
The Shapley Value in Knapsack Budgeted

Games

Smriti Bhagat1, Anthony Kim2,�, S. Muthukrishnan3, and Udi Weinsberg1

1 Technicolor Research, Los Altos, CA, USA
{smriti.bhagat,udi.weinsberg}@technicolor.com

2 Department of Computer Science, Stanford University, Stanford, CA, USA
tonyekim@stanford.edu

3 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
muthu@cs.rutgers.edu

Abstract. We propose the study of computing the Shapley value for a
new class of cooperative games that we call budgeted games, and inves-
tigate in particular knapsack budgeted games, a version modeled after
the classical knapsack problem. In these games, the “value” of a set S of
agents is determined only by a critical subset T ⊆ S of the agents and
not the entirety of S due to a budget constraint that limits how large
T can be. We show that the Shapley value can be computed in time
faster than by the näıve exponential time algorithm when there are suf-
ficiently many agents, and also provide an algorithm that approximates
the Shapley value within an additive error. For a related budgeted game
associated with a greedy heuristic, we show that the Shapley value can
be computed in pseudo-polynomial time. Furthermore, we generalize our
proof techniques and propose what we term algorithmic representation
framework that captures a broad class of cooperative games with the
property of efficient computation of the Shapley value. The main idea is
that the problem of determining the efficient computation can be reduced
to that of finding an alternative representation of the games and an asso-
ciated algorithm for computing the underlying value function with small
time and space complexities in the representation size.

1 Introduction

The Shapley value is a well-studied solution concept for fair distribution of profit
among agents in cooperative game theory. Given a coalition of agents that col-
lectively generate some profit, fair distribution is important to maintain a stable
coalition such that no subgroup of agents has an incentive to unilaterally deviate
and form its own coalition. While the Shapley value is not a stability concept,
it uniquely satisfies a set of desirable properties for fair profit distribution based
on individual contributions. It has been shown useful on a wide range of coop-
erative games and, more recently, applied beyond the game-theoretic setting in
problems related to social networks [19, 17] and computer networks [14, 18].

� This work was done while the author was an intern at Technicolor Research Lab.
Supported in part by an NSF Graduate Research Fellowship.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 106–119, 2014.
c© Springer International Publishing Switzerland 2014

The Shapley Value in Knapsack Budgeted Games 107

Efficient — (pseudo) polynomial time — computation of the Shapley value
has been studied for many classes of cooperative games. One such example is
weighted voting games that model parliamentary voting where agents are parties,
the weight of each party is the number of the same party representatives, and
a coalition of parties is winning (has value 1) if its total weight is at least some
quota, or losing (has value 0) otherwise. It was shown that computing the Shapley
value in the weighted majority games, where the quota is half the total weight of
all the agents, is #P-complete [8] and NP-hard [16]. Note, however, that there
is a pseudo-polynomial time algorithm using dynamic programming [15].

In another line of research, representation schemes for cooperative games have
been proposed in [7, 11, 12, 1]; if a given cooperative game has a small alternative
representation in one of these schemes, then the Shapley value can be computed
efficiently in time polynomial in the size of the alternative representation. For
example, we can represent a given cooperative game as a collection of smaller
cooperative games in multi-issue representation [7], or in terms of logic rules in
marginal contribution net representation [11].

We propose a new class of cooperative games that we call budgeted games and
study the Shapley value computation in these games. In cooperative games, the
value function v(S) for a coalition S is determined by all the agents in S, but may
explicitly depend on a sub-coalition in some domains (e.g., [3, 5, 2]). We study
value functions conditioned on a budget B where v(S) may be totally determined
by a potentially strict subset T ⊂ S of agents. That is, budget B models a
physical or budget constraint that may limit the actual value of a coalition to be
less than simply the total aggregate value of all the individual contributions and,
hence, the profit generation of a coalition is determined only by a sub-coalition
of the agents. There are many examples we can readily formulate as budgeted
games to model real-life scenarios:

– (Graph Problems) Consider a network of nodes that correspond to facilities
and edges between them that correspond to communication links. This can
be modeled as a graph G with weights on nodes. For any subset S of nodes,
vB(S), the value created by set S under budget B, may be the maximum
weight of an independent set of at most B nodes.

