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Abstract This research work investigates the global chaos synchronization of
Sprott’s jerk chaotic system using backstepping control method. Sprott’s jerk system
(1997) is algebraically the simplest dissipative chaotic system consisting of five
terms and a quadratic nonlinearity. Sprott’s chaotic system involves only five terms
and one quadratic nonlinearity, while Rössler’s chaotic system (1976) involves
seven terms and one quadratic nonlinearity. This work first details the properties of
the Sprott’s jerk chaotic system. The phase portraits of the Sprott’s jerk system are
described. The Lyapunov exponents of the Sprott’s jerk system are obtained as
L1 = 0.0525, L2 = 0 and L3 = −2.0727. The Lyapunov dimension of the Sprott’s jerk
system is obtained as DL = 2.0253. Next, an active backstepping controller is
designed for the global chaos synchronization of identical Sprott’s jerk systems with
known parameters. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guar-
antees global asymptotic stability of strict-feedback chaotic systems. Finally, an
adaptive backstepping controller is designed for the global chaos synchronization of
identical Sprott’s jerk systems with unknown parameters. MATLAB simulations are
provided to validate and demonstrate the effectiveness of the proposed active and
adaptive chaos synchronization schemes for the Sprott’s jerk systems.
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1 Introduction

Chaos is a nonlinear behavior which is a strange random aggregate of responses to
internal and external stimuli in dynamical systems. Chaos occurs, when the
dynamical system is highly sensitive towards initial conditions. That is, chaotic
systems starting off from very similar initial states can develop into radically
divergent trajectories. Such sensitive dependence of chaotic systems is popularly
known as the butterfly effect [1].

Mathematically, chaotic systems are classified as nonlinear dynamical systems
which are sensitive to initial conditions, topologically mixing and with dense
periodic orbits. The Lyapunov exponent is a measure of the divergence of phase
points that are initially very close and can be used to quantify chaotic systems.
A positive maximal Lyapunov exponent and phase space compactness are usually
taken as defining conditions for a chaotic system.

Since the discovery of a 3-D chaotic system in 1963 by Lorenz to study con-
vection in the atmosphere [27], there is a great deal of interest in the chaos literature
in modelling and analysis of new chaotic systems. Some well-known paradigms of
3-D chaotic systems in the literature are [2, 3, 5, 6, 21, 25, 28, 38, 45, 50, 52,
58–60, 71, 72].

Recently, there is a great interest in finding elegant chaos, especially algebrai-
cally simple chaotic flows [45]. In 1997, Sprott discovered algebraically the sim-
plest dissipative chaotic system consisting of only five terms and one quadratic
nonlinearity [46]. Sprott’s system (1997) has two terms fewer than the famous
Rössler chaotic system [38], which consists of seven terms and one quadratic
nonlinearity.

Sprott’s simplest dissipative chaotic system (1997) is a simple jerk system con-
sisting of five terms and one quadratic nonlinearity [46]. In this work, the phase
portraits of the Sprott’s jerk system are described. The Lyapunov exponents of the
Sprott’s jerk system are obtained as L1 = 0.0525; L2 = 0 and L3 = −2.0727. The
Lyapunov dimension of the Sprott’s jerk system is obtained as DL = 2.0253. Since
the maximal Lyapunov exponent (MLE) of the Sprott’s jerk system is L1 = 0.0525,
which is a small number, it follows that the Sprott’s system exhibits mild chaos only.

Chaotic systems have several important applications in science and engineering.
Some important applications can be mentioned as oscillators [18, 44], lasers
[22, 67], chemical reactions [11, 33], cryptosystems [37, 55], secure communica-
tions [9, 29, 68], biology [8, 20], ecology [12, 48], robotics [30, 62], cardiology
[34, 64], neural networks [15, 17], finance [13, 47], etc.

Synchronization of chaotic systems is a phenomenon that occurs when two or
more chaotic systems are coupled or when a chaotic system drives another chaotic
system [36, 51, 61].

