means algorithm to partition the dataset, the distribution of  
data items in our hash tables is more uniform than that in original E2LSH hash tables. 

3.2 Search Algorithm for Data-Dependent LSH Index 

In LSH-based methods, short-list search is the main bottleneck of improving search 
speed [8]. To reduce the time cost of short-list search, we present a novel pruning 
algorithm for our data-dependent LSH. 

In the first level, we partition the dataset into a number of clusters. Intuitively, the-
se clusters have different sizes, and the relative distances between the cluster centers 
are also different. Due to influence of the size of different clusters and the relative 
distances, we incorporate these factors into the computation of distance and propose 
the distance metric '

iD as follows: 



288 H. Xie et al. 

 

 

' 1

1

i
i

i

d s
D

d s
= × .  (1) 

We first compute the distances '
id between the query q and all cluster centers iμ and 

rank the distances in ascending order and get the sequence id . 1d is the nearest center 
to q and 1s is the size of corresponding cluster. In this paper, we use the amount of the 
items in each cluster as its size metric. 

In order to perform similarity search, we first get the sequence '
iD as mentioned 

above and rank '
iD in ascending order to get the ordered sequence iD . Then, we take 

the top m clusters 1 2, , mA A A  as the candidate clusters to be probed. We apply 
E2LSH search algorithm to 1 2, , mA A A and perform short-list search to get the near-
est neighbors of the query q . The procedure of the search algorithm is depicted in 
algorithm 2. 

Algorithm 2. Search algorithm for Data-dependent LSH 
Input: A query point q. 
Output: the nearest neighbor of q. 
Notations: ( 1,2, )

iDL i m=  , the clusters corresponding to iD  ; 

(1 )m m k≤ < , the number of probed clusters; is , the size of correspond-

ing cluster. 
Operation: 

1. for 1 i k≤ ≤ do 

2.    '
2|| ||i id q μ= −  

3. end for 
4. 1 2 kd d d ← rank ' ( 1, 2 )id i k=  in ascending order 

5. for 1 i k≤ ≤ do 

6.    ' 1

1

i
i

i

d s
D

d s
= ×  

7. end for 
8. 1 2, , kD D D ← rank ' ' '

1 2, , kD D D in ascending order 

9. 1 2,a a ← apply E2LSH search algorithm to ( 1, 2 )
iDL i m=  . 

10. 2arg min || ||i
i

n q a= −  

11. return na  

 
In practice, algorithm 2 is a pruning strategy. As algorithm 2 takes advantage of the 

information about the relative positions and sizes of all clusters, we can improve the 
search speed while keeping high precision, as illustrated in the next section. 

4 Experimental Results 

In this section, we first study the influence of different parameters. Then, we conduct 
multiple comparison experiments between E2LSH [4], Bi-level LSH [8] and our data-
dependent LSH.   



 Data-Dependent Locality Sensitive Hashing 289 

 

4.1 Experimental Setup 

In the experiments, we use the publicly available BigANN set [10]. BigANN set is 
composed of four data packages including ANN_SIFT10K, ANN_SIFT1M, 
ANN_GIST1M and ANN_SIFT1B. We use ANN_SIFT1M, which contains 1M SIFT 
descriptors as index data, 100k SIFT descriptors as training set and 10k SIFT de-
scriptors as query data, as described in Table 1. The training set is used to learn the 
cluster centers. 

Our method is single-threaded programmed and executed on a server which has 
64G main memory, Intel Xeon E5-2620*2(2.00 GHz, 7.2GT/s, 15M cache, 6cores). 
We will draw the conclusion in term of the comparison of accuracy and efficiency. 

Table 1. Description of training set, index set and query set 

Dataset Size 

training set 100,000

query set 10,000 

base set 1,000,000 

 
For experimental evaluation, we use speedup to compare our two-level index with 

E2LSH [4] and Bi-level LSH [8]. The speedup is defined as follows: 

 

_
s

_

linear time
peedup

ann time
= ,  (2) 

where linear_time is time cost of linear search and ann_time is time cost of our 
method, E2LSH or Bi-level LSH. Precision is another principle to measure the 
performance of an index algorithm. The precision is defined as follows: 

 ( )

( )

count AR LR
precision

count LR
= ∩ ,   (3) 

where AR is the ANN search result, LR is the linear search result. The function count 
is used to count the number of the result set. For each query, we calculate its precision 
and we take the mean value over all queries. 

4.2 Influences of Parameters 

The performance of our data-dependent LSH is influenced by two parameters i.e. 
numbers of clusters in building index and number of probed clusters in search. 

To make out how these two parameters affect the performance of our method, we 
plot two diagrams and two tables which show how the time cost and the number of 
probed clusters changes along with the number of clusters in search precision of 90% 
and 96%, respectively. 

From Figure 2, we can see that to reach the same accuracy, the time cost declines 
when the number of clusters increases at the beginning, e.g. the number is less than 
1500. But the time cost begins to increase when the number of clusters is larger than  
 



290 H. Xie et al. 

 

 
(a) 

 
(b) 

0

0.05

0.1

0.15

0.2

0.25

60 80 100 120 140 160 200 400 800 1500 1700

ti
m

e 
co

st
(s

)

clusters

96% precision

 
(c) 

 
(d) 

Fig. 2. (a), (c) The time cost changes along with the number of the clusters in precision of 90% 
and 96% respectively; (b), (d) the number of probed clusters with respect to different number of 
clusters in precision of 90% and 96% respectively 

1500. The reason is that, in the beginning, with the increment of cluster number, the 
reduced amount of items in probed clusters is more than the increased amount of 
items in additional probed clusters to reach the same precision. But, the situation is 
reverse when cluster number is too large. Moreover, along with the increment of the 
number of clusters, the time cost of conducting step 1 to step 3 in algorithm 2 is also 
increased. So we choose 1500 clusters. As shown in Figure 2 (d), to reach high preci-
sion, we may choose 23 probed clusters. 