– (Set Problems) Let each agent be a sales agent targeting a specific set of
customers. Then vB(S) may be the maximum number of customers that can
be targeted by a subset of size at most B of sales agents from S.

– (Packing Problems) Consider creating a task force from a pool S of available
agents where each agent is associated with some value and cost. Then vB(S)
may be the largest total aggregate value from a subset of the agents with
total cost at most B.

– (Data Mining Problems1) Let each agent represent a document with some
quality measure with respect to a fixed search query. We may approximate
the total value of an ordered list of documents S, ordered by the quality

1 This is the Shapley value computation problem for what is commonly known as the
Top-k problem.

108 S. Bhagat et al.

measure, by those that appear at the top of the list. Then, the corresponding
vB(S) is the sum of the top B quality scores of documents in S.

For the Shapley value to be useful in value division problems modeled as bud-
geted games, we cannot simply apply the formula for the Shapley value as it
would lead to an exponential time algorithm. Hence, it is important to under-
stand its computational complexity in these games, and we study the knapsack
version (equivalently, Packing Problems) in this paper. As far as we know, the
budgeted games have not been studied previously. A related class of games called
bin-packing games [9, 13, 20] has been studied for different solution concepts of
core and ε-core.2

Our Contributions. First, we propose a new class of cooperative games, bud-
geted games, and investigate the computational complexity of the Shapley value
in a particular version of budgeted games. Second, we generalize our proof tech-
niques and propose a general framework, algorithmic representation, for coopera-
tive games. We note that all our algorithms have running times with a polynomial
dependence on the number of agents. More specifically, our contributions are as
follows:

– We study the knapsack version of budgeted games and show that computing
the Shapley value in these games is NP-hard. On the other hand, we show
that the Shapley value can be computed in time faster than by the näıve
exponential time algorithm when there are sufficiently many agents.

– We provide an additive approximation scheme for the Shapley value via
rounding; our approach does not use the standard sampling and normal
distribution techniques [4, 10] in estimating the Shapley value.

– We consider the value function obtained by a 2-approximation greedy algo-
rithm for the classical knapsack problem and show that for this function, the
Shapley value can be computed in pseudo-polynomial time.

– We provide generalizations and present the algorithmic representation frame-
work that captures a broad class of cooperative games with the property of
efficient computation of the Shapley value. This includes many known classes
of cooperative games in [8, 15, 17] and those with concise representations us-
ing schemes in [7, 11, 1].

Due to space constraints, we refer to the long version of this paper [6] for more
details.

2 Preliminaries

We represent the profit distribution problem as a cooperative game (N, v) where
N is the set of agents and v : 2N → R is the characteristic function that assigns

2 While items and bins separate and bins model linear constraints in knapsack bud-
geted games, both items and bins are treated as agents and the goal is to share profit
among them in a fair way in bin-packing games.

The Shapley Value in Knapsack Budgeted Games 109

a value to each subset of agents, with v(∅) = 0. We also call v the value function
and use both characteristic and value functions interchangeably. For a subset of
agents S ⊆ N , we interpret v(S) as the value that these agents can generate
collectively; v(N) is the total value that the whole group generates.

The Shapley value [21] is a solution concept based on marginal contributions
that divides the total value v(N) into individual shares φ1, . . . , φ|N | satisfying
an intuitive notion of fairness. For i ∈ N and S ⊆ N \ {i}, we define agent i’s
marginal contribution to S to be v(S ∪ {i}) − v(S). The Shapley value is the
unique profit distribution solution that satisfies the following properties:

1. (Efficiency)
∑

i∈N φi(v) = v(N);
2. (Symmetry) If v(S ∪ {i})− v(S) = v(S ∪ {j})− v(S) for all S ⊆ N \ {i, j},

then φi(v) = φj(v);
3. (Null Player) If v(S ∪ {i})− v(S) = 0 for all S ⊆ N \ {i}, then φi(v) = 0;
4. (Linearity) For any two cooperative games (N, v) and (N,w) and their com-

bined game (N, v + w), φi(v) + φi(w) = φi(v + w) for all i ∈ N .