Because of the butterfly effect which causes exponential divergence of the tra-
jectories of two identical chaotic systems started with nearly the same initial con-
ditions, the synchronization of chaotic systems is a challenging research problem in
the chaos literature.
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Major works on synchronization of chaotic systems deal with the complete
synchronization (CS) which has the goal of using the output of the master system to
control the slave system so that the output of the slave system tracks the output of
the master system asymptotically.

Pecora and Carroll pioneered the research on synchronization of chaotic systems
with their seminal papers in 1990s [4, 32]. The active control method [26, 35, 49,
54, 57, 63] is commonly used when the system parameters are available for mea-
surement and the adaptive control method [14, 24, 39–41, 65] is commonly used
when some or all the system parameters are not available for measurement and
estimates for unknown parameters of the systems.

Other important methods for chaos synchronization are the sampled-data feed-
back method [10, 23, 66, 69], time-delay feedback method [7, 16, 42, 43], back-
stepping method [31, 53, 56, 70], etc.

The backstepping control method is a recursive procedure that links the choice
of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict-feedback chaotic systems. The backstepping method is
based on the mathematical model of the examined system, introducing new vari-
ables into it in a form depending on the state variables, controlling parameters and
stabilizing functions. The use of backstepping method creates an additional non-
linearity and eliminates undesirable nonlinearities from the system.

This research work is organized as follows. Section 2 describes the Sprott’s jerk
system (1997). In this section, the phase portraits of the Sprott’s chaotic system are
also displayed using MATLAB. The Lyapunov exponents of the Sprott’s system are
also obtained in this system and the Lyapunov dimension of the Sprott’s system is
obtained using MATLAB. The dynamics of the Lyapunov exponents is plotted
using MATLAB. Section 3 describes new results for the active backstepping con-
troller design for the global chaos synchronization of identical Sprott’s systems with
known parameters. Section 4 describes new results for the adaptive backstepping
controller design for the global chaos synchronization of identical Sprott’s systems
with unknown parameters. MATLAB simulations are shown to validate and illus-
trate all the main synchronization results derived for the Sprott’s chaotic systems.
Section 5 contains a summary of the main results derived in this research work.

2 Sprott’s 3-D Jerk Chaotic System

This section describes the equations and phase portraits of the Sprott’s jerk chaotic
system (1997), which is algebraically the simplest dissipative chaotic system.

The Sprott chaotic system is described by the 3-D dynamics

_x1 ¼ x2;

_x2 ¼ x3;

_x3 ¼ �ax1 þ x22 � bx3

ð1Þ
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where x1, x2, x3 are the states and a, b are constant, positive, parameters.
The system (1) is a five-term polynomial chaotic system with just one quadratic

nonlinearity.
The system (1) depicts a strange chaotic attractor when the constant parameter

values are taken as

a ¼ 1; b ¼ 2:02 ð2Þ

For simulations, the initial values of the Sprott chaotic system (1) are taken as

x1ð0Þ ¼ 4:0; x2ð0Þ ¼ 2:0; x3ð0Þ ¼ 0:5: ð3Þ

Figure 1 describes the strange chaotic attractor of the Sprott chaotic system (1) in
3-D view. The phase portrait of the Sprott chaotic system also indicates that the
Sprott attractor is mildly chaotic. This will be also made clear the Lyapunov
exponents of the Sprott attractor are calculated.

The Lyapunov exponents of the Sprott chaotic system (1) are numerically
obtained as

L1 ¼ 0:0525; L2 ¼ 0; L3 ¼ �2:0727 ð4Þ
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Fig. 1 Strange attractor of the Sprott chaotic system (1997) in ℝ3
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Since L1 þ L2 þ L3 ¼ �2:0202\0, the system (1) is dissipative.
Also, the Lyapunov dimension of the system (1) is obtained as

DL ¼ 2þ L1 þ L2
jL3j ¼ 2:0523 ð5Þ

Figure 2 depicts the dynamics of the Lyapunov exponents of the novel chaotic
system (1). From this figure, it is seen that the maximal Lyapunov exponent of the
novel chaotic system (1) is L1 = 0.0525, which is a very small value. Thus, the
Sprott chaotic system (1) exhibits only mild chaotic properties.

