
Goal Directed Synthesis of Serial
Manipulators Based on Task Descriptions

Sarosh Patel, Tarek Sobh and Ausif Mahmood

Abstract Computing the optimal geometric structure of manipulators is one of the
most intricate problems in contemporary robot kinematics. Robotic manipulators
are designed and built to perform certain predetermined tasks. There is a very close
relationship between the structure of the manipulator and its kinematic perfor-
mance. It is therefore important to incorporate such task requirements during the
design and synthesis of the robotic manipulators. Such task requirements and
performance constraints can be specified in terms of the required end-effector
positions, orientations and velocities along the task trajectory. In this work, we
present a comprehensive method to develop the optimal geometric structure (DH
parameters) of a non-redundant six degree of freedom serial manipulator from task
descriptions. This methodology is devised to investigate possible manipulator
configurations that can satisfy the task performance requirements under imposed
joint constraints. Out of all the possible structures, the structures that can reach all
the task points with the required orientations selected. Next, these candidate
structures are then tested to see if they can attain end-effector velocities in arbitrary
directions within the user defined joint constraints, so that they can deliver the best
kinematic performance. Finally, the synthesized structures are tested to see if they
perform the task under the operating constraints. In this work, we also present a
novel approach for computing the inverse kinematics using Particle Swarm Opti-
mization (PSO).
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1 Introduction

The goal of robotics is to automate and delegate real-world tasks to robotic
manipulators. Today robots are being applied to wide range of tasks; from the very
traditional material handling tasks to the very sophisticated tele-robotic surgery.

Robotic manipulators are designed and built to perform certain predetermined
tasks. Ideally speaking, one should easily be able to design a manipulator based on
its application. The rapid growth in manufacturing technologies has increased the
need for design and development of optimal machinery [1]. No longer is the
emphasis on machinery that works but on machinery that works faster, consumes
less power, and is more functional.

Even though general-purpose manipulators are commonplace they do not
guarantee optimal task performance. Task optimized manipulators are more effec-
tive and efficient than general purpose manipulators. There is a great need for task
optimized industrial manipulators that can perform a certain set of jobs with the best
efficiency, in the shortest time, and with the least operating cost and power
requirements. The availability of computing power allows us to design and evaluate
multiple structures based on user defined criteria and select the best design.

What is the best manipulator configuration for soldering electronic components?
What should be the ideal manipulator structure for a painting job? What is optimal
manipulator configuration for a material handling job? Computing the optimal
geometric structure of manipulators is one of the most intricate problems in con-
temporary robot kinematics [32].

Robotics researchers over the years have tried to find answers to these questions.
But in this case plenty is the problem; there is no unique solution or definite answer
to these questions. Instead, in most cases there can be infinite answers to any of the
above questions. Equations describing the kinematic behavior of serial manipula-
tors are highly nonlinear with no closed solutions. And the configuration search
space is infinitely large. The difficulty in most cases lies not in finding a solution,
but finding the ‘best’ solution out of the numerous possible solutions, or in other
words, an optimal solution. Another big challenge in solving this problem is the
number of parameters involved and the high non-linearity of the inverse kinematic
equations [16]. There is a very close relationship between the structure of the
manipulator and its kinematic performance [15, 16]. Researchers have over the
years tried to develop a framework to reverse engineer optimal manipulator
geometries based on task requirements [21].

Every robotic manipulator can only perform certain set of a set of tasks, and
some more efficiently than others. Deciding the best manipulator structure for a
required job at the design stage is done mainly on the basis of experience and
intuition. The rigorous analysis of a few widely used manipulator structures and a
collection of a few ad hoc analytical tools can be of some help [4, 23]. However, the
need for a comprehensive framework to reverse engineer manipulator structures
from task descriptions that can guarantee optimal task performance under a set of
operating constraints is still lacking [21].
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The aim of this work is to develop a goal directed design methodology that can
serve as a simple and easy tool for kinematic synthesis of robotic manipulators
based on task descriptions. The proposed methodology allows a user to enter the
task point descriptions and joint constraints, and generates the optimal manipulator
structure for the specified task. In this work we also present a novel approach for
calculating the inverse kinematic solutions based on the Particle Swarm Optimi-
zation (PSO) algorithm. This approach helps in finding all the inverse solutions that
lie within the constrained joint space with one run of the algorithm.

2 Existing Approaches

The research area of robotic manipulator design can be broadly classified into
general purpose designs and task specific designs. Even though general purpose
manipulators are commonplace, they do not guarantee optimal task execution.
Because industrial robotic manipulators perform a given set of tasks repeatedly,
task-specific or task-optimized manipulator designs are preferred for industrial
applications.

The existing approaches for design and synthesis of serial manipulators can be
broadly classified into the following three types:

2.1 Geometric Approach

Serial robotic manipulators are open-loop kinematic chains consisting of inter-
connected joints and links. There is a great body of research dealing with the
mobility issues of closed loop kinematic chains. The principles of closed loop
mechanical chains can be applied to design highly dexterous serial manipulators by
assuming the distance between the base of the manipulator and the task point as a
fixed and imaginary link in the closed mechanical chain.