The Shapley value for each agent i is computed as

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)). (1)

Note the Shapley value is a weighted average of agent i’s marginal contribu-
tions. Equivalently, it can also be computed as φi(v) =

1
|N |!

∑
π∈Π v(P i

π ∪{i})−
v(P i

π), where Π is the set of all |N |! permutations of the agents and P i
π is the

set of agents preceding agent i in the order represented by permutation π.
There are two sources of computational complexity in the Shapley value: an

exponential number of terms in the summation and individual evaluations of
the characteristic function v. Directly applying the above equations leads to a
näıve algorithm with running time at least exponential in the number of agents,
Ω(2|N |); furthermore, each individual evaluation of v can be expensive.

3 Knapsack Budgeted Games

A knapsack budgeted game (N, v) is a cooperative game with the alternative rep-
resentation given by a nonnegative integer tuple ({(l1, w1), . . . , (l|N |, w|N |)}, lbin)
such that v(S) = maxS′⊆S:l(S′)≤lbin w(S

′) for all S ⊆ N , where l(S′) =
∑

k∈S′ lk
and w(S′) =

∑
k∈S′ wk. Each agent i is described by (li, wi) where li and wi

are the agent’s length and weight, respectively. The variable lbin is the bin size
that restricts which set of agents can directly determine the value function v.
For a set of agents S, the value v(S) is determined by solving an optimization
problem where the total value of selected agents, possibly a strict subset of S,
is optimized subject to a budget constraint; the other unselected agents do not
contribute explicitly. Note the similarities with the classical knapsack problem
in which the objective is to find the maximum total value of items that can be
packed into a fixed size bin.

110 S. Bhagat et al.

Knapsack budgeted games are useful when the characteristic function v of a
cooperative game can be modeled as the objective value of an optimization prob-
lem subject to linear constraints. In this paper, we only consider the games with a
single linear constraint, but our results extend to knapsack budgeted games with
multiple linear constraints. In a knapsack budgeted game with multiple budget
constraints, each agent is associated with a length vector l = (l1, . . . , ld) and a
weight and there is a budget constraint on each coordinate, i.e., l1bin, . . . , l

d
bin,

assuming d budget constraints.
For an application, we can use knapsack budgeted games and the Shapley

value to model value division in a sport team. We would like to give out bonuses
proportional to the Shapley value solution. Assume each player i is associated
with a skill level wi and, in a game of the sport, at most B players from each
team can play. We model the value of the team as the total aggregate skill
level of its best B players, since they usually start and play the majority of the
games. Then, this is a knapsack budgeted game with skill levels as weights, unit
lengths, and lbin = B. Note the Shapley value of a player not in the top B may
be positive. Since he is still contributing to the team as a reserve player and
might be one of the top B players in a subset of the team, say available players
in an event of injury, he should be compensated accordingly.

In the following sections, we assume that the knapsack budgeted game (N, v)
has the representation ({(l1, w1), . . . , (l|N |, w|N |)}, lbin). We define wmax = �lbin ·
maxi wi/li	, which is an upper bound on the value v(N). We use shorthand
notations l(S) =

∑
k∈S lk and w(S) =

∑
k∈S wk for any subset S. The set of

agents are ordered and labeled with 1, . . . , |N |. For a set of agents X and two
integers a and b, we use Xa,b to denote the subset {i ∈ X : a ≤ i ≤ b}. To avoid
degenerate cases, we further assume 0 < li ≤ lbin for all i. We use the indicator
function Id that equals to 1 if all the input conditions hold, or 0 otherwise.

4 The Shapley Value in Knapsack Budgeted Games

We present a hardness result, an algorithm for computing the Shapley value
exactly, and a deterministic approximation scheme that approximates within an
additive error.