3 Active Backstepping Design for the Synchronization
of Identical Sprott Jerk Chaotic Systems

This section derives new results for the active backstepping design for the global
chaos synchronization of the identical Sprott jerk systems with known parameters.
The main result of this section is proved using Lyapunov stability theory.
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Fig. 2 Dynamics of the Lyapunov exponents of the Sprott chaotic system (1997)
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The master system is described by the Sprott chaotic system

_x1 ¼ x2
_x2 ¼ x3

_x3 ¼ �ax1 þ x22 � bx3

ð6Þ

where x1, x2, x3 are state variables and a, b are positive, constant, parameters.
The slave system is described by the controlled Sprott chaotic system

_y1 ¼ y2
_y2 ¼ y3

_y3 ¼ �ay1 þ y22 � by3 þ u

ð7Þ

where y1, y2, y3 are state variables and u(t) is the active backstepping controller to
be designed.

The synchronization error between the master system (6) and the slave system
(7) is defined as

e1ðtÞ ¼ y1ðtÞ � x1ðtÞ
e2ðtÞ ¼ y2ðtÞ � x2ðtÞ
e3ðtÞ ¼ y3ðtÞ � x3ðtÞ

ð8Þ

The error dynamics is obtained as

_e1 ¼ e2
_e2 ¼ e3

_e3 ¼ �ae1 þ y22 � x22 � be3 þ u

ð9Þ

Next, we shall prove the main result of this section.

Theorem 1 The identical Sprott jerk chaotic systems (6) and (7) are globally and
exponentially synchronized for all initial conditions xð0Þ; yð0Þ 2 R

3 by the active
controller

uðtÞ ¼ ða� 3Þe1 � 5e2 þ ðb� 3Þe3 � y22 þ x22 ð10Þ

where the parameters a and b are known.

Proof We prove this main result by using Lyapunov stability theory Khalil. First,
we define a Lyapunov function candidate

V1ðz1Þ ¼ 1
2
z21 ð11Þ
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where
z1 ¼ e1 ð12Þ

Differentiating V1 along the dynamics (9), we get

_V1 ¼ z1 _z1 ¼ e1e2 ¼ �z21 þ z1ðe1 þ e2Þ ð13Þ

Next, we define

z2 ¼ e1 þ e2 ð14Þ

Then the Eq. (13) can be simplified as

_V1 ¼ �z21 þ z1z2 ð15Þ

Secondly, we choose the Lyapunov function candidate as

V2ðz1; z2Þ ¼ V1ðz1Þ þ 1
2
z22 ¼

1
2
ðz21 þ z22Þ ð16Þ

Differentiating V2 along the dynamics (9), we get

_V2 ¼ _V1 þ z2 _z2 ¼ �z21 � z22 þ z2ð2e1 þ 2e2 þ e3Þ ð17Þ

Next, we define

z3 ¼ 2e1 þ 2e2 þ e3 ð18Þ

Then the Eq. (17) can be simplified as

_V2 ¼ �z21 � z22 þ z2z3 ð19Þ

Finally, we choose the Lyapunov function candidate as

Vðz1; z2; z3Þ ¼ V2ðz1; z2Þ þ 1
2
z23 ¼

1
2
ðz21 þ z22 þ z23Þ ð20Þ

By definition, V is a quadratic, positive-definite function on ℝ3.
Differentiating V along the dynamics (9), we get

_V ¼ �z21 � z22 � z23 þ z3 ð3� aÞe1 þ 5e2 þ ð3� bÞe2 þ y22 � x22 þ u
� � ð21Þ

Substituting the active controller (10) into (21), we obtain

_V ¼ �z21 � z22 � z23 ð22Þ
which is a quadratic, negative-definite function on ℝ3.

Thus, by Lyapunov stability theory [19], ziðtÞ ! 0 ði ¼ 1; 2; 3Þ as t ! 1
exponentially for all initial conditions zð0Þ 2 R

3.