Grashof [8] proposed a simple rule to judge the mobility of links in four-link
closed kinematic chains. This rule was further extended and developed into
Grashof’s criterion by Paul [27]. Robotic researchers have applied Grashof’s cri-
terion to design manipulators with high dexterity at the given task points. Where
dexterity refers to the ability of the manipulator to attain any orientation about a
given point [37]. In [17, 25], authors proposed a method for the optimal design of
three-link planar manipulators using Grashof’s criterion. In [25] a simple algorithm
for the optimal design of three link planar manipulators with full manipulator
dexterity at the given task region or trajectory is proposed. The Grashof’s criterion
has also been extended by researchers to explain the behavior of longer kinematic
chains. Ting introduced the five-link Grashof criterion [34] and later extended it to
N-link chains [35, 36]. The main advantage of this method is its independence from
the necessity to calculate the inverse kinematic solutions to judge its performance.
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2.2 Parametric Optimization Approach

Parametric optimization is a classical way of solving an optimization problem One
or more criteria that quantify the performance properties of the manipulator,
sometimes with associated weighting factors, are maximized or minimized to arrive
at a set of optimal design parameters. Parametric optimization has been one of the
widely adopted approaches for the synthesis of serial manipulators. Condition
number was used by Angeles and Rojas to obtain optimal dimensions for a three-
DoF manipulator and three-DoF spherical wrist [2]. Craig and Salisbury used the
condition number of the Jacobian as design criterion to optimize the dimensions of
the fingers of the Stanford articulated hand [28].

In [32], optimal kinematic synthesis of the manipulator structure was based on
the Yoshikawa manipulability ellipsoid at a given set of task points is presents. An
objective cost function incorporating the Yoshikawa manipulability index was
optimized using the steepest-descent algorithm over the manipulator’s task trajec-
tory to derive the optimal geometric structure. This work was implemented as a
procedural package in Mathematica®1 (version 4.1) and used the Robotica2 version
3.60 (a robotics toolkit for Mathematica®). This work was further extended in
[30, 31] to simulate the dynamic behavior of such an optimized manipulator.

Kucuk and Bingul [15, 16], implement a multi-variable optimization. The
manipulator workspace was optimized based on a combination of local and global
indices: Structural length index, manipulability measure, condition number, and
global conditioning index.

These parametric optimization methods are task independent and hence do
not guarantee the non-existence of a better manipulator for a specific task [22].
Another limitation of this approach is that it has a very limited scope due to the
inherent limitations and general shortcomings of the performance metrics. A com-
prehensive survey of manipulator performance parameters and their limitations can
be found in [26].

2.3 Task-Based Design Approach

Task-based design of manipulators uses the prior knowledge of application of the
manipulator to design the best possible structure that can guarantee task completion.
Task specifications can either be kinematic or dynamic. The ultimate goal of task-
based design model is to be able to generate both the manipulator kinematic and
dynamic parameters, using the task description and operating constraints [13]. This
task-based design approach has seen considerable interest from researchers dealing

1 [© 2002] Wolfram Research Inc.
2 [© 1993] Board of Trustees, University of Illinois.
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with re-configurable modular manipulators that can be easily re-configured
depending on the task at hand.

Paredis and Kholsa [22], use the task requirements to find the optimal structure
of a manipulator. They developed a numerical approach for determining the optimal
structure of a six degree of freedom non-redundant manipulator. Their proposed
method involves generating the DH parameters by minimizing an objective func-
tion using numerical optimization. This method does not check for non-singular
positions at task points and the ability of the manipulator to generate effective
velocities.

In [1], Al-Dios et al., developed a method for optimizing the link lengths, masses
and trajectory parameters of a serial manipulator with known DH table using direct
non-gradient search optimization. This work was focused to optimize the task time
and joint torques for a specific manipulator task.

In [12, 13], authors propose the concept of Progressive Design as a frame work
for the general design of manipulators and reconfigurable modulator manipulator
systems, using task descriptions. The framework consists of three modules: kine-
matic design, planning and kinematic control. The kinematic design module
encapsulates the task specifications, manipulator specifications and dexterity measure.
In [12, 13], authors apply the proposed framework to develop an optimal manip-
ulator for Space Shuttle tile changing operation, using dexterity as the optimizing
criterion.

Dash et al. [6], propose a two stage methodology for structure and parameter
optimization of reconfigurable parallel manipulator systems. They propose a
‘TaskToRobot Map’ database that maps task description to a suitable manipulator
configuration depending on the degrees of freedom required for a given task.

The manipulator configuration search space for all possible manipulator con-
figurations is prohibitively large for evaluating all possible solutions, even if
unacceptable solutions are eliminated early in the evaluation process. Two of the
most applied approaches to search the configuration space are Random line search
and Generic algorithms.

Authors in [5, 9, 11] recommend the use of Genetic Algorithms (GA) for
designing the structure of self-organizing and modular robotic systems. In [29],
authors Shiakolas et al. use evolutionary optimization approaches to optimize the
design of a SCARA manipulator.