4.1 Exact Computation

By the NP-completeness of the classical knapsack problem and the efficiency
property of the Shapley value, it follows that (see [6] for details):

Theorem 1. The problem of computing the Shapley value in the knapsack bud-
geted games is NP-hard.

While a polynomial time algorithm for computing the Shapley value may or
may not exist, the näıve exponential time algorithm is too slow when |N | is
large. When |N | is sufficiently large, especially when |N | � lbin, we show that a
faster algorithm exists:

The Shapley Value in Knapsack Budgeted Games 111

Theorem 2. In the knapsack budgeted games, the Shapley value can be com-
puted in time O(lbin(wmax + 1)lbin+1|N |2) for each agent.

To prove Theorem 2, we associate each subset S ⊆ N with a vector from a
finite-sized vector space that completely determines an agent’s marginal contri-
bution to S. If the cardinality of the vector space is small and the partitions of
the 2|N | subsets corresponding to the vectors can be found efficiently, we can
evaluate v once for each vector instead of once for each subset, reducing the
overall computation time. Note that the well-known dynamic programming al-
gorithm, call it A, for the classical knapsack problem can be used to compute
v; for a given S, the algorithm iteratively updates an integer array of length
lbin + 1 holding the optimal values for the sub-problems with smaller bin sizes
and returns a final value determined by the array at termination.3 We associate
with each subset S the final state of the array when A runs on S and determine
the cardinalities of resulting partitions using a dynamic program, different but
related to A; the dynamic program counts the number of optimal solutions to the
sub-problems grouped by objective value while A simply computes the optimal
solutions to the sub-problems.

We use the following lemma to prove Theorem 2; it shows that if the set of
possible marginal contribution values for agent i is small, then we can reduce
the number of evaluations of v by grouping subsets of N \ {i} by marginal
contribution value and evaluating v once for each group (see [6] for a proof).

Lemma 1. Assume there exist positive integers pi and partition functions Pi :
2N\{i} → {1, . . . , pi}, for i = 1, . . . , |N |, such that if Pi(S) = Pi(S

′) for two
different S, S′ ⊆ N \ {i}, then v(S ∪ {i}) − v(S) = v(S′ ∪ {i}) − v(S′). Let
mi(p) be agent i’s marginal contribution to S for all S satisfying Pi(S) = p, and
c(i, s, p) = #{S ⊆ N \ {i} : |S| = s, Pi(S) = p} for i ∈ N , 0 ≤ s ≤ |N | − 1, and
1 ≤ p ≤ pi. Then, the Shapley value for agent i can be computed as

φi =
∑pi

p=1

∑|N |−1
s=0 c(i, s, p) s!(|N |−s−1)!

|N |! mi(p)

in time O(pmax(t + q)|N |), where pmax = maxi pi, t is an upper bound on the
computation time of the coefficients c, and q is the evaluation time of v.

We now prove Theorem 2 by applying Lemma 1:

Proof. (of Theorem 2) We compute the Shapley value for some fixed agent i.
We define VA,b = maxS′⊆A:l(S′)≤b w(S

′), for A ⊆ N and 0 ≤ b ≤ lbin, and
vector VS = (VS,0, . . . , VS,lbin), for subsets S ⊆ N . Let V be the finite vector
space {0, . . . , wmax}lbin+1 that contains vectors VS . We use the 0-based index
to indicate coordinates of a vector in V ; so, v(S) = VS,lbin = VS(lbin) for all S.
GivenVS , agent i’s marginal contribution to S can be computed in constant time

3 Assume the agents in S are labeled 1, . . . , |S| for simplicity. For 1 ≤ j ≤ |S|, we define
c(j, b) = maxS′⊆S1,j :l(S

′)≤b w(S′). It has the recurrence relation c(j, b) = max{c(j −
1, b), c(j − 1, b − lj) + wj}. We compute c(j, b)’s and, hence, v(S) = c(|S|, lbin) in
O(|S|lbin) time.

