Deadbeat Control for Multivariable
Discrete Time Systems with Time
Varying Delays

Ahmad Taher Azar and Fernando E. Serrano

Abstract In this chapter a novel approach for the deadbeat control of multivariable
discrete time systems is proposed. Deadbeat control is a well known technique that
has been implemented during the last decades in SISO and MIMO discrete time
systems due to the ripple free characteristics and the designer selection of the output
response. Deadbeat control consist in establishing the minimum number of steps in
which the desired output response must be reached, this objective is achieved by
placing the appropriate number of closed loop poles at the origin and cancelling the
transmission zeros of the system. On the other side, constant time delays in the state
or the input of the system is a phenomena found in many continuous and discrete
time systems, produced by delays in the communication channels or other kind of
sources, yielding unwanted effects on the systems like performance deterioration, or
instability on the system. Even when the analysis and design of appropriate con-
trollers with constant time delays in the state or the input has been studied by several
researchers applying several control techniques such as state and output feedback, in
this chapter the development of a deadbeat control for discrete time systems with
constant delays is explained as a preamble of the main topic of this chapter related to
the deadbeat control of discrete time systems with time varying delays. This first
approach is derived by implementing a state feedback controller, and in opposition of
the implementation of traditional techniques such as optimal control where a stable
gain is obtained by solving the required Riccati equations, the deadbeat controller is
obtained by selecting the appropriate gain matrix solving the necessary LMI’s
placing the required number of poles at the origin and eliminating the finite trans-
mission zeros of the system in order to obtain the required deadbeat characteristics in
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which the desired system response is reached in minimun time steps. After this
overview, deadbeat controllers are designed considering the time varying delays,
following a similar approach such as the constant time delay counterpart. In order to
obtain an appropriate deadbeat controller, a state feedback controller gain is obtained
by solving the required LMI’s, placing the required poles in order to obtain the
desired response cancelling the finite transmission zeros. The theoretical background
is tested by several illustrative examples and finally the discussion and conclusions
of this work are shown in the end of this chapter.

Keywords Deadbeat control - Time delay systems - Discrete time systems -
MIMO systems

1 Introduction

In this chapter the derivation and design of deadbeat controllers for multivariable
discrete time system is proposed in order to overcome with this problem when time
varying delays are found in the states or the input of the system. Deadbeat control is
an efficient control technique that has been implemented for decades in single input
single output systems SISO and later the design of this controller has been trans-
ferred to multi input multi output MIMO systems. Deadbeat control consist in
deriving a controller that makes the system variables to reach the steady state value
in a minimum number of time steps, this objective is met by placing the right
number of poles at the origin and cancelling the finite transmission zeros.

It can be found in literature that deadbeat control can be implemented in SISO
systems. one common problem found when this kind of controllers are imple-
mented is ripple, this phenomena occurs when some deviations take place in the
error signal at different time steps [11] in order to solve this problem different
deadbeat control strategies has been developed by several researcher for example
selecting an equivalent deadbeat continuous time system that is equivalent to the
discrete time counterpart for both output and input signal [11]. Another well known
strategy for the deadbeat control of SISO system is implemented by optimal pole
placement design where, as it is known, the proper selection of the closed loop
poles of the system is achieved by selecting an appropriate deadbeat compensator
[7]. Another approach for deadbeat compensation is shown in the stabilization of
SISO system by output feedback in which the derivation of a suitable controller
gain is done by implementing an appropriate control algorithm [6].

For the multi input multi output MIMO systems similar approaches to SISO
systems has been derived in order to obtain the appropriate deadbeat control, some
MIMO deadbeat control strategies are found in literature in which the implemen-
tation of state feedback or output feedback controllers are designed in order to
set all the system parameters such as poles and transmission zeros in the right
position obtaining ripple free deadbeat controllers for SISO discrete time systems
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as explained in [19] where the effects of ripple are eliminating by avoiding the
cancellation of the plant poles by the controller zeros.

In the case of multivariable discrete time system several deadbeat control
strategies has been proposed in order to solve this problem either by output feed-
back or state feedback. Some of this strategies consist in deriving a suitable control
law by placing the required poles at the origin and cancelling the transmission
zeros. In the case of output feedback deadbeat controller several strategies but with
different perspective are found in literature, for example, the derivation of a
deadbeat control algorithm by the minimization of a quadratic cost function with
cheap control, which means that there is no cost on the input where the main
purpose is to drive the output of the system to the final value in a minimum number
of time steps [16]. Another deadbeat output feedback control approach is shown in
[20] where a similar deadbeat controller design as explained before where an
optimal control approach is developed by the minimization of a cost function with
no cost on the input (cheap control) and introducing a weighting matrix in the states
in order to find a suitable control algorithm to stabilize the system in a minimum
number of time steps. In [10] the deadbeat control problem is solved by the
implementation of periodic output feedback then two deadbeat control problems are
formulated in order to overcome with this problem. Even when output feedback is a
common alternative for the solution of deadbeat control problems, a similar
approach is found in literature for the solution of this problem implementing state
feedback, this is obviously the main approach applicated by the control system
community. Most of these works are based on optimal control by minimizing a cost
functional as shown in [4, 5] and as explained in [14] the state feedback deadbeat
controller is obtained by the solution of the Riccati equations. Another approach is
explained in [9] where a minimal energy deadbeat control approach is implemented
in order to stabilizes the system.

Even when deadbeat controllers has been implemented in SISO and MIMO
systems with no time delay, in this chapter we consider this problem which is an
important consideration to take into account because of delay is found in many
physical systems, and this phenomena yields many unwanted effects that deteriorate
the system response and they are a potential source of instability. In this chapter the
deadbeat controller design of multivariable discrete time system with time varying
delays in the states and the input of the system are explained in order to design
suitable deadbeat controllers that overcome the effects yielded by time delays. Time
varying delays are a more feasible representation of the real effects produced by this
phenomena due to the variable characteristic of delays in physical systems. However
in this chapter the design of deadbeat controller for multivariable discrete time
systems with constant time delays are explained first as a preamble of the design of
deadbeat controllers for multivariable time varying delay systems. This work is
divided in the following sections; In Sect. 2 a short explanation of previous work
related to the deadbeat control of discrete time multivariable system is shown, as a
preamble of the main topic of this chapter about the design of deadbeat controllers
for discrete time MIMO systems with time varying delays. In Sect. 3 the design of
state feedback deadbeat controllers for discrete time MIMO systems with constant
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time delay is developed and explained as a preamble of the main topic of this
chapter. In Sect. 4 the design and derivations of state feedback deadbeat controllers
for discrete time MIMO systems with time varying delays in the states is shown. In
Sect. 5 then the analysis and design of state feedback deadbeat controllers for
discrete time MIMO systems with time varying delays in the input is shown to
stabilizes this kind of systems. Finally, in Sects. 6 and 7 the respective discussion
and conclusions of this work are shown to analyze the results evinced in this chapter.