3 Problem Statement

The task descriptions can be given in terms of the task points p that the manipulator
is supposed to reach with a specified orientation. Let P be the set of m task points
that define the manipulator’s performance requirements.
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P ¼ p1; p2; . . .; pmf g 2 TS ð1Þ

All these points belong to the six-dimensional Task Space (TS) that defines both
the position and orientation of the manipulator’s end-effector. Each point in the
Task Space (TS) can be given as:

pi ¼ x; y; z;u; h;wf g8i ¼ 1; 2; . . .;m 2 TS ð2Þ

where x; y; z are the real-world coordinates, and u; h;w are the roll, pitch and yaw
angles about the standard Z, Y and X-axis. Figure 1 shows an example of a
manipulator doing multiple tasks that require specific positioning and orientation of
the manipulator at different points in the workspace.

In this work, we use the standard DH (Denavit-Hartenberg) notation to represent
the manipulator structures [7]. The standard DH notation uses four parameters to
define each link in the serial manipulator:

1. Link length (a)
2. Link twist (α)
3. Link offset (d)
4. Joint angle (θ)

Fig. 1 Manipulator with different orientations at a set of task points
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Depending on whether the link is revolute or prismatic, the joint angle (θ) or the
link offset (d) is variable while the other three parameters remain constant for any
given link. Therefore, each link will have three design parameters that describe it. In
the case of a revolute link the design parameters are fa; a; dg, and in the case of a
prismatic link the design parameters are fa; a; hg. A n degree serial manipulator
configuration set (DH) can be given as:

DH ¼ fa0; a0; h0 or d0; a1; a1; h1 or d1; . . .; an�1; an�1; hn�1 or dn�1g ð3Þ

Therefore, an n-link serialmanipulatorwill have 3n design parameters. Every set of
manipulator configuration parameters can be said to be a point in the Configuration
Space (C). Each set of values of the DH vector represents a unique manipulator
configuration and a distinct point in the 3n dimensional Configuration Space (C).

DH ¼ a0; a0; h0 or d0; a1; a1; h1 or d1. . .; an�1; an�1; hn�1 or dn�1f g 2 C ð4Þ

Similarly, for an n degree of freedom manipulator, the joint vector q can be a
said to be a point in the n dimensional Joint Space (Q), such that:

q ¼ q1; q2; . . .; qn½ � 2 Q ð5Þ

Each joint vector q represents unique manipulator posture and a distinct point in
the n dimensional Joint Space (Q). The Joint Space assumes there are no joint
limitations (fully revolute ideal joints). But in practice the joints are not fully
revolute and are bounded by lower and upper bounds. The values of the joint angles
are range bound by user defined joint limits (upper and lower bounds). Hence, we
define Qc as the Constrained Joint Space, such that the joint displacements always
satisfy the constraints:

qi;min � qi � qi;maxðqi 2 QcÞ andQc � Q ð6Þ

Similarly, the manipulator’s Reachable Workspace (WS) is defined as the set of
points in the world coordinate system that the manipulator’s end-effector can reach
when no joint constraints are imposed. The manipulator’s forward kinematic
equations form a mapping f Cð Þ : Q ! WS between these three spaces: the Con-
figuration Space (C), the Joint Space (Q) and the Workspace (WS).

When the manipulator’s joint motion is restricted between joint limits the
manipulator can only reach a part of the Reachable Workspace, known as the
Constrained Reachable Workspace (CWS), such that CWS � WS. Constrained
Reachable Workspace is defined as the set of points in the real coordinate system
that the manipulator’s end-effector can reach when joint constraints are imposed.
This is given by the forward mapping: f Cð Þ : Qc ! CWS and Qc � Q.

Figure 2 shows the Reachable Workspace (WS) and Constrained Reachable
Workspace (CWS) for a simple planar two-link manipulator as an illustrative
example.
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When a given manipulator of configuration set DH, with joint vector q can reach
a specific task point p, the mapping can be represented as:

f DH; qð Þ ¼ p ð7Þ

Therefore, the problem can be stated as: Find a solution set DH in the
3n dimensional Configuration Space such that there exists at least one q in the
Constrained Joint Space that can reach the required position and orientation of
the end-effector. i.e.

Find allDH such that 8p 2 TS; 9q 2 Qcjf DH; qð Þ ¼ p

Even though this might seem to be a necessary and sufficient condition required
for designing a manipulator, simulations and experience will suggest that this
solution set might include a few manipulators that are able to reach the one or more
of the task points only in singular positions. Such manipulators, if constructed, will
not be able to attain good end-effector velocities in one or more directions due to
their singular postures at the task point(s). Such manipulators will have very limited
mobility at the required task point(s). Infinite forces have to be applied in order to
generate motion along one or more directions at singularities. Therefore such
manipulator configurations should be removed from the solution set. The test for

Fig. 2 Reachable workspace (WS) compared with constrained reachable workspace (CWS)
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singularity is the determinant of the Jacobian matrix, which for a square Jacobian
also happens to be the Yoshikawa manipulability index [38].

The Jacobian mapping from joint velocities to end-effector velocities for a
manipulator is given as:

n ¼ J DH; qð Þ _q ð8Þ

where n ¼ _x _y _z _/ _h _w
h i

is the end-effector velocity vector.