112 S. Bhagat et al.

as v(S ∪{i})− v(S) = max{VS(lbin− li)+wi−VS(lbin), 0}. Let this expression
be defined more generally as mi(v) = max{v(lbin − li) + wi − v(lbin), 0} for
v ∈ V .

We partition 2N\{i} by the pair (|S|,VS) so that for each possible (s,v) pair,
all subsets S satisfying |S| = s and VS = v are grouped together. Clearly, the
marginal contribution of agent i is the same within each partition. To compute
the cardinality of each partition, we use dynamic programming. Let N ′ = N\{i},
ordered and relabeled 1, . . . , |N | − 1. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and v ∈ V ,
we define ĉ(j, s,v) = #

{
S ⊆ N ′

1,j : |S| = s,VS = v
}
. Note ĉ has the recurrence

relation

ĉ(j, s,v) = ĉ(j − 1, s,v) +
∑

u:UPDATE(u,l′j,w
′
j)=v ĉ(j − 1, s− 1,u),

with the base case ĉ(0, 0,0) = 1, where l′j and w′
j correspond to the j-th

agent in order in N ′ and UPDATE is an O(lbin) algorithm that updates u
with the additional agent: 1) Initialize v = u; 2) For j = l′j , . . . , lbin, v(j) =
max{v(j),u(j − l′j) + w′

j}; and 3) Return v.
Using the recurrence relation, we compute ĉ(j, s,v) for all j, s, and v in time

O(lbin(wmax + 1)lbin+1|N |2). By Lemma 1,

φi =
∑

v∈V
∑|N |−1

s=0 ĉ(|N | − 1, s,v) s!(|N |−s−1)!
|N |! mi(v),

and the Shapley value can be calculated in time O((wmax + 1)lbin+1|N |) using
the precomputed values of ĉ. The computation of ĉ dominates the application
of the Shapley value equation, and the overall running time is O(lbin(wmax +
1)lbin+1|N |2) per agent. �

4.2 Additive Approximation

Similar to the fully polynomial time approximation scheme for the classical knap-
sack problem (see [22]), we show an approximation scheme for the Shapley value
by rounding down the weights wi’s and computing the Shapley value of the
cooperative game (N, v′) where v′ is an approximation of v. Our technique of
computing the Shapley value by approximating the characteristic function v is
deterministic and does not require concentration inequalities like the standard
statistical methods of sampling and normal distribution techniques in [4, 10].

The following lemma formalizes how an approximation of the characteristic
function v leads to an additive error in the Shapley value computation (see [6]
for a proof):

Lemma 2. If v′ is an α-additive approximation of v, i.e., v′(S) ≤ v(S) ≤
v′(S) + α for all S ⊆ N , then the Shapley value φ′

i computed with respect to v′

is within an α-additive error of the Shapley value φi computed with respect to v,
for all i.

When wmax is sufficiently larger than lbin, the approximation scheme’s running
time is faster than that of the exact algorithm of Theorem 2:

The Shapley Value in Knapsack Budgeted Games 113

Theorem 3. In the knapsack budgeted games, the Shapley value can be com-
puted within an εwmax-additive error in O((lbin

2/ε+1)lbin+1|N |2) for each agent,
where ε > 0.4

Proof. We construct an approximate characteristic function v′ of v as follows.
Let ε > 0 and k = εwmax/lbin. Note that when lbin

2/ε < wmax, k > 1. For
each agent i, let the rounded weight w′

i be �wi

k �. The lengths do not change. To
compute v′(S), we compute the optimal set S′ ⊆ S, using dynamic programming,
with respect to the rounded weights w′

1, . . . , w
′
|N | and let v′(S) = k

∑
i∈S′ w′

i. In

other words, v′(S) = k ·maxS′⊆S:l(S′)≤lbin w
′(S) for all S ⊆ N , where we use the

shorthand notation w′(S) =
∑

k∈S w′
k.