2 Previous Work

As explained in the previous section, there are different kinds of deadbeat control
strategy for SISO and MIMO system, but previous works found in literature for
time delay deadbeat control basically are very limited and has not been considered
by the control systems community. Even when time delays are considered a source
of performance deterioration and instability, this problem has not been treated
before and the analysis, design and development of a suitable deadbeat controller
for multivariable discrete time systems is necessary due to this physical phenomena
produced by communication delays and other sources. Time varying delays are
very common in many physical systems, and they can deteriorate the system per-
formance and yield instability, the main problem arises because of this kind of
phenomena are more complex than the constant time delay case, so an appropriate
mathematical model must be derived taking in count the stability characteristics of
the system designing a suitable control strategy, that in this case, a deadbeat con-
troller for MIMO discrete time systems with time varying delays must be designed.

As explained in the previous section, deadbeat control consists in designing an
appropriate controller which leads the system variables to reach the steady state
values in a minimum number of time steps. This strategy is implemented in the
SISO and MIMO cases producing the expected results. In the case of SISO systems,
some effective control strategies has been developed in the past that yield the
desired system response. In [6] the problem of deadbeat control is solved for the
SISO discrete time case, implementing an output feedback controller that is a
simple and efficient approach to overcome with this problem. It must be considered
that there is a vast amount of control strategies found in literature that deals with
this control problem, for example, the implementation of linear quadratic regulators
and optimization theory. Apart from this deadbeat control approach for SISO
systems, another approach is proposed by [7] where a pole placement algorithm is
designed to obtain a suitable deadbeat controller, the incorporation of one closed
loop problem which incorporates interpolation constraints with the help of linear
programming is proposed by these authors. In [11] a discrete time deadbeat con-
troller for SISO systems is designed based in a continuous time deadbeat controller,
considering the possibility of designing a ripple-free deadbeat controller; in this
approach the main idea is to prove that a continuous time deadbeat controller is
equivalent to the discrete time SISO counterpart, dealing with this control problem.
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Another ripple—free deadbeat controller for SISO systems is implemented as
shown in [19, 21] where this kind of controllers can be designed if and only if the
systems poles and zeros are disjoint.

In the case of multivariable deadbeat controllers for discrete time systems the
control strategies are based on output and state feedback, where these two
approaches are usually solved by the minimization of an optimal control functional
and then the gain matrices are obtained by the solution of the required Riccati
equations. In [16], the deadbeat control problem is solved by minimizing an optimal
control functional with cheap control (no constraints in the inputs) and the poles of
the systems are placed in the origin. In [20] this problem is solved by output
feedback in which a change of basis on the original discrete time system is
implemented in order to place a specified number of poles at the origin and can-
celling the finite transmission zeros. In [10], the solution of the deadbeat controller
problem is solved by a periodic output feedback at the beginning of the period and
then two deadbeat controller strategies are proposed to overcome this problem.

In the case of deadbeat control for multivariable discrete time systems with state
feedback there are several works found in literature such as [3-5] where the
deadbeat controller design is considered after a change of basis in order to stabilizes
the system in a minimum number of time steps. Even when the works related to the
deadbeat control of MIMO system with time delays found in literature are limited,
previous works related to the stabilization of time delay systems is found by
overcoming this problem solving the required LMI’s. The control system design
problem can be implemented by static output feedback or state feedback. In the case
of constant time delays the derivation of a feasible controller is found in [18] where
a simple and systematic method for systems with time delays are explained when
this phenomena is found in the input of the system. In the case when time varying
delays are present in the inputs or the states, some approaches are found such as the
state or output feedback, in [8] where an output feedback controller synthesis is
implemented by solving the required LMI’s to find a suitable gain matrix. Another
interesting approach can be found in [24] where the stabilization of discrete time
fuzzy system is done by obtaining first an stability condition and then the required
LMTI’s are obtained by implementing a Lyapunov-Krasovskii functional. Finally in
[1, 22] the control of uncertain control systems with time delays and the robust
stabilization of time delay system is explained where an LMI approach is imple-
mented to solve a robust controller for time delay systems proposing the necessary
Lyapunov-Krasovskii functional.

3 Deadbeat Control for Multivariable Systems
with Constant Time Delays

In this section the design and development of a deadbeat controller for multivari-
able discrete time systems with constant time delays is explained as a preamble of
the main topic of this book chapter related to the deadbeat control of multivariable
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discrete time systems with time varying delays. Deadbeat control consist in
designing a control system that stabilizes the system in a minimum number of time
steps, so the main idea envinced in this section is to design an appropriate deadbeat
controller that overcomes the time delay effects when this are present in the states.
As it is well known time delays are a source of system performance deterioration
and instability, so it is necessary to derive a suitable control strategy that deals with
this effect in order to obtain a better performance and avoid instabilities on the
system. The theoretical background for the design of deadbeat controllers for
multivariable discrete time systems with constant time delays in the states, is
obtained by designing an state feedback controller in order to place an specified
number of poles at the origin and eliminate the transmission zeros of the system,
keeping in mind that the system must be stabilized in minimum time steps. In this
case some conditions are established in order to yield the robust stabilization of the
system by solving the required LMI’s [12, 13, 17] where the LMI’s conditions are
obtained by defining a Lyapunov functional by augmenting the state vector, so by
making a change of basis on the system it is possible to design appropriate deadbeat
controllers when delays are present in the states.

In this section the derivation of a state feedback controller is shown to proved
that is possible to obtain a feasible gain matrix by solving the required LMI’s
instead of the optimal control approach found in literature [2] so establishing the
required Lyapunov function it is possible to obtain the LMI’s that are implemented
to find the controller gain matrix by solving an optimization problem. The deadbeat
controller synthesis is obtained by a Lyapunov approach that is more effective than
the solution of a optimal control problem and the main advantage of this approach,
is that the controller synthesis can be obtained by a H., approach [15, 23] where a
robust controller design can be done by selecting an appropriate gain that improves
the disturbance rejection properties and unmodelled dynamics of the system. The
derivation of the state feedback deadbeat controller for multivariable discrete time
systems with constant time delays, consist in implementing a change of basis of the
original system in order to obtain (n — p) eigenvalues of the system at the origin
where p are the finite transmission zeros of the system and 7 is the state dimension.

3.1 Deadbeat Control Design for Multivariable Discrete Time
System with Constant Time Delay

The deadbeat controller design for multivariable control systems with constant time
delays in the state consist in finding a stable state feedback matrix gain, this gain is
found by implementing the required LMI’s that results from establishing a
Lyapunov functional to analyze and design a stable controller according to the
Lyapunov stability theorem. The first step in the design of deadbeat controller for
system with constant time delays is to established the minimum time steps in which
the system is stabilized, this objective is reached by implementing a change of basis
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in order to obtain (n — p) eigenvalues at the origin where n is the state dimension
and p is the number of stable transmission zeros of the system. Then the linear
matrix inequalities LMI’s are found by implementing a Lyapunov functional.