The Jacobian matrix is posture dependent matrix. It is also important to evaluate
the Jacobian of the manipulator because the Jacobian matrix maps joint velocities to
end-effector velocities, according to the mapping J DH; qð Þ : _q ! n. Hence, it is
important to check if the Jacobian of manipulator at a given task point is well
conditioned, and not in a singular posture. A manipulator with well-conditioned
Jacobian at the task points will easily be able to transform joint velocities into end-
effector velocities in any required direction, however the opposite cannot be said to
be true on the basis of just the Jacobian determinant.

n ¼ J1 _q1 þ J2 _q2 þ � � � þ Jn _qn ð9Þ

Therefore, we modify the problem statement as follows:
Find all DH such that 8p 2 TS; 9q 2 Qcjf DH; qð Þ ¼ p and det J qð Þð Þ 6¼ 0

4 Solution Methodology

In this section we define two functions for evaluating the reachability and kinematic
performance of the manipulator. To solve the problem we make the following
assumptions:

1. The robot base is fixed and located at the origin O.
2. The task points are specified with respect to the manipulator’s base frame.
3. The joint limitations are known to the designer.
4. If a joint is prismatic, the joint angle (θ) can assume values in the interval [−180,

180].
5. If a joint is revolute, the joint twist angle (α) can assume values [−180, 180].
6. The last three axes of the six degree of freedom manipulator intersect at a point

to form a spherical wrist.
7. To limit the number of inverse kinematic solutions only non-redundant con-

figurations are considered.

Let the task points be represented as p ¼ ½x; y; z;/; h;w�. The position of the
operating point (OP) on the end-effector is given by pP ¼ x; y; z½ � and its orientation
by p0 ¼ ½/; h;w�.
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pi ¼ pP p0½ � 2 TS 8i ¼ 1; 2; 3. . .;m ð10Þ

In cases where multiple orientations are required at the same point the vector pP
remains same while the orientation vector pO will assume different values.

The first criterion that needs to be satisfied is that all the points in the Task Space
should be a part of the manipulator’s Constrained Reachable Workspace. We define
the Constrained Reachable Workspace as the set of points that the manipulator is
able to reach under constrained joint limitations Qc, while the normal reachable
workspace (WS) is the set of points that the manipulator can reach with no joint
limits, such that CWS � WS. Hence, given a set of task points P, the first objective
is to find all possible manipulator configurations such that all task points in P are a
part of the manipulator’s Constrained Reachable Workspace (CWS).

Find all DH such that 8p 2 TS; p 2 CWS

The Constrained Reachable Workspace (CWS) of the manipulator is given by the
forward kinematic mapping f Cð Þ : Qc ! CWS. With the help of the standard DH
notation parameters, the forward kinematic relationship is given as:

f DH; qð Þ ¼ p ð11Þ

Due to the highly non-linear nature of the kinematic equations describing this
forward kinematic mapping from the Joint Space to the Task Space, multiple
manipulator postures or points in the Joint Space can lead to the same point in the
Task Space. In such cases, point(s) in the Task Space will have more than one
inverse kinematic solution.

q ¼ f�1ðDH; pÞ ð12Þ

The inverse kinematic equations often have no unique solution. Depending on
the manipulator’s structure (DH) and location of the task points (p), the number of
solutions might range from zero to infinite. And, even in the case where there are
multiple known solutions to the above equations, it is still possible that none of
them lie within the Constrained Joint Space (Qc).

q ¼ f�1 DH; pð Þjq 2 Qc ð13Þ

In this work we use Particle Swarm Optimization based inverse kinematic
approach for finding the inverse kinematic solutions within the constrained joint
space. This numerical approach finds all possible inverse kinematic solutions within
the specified joint constraints. This is discusses in detail in the following section.

To determine if the structure manipulator is able to reach a given task point with
required orientation we construct a reachability function. The reachability function
determines if the manipulator can reach and orient the end-effector at the task point
within the set joint limitations.

328 S. Patel et al.



reachabilityðDHÞ ¼ max min
qi;max � qi
� �

qi � qi;min
� �

0:5 qi;max � qi;min
� �� �2

 !n

i¼1

" #g
j¼1

ð14Þ

where g is the number of inverse kinematic solutions.
When the joint angle displacements required to reach a task point are within the

joint constraints the reachability function is bounded with in zero and unity. And, if
the maipulator reaches the task point with at least one joint angle at it maximum
displacement, the reachability function will have value of zero. The reachability
function will have a maximum value of unity if the manipulator reaches the task
point with all joint displacement being mid-range of their joint limits. A reachability
value of unity is the ideal case and is only possible with one task point. If the one of
the bounds is violated by any given joint out of the n manipulator joints the function
will have a negative value. The reachablility function value for different locations of
the task point is shown in Table 1.

Since we take a minimum of all the n joints, the reachability indicates the worst
joint performance. This reachability function can help in the design of optimal
manipulator structures by checking if they can reach the task point with proper joint
displacements. To find the best reachable configurations the reachability function
needs to be maximized.

Next, to select the best manipulator out of this set of manipulator configurations
based their kinematic performance and manipulability. For this we write an
objective function that can be maximized or minimized to obtain the optimal
manipulator configuration.

f ðDHÞvelocity ¼ max det J q1
� �� �

; det J q2
� �� �

; . . .; det J qgð Þð Þ� � ð15Þ

where g is the number of inverse kinematic solutions.
This objective function should be maximized to find the optimal manipulator

structure that has the best conditioned Jacobian a task points. Such a manipulator
will be able to easily transform joint velocities into needed end-effector velocities.