We show v(S) ≥ v′(S) ≥ v(S) − εwmax, for all S ⊆ N . Let S be a subset
and TO, T

′ ⊆ S be the optimal subsets using original and rounded weights,
respectively, such that v(S) = w(TO) and v′(S) = k · w′(T ′). Note that both
optimal sets have cardinality at most lbin. Because of rounding down, wi −
kw′

i ≤ k and
∑

j∈TO
wj − k

∑
j∈TO

w′
j ≤ klbin. Since T ′ is optimal with respect

to the rounded weights,
∑

j∈T ′ w′
j ≥ ∑

j∈TO
w′

j . Then, v
′(S) = k

∑
j∈T ′ w′

j ≥
k
∑

j∈TO
w′

j ≥ ∑
j∈TO

wj − klbin = v(S) − εwmax. Since wi ≥ kw′
i for all i,

v(S) = w(TO) ≥ w(T ′) ≥ kw′(T ′) = v′(S). Hence, v′ is an εwmax-additive
approximation of v. Then, the Shapley value computed with respect to v′ is
within εwmax of the original Shapley value by Lemma 2.

We now compute the Shapley value with respect to v′. For A ⊆ N , 0 ≤ b ≤
lbin, we define V ′

A,b = maxS′⊆A:l(S′)≤b w
′(S′). For a subset S ⊆ N , we define

vector V′
S = (V ′

S,0, . . . , V
′
S,lbin

). Note that w′
i = �wi

k � ≤ �wmax

k � = � lbin
ε �. Then,

we can upper bound w′(S) ≤ lbin� lbin
ε �, for all S. Let V ′ = {0, . . . , lbin� lbin

ε �}lbin+1

that vectors V′
S are contained in. Note v′(S) = k ·V′

S(lbin) for all S. From vector
V′

S , we can compute agent i’s marginal contribution to S with respect to v′ in
constant time: v′(S ∪ {i})− v′(S) = k ·max{V′

S(lbin − li) + w′
i −V′

S(lbin), 0}.
From here, we follow the proof of Theorem 2. We compute the analogue of

ĉ in O((lbin
2/ε + 1)lbin+1|N |2), and this is the dominating term in the Shapley

value computation with respect to v′. �

5 Greedy Knapsack Budgeted Games

Motivated by the approximation scheme in Theorem 3, we investigate greedy
knapsack budgeted games, a variant of knapsack budgeted games, and show the
Shapley value in these games can be computed in pseudo-polynomial time. A
greedy knapsack budgeted game has the same representation as the knapsack
budgeted games, but its characteristic function is computed by a 2-approximation
heuristic for the classical knapsack problem. We defer proofs to [6].

4 For agent i, its Shapley value φi is clearly in [0, wmax]. Using the approximation
scheme, we can compute φi within 1

7
wmax for instance. As long as ε > lbin

2/wmax,
the approximation scheme has a faster running time than the exact algorithm in
Theorem 2; this observation about ε is also true for the fully polynomial time ap-
proximation scheme for the classical knapsack problem (see [22]).

114 S. Bhagat et al.

Algorithm 1. Greedy Heuristic A′(S, lbin)
1: Let a = argmaxk∈S wk.
2: Select agents in S in decreasing order of wi

li
and stop when the next agent does not

fit into the bin of size lbin; let S
′ be the selected agents.

3: Return S′ if w(S′) ≥ wa, or {a} otherwise.

Theorem 4. In the greedy knapsack budgeted games (N, v) with v(S) =
A′(S, lbin) for all S, the Shapley value can be computed in O(lbin

5wmax
5|N |8) for

each agent, where the greedy heuristic A′(S, lbin) is computed as in
Algorithm 1.

While motivated by knapsack budgeted games, we use a different proof tech-
nique using the following lemma to prove Theorem 4. It generalizes the observa-
tion that in the simple cooperative game (N, v) where the agents have weights
w1, . . . , w|N | and the characteristic function v is additive, i.e., v(S) =

∑
k∈S wk,

the Shapley value φi is exactly wi for all i.