In order to design the deadbeat controller for multivariable discrete time systems,
the following discrete time model with state delays must be considered:

x(k+ 1) = Ax(k) + Ayx(k — d) + Bu(k) ()
y(k) = Cx(k)

where x(k) € R" is the state vector, d is a nonnegative integer that represent the

delays, u(k) € R™ is the input vector and y(k) € R! is the measured output.

Definition 1 In order to design a stable state feedback deadbeat controller, system
(1) must be controllable and observable.

Define the following state feedback control law that is implemented for the
deadbeat control of multivariable discrete time systems.

u(k) = —Kox(k) 2)

This control law is selected in order to obtain the deadbeat controller of the
system, that is, stabilizing the system in a minimum number of time steps. This
requirement is met by analyzing the steady state solution of the system where the
initial condition of the system is transferred to the final value in a minimum number
of time steps. The solution of the system is obtained recursively to obtain the
deadbeat response of the system:

k—1
x(k) = (A — BK+)*x(0) + > Ad(A — BK4) " 'x(i — d) (3)
i=0

where x(0) is the initial condition of the system. Then the control law is defined to
stabilizes the system by deadbeat, in order to drive the system to the desired final value.

k—1
(k) = C((A — BK+)"x(0) + >~ Ad(A — BK+)""'"'x(i — d)) (4)
i=0

where u is the minimum number of steps to reach the final value infinite time. This
objective is achieved by selecting the appropriate value of u in order that the n — p
eigenvalues of A be located at the origin and the rest are pick in order to coincide
with the system’s zeros [20], where n is the state dimension and p is the number of
stable transmission zeros of the system.

In order to design the deadbeat controller it is necessary to apply a change of
basis for the original systems, considering the following similarity transformation
matrix:
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T=IT\:T) (5)

In order to design the deadbeat controller it is necessary to select n — p linear
independent vectors for the basis where 7 is the state dimension and p is the number
of finite transmission zeros of the system. The following similarity transformation is
implemented in order to make a change os basis:

X(k+1) =T 'ATY (k) + T 'A T (k — d) + T~ ' Bu(k)

y(k) = CTY(R) ©

Then the resulting closed loop system implementing the state feedback control
law is:

X(k+1) = (TT'AT — T7'BK )X (k) + T'A,TX (k — d)

y(k) = CTY (&) 7

and then for model reduction the following equivalent matrices are defined:

A, =T 'AT
Ay =T AT
" . (8)
B,=T'B
C,=CT

Transforming [7] in:

Xk +1) = (A, — ByK2)X (k) + Ay (k — d)

©)
(k) = Cpx'(k)
Selecting C, such as the system has transmission zeros at infinity.
In order to obtain the gain matrix Ky, the following theorem must be considered
in order to find this matrix by a LMI approach finding the required matrices to
assured the closed loop system stability.

Theorem 1 The closed loop stability of system [9] is assured if there exist positive
definite matrices Q > 0 and P > 0 found by solving the following linear matrix
inequality in order to solve for the gain matrix Ky

O'PO—-P+Q DPA,

<0 10
Al PO Al PA—Q (10)

where @ is defined later.
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Proof Consider the following Lyapunov-Krasovskii functional [2, 12, 13]:
k=1

V(x(k)) = x" (k)P (k) + Z X (j)0x (j) (11)
Jj=k—d O

Considering that AV (k) = V(k + 1) — V(k), the first derivative of the Lyapunov
functional is:

AV (x(k)) =xT (k)D" PDx' (k) + X" (k)®" PA,ox (k — d)
+ X (k — d)A POX (k) + X7 (k — d)A] PA,aX (k — d) (12)
— XT(k)Px (k) + xXT (k)X (k) — xX'T (k — d)OX' (k — d)

where ® = A, — B,K,Then defining an augmented state vector as shown in (13):

=[] =

Then the following representation of AV (x(k)) is:
AV (x(k)) = E'RE (14)

So by solving the following LMI the resulting matrices P, Q and K. are found [2]:

O"PO—-P+Q DPA,

R =
Al PO Al PA —Q

<0 (15)

After defining the conditions in order to find a stable deadbeat controller gain
matrix, a deadbeat controller can be designed in order to meet all the system
performance requirements according to the deadbeat specifications. In order to
clarify the theoretical background of this section an illustrative example is done to
analyze the performance of a numerical example.

3.2 Example 1

Consider the following multivariable discrete time system with constant time delays
in the states.

x(k+1):[_9 S}x(k)—&—{s 9}x(k—d)—|—[l O}u(k)

0 7 30 0 1
1 o (16)
ORI
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where d = 1 s and sampling period T = 10 s. Then the following matrices are found
by solving the respective LMI expressed in (10) at different minimum time steps.
For pt = 2 the following transformation matrix is implemented:

_[2x107 0
r= {0 108 ] (17)
obtaining

[4.9945 0 g

0= x 10
10 4.9945
[0.4494  0.0000 4

P= x 10 (18)
1 0.0000 0.0002
[—0.4995 0 4

K. = x 10

10 —0.4995

For u =1 the following transformation matrix is implemented:

_[2x10% 9x10°
r= [0 1 x 106] (19)
Obtaining:

[4.9978 0 g

0= x 10
10 4.9978
[0.0023 0.0063

P= (20)
10.0063 0.0147
[—0.4998 0 4

K. = x 10

10 —0.4998

For u = 0 The following transformation matrix is implemented:

C[12 25 6
T_[M 9]><10 (21)
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Fig. 1 System response for the variable x;
Obtaining:
[4.9944 0 3
0= x 10
10 4.9944
[—0.2868 —0.0388
P= (22)
| —0.0388 0.0570
[—0.4994 0 4
K = x 10
10 —0.4994

In Fig. 1 the systems response of the variable x; is depicted, for the three
minimum time steps, u = 0, 1,2, given for the design of deadbeat controller where
as can be noticed the desired system response is reach with a minimum time
according to the selection of the transformation matrix and the parameter u. So the
system objective are reached by a proper selection of the system poles and trans-
mission zeros keeping the stability properties of the system.

In Fig. 2 the system response of the variable x; is depicted, showing that this
system variable reaches the desired final value after a minimum number of time steps
according to the parameter setting u. The system variable x, follows a similar
trajectory as the variable x|, so the system is stabilizes as required by the deadbeat
controller design. The variables x; and x; are required to follow a specified trajectory
in a minimum time when a step reference signal change the setpoint to one in # =0 s.
As it is corroborated later the system variables reach the desired value from an

specified initial conditions [0, O]T to the desired final values as specified in (4).
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Fig. 3 System error for the variable x;

In Fig. 3 the system error signal for the variable x; is shown where as it is
corroborated the signal error is kept into the desired range due to the stabilization of
the system variables. The gain matrix K,, found by solving the required LMI,
minimize the errors between the reference signal and the output signal as long as
possible because of the poles are placed in the required position to minimize the
error due to a proper selection of the gain matrix.