We extend the above formulation for reachability and kinematic performance to
include all m points that define the Task Space, as a summation of the function
values at the individual task points.

Table 1 Reachability function values

Location of the task point ‘p’ Reachability
function value

When p is inside the workspace and at least one solution is within joint
constraints

[0, 1]

When p is inside the workspace and the best solution has at least one of
the joint angles at its extreme position

0

When p is inside the workspace and the best solution is one with all
joints displacements mid-range

1
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reachabilityðDHÞ ¼
X
8p2TS

max min
qi;max � qi
� �

qi � qi;min
� �

0:5 qi;max � qi;min
� �� �2

 !n

i¼1

" #g
j¼1

0
@

1
A ð16Þ

f DHð Þvelocity¼
X
8p2TS

max det J q1
� �� �

; det J q2
� �� �

. . .; det J qgð Þð Þ� �� � ð17Þ

To convert these functions into general optimization problems, such that mini-
mizing them will yield optimal solutions we add a negative sign. The functions then
become:

reachabilityðDHÞ ¼ �
X
8p2TS

max min
qi;max � qi
� �

qi � qi;min
� �

0:5 qi;max � qi;min
� �� �2

 !n

i¼1

" #g
j¼1

0
@

1
A
ð18Þ

f DHð Þvelocity¼ �
X
8p2TS

max det J q1
� �� �

; det J q2
� �� �

. . .; det J qgð Þð Þ� �� � ð19Þ

When multiple task points constitute a task goal these functions will have many
local minima. This should be kept in mind while selecting a proper optimization
algorithm. Using local minimization routines to find optimal solutions will yield
acceptable solutions but not global solutions. Only global minimization routines
will be able to deliver an optimal solution for the problem. The choice of the global
minimization algorithm to be used depends on the number of iterations required,
number for function evaluations and the speed of convergence.

4.1 Methodology Flowchart

The presented mathematical formulation and methodology can be represented in the
form of a flow chart shown in Fig. 3. Random configurations are generated and
tested for the existence of the inverse solutions within the joint limits range. In case
a solution exists within the joint constraints, we further test the configurations for
good manipulability and other additional performance criteria. Every reachable
configuration is saved so that it can be used for further analysis and testing. Some of
these configurations can also be used as initial starting points to optimization search
algorithms. The final stop criteria can be set in terms of either the number of
iterations, number of functional evaluations, or desired objective function value
limit or a time limit.
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4.2 Simulated Annealing

There are many approaches to solve a given global optimization problem. The
choice of the algorithms greatly depends on factors such as the dimensionality of
the problem, the nature of the variables (discrete or continuous), availability of a
function derivative. A good global optimization method for a given problem can
only be found by matching the features of the problem to the algorithm charac-
teristics and its problem handling capabilities.

In this case, the objective or cost function—which is the reachability function—
does not have a direct analytical expression, and is computationally expensive to
calculate as it depends on the inverse kinematic solutions. It is also important to
note here that this problem does not have a formulation for a function derivative or
any function gradient data. The objective function will have multiple local and
global minima points where the function value attains the desirable value. The
search space is also very exhaustive. Keeping in mind the above factors we chose to
implement the problem using Simulated Annealing algorithm. The simulated
annealing method is a heuristic algorithm.

Generate
Configuration

Reachable

Inverse Kinematics
(Analytical / Numerical Methods)

Stop
Criteria

Additional 
Constraints

Stop

Start

NO

YES

YES

NO
Optimal

Configuration 
for Reachability

Optimal
Kinematic

Configuration

Store
Reachable

Configurations

Fig. 3 Proposed methodology flowchart
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Simulated annealing was developed in the 1980s by Scott Kirkpatrick [14] based
on a statistical algorithm developed much earlier by Metropolis [20], to improve
designs of Integrated Circuit (IC) chips by emulating the actual process of
annealing.

Simulated Annealing (SA) is a generic probabilistic meta-heuristic algorithm for
finding the global minimum of a cost function that has many local minima. The SA
algorithm uses random generated inputs based on a probabilistic model. Only under
certain conditions is a change in the objective function due to a new random input
accepted. The acceptance condition for a new input is given as follows:

Dfobj � 0 ð20Þ

exp �Dfobj
T

� �
[ random½0; 1Þ ð21Þ

where Dfobj is the change in the objective function and T is the temperature of the
algorithm.

Beginning with a high temperature the algorithm with every iterative step
gradually lowers the temperature simulating the annealing process. And, after every
fixed number of iterations, known as the annealing period, the temperature is back
raised again. Higher temperatures mean greater randomization of the input vari-
ables. Therefore, a slow annealing method that lowers the temperature gradually
will explore the search space to a greater extent that a fast annealing method that
lowers the temperature quickly. At lower temperatures the search space is exploited
while at high temperature the algorithm explores the search space.

The algorithm stops when there is no change in the objective function for a
certain number of consecutive inputs. SA algorithm remembers the best inputs
throughout its run. SA works well with high dimensionality problems even when
the search space is extensive.