Backstepping Controller Design for the Global Chaos … 45



Hence, it is immediate that eiðtÞ ! 0 (i = 1, 2, 3) as t ! 1 exponentially for all
initial conditions eð0Þ 2 R

3.
Hence, the identical Sprott jerk chaotic systems (6) and (7) are globally and

exponentially synchronized for all initial conditions xð0Þ; yð0Þ 2 R
3.

This completes the proof. h

For numerical simulations, the fourth-order classical Runge-Kutta method with
initial step h = 10−8 has been used to solve the two systems of differential Eqs. (6)
and (7) with the active backstepping controller defined by (10).

The parameter values are taken as in the chaotic case, i.e.

a ¼ 1; b ¼ 2:02 ð23Þ
The initial values of the master system are taken as

x1ð0Þ ¼ 2:7; x2ð0Þ ¼ �3:8; x3ð0Þ ¼ 0:9 ð24Þ
The initial values of the slave system are taken as

y1ð0Þ ¼ �1:5; y2ð0Þ ¼ 3:1; y3ð0Þ ¼ 1:7 ð25Þ
Figure 3 shows the complete synchronization of the states x1(t) and y1(t). From

Fig. 3, it is seen that the states x1(t) and y1(t) are synchronized in 7 S. This shows
the efficiency of the active backstepping controller defined by (10).
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Fig. 3 Synchronization of the states x1(t) and y1(t)
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Figure 4 shows the complete synchronization of the states x2(t) and y2(t). From
Fig. 4, it is seen that the states x2(t) and y2(t) are synchronized in 7 s. This shows the
efficiency of the active backstepping controller defined by (10).

Figure 5 shows the complete synchronization of the states x3(t) and y3(t). From
Fig. 5, it is seen that the states x3(t) and y3(t) are synchronized in 7 s. This shows the
efficiency of the active backstepping controller defined by (10).

Figure 6 shows the time-history of the synchronization errors e1(t), e2(t), e3(t).
From Fig. 6, it is seen that the errors e1(t), e2(t), e3(t) exponentially converge to zero in
7 s. This shows the efficiency of the active backstepping controller defined by (10).

4 Adaptive Backstepping Design for the Synchronization
of Identical Sprott Jerk Chaotic Systems

This section derives new results for the adaptive backstepping design for the global
chaos synchronization of the identical Sprott jerk systems with unknown parame-
ters. The main result of this section is proved using Lyapunov stability theory.
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Fig. 4 Synchronization of the states x2(t) and y2(t)
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Fig. 5 Synchronization of the states x3(t) and y3(t)
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The master system is described by the Sprott chaotic system

_x1 ¼ x2
_x2 ¼ x3

_x3 ¼ �ax1 þ x22 � bx3

ð26Þ

where x1, x2, x3 are state variables and a, b are unknown parameters.
The slave system is described by the controlled Sprott chaotic system

_y1 ¼ y2
_y2 ¼ y3

_y3 ¼ �ay1 þ y22 � by3 þ u

ð27Þ

where y1, y2, y3 are state variables and u(t) is the adaptive backstepping controller to
be designed.

The synchronization error between the master system (26) and the slave system
(27) is defined as

e1ðtÞ ¼ y1ðtÞ � x1ðtÞ
e2ðtÞ ¼ y2ðtÞ � x2ðtÞ
e3ðtÞ ¼ y3ðtÞ � x3ðtÞ

ð28Þ

The error dynamics is obtained as

_e1 ¼ e2
_e2 ¼ e3

_e3 ¼ �ae1 þ y22 � x22 � be3 þ u

ð29Þ

The design problem is to find u(t) so that the error converges to zero asymp-
totically, i.e. eiðtÞ ! 0 as t ! 1 for i ¼ 1; 2; 3.