In Fig. 4 the system error variable for x, is shown and as it is corroborated the
error signal is kept into a small margin as expected, according to the design
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Fig. 4 System error for the variable x,

procedure. The selection of an appropriate gain matrix Ky drive the system vari-
ables to the desired final value so the error margin is as small as possible because of
the appropriate pole placement and transmission zeros allocation.

In this section the development and design of deadbeat controllers for multi-
variable discrete time systems with constant time delays is explained. It is proved
that this kind of systems can be stabilized by a state feedback control law according
to the stability properties of the system, established by a proper selection of a
Lyapunov-Krasovskii functional in order to obtain the stability conditions of the
system and establishing the linear matrix inequalities to find positive definite
matrices that meet the stability conditions.

The deadbeat controller explained in this section is developed by designing an
appropriate state feedback control law which drive the system states to the steady
state values in a minimum number of time steps. This objective is accomplished by
solving the resulting LMI obtained by a Lyapunov approach, as it is explained in
the works of [15, 23] this deadbeat controller design can be done by solving a H,
control problem to improve the closed loop system robustness and makes the
system more reliable when external disturbances and unmodelled dynamics are
present in the model.

The development of a deadbeat controller for multivariable discrete time systems
with constant time delays is done as a preamble for the main topic of this chapter,
related to the state feedback controller design of deadbeat controllers for multi-
variable discrete time systems with time varying delays. The theoretical background
for constant time delay systems shown in this section are the basis for the design of
deadbeat controller when time varying delays are present in the models. That is the
main reason to begin with this topic to show the fundamentals of deadbeat control
for time delay systems. Finally, the application of the theoretical background
explained in this section is illustrated by a numerical example to analyze the system
performance with different time steps parameters.
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4 Deadbeat Control for Multivariable Systems with Time
Varying Delays in the States

In this section the development and design of deadbeat controllers for multivariable
systems with time varying delays in the state is shown. Time varying delays are
common in many kinds of systems produced by communication delays and other kind
of sources, this effect is the main origin of many unwanted effects such as performance
deterioration and instability, therefore, time delay systems has increased the interest on
this kind of problems in the control system community. Two kinds of stability con-
ditions have been reported in literature, the delay dependent condition (the condition
containing delay information) and delay independent condition (the condition without
containing delay information) [25], so this conditions must be considered in order to
design an appropriate deadbeat controller for multivariable discrete time system with
state delay. Many of the works found in literature about discrete time multivariable
systems with state delays, propose a solution for this kind of problems by designing
an appropriate Lyapunov-Krasovskii functional in order to assure the stability of
the systems even when delays are present in the state of the system [12, 17, 25].
The Lyapunov-Krasovskii functional is selected in order to assure the robust stability
of the system of discrete time systems with time varying delays, so this approach is
suitable for the state feedback design of deadbeat controllers. Then after designing the
right Lyapunov-Krasovskii function, this kind of problems can be solved by a convex
optimization problem represented as linear matrix inequalities LMI’s in order to obtain
the right selection of the controller parameters.

As explained in the previous section, the deadbeat controller design for multivar-
iable discrete time systems is usually solved as an optimal control problem where a
cost functional is minimized, implementing a cheap control functional (with no input
function), and then finding the required matrices by solving the respective Riccati
equation. Even when this approach yields acceptable results, the solution of the sta-
bility conditions for this kind of problems is more efficient when the solutions are
found by a convex optimization problem defined by the linear matrix inequalities
LMTI’s when time varying delays are found in the states of discrete time systems. The
design and development of deadbeat controllers for multivariable discrete time sys-
tems with time varying delays is done by following a similar approach as constant time
delay systems, as explained in the previous section; first, a change of basis is necessary
to place the required poles at the origin and cancel the transmission zeros, selecting the
suitable system matrices, in order to obtain a deadbeat controller characteristics. Then,
the discrete time model with time varying state delays is considered by designing an
appropriate Lyapunov-Krasovskii functional to establish the stability conditions of the
model when the system has time delays in its states. Finally, the required matrices are
found by solving a convex optimization problem given by the linear matrix
inequalities LMI’s. In the following subsection the derivation of the deadbeat con-
troller for multivariable discrete time systems with time varying delays in the states is
done in order to solve this control system problem. A numerical simulation example is
shown in order to illustrate the results obtained in this section.
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4.1 Deadbeat Control Design for Multivariable Discrete Time
System with Time Varying Delays in the States

The design of deadbeat controllers for multivariable discrete time systems with time
varying delays follows a similar procedure as in the constant time delay systems
case. In order to design a suitable controller is necessary to make a change of basis
on the original system, in order to place (n — p) poles at the origin where n is the
state dimension and p is the number of finite transmission zeros of the system. This
requirement is met by selecting a appropriate basis which includes (n — p) linear
independent vectors to form a basis on R". Then by selecting an appropriate
Lyapunov-Krasovskii functional in order to establish the stability conditions of the
system the gain matrix can be found to be implemented in a state feedback form in
order to stabilizes the system in a minimum number of time steps.

In order to design the deadbeat controller for multivariable discrete time systems
with time varying state delays, the following system must be considered:

=

—
bl
+
—_
I

Ax(k) + Agx(k — t(k)) + Bu(k) 23)
y(k) = Cx(k)
where x(k) € R" is the state vector, 7(k) is a nonnegative time varying integer that
represent the delay, u(k) € R is the input vector and y(k) € %! is the measured
output.
The following condition is met by the time varying delay

7 <t(k) <1 (24)

where 1) is the lower bound represented by a positive integer and 7, is the upper
bound represented by a positive integer.

Define the following state feedback control law that is implemented for the
deadbeat control of multivariable discrete time systems.

u(k) = —Kgx(k) (25)

In order to obtain a deadbeat controller it is necessary to make a change of basis
by the following transformation matrix

T =T\ :T)] (26)

where (n — p) linearly independent vectors must be selected in order to make a
basis for the original system. Where r is the state dimension and p is the number of
finite transmission zeros of the system. Then the original system is transform into:
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¥ (k+1) =T 'ATY (k) + T 'AJTY (k — ©(k)) + T~ ' Bu(k)

27
k) = CTY k) .
Then the closed loop system is given by:
¥ (k4 1) = (T7'AT — T'BK )X (k) + T A TX (k — ©(k)) (28)
y(k) = CT¥ (k)
and then for model reduction the following equivalent matrices are defined:
A, =T 'AT
Apa =T 'AT
pd 1 d (29)
B,=T"B
C,=CT
Transforming (28) in:
X (k+1) = (A, — ByKs )x' (k) + Apax' (k — 1(k)) (30)

(k) = Cpx'(k)

Selecting C,, as long as the system includes transmission zeros at infinity.

In order to stabilizes the system by deadbeat control the following theorem must
be implemented to find the appropriate matrices for the deadbeat state feedback
controller for discrete time systems.