The Simulated Annealing Method first generates random manipulator configu-
rations that are then tested for reachability using the inverse solutions found by the
Particle Swarm Optimization. The PSO based inverse kinematic module only
searches for solutions within the user specified joint constraints. All the configu-
rations that are found to be reachable are then further tested based on additional
criteria. We keep re-annealing, by raising the temperature of the simulated
annealing algorithm when the temperature of the algorithm reaches a minimum.
The best reachability table is updated every time a better configuration is found.

4.3 Inverse Kinematics Using Particle Swarm Optimization

The Particle Swarm Algorithm (PSA) was designed to simulate the social behavior
of organisms that behave in groups, commonly referred to as Swarm Intelligence.
PSA mimics the population behavior followed by groups of animals such as a flock
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of birds or a school of fish. PSA over the years has developed from a social
behavior simulator to a global optimization algorithm. It was first proposed as a
method for global optimization by Kennedy in [10]. Particle Swarm Optimization
(PSO) belongs to the family of algorithms commonly referred to as Swarm Intel-
ligence algorithms. The PSO method optimizes iteratively, by having particles learn
from each other’s position and move accordingly in the search space. With the help
of a set of control parameters the algorithm maintains a good balance between the
exploration and exploitation of the search space, by controlling the swarm popu-
lation accordingly.

PSO is a meta-heuristic algorithm that can be used for problems with large
search spaces. PSO is very easy to implement and it does not require large com-
putational capabilities. PSO also does not require the objective function to have a
gradient or to be differential. It determines the global minima points through
cooperation and competition among the individuals of the population or agent
particles [24]. PSO can solve complex problems faster than traditional algorithms
due to its inherent characteristic of learning from the swarm population.

A very good survey of different applications of PSO to global optimization
problems and its variants can be found in paper [24]. The inertia weight of the
particles is one of the important factors that determines the how fast the PSO
algorithm converges, and therefore has been a topic of interest and research. In [3],
authors investigate different inertia weight strategies for PSO when applied to
different problems to see which inertia update strategies work the best.

The PSO algorithm has attracted researchers from various backgrounds who
have tried to improve its features by applying it to a wide range of problems. In
[18, 19, 39] authors propose the use of dynamic multi-swarm methodologies for
certain optimization problems.

Though PSO is originally meant to find a global minimum within the search
space, it can be adapted to find multiple global minima, as required in this case. In
this work the PSO has been used to find the inverse kinematic solutions for six
degree of freedom manipulators. One main advantage of using PSO is that the
search space can be limited to constrained joint space. Therefore, all solutions
found will automatically lie within the constrained joint space, as opposed to the
previous approach where all the solutions have to be found and then solutions that
are outside the joint limits had to be rejected.

4.3.1 Example of a Two DoF Planar Manipulator

A two degree of freedom planar manipulator has a maximum of two inverse
solutions for all points except when the arm is fully extended. These two are
commonly referred to as ‘elbow up’ and ‘elbow down’ postures. Figure 4 below
shows the two postures for a given point in the reachable workspace.

Consider a simple two-link planar manipulator, with link lengths l1 ¼ l2 ¼ 1 and
the desired point P x; yð Þ ¼ ð1; 1Þ. We construct a simple error function in terms of
the two joint angles, as follows:
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err ¼ x� l1 cos h1 � l2 cos h1 þ h2ð Þj j þ y� l1 cos h1 � l2 cos h1 þ h2ð Þj j ð22Þ

The plot for the error function over the range of h1 and h2 is shown in Fig. 5. The
two minima points are the required inverse kinematic solutions. Figure 6 below
shows the contour plot of the error function and the location of the two solutions.

The error function for such a simple manipulator can easily be visualized in a
three dimensional plot, but this cannot be done for higher order manipulators that
require more than three dimensions. This position error function is given as an input
to the PSO algorithm. The different stages of the swarm optimization are shown
below in Fig. 7.

The swarm particles/agents can be seen as red dots on the function surface. The
swarm particles finally converge at the two minima points in the final plot.

To identify the two global solutions after a specified number of iterations of the
PSO algorithm, the following steps are implemented:

(1) Sort the particles in ascending order of the error function value.
(2) Eliminate particles that have an error function value greater than a specified

threshold.
(3) Group particles that lie with a specified radius.

Fig. 4 Inverse kinematic
solutions of a two link arm [33]

Fig. 5 Position error plot and contour
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The number of PSO iterations, the threshold, and the grouping radius have to be
carefully selected so that all possible solutions can be identified. Fewer iterations
will not allow enough time for all the particles to reach the multiple minima points.
Choosing a higher threshold can give false solutions that are at a distance from the

Fig. 6 Position error contour showing the solution points

Fig. 7 Stages of the PSO while finding the inverse kinematic solutions
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goal, while using a very low threshold can eliminate real solutions too. Further-
more, having a large grouping radius can lead to two or more solutions being
grouped together.

4.3.2 Six Degree-of-Freedom Example

Next we apply the same PSO bases methodology to compute the inverse kinematic
solutions of the six link manipulator with a spherical. When PSO is applied directly
to compute all six joint angles for a given reachable point, the PSO has a hard time
converging on the solutions due to the high dimensionality of the problem. To do
this we approach the problem using the Greedy Optimization philosophy, according
to which, the global optimum to a large problem consists of the global optimum to
each of its sub-problems. Due to the presence of the spherical wrist we can
decouple the positioning and the orienting equations as two sub-problems. Finding
the global solutions to these two sub-problems will automatically solve the larger
inverse kinematics problem.