Inspired by the control law defined by (10) in the active control case, we may
consider the adaptive control law

uðtÞ ¼ ðâðtÞ � 3Þe1 � 5e2 þ ðb̂ðtÞ � 3Þe3 � y22 þ x22 ð30Þ

where âðtÞ and b̂ðtÞ are estimates of the unknown parameters a and b, respectively.
We define the parameter estimation errors as

eaðtÞ ¼ a� âðtÞ
ebðtÞ ¼ b� b̂ðtÞ ð31Þ
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We note that

_eaðtÞ ¼ � _̂aðtÞ
_ebðtÞ ¼ � _̂bðtÞ

ð32Þ

Next, we shall prove the main result of this section.

Theorem 2 The identical Sprott jerk chaotic systems (26) and (27) with unknown
system parameters are globally and exponentially synchronized for all initial
conditions xð0Þ; yð0Þ 2 R

3 and âð0Þ; b̂ð0Þ 2 R by the adaptive controller law

uðtÞ ¼ ðâðtÞ � 3Þe1 � 5e2 þ ðb̂ðtÞ � 3Þe3 � y22 þ x22 ð33Þ

where the parameter update law is given by

_̂aðtÞ ¼ �ð2e1 þ 2e2 þ e3Þe1
_̂bðtÞ ¼ �ð2e1 þ 2e2 þ e3Þe2

ð34Þ

Proof We prove this main result by using Lyapunov stability theory Khalil. First,
we define a Lyapunov function candidate

V1ðz1Þ ¼ 1
2
z21 ð35Þ

where

z1 ¼ e1 ð36Þ

Differentiating V1 along the dynamics (29), we get

_V1 ¼ z1 _z1 ¼ e1e2 ¼ �z21 þ z1ðe1 þ e2Þ ð37Þ

Next, we define

z2 ¼ e1 þ e2 ð38Þ

Then the Eq. (37) can be simplified as

_V1 ¼ �z21 þ z1z2 ð39Þ

Secondly, we choose the Lyapunov function candidate as

V2ðz1; z2Þ ¼ V1ðz1Þ þ 1
2
z22 ¼

1
2
ðz21 þ z22Þ ð40Þ
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Differentiating V2 along the dynamics (29), we get

_V2 ¼ _V1 þ z2 _z2 ¼ �z21 � z22 þ z2ð2e1 þ 2e2 þ e3Þ ð41Þ

Next, we define

z3 ¼ 2e1 þ 2e2 þ e3 ð42Þ

Then the Eq. (41) can be simplified as

_V2 ¼ �z21 � z22 þ z2z3 ð43Þ

Finally, we choose the Lyapunov function candidate as

Vðz1; z2; z3; ea; ebÞ ¼ V2ðz1; z2Þ þ 1
2
z23 þ

1
2
e2a þ

1
2
e2b ð44Þ

That is, V is defined as

Vðz1; z2; z3; ea; ebÞ ¼ 1
2

z21 þ z22 þ z23 þ e2a þ e2b
� � ð45Þ

By definition, V is a quadratic, positive-definite function on ℝ5.
Differentiating V along the dynamics (29) and (32), we get

_V ¼ �z21 � z22 � z23 þ z3 ð3� aÞe1 þ 5e2 þ ð3� bÞe2 þ y22 � x22 þ u
� �

� eaâðtÞ � ebb̂ðtÞ
ð46Þ

Substituting the adaptive controller (33) into (46), we obtain

_V ¼ �z21 � z22 � z23 þ eað�z3e1 � _̂aÞ þ ebð�z3e2 � _̂bÞ ð47Þ

Substituting the parameter update law (32) into (47), we obtain

_V ¼ �z21 � z22 � z23 ð48Þ

which is a negative semi-definite function on ℝ5.
If we define

zðtÞ ¼
z1ðtÞ
z2ðtÞ
z3ðtÞ

2
4

3
5; ð49Þ
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then it can be concluded from (48) that the vector z(t) and the parameter estimation
error are globally bounded, i.e.

z1ðtÞ z2ðtÞ z3ðtÞ eaðtÞ ebðtÞ½ �T2 L1: ð50Þ

From (48), it follows that

_V � � kzk2 or kzk2 � � _V ð51Þ

Integrating the inequality (51) from 0 to t, we get

Z t

0

kzðsÞk2ds � �
Z t

0

_VðsÞds ¼ Vð0Þ � VðtÞ ð52Þ

From (52), it follows that zðtÞ 2 L2.
From (29), it can be deduced that _zðtÞ 2 L1.
Hence, using Barbalat’s lemma (19), it can be concluded that zðtÞ ! 0 expo-

nentially as t ! 1 for all initial conditions zð0Þ 2 R
3.