Theorem 2 The closed loop stability of system [9] is assured if there exist positive
definite matrices Q > 0 and P > 0 found by solving the following linear matrix
inequality in order to solve for the gain matrix Ky that stabilizes the system in a
minimum number of time steps k

PO - P+ (-1 +k—1)Q ®'PA,

<0 31
Al PO Al PA (31)

where O is defined later.

Proof Consider the following Lyapunov-Krasovskii functional [8, 12, 17, 25]:

V(¥ (k) = Vi(x'(k)) + Va(¥' (k) + V3 (x'(k)) (32)
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where

Considering that AV;(k) = V;(k + 1) — V;(k) the derivative of each term of the
Lyapunov-Krasovskii functional yield [25]:
AV (X (k) = X' (k)T OT POX (k) + ' (k)" ®T A x (k — 1(k))

(34)

+ 7 (k — (k)A] ,PDX (k)
+ X7 (k — I(k))ApdApdx (k — (k) — ¥ (k)" Px' (k)
k k—1
AV (k)= > X)X () - X (i)oX' (i) (35)
i=k+1—1(k+1) i=k—1(k)
—11+k—1
AV3(¥ (k) = (1 — 71 + k — 2)xT AG+k—1)0OX(+k—1) (36)
j=2-1u

where ® = A, — B,K,
In order to resolve for AV3(x'(k)) the following change of variable must be

applied:
n=k+j—1
j=n—k+1

Obtaining the following result due to:

—11+k—1 k—1
Yo Ao = Y FTmod(n) - Y K (n)0x (n)
n=k+1-1, n=k—1,

n=k+1-1,
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AV3(X (k) = (12 — 11 + k — 2)xT (k) Qx' (k)
k

" 2 e (38)
k—1

+ Y AT mOX (n) + 27T (k)X (k)
n=—1;+k

Then computing AV, (' (k)) + AV3(xX'(k)) and due to t(k) <1,

k k

Yoo Tmedm) - Y ¥T(m)ex(n) <0 (39)
n=k+1—1(k+1) n=k+1-1,
and due to 71 >0
k-1 k-1
X)X (n) — Z KT(n)0x' (n) <0 (40)
n=k—1 n=k—1(k)

Therefore the following upper bound is valid for:
AV, (X (k) + AV3 (X (k) < (12 — 11 + k — D)X (k) QX' (k) (41)

Then defining a vector:

R )

and a matrix ¢, then the following limit for V(x'(k)) the following inequality is
obtained:

AV (K) SAVI(X () + AV (¥ (K) + AVA( () TT$C (43)

so the following linear matrix inequality is obtained in order to assure the system
stability [12]:

O'PO P+ (15—11+k—1)Q ®'PA,
AT PO AT PA, | <0 (44)
where k is the minimum time step of the system and P and Q are matrices that
assure the stability of the system, these matrices are necessary to find the gain K.
With these derivations the proof is complete.

With this linear matrix inequality the required matrices are found in order to
meet the stability conditions and then the deadbeat controller designed by state
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feedback can be implemented in order to stabilize multivariable discrete time
systems in a minimum number of time steps.

It is important to notice that the minimum number of time steps is given by the
variable k so in order to stabilizes the system in minimum time this variable along
with the appropriate number selection of linear independent vectors for the trans-
formation matrix, place the required number of poles at the origin and cancel the
finite transmission zeros of the system. As can be noticed, the deadbeat controller
design is similar to the constant delay counterpart, but as explained in the previous
section, an important fact that must be considered is the appropriate selection of a
Lyapunov-Krasovskii functional, because with this functional the stability condi-
tions and the linear matrix inequality to find the gain matrix that stabilizes the
system by a state feedback control law.

In the next subsection, an illustrative numerical simulation is done in order
evince the performance and advantage of this control strategy and to obtain some
conclusions about this section.

4.2 Example 2

Consider the following multivariable discrete time system with constant time delays
in the states.

x(kJrl)—[lOO 0 }x(kw[g ;}x(k—f(k))+{(l) ?]u(k)

(45)

with k =5, 11 = 14, 1, = 48, sampling period Ty = 10 s and the transformation
matrix T

T— [(1) ﬂ (46)

The following matrices are obtained:

Q_'247 0 }
o 447
10
P= 47
o 1] (@)
. _ [247:9960 0
1o 447.9978
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with k = 25, 71 = 5, 1, = 29 and the transformation matrix 7'

T= [52 ﬂ (48)

The following matrices are obtained:

[272 250
Q —

1250 472
1 O

p_ 49
K 1] (49)

. _ [272:2483 248.7569
7T 12487569 479.2207

with £k = 10, 7; = 1, 1, = 79 and the transformation matrix 7'

r= {;3 ?2] (50)

The following matrices are obtained:

0- [386.00 166.67

~ 1166.67 386.00
10

P= 51
1] (51)

[386.03  166.65
Ky =
| 166.64 386.01

The simulation results are shown below:

In Fig. 5 the system response of the variable x; is shown, where as it is expected,
the system trajectory for the three cases is driven from the initial value to the final
value following a step function trajectory. As it is corroborated later the trajectory
path is follow efficiently while the error is minimized.

In Fig. 6 the system response of the variable x;, is shown, where as it is expected,
the system trajectory for the three cases is driven from the initial value to the final
value following a step function trajectory. The tracking error is minimized in order
to make the variable trajectory to follow the reference path. It can be noticed that
the final value is reach in a greater number of time steps than the minimum value
required in order to obtain a deadbeat response.

In Fig. 7 the error signal for the variable x; is shown, where as it is corroborated
the error signal is kept in a small margin in order to make this variable to follow the
reference efficiently.
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Fig. 6 System response of the variable x,

In Fig. 8 the error signal for the variable x; is shown, where as it is corroborated
the error signal is kept in a small margin in order to make this variable to follow the
reference efficiently. The error signal depicted in Fig. 8 shows how the deadbeat
controller improves the system performance while minimizing the tracking error,
this is an important characteristics that must be considered in order to make the
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system, variables to reach the desired values in a minimum number of time steps
reducing the steady state error in the case of multivariable discrete time systems
with time varying delays when different values of the system parameters.

In this section the development and design of deadbeat controllers for multivariable
discrete time systems with time varying delays is proposed. In order to design an
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efficient deadbeat controller for this kind of system, it is important to recognize the
system properties in term of the system poles and transmission zeros of the model.
A change of basis is required in order to place a specified number of closed loop poles
at the origin and cancelling the transmission zeros of the original system.

After a change of basis, considering that dealing with time varying delays is not
an easy task, the specification of an appropriate Lyapunov-Krasovskii functional
establishes the stability conditions of the system taking in count the time varying
characteristics of the time delay model. By the specification of the Lyapunov-
Krasovskii functional the resulting linear matrix inequalities LMI’s are imple-
mented in order to obtain the required matrices that establish the stability conditions
in order to obtain a feasible controller gain for the deadbeat controller represented
by a state feedback control law.