Lemma 3. Assume that the cooperative game (N, v) has a representation
(M,w,A) where M is a set, w : M → R is a weight function, and A : 2N → 2M

is a mapping such that v(S) =
∑

e∈A(S) w(e), ∀S ⊆ N . Let c+(i, s, e) = #{S ⊆
N \ {i} : |S| = s, e ∈ A(S ∪ {i})} and c−(i, s, e) = #{S ⊆ N \ {i} : |S| = s, e ∈
A(S)}, for i ∈ N , e ∈ M , and 0 ≤ s ≤ |N | − 1. Then, the Shapley value for
agent i can be computed as

φi =
∑

e∈M

∑|N |−1
s=0 (c+(i, s, e)− c−(i, s, e))

s!(|N |−s−1)!
|N |! w(e).

in time O(t|M ||N |) where t is an upper bound on the computation time of the
coefficients c+ and c−.

6 Generalizations

We present generalizations of our proof techniques and propose an unifying
framework that captures a broad class of cooperative games in which comput-
ing the Shapley value is tractable, including many known classes of coopera-
tive games in [8, 15, 17] and those with concise representations using schemes
in [7, 11, 1]. The main idea is that the problem of computing the Shapley value
reduces to that of finding an efficient algorithm for the cooperative game’s char-
acteristic function. More precisely, if a cooperative game (N, v) is described in
terms of an alternative representation I and an algorithm A with low time and
space complexities that computes v, formalized in terms of decomposition, then
we can compute the Shapley value efficiently. To illustrate the generalizations’
applicability, we use them to give examples of cooperative games in which the
Shapley value can be computed efficiently.

For each generalization, we consider two cases: the order-agnostic case in
which A processes agents in an arbitrary order, and the order-specific case in
which A processes in a specific order, like the greedy heuristic in Theorem 4.

The Shapley Value in Knapsack Budgeted Games 115

Algorithm 2. Computing A(I, S) with a decomposition (Asetup, Aupdate, Afinal)

1: Asetup(I) outputs I
′, x

2: for i ∈ S do
3: x = Aupdate(I

′, i,x)
4: end for
5: Return Afinal(I

′,x)

Definition 1. Assume a cooperative game (N, v) has an alternative representa-
tion I and a deterministic algorithm A such that v(S) = A(I, S) for all S ⊆ N .
Algorithm A has a decomposition (Asetup, Aupdate, Afinal) if A(I, S) can be com-
puted as in Algorithm 2. We denote the the running times of the sub-algorithms
of the decomposition tsetup, tupdate and tfinal, respectively.

In Algorithm 2, x = (x1, x2, . . .) is a vector of variables that is initialized
to some values independent of subset S and determines the algorithm A’s final
return value. I ′ is an auxiliary data structure or states that only depend on the
representation I and is used in subsequent steps for ease of computation; I ′ can
be simply I if no such preprocessing is necessary. Theorem 2 can be generalized
as follows:

Theorem 5. Assume a cooperative game (N, v) has an alternative representa-
tion I and a deterministic algorithm A that computes v. If A has a decompo-
sition (Asetup, Aupdate, Afinal) such that at most n(I) variables x are used with
each taking at most m(I) possible values as S ranges over all subsets of N , then
the Shapley value can be computed in O(tsetup + tupdatem

n|N |2 + tfinalm
n|N |)

for each agent. In order-specific cases, for Steps 2-4 of Algorithm 2, the run-
ning time is O(tsetup + tupdatem

2n|N |2 + tfinalm
2n|N |). Note that n and m are

representation-dependent numbers and the argument I has been omitted.