In this work we have implemented the inverse kinematic solution algorithm in
two stages. The first run of the PSO finds all possible joint angles for the first three
joints such that the manipulator is able to reach the desired point. Next, for each of
the set of solutions for the first three joints the PSO is run to find the possible set of
joint angles for the wrist joints such that the desired end-effector orientation can be
achieved. This approach also saves precious computation time as there is no need to
find the wrist solutions if the arm cannot reach the desired position. Hence, the wrist
angles are only calculated if the arm is able to position itself at the desired point.
For the class of manipulators with six degrees of freedom and a spherical wrist,
below is the algorithm to find the inverse kinematic solutions.

Let P be the target point in the task space such that P can be decoupled into
positioning and orienting terms as:

P ¼ pP po½ � ¼ ½x; y; z; ;; h;w� ð23Þ

The angles ;; h;w are such that successive transformations about the respective
axes by these angles should lead to the required end-effector orientation, such that:

R0
6 ¼ R /; h;wð Þ ¼ Rz;/Ry;hRx;w ð24Þ

This final end-effector orientation matrix can also be represented in terms of the
normal, sliding and approach vectors as follows:

R0
6 ¼ R /; h;wð Þ ¼ n s a½ � ð25Þ

The following algorithm is used to find the inverse kinematic solution for a given
point. First, the wrist center (c) is found by using the approach vector (a):
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c ¼ pP � d6a ð26Þ

Next, we solve the forward kinematic equations for positioning the wrist center
(c) at the desired point, using PSO. This yields sets of first three joint angles
q1; q2; q3 that can place the wrist center at the desired point. To solve the position of
the manipulator using PSO we set up a position error function (err):

err ¼
X

pP � f ðq1; q2; q3Þj j ð27Þ

The multiple minima points of this position error function are the possible sets of
the first three joint angles:

q1; q2; q3½ � ¼ pso errð Þ ð28Þ

Next, for each set of possible q1; q2; q3 we need to find q4; q5; q6 such that the
desired orientation is possible. To do this we first calculate the desired orientation
due to the last three joints.

R3
6 ¼ R0

3

� �T
R0
6 ð29Þ

Using Particle Swarm Optimization we solve R3
6 to get the last three joint angles:

q4; q5; q6½ � ¼ pso R3
6 � f Rð Þ� � ð30Þ

The PSO algorithm is configured to search for solutions only within the joint
limits; this eliminates the need to check for solutions lying outside the joint limits.

4.3.3 Puma560 Inverse Kinematics

In this section the above algorithm is applied to a PUMA 560 robotic arm to find its
inverse kinematic solutions. For most points in the reachable workspace the PUMA
560 arm has four solutions for the inverse position kinematics (unless they violate
the joint constraints) as shown in Fig. 8.

The upper bound (UB) and lower bound (LB) for the six revolute joints for a
Puma560 manipulator arm in degrees are as follows:

LB ¼ �160;�45;�225;�110;�100;�266½ �
UB ¼ 160; 225; 45; 170; 100; 266½ �

Below are the example test runs of the PSO-based inverse kinematics method.

a. Home position—Here we find the inverse kinematic solutions for the PUMA
560’s home position which is given by the point P. The orientation angles are all
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zero in this case. Figure 9 shows the four inverse position solutions that lead to
the same point. Figure 10 shows the end-effector orientation. As seen in Fig. 10
all the normal, sliding, and approach axes of the end-effector perfectly coincide
for all four solutions.

P ¼ ½x; y; z; ;; h;w ¼� ½ 0:4521;�0:1500; 0:4318; 0; 0; 0�

b. Top position—In this example another point P is chosen with arbitrary orien-
tation angles. Figure 11 shows the four inverse position solutions that lead to the
same point. Figure 12 shows the end-effector orientation. Again, all the orien-
tation axes of the end-effector perfectly coincide for all four solutions .

P ¼ ½x; y; z; ;; h;w ¼� ½0:4521;�0:1500; 0:4318; 0; 0; 0�

Fig. 8 Four solutions of the inverse position kinematics for the PUMA arm [33]
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Fig. 9 Inverse position kinematics solutions

Fig. 10 Inverse position and orientation solutions

Fig. 11 Inverse position kinematics solutions
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5 Experimental Results

In this section we test the proposed methodology to design manipulators based on
task point descriptions. The task goals differ in the number of task points and also in
the orientation required at these task points. For a prismatic link the joint limit is
constrained between zero and unity. The joint limit constraints for the revolute
joints are set as follows:

Lower Bound ¼ �160; �45; �225; �110; �100; �266½ �
Upper Bound ¼ 160; 225; 45; 170; 100; 266½ �

5.1 Spherical Goal

In this task the manipulator is required to have the ability to reach a task point from
all possible approaches or angles. This task involves approaching a point from six
different angles separated by 90°, such that they represent the three diagonals of a
sphere perpendicular to each other. The task points for a sphere goal are given
below.