In this section an illustrative numerical example is done in order to show the
system response of a multivariable discrete time system with time varying delays in
the states stabilized by a deadbeat controller. It is proved that the state variables
reach the desired value when a step reference signal is applied to the input of the
system. The error signal of the system is kept into a small margin as expected by
the deadbeat control system specifications, improving the system performance. In
the following section, a similar problem is solved but in this case the design of
deadbeat controllers for multivariable discrete time systems with time varying
delays in the inputs is considered.

5 Deadbeat Control for Multivariable Systems with Time
Varying Delays in the Inputs

In this section the development and design of deadbeat controllers for multivariable
discrete time systems with time varying delays in the input is explained in order to
find a suitable state feedback control that meets the stability condition along by
driving the system states to the desired final value in a minimum number of time
steps. Similar as the stabilization of discrete time systems with time varying delays
on the state, time varying delays in the input are produced by signal transmission
lags and other effects yielded by the implemented hardware, this phenomena is a
sources of many unwanted effects such as system performance deterioration and
even instability. The time varying delay characteristics when this phenomena is
found in the state of the system, are very similar when time varying delays are
found in the input, so the deadbeat controller synthesis for multivariable discrete
time system in the states is very similar to the case explained in the previous
section. In order to design suitable deadbeat controllers for multivariable discrete
time systems with time varying delays in the inputs, it is necessary to make a
change of basis of the original system, in order to place a (n — p) number of poles
at the origin, where n is the state dimension and p is the number of finite trans-
mission zeros of the original system. Then by making an appropriate selection of
the transformation matrix, in which (n — p) linear independent vectors must be
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selected, the original closed loop system is transformed to another coordinate
system, and then the deadbeat controller synthesis can be done by finding the
required state feedback control gain. Similar as the controller synthesis of discrete
systems with time varying delays in the states, instead of solving this problem by an
optimal control problem minimizing a cost functional or cheap control (no cost on
the input), the approach evinced in this section is based on the proper selection of a
Lyapunov-Krasovskii functional in order to establish the necessary stability con-
ditions of the system, in order to find an stable state feedback gain that drives the
system to the desired final in a minimum number of time steps to meet the con-
ditions of the deadbeat controller. After selecting an appropriate Lyapunov-Kra-
sovskii functional, a suitable gain matrix can be found by solving a convex
optimization problem established by the required linear matrix inequalities.

In the first part of this section, the derivation of deadbeat controllers for mul-
tivariable discrete time system with time varying delays in the inputs is developed
in order to find a state feedback control gain to obtain a deadbeat response in which
the states are driven to the desired final value in a minimum number of time steps,
this requirement is met by selecting an appropriate transformation matrix to make a
change of basis and the selection of an appropriate Lyapunov-Krasovskii func-
tional. In the second part of this section, a numerical simulation example is done in
order to show the deadbeat response of the system states with the required gain
matrix found by solving a set of linear matrix inequalities LMI.

5.1 Deadbeat Control Design for Multivariable Discrete Time
System with Time Varying Delays in the Inputs

The derivation of a deadbeat controller for multivariable discrete time systems with
time varying delays in the inputs, follows a similar procedure as explained in
Sect. 4, where a change of basis of the original model must be done, in order to
make a change of coordinates; this objective is achieved by selecting an appropriate
transformation matrix in order to place (n — p) poles at the origin and cancelling the
finite transmission zeros of the closed loop system. Then selecting an appropriate
Lyapunov-Krasovskii functional in order to established the required stability con-
ditions of the system and find the appropriate gain matrix that stabilizes the system
by solving the resulting linear matrix inequalities.

Consider the following discrete time system with time varying delays in the
mputs:

x(k+ 1) = Ax(k) + Bu(k — t(k))

y(k) = Cx(k) 2)

where x(k) € " is the state vector, 7(k) is a nonnegative time varying integer that
represent the delay, u(k) € %™ is the input vector and y(k) € R is the measured output.



Deadbeat Control for Multivariable Discrete Time Systems ... 121

The following condition is met by the time varying delay
11<t(k) <12 (53)

where 17 is the lower bound represented by a positive integer and 7, is the upper
bound represented by a positive integer. Define the following state feedback control
law that is implemented for the deadbeat control of multivariable discrete time
systems.

u(k — t(k)) = —Kux(k — t(k)) (54)

In order to obtain a deadbeat controller it is necessary to make a change of basis
by the following transformation matrix

T=IT\:T) (55)

The first step in order to design a deadbeat controller it is necessary to find the
minimum number of time steps to stabilizes the system from the initial condition.

x(k) = AFx(0) — iAk*HBKﬁx(i —1(k)) (56)
i=0

where k is the minimum number of time steps. Then the following change of basis
is done in order to place the required poles and transmission zeros by state
feedback.

X(k+1) =T 'ATY (k) — T"'BKsTX (k — t(k))

0 = CTY() 7
and then for model reduction the following equivalent matrices are defined:
A, =T 'AT
Apg = T'BK:T (58)
C,=CT

Choosing C, to cancelled the finite transmission zeros of the system. In order to
stabilizes the system by deadbeat control the following theorem must be imple-
mented to find the appropriate matrices for the deadbeat state feedback controller
for discrete time systems.

Theorem 3 The closed loop stability of system [9] is assured if there exist positive
definite matrices Q > 0 and P > 0 found by solving the following linear matrix
inequality in order to solve for the gain matrix Ky that stabilizes the system in a
minimum number of time steps k
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ATPA, — P+ (ta — 11 +k—1)Q  ATPAy

<0 (59)
AgdPA,, AgdPA,,d

Proof Consider the following Lyapunov-Krasovskii functional [8, 12, 17, 25]:
V(' (k) = Vi(xX' (k) + Va (¥ (k) + V3(x'(k)) (60)

where

Due to AV;(k) = Vi(k+ 1) — V;(k), the derivative of each term of the Lyapu-
nov-Krasovskii functional yield [25]:

AV (X' (k) = xT (k)AT PA,X (k) + X7 (k)A] PApax (k — (k)
— X (k — 1(k))AL PAXY (k) + X" (k — ©(k))A} PApax (k — (k)

— XT(k)Px (k)
(62)
k k=1
AV, (X (k) = Z KT()OX (i) — KT (1) QX (i) (63)
i=k+1—t(k+1) i=k—1(k)

—11+k—1
AV3(X (k) = (12 — 11 + k — 2)xT (k) Qx' (k) — Z ATG+k—1)0X(+k—1) (64)

2

In order to resolve for AV3(x'(k)) the following change of variable must be
applied:

n=k+j—1

65
j=n—k+1 (65)
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Obtaining the following result due to:

—t k-1 k-1 k-1
Z KT (n)Qx (n) = Z KT (n)QX (n) — Z KT (n) QX (n)
n=k+1-1, n=k+1—1, n=k—1