Hence, the identical Sprott jerk chaotic systems (26) and (27) with unknown
system parameters are globally and exponentially synchronized for all initial
conditions xð0Þ; yð0Þ 2 R

3 and âð0Þ; b̂ð0Þ 2 R.
This completes the proof. h

For numerical simulations, the fourth-order classical Runge-Kutta method with
initial step h = 10−8 has been used to solve the two systems of differential Eqs. (26)
and (27) with the adaptive backstepping controller defined by (33) and the
parameter update law (32).

The parameter values are taken as in the chaotic case, i.e.

a ¼ 1; b ¼ 2:02 ð53Þ

The parameter estimates are taken as

âð0Þ ¼ 4:7; b̂ ¼ 2:3 ð54Þ

The initial values of the master system are taken as

x1ð0Þ ¼ 1:0; x2ð0Þ ¼ 0:7; x3ð0Þ ¼ 0:4 ð55Þ

The initial values of the slave system are taken as

y1ð0Þ ¼ 0:3; y2ð0Þ ¼ 0:1; y3ð0Þ ¼ 0:2 ð56Þ
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Figure 7 shows the complete synchronization of the states x1(t) and y1(t). From
Fig. 7, it is seen that the states x1(t) and y1(t) are synchronized in 10 s. This shows
the efficiency of the active backstepping controller defined by (33).

Figure 8 shows the complete synchronization of the states x2(t) and y2(t). From
Fig. 8, it is seen that the states x2(t) and y2(t) are synchronized in 10 s. This shows
the efficiency of the active backstepping controller defined by (33).

Figure 9 shows the complete synchronization of the states x3(t) and y3(t). From
Fig. 9, it is seen that the states x3(t) and y3(t) are synchronized in 10 s. This shows
the efficiency of the active backstepping controller defined by (33).

Figure 10 shows the time-history of the synchronization errors e1(t), e2(t), e3(t).
From Fig. 10, it is seen that the errors e1(t), e2(t), e3(t) exponentially converge to
zero in 10 s. This shows the efficiency of the active backstepping controller defined
by (33).
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Fig. 7 Synchronization of the states x1(t) and y1(t)
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5 Conclusions

In this research work, active and adaptive backstepping controllers were derived the
global chaos synchronization of Sprott’s jerk chaotic system and the main results
were proved using Lyapunov stability theory. This paper investigated synchroniza-
tion properties for the Sprott’s jerk system (1997), which is algebraically the simplest
dissipative chaotic system consisting of five terms and a quadratic nonlinearity.
Sprott’s chaotic system involves only five terms and one quadratic nonlinearity, while
Rössler’s chaotic system (1976) involves seven terms and one quadratic nonlinearity.
This work first detailed the properties of the Sprott’s jerk chaotic system. The phase
portraits of the Sprott’s jerk system were described. The Lyapunov exponents of the
Sprott’s jerk system were obtained as L1 = 0.0525, L2 = 0 and L3 = −2.0727. The
Lyapunov dimension of the Sprott’s jerk system was obtained as DL = 2.0253. An
active backstepping controller was derived for the global chaos synchronization of
identical Sprott’s jerk systems with known parameters. The backstepping control
method is a recursive procedure that links the choice of a Lyapunov function with the
design of a controller and guarantees global asymptotic stability of strict-feedback
chaotic systems. Finally, an adaptive backstepping controller was derived for the
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global chaos synchronization of identical Sprott’s jerk systems with unknown
parameters. MATLAB simulations are provided in detail to illustrate all the main
results presented in this work.
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