 Data-Dependent Locality Sensitive Hashing 291 

 

4.3 Comparison of Overall Performance 

To verify the performance of our data-dependent LSH (DP-LSH), we conduct compara-
tive experiments among DP-LSH, E2LSH [4] and Bi-level LSH [8]. DP-LSH divides 
the dataset into 1500 clusters in the first level and the number of probed clusters is set to 
be 23. In the experiments, we compare the precision and speedup using different num-
ber of hash tables to testify that our algorithm can get better speedup compared to 
E2LSH and Bi-level LSH in all cases. Experimental results are shown in Figure 3. 

 
(a) precision 

 
(b) speedup 

Fig. 3. (a) Search precision changes along with the number of hash tables; (b) speedup (log10) 
changes along with the number of hash tables 



292 H. Xie et al. 

 

From Figure 3(a), we can see that the precision of DP-LSH, LSH and Bi-level LSH 
is varying during 0.97-1, and the precision of DP-LSH is about 1% lower than E2LSH 
when the number of hash tables is less than 14. Nevertheless, the precision of DP-
LSH is almost equal to E2LSH and Bi-level LSH when the number of hash tables is 
larger than 14. So these three methods have very similar search precision. 

From Figure 3(b), we can see that the speed of DP-LSH is about 48-50 times faster 
than E2LSH, using different number of hash tables. This efficiency superiority of DP-
LSH is stable even when the number of hash tables changes. Besides, DP-LSH is 
much faster than Bi-level LSH. This is because that DP-LSH has a more uniform 
partition of dataset than Bi-level LSH, which results in better search efficiency. To 
our knowledge, this is the best performance of the state-of-the-art hash-based index-
ing methods. 

Based on the above comparisons, we prove that DP-LSH can significantly improve 
the search speed while keeping high search precision. Moreover, the improved per-
formance is stable. 

5 Conclusions and Future Work 

In this paper, we propose a new two-level hashing index structure and corresponding 
search algorithm. The goal is to deal with the problem that the LSH method loses 
efficiency when indexing non-uniform distribution datasets. Our index has two-level 
structure to perform ANN search in high dimensional spaces. In the first level, we 
divide the dataset into many clusters, to ensure the items in each cluster has near uni-
form distribution. In the second level, we construct LSH tables for each cluster. Be-
sides, we also propose a novel search pruning method. In brief, the proposed method 
is simple and cheap, and has been proven by exhaustive experiments. 
   In future work, we will test our algorithm in more large scale datasets. We also 
need to design efficient out-of-core algorithm to handle many very large datasets 
(e.g. >10 billion). 

Acknowledgement. This work is supported by the "Strategic Priority Research Pro-
gram" of the Chinese Academy of Sciences (XDA06031000), National Nature Sci-
ence Foundation of China (61303171, 61303175), Hunan province university innova-
tion platform open fund project (14K037), National High Technology Research and 
Development Program (2011AA01A103). 

References 

1. Wan, J., Tang, S., Zhang, Y., Huang, L., Li, J.: Data Driven Multi-Index Hashing. In: 
IEEE International Conference on Image Processing (2013) 

2. Zezula, P., Amato, G., Dohnal, V., et al.: Similarity Search: The metric space approach. 
Advances in Database Systems (2006) 

3. Adonis, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor 
in high dimensions. In: Symposium on Foundations of Computer Science (2006) 



 Data-Dependent Locality Sensitive Hashing 293 

 

4. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme 
based on p-stable distributions. In: Symposium on Computational Geometry (2004) 

5. Jegou, H., Amsaleg, L., Schmid, C., Gro, P.: Query adaptative locality sensitive hashing. 
In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2008) 

6. Weiss, Y., Torralba, A., Fergus, R.: Spectral Hashing. In: Advances in Neural Information 
Processing Systems (2008) 

7. Heo, J.-P., Lee, Y.: Spherical Hashing. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (2012) 

8. Pan, J., Manocha, D.: Bi-level Locality Sensitive Hashing for k-Nearest Neighbor Compu-
tation. In: Very Large Data Base (2010) 

9. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006) 
10. Jegou, H., Douze, M., et al.: Product Quantization for Nearest Neighbor Search. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011) 
11. Pauleve, L., Jegou, H., Amsaleg, L.: Locality sensitive hashing: A comparison of hash 

function types and querying mechanisms. Elsevier B.V. (2010) 
12. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient index-

ing for high-dimensional similarity search. In: Very Large Data Base (2007) 
13. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. 

In: International Conference on World Wide Web (2005) 
14. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling lsh for performance 

tuning. In: Conference on Information and Knowledge Management (2008) 
15. Babenko, A., Lempitsky, V.: The inverted multi-index. In: IEEE Conference on Computer 

Vision and Pattern Recognition (2012) 
16. Xie, H., Zhang, Y., Tan, J., Guo, L., Li, J.: Contextual Query Expansion for Image Re-

trieval. IEEE Trans. on Multimedia 16(4) (June 2014) 


	Data-Dependent Locality Sensitive Hashing
	1 Introduction
	2 Literature Review
	3 Data-Dependent Locality Sensitive Hashing
	3.1 Constructing Data-Dependent LSH Index
	3.2 Search Algorithm for Data-Dependent LSH Index

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Influences of Parameters
	4.3 Comparison of Overall Performance

	5 Conclusions and Future Work
	References