AV3(X (k) = (12 — 11 + k — 2)xT (k) Qx' (k)
k

" 2 e (66)
k—1

+ > X)X (n) + ¥ (k) Q¥ (k)

n=—1;+k

Then computing AV, (x'(k)) + AV3(xX'(k)) and due to t(k) <1,

k k
Z KT (n)QX (n) — Z KT (n)Qx' (n) <0 (67)
n=k+1—1(k+1) n=k+1-1,
and due to 71 >0
k—1 k—1
(¥ (n) — > KT (n)0x' (n) <0 (68)
n=k—1 n=k—1(k)

Therefore the following upper bound is valid for:
AV (X (k) + AV3 (X (k) < (12 — 11 + k — D)X (k) Qx' (k) (69)

Then defining a vector:

R 7

and a matrix ¢, then the following limit for V(x'(k)) the following inequality is
obtained:

V(X (k) < Vi (k) + Va (' (k) + V3 (/' (k)) <T" 6T (71)

so the following linear matrix inequality is obtained in order to assure the system
stability [12]:

A;PA,, —P+ (-1 +k-1)Q A;PApd

A;(,PA,, AgdPA,,d

<0 (72)
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where k is the minimum time step of the system and P and Q are matrices that
assure the stability of the system, these matrices are necessary to find the gain
matrix K,. With these derivations the proof is complete.

With this theorem, the stability of the multivariable discrete time system is
assured and the corresponding matrices for the deadbeat controller by state feed-
back can be found in order to stabilizes the system in a minimum number of time
steps. Even when dealing with time varying delays in the inputs is not an easy task
it is confirmed that a feasible matrix gain can be found in order to place the required
number of closed loop poles at the origin cancelling the finite transmission zeros of
the original system.

In the following section an illustrative numerical example is shown in order to
visualize the theoretical background explained in this section and analyze the
performance of a numerical model when a deadbeat controller is designed for a
multivariable discrete time system with time varying delays in the inputs.

5.2 Example 3

Consider the following multivariable discrete time system with constant time delays

in the inputs.
x(k+1) = [(1)00 goo]x(k) + [(1) ﬂu(k — (k)

1 0
0 1

(73)

SCEINTC

with k =5, 1y = 14, 1, = 58, sampling period Ty = 10 s and the transformation
matrix T

T— [(1) ﬂ (74)

The following matrices are obtained:

0 (147 0 ]
o 247

10

P= 75
1] 75)
[148.00 0

Ky =
L0 248.00
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with kK = 50, 7; = 5, 1, = 29 and the transformation matrix 7'

T = [52 ﬂ (76)

The following matrices are obtained:

0 192 0 ]
o 292
10
P= 77
1] 77
[193.00 0
Ky =
L0 293.00}

with kK = 10, 7; = 1, 1, = 79 and the transformation matrix 7'

-[i* )

The following matrices are obtained:

0 [152.00 0.00
~10.00  252.00
10
P= 79
1] (79)
[153.00 0
Ky =
1 0.00253.00

The simulation results are shown below:

In Fig. 9 the system response of the variable x; is shown where as it can be
noticed the system response in the three cases depicted in this figure shows how this
variable reach the desired final value in a minimum number of time steps. This
system variable behaviour is obtained due to an appropriate selection of the gain
matrix implemented by a state feedback controller in order to stabilizes the system
in a minimum number of time steps according to the deadbeat controller design. As
it is corroborated later, the deadbeat controller is designed in order to minimize the
system error by an appropriate poles and transmission zeros of the system.

In Fig. 10 the system response of the variable x; is shown in order to observe the
system performance of this variable in the three cases as explained before. As it can
be noticed, the system response depicted in this figure shows how this system
variable is stabilized in a minimum number of time steps by the selection and
implementation of an appropriate gain matrix in a state feedback form which meet
the deadbeat response requirements. This objective is reached by selecting a
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Fig. 10 System response of the variable x,

suitable controller gain matrix in order to place the poles and the transmission zeros
of the system in the right position.

In Fig. 11 the error signal of the variable x, is shown. As can be noticed the tracking
error of this variable is kept in a small margin as expected due to an appropriate
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Fig. 11 Error signal of the variable x;

selection of the gain matrix, obtained by solving the linear matrix inequalities LMI in
the three cases. An appropriate selection and placement of the poles and transmission
zeros of the closed loop system makes the error signal of this variable as small a

possible when a step reference function is applied in the system inputs.

In Fig. 12 the error signal of the variable x, is shown and as can be noticed a
small tracking error margin is obtained by an appropriate selection of the gain
matrix derived from the solution of the linear matrix inequality in the three cases.
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The deadbeat response of the system is obtained due to an appropriate selection of
the transformation matrix in order to make a change of basis and later a suitable
gain matrix is obtained by solving the required linear matrix inequalities.

In this section the development of a deadbeat controller for multivariable dis-
crete time system with time varying delays in its inputs is shown in order to design
a controller which drives the system from its initial values to the desired final value
in a minimum number of time steps. This objective is accomplished by selecting an
appropriate transformation matrix in order to make a change of basis or a change of
coordinates from the original model to solve this problem by a state feedback
controller. Even when dealing with time varying delays in the inputs of the system
are difficult to analyze, it is possible to stabilizes this kind of systems by selecting
an appropriate Lyapunov-Krasovskii functional in order to analyze the closed loop
stability of the system and establish the stability conditions that are represented by
linear matrix inequalities LMI’s in order to obtain the gain matrix that guarantees
the stability of the system by maintaining the required deadbeat response. In this
section, it is proved that understanding the deadbeat controller for multivariable
time system with time delays in the states is very important in order to consider the
time varying delays in the system input case, because a similar approach can be
implemented in both cases when delays are found by different sources such as
signal transmission lags, damaged hardware, etc.

With the derivation and design of the proposed techniques showed in this chapter
the discussion and analysis of the three control strategies shown in this chapter. Later,
the conclusions of this work are evinced to expose the advantages, disadvantages and
characteristics of the proposed control strategies shown in this paper.