Fig. 12 Inverse position and orientation solutions

Sphere goal = [
0 0.75 0 0 0 0; 
0 0.75 0 -3.142 0 -3.142; 
0 0.75 0 0  1.565 0; 
0 0.75 0 0  -1.565 0; 
0 0.75 0 -1.372 1.541 -3.142; 
0 0.75 0 1.784 -1.571 -0.213 

];
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The task visualization is shown in Fig. 13.
Based on the evaluations of all possible configurations, the best configuration

that has the maximum overall reachability value for this set of points of the sphere
is an RRR-RRR manipulator. This configuration has a reachability value of
−0.5441.

The DH parameters of the manipulator are:

Figure 14 shows superimposed manipulator positions at the required task points.

Fig. 13 Task description for the spherical goal
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For this goal the best kinematic performance structure was found to be:

5.2 Circular Ring Goal

In this task the manipulator is required to reach eight points on the circumference of
a circle with the same orientation at all the task points. The task points for the ring
goal are given below.

Fig. 14 Designed manipulator reaching all the task points of the spherical goal
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The task visualization is shown in Fig. 15.
Based on the evaluations of all possible configurations, the best configuration

that has the maximum overall reachability value for this set of points of the ring task
is an RRR-RRR manipulator. This configuration has a reachability value of −0.833

The DH parameters of the manipulator are:

Figure 16 shows superimposed manipulator positions at the required task points.
For this goal the best kinematic performance structure was found to be:

Ring Goal = [
0.7000    0.5000 0 -3.142 0 -3.142 
0.6414    0.6414 0 -3.142 0 -3.142 
0.5000    0.7000 0 -3.142 0 -3.142 
0.3586    0.6414 0 -3.142 0 -3.142 
0.3000    0.5000 0 -3.142 0 -3.142 
0.3586    0.3586 0 -3.142 0 -3.142 
0.5000    0.3000 0 -3.142 0 -3.142 
0.6414    0.3586 0 -3.142 0 -3.142 

];
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Fig. 15 Task description for the ring goal

Fig. 16 Designed manipulator reaching all the task points of the ring goal
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5.3 Horizontal Plane Goal

This task comprises of nine points that lie in a horizontal plane, the manipulator is
supposed to reach all of the task points with the same orientation. This task is
similar to the task manipulators execute in the packaging/soldering application. The
task points for the horizontal plane goal are given below.

Horizontal Plane Goal = [ 
0.9  -0.5  0 -3.142 0 -3.142; 
0.9   0     0 -3.142 0 -3.142; 
0.9   0.5  0 -3.142 0 -3.142; 
0.7  -0.5  0 -3.142 0 -3.142; 
0.7   0     0 -3.142 0 -3.142; 
0.7   0.5  0 -3.142 0 -3.142; 
0.5  -0.5  0 -3.142 0 -3.142; 
0.5   0     0 -3.142 0 -3.142; 
0.5   0.5  0 -3.142 0 -3.142; 

];
The task visualization is shown in Fig. 17.
Based on the evaluations of all possible configurations, the best configuration

that has the maximum overall reachability value for this set of points of the hori-
zontal goal is an RRR-RRR manipulator. This configuration has a reachability
value of −0.68127.

The DH parameters of the manipulator are:

Figure 18 shows superimposed manipulator positions at the required task points.
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Fig. 17 Task requirements for the horizontal plane goal

Fig. 18 Designed manipulator reaching all the task points of the horizontal goal
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For this goal the best kinematic performance structure was found to be:

6 Discussion

In all the task experiments the initial seed to the algorithm was a set of random
values such that the resultant configuration did not constitute an existing structure
and did not reach even a single task point. The methodology then iteratively found a
set of reachable configurations from which task suitable configurations are selected.

The optimal manipulator structures for the best reachability, and kinematic
performance are not always the same. They can be two different manipulators.
A manipulator structure having a very good reachability value for a set task may not
actually be the most efficient manipulator. Therefore, selecting the right manipulator
will involve a certain intelligent trade off with respect to these parameters.

As expected for most of the tasks, the best manipulator structure found happened
to be a RRR/RRR manipulator. This supports the fact that most industrial manip-
ulators are RRR robots with spherical wrists as they provide better reachability at
the task points and also the ability to orient the end-effector arbitrarily in the
workspace.

The manipulator structures that were generated by the methodology for each of
the tasks are not ones that would intuitively come to mind for those tasks. Using
this task based tool to design manipulators can help the designer in evaluating new
and different configurations.

In some cases a few structures failed to reach all the task points with the
necessary orientation required for task completion. For example no RPP/RRR
configuration could be found that could successfully complete the sphere goal task
within the set joint constraints.
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7 Conclusion

In this work we have presented a general methodology for task-based prototyping
of serial robotic manipulators. This framework can be used to generate specialized
goal oriented manipulator structures based on the task descriptions. The framework
allows for practical joint constraints to be imposed during the design stage of the
manipulator. This methodology incorporates the necessary criteria for the design of
a manipulator, such as reachability, orientation and non-singularity. However the
sufficient condition can be specified by the user, by incorporating additional
constraints. In this work we have used a novel approach based on particle swarm
optimization to calculate the inverse kinematic solutions. This work can be viewed
as part of a broader program to develop a general framework for the reverse
prototyping of robotic manipulators based on task descriptions and operating
constraints.
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