6 Discussion

In this chapter the derivation of deadbeat controllers for multivariable discrete time
systems with time varying delays is exposed. It is proven that a system with deadbeat
response can be obtained by selecting a state feedback gain matrix that meets the
stability requirements in order to stabilizes the system in a minimum number of time
steps. From the results obtained in Sect. 3, where a deadbeat controller for multi-
variable discrete time systems with constant time delays is obtained, it is proved that
by selecting an appropriate Lyapunov-Krasovskii functional, the stability conditions
of the system are established in order to meet the system performance requirements,
even when this is a basic form in which delays are found in physical systems, the
main objective for the analysis of discrete time systems with constant time delays is
to develop a feasible control strategy that is used later in the design of deadbeat
controllers for discrete time systems with time varying delays, considering the
complexity of this kind of models when this phenomena is found in the systems. As
it is verified, when constant time delays are found in the system, the unwanted effects
yielded by time delays, such as performance deterioration or even instability, are
cancelled by placing the right number of poles at the origin while cancelling the
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finite transmission zeros, for this purpose, a change of basis is necessary in order to
find later the required state feedback gain matrices that places the poles and trans-
mission zeros of the model in the right position. The simulation results obtained in
this section, evince the deadbeat system response and, as can be checked, the system
is stabilized in a minimum number of time steps as established by the appropriate
selection of poles and transmission zeros avoiding the unwanted effects yielded by
time delays, that in this case, are found in the system states. The main idea of the
analysis and design of deadbeat controllers for discrete time systems with constant
state delays, is to introduce the basic concepts about how to deal with discrete time
systems with time delays, in order to overcome this kind of problems later in the time
varying delay case. For the design of deadbeat controllers for multivariable discrete
time systems with time varying delays in the states, a similar approach when con-
stant time delays are found in the states is followed, considering the complexity of
time varying delays, a required Lyapunov-Krasovskii functional is proposed in order
to obtain the stability conditions for this kind of systems to implement a state
feedback controller with deadbeat response properties stabilizing the system in a
minimum number of time steps. As in the constant time delays in the states case, the
first step, a change of basis or a change of coordinates is necessary in order to cancel
the finite transmission zeros of the system obtaining the closed loop system state
feedback gain matrix that is found by a convex optimization problem, established by
solving the linear matrix inequalities LMI’s in order to meet all the system stability
requirements of the model. In Sect. 4 an illustrative numerical example is shown in
order to evaluate the system performance when a deadbeat controller is implemented
in a multivariable discrete time system with time varying delays in the states. It is
found that the deadbeat system response is accomplished by solving the required
linear matrix inequalities finding the state feedback gain matrix that meets the sta-
bility conditions. It can be verified that the deadbeat system response is obtained
when three different minimum time steps requirements are established in order to
compare the system performance in the three cases and to analyze the tracking errors
of the model when different time varying delays characteristics in the model are
implemented. In Sect. 5, the design of deadbeat controllers for multivariable discrete
time systems with time varying delays in the inputs is evinced where a similar
approach as the two cases explained before is implemented in order to find a suitable
controller that meets the stability requirements while keeping a deadbeat response.
The design procedure explained in this section consist in making a change of basis of
the original system, similar as the deadbeat approach when time varying delays are
found in the states, in order to place the required poles at the origin and cancelling the
finite transmission zeros. Then a Lyapunov-Krasovskii functional is proposed in
order to establish the stability conditions when time varying delays are found in the
inputs. Then this problem is solved by establishing the linear matrix inequalities
LMTI’s which provide the necessary conditions to obtain the state feedback gain
matrix that yields a deadbeat response on the system. Similar as the previous cases,
an illustrative numerical example is shown to test the proposed control algorithm
when time varying delays are found in the inputs. The results of this simulation show
that the deadbeat controller stabilize the system in a minimum number of time steps,



130 A.T. Azar and F.E. Serrano

as required by the deadbeat controller design, when time varying delays are found in
the inputs of the system. The tracking error of the system is minimized by obtaining
an appropriate state feedback gain matrix solving the linear matrix inequalities
LMTI’s that establishing the stability conditions of the system. As a concluding
remark of the three control strategies proposed in this chapter, it can be verified that
effective deadbeat controllers can be designed in order to reach the desired final
value given by the reference signal and with any initial condition in a minimum
number of time steps, these results are achieved by an appropriate selection of the
closed loop poles and transmission zeros which define the conditions in which a
deadbeat response of the system can be obtained when time delays are found in the
system avoiding or cancelling the unwanted effects yield by this phenomena.

7 Conclusions

In this chapter the derivation of deadbeat controllers for multivariable discrete time
systems with time varying delays in the states and the inputs is proposed. In the first
part of this chapter the derivation of deadbeat controller for multivariable discrete
time systems with constant time delays in the state is analyzed. The deadbeat con-
troller proposed is based in a change of coordinates of the original model in order to
place a required number of poles at the origin while cancelling the finite transmission
zeros, then considering this change of basis a Lyapunov-Krasovskii functional is
proposed in order to establish the stability conditions of the model. The deadbeat
controller is obtained by a state feedback control law in order to stabilize the system
in a minimum number of time steps while minimizing the tracking error of the system
when a step function is used as the reference signal of the closed loop system. In
order to find the required state feedback matrix gain, it is necessary to solve the
required linear matrix inequalities that guarantees the stability of the system. This
linear matrix inequalities LMI’s are designed to obtain the required matrices that
assures the stability of the system including the state feedback gain matrix that
stabilizes the closed loop system in a minimum number of time steps.

Based on the derivation and design of deadbeat controllers for multivariable
discrete time systems with constant time delays in the states, a time varying delay
version is implemented for the design of deadbeat controllers for multivariable
discrete time systems with time varying delays in the states. It is proved that in the
constant delays and time varying delay cases it is possible to find stable deadbeat
controllers by selecting an appropriate transformation matrix in order to make a
change of basis for the original system in order to place the required number of
closed loop poles at the origin and cancelling the finite transmission zeros. Then by
designing an appropriate Lyapunov-Krasovskii functional, similar as the constant
time delay case, the stability conditions are established in order to derive the
necessary linear matrix inequalities LMI’s implemented to find the controller gain
that stabilizes the system in a minimum number of time steps. Similar as the
constant time delay case, a state feedback control law is implemented to place the
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required poles and transmission zeros in the required position in the complex plane
to obtain stable deadbeat controllers that drive the states to the desired final value
independently of the initial conditions imposed on the model.

In the third case, the deadbeat controller design for multivariable discrete time
systems with time varying delays in the inputs is considered, and following a
similar approach as the previous two cases, a change of basis is necessary to place
the poles and transmission zeros in the right position in the complex plane by
implementing a state feedback control law in order to drive the states of the system
to the desired final value independently of the initial conditions of the model.
A Lyapunov-Krasovskii functional is implemented to establish the necessary sta-
bility conditions of the closed loop system and derive the required linear matrix
inequalities LMI’s to find the resulting matrices that prove the stability of the
system. By solving a convex stabilization problem, the required state feedback
matrix is found in order to stabilize the system and obtaining a deadbeat response.
This objective is achieved by solving the required linear matrix inequalities in order
to drive the system states in a minimum number of time steps, as required by the
deadbeat controller design. In order to test the system performance for the three
cases explained in this article, a series of numerical simulation examples were
performed to exposed the system performance when time delays are found in the
system. It was proved that the stabilization of multivariable discrete time systems
with time delays by deadbeat controllers is a feasible and efficient control approach
when this phenomena are found in this kind of systems. It is proved that many of
the unwanted effects yield by time delays, such as performance deterioration and
instability, are cancelled by selecting the appropriate deadbeat controller, mini-
mizing the tracking errors of the system while a step input function is used as a
reference signal of the model.
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