Proof. Given the alternative representation I, we compute the Shapley value of
agent i. We associate v(S) with the final values, xS,final, of n(I) variables x in
A(I, S), for all S ⊆ N \ {i}. We partition 2N\{i} by the pair (|S|,xS,final) into
at most mn|N | partitions, omitting the argument I from n and m. Let X be
the set of all possible final values of the variables x; note that its cardinality
is at most mn. We compute the cardinalities of the partitions using dynamic
programming. Let N ′ = N \ {i}, ordered and relabeled 1, . . . , |N | − 1, and i =
|N |. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and v ∈ X , we define ĉ(j, s,v) =
#
{
S ⊆ N ′

1,j : |S| = s,xS,final = v
}
. Then, ĉ has the recurrence relation

ĉ(j, s,v) = ĉ(j − 1, s,v) +
∑

u:Aupdate(I′,j,u)=v ĉ(j − 1, s− 1,u)

with the base case ĉ(0, 0, s) = 1, where s is the initial states of variables x.
Using Asetup, we compute I ′ and the initial values s in O(tsetup). Using the
recurrence relation and Aupdate, we compute ĉ(j, s,v) for all j, s, and v in time
O(tupdatem

n|N |2). Note that for a subset S ⊆ N \ {i}, we can compute agent i’s
marginal contribution to S, i.e., v(S ∪{i})− v(S), in O(tupdate+ tfinal) from the

116 S. Bhagat et al.

Algorithm 3. Computing A(S) with a per-element decomposition
{(Ae

setup, A
e
update, A

e
final)}e∈M

1: Initialize S′ = ∅
2: for e ∈ M do
3: Ae

setup(M,w) outputs I ′, x
4: For i ∈ S: x = Ae

update(I
′, i,x)

5: If Afinal(I
′,x) = 1, S′ = S′ ∪ {e}

6: end for
7: Return S′

final values of x associated with the partition that S belongs to, i.e., xS,final; let
mi(v) be the agent i’s marginal contribution to subsets associated with v ∈ X .
By Lemma 1,

φi =
∑

v∈X
∑|N |−1

s=0 ĉ(|N | − 1, s,v) s!(|N |−s−1)!
|N |! mi(v),

and the Shapley value can be calculated in time O((tupdate+ tfinal)m
n|N |) using

the precomputed values of ĉ. The overall running time is O(tsetup+tupdatem
n|N |2

+ (tupdate + tfinal)m
n|N |).

Now assume that the agents have to be processed in a specific order deter-
mined by representation I. For a given S and its final values xS,final, we cannot
compute xS∪{i},final as Aupdate(I

′, i,xS,final) and compute agent i’s marginal con-
tribution to S, because it would violate the order if some agents in S have to
be processed after i. Instead, we associate S with the final values xS,final and
xS∪{i},final and partition 2N\{i} by the tuple (|S|,xS,final,xS∪{i},final) into at
most m2n|N | partitions, omitting the argument I. Following the same argument
as before, we get the running time O(tsetup+tupdatem

2n|N |2+tfinalm
2n|N |). �

The following definition and theorem generalize Theorem 4 and can also be
considered a specialization of Theorem 5. See [6] for proof details.

Definition 2. Assume a cooperative game (N, v) has an alternative representa-
tion (M,w,A) as described in Lemma 3 such that v(S) =

∑
e∈A(S) w(e), for all

S ⊆ N . Algorithm A has a per-element decomposition (Ae
setup, A

e
update, A

e
final)

for all e ∈ M if A(S) can be computed as in Algorithm 3. We denote the upper
bounds, over all e ∈ M , on running times of the sub-algorithms of the per-element
decomposition tsetup, tupdate and tfinal, respectively.

Theorem 6. Assume a cooperative game (N, v) has an alternative represen-
tation (M,w,A), as given in Lemma 3. If A has a per-element decomposition
(Ae

setup, A
e
update, A

e
final) for all e ∈ M such that at most n(M,w)

variables x are used with each taking at most m(M,w) possible values as S
ranges over all subsets of N and e over M , the Shapley value can be computed
in O((tsetup + tupdatem

n|N |2 + tfinalm
n|N |)|M |) for each agent. In order-specific

cases, for Step 4 of Algorithm 3, the running time is O((tsetup+tupdatem
2n|N |2+

tfinalm
2n|N |)|M |). Note that n and m are representation-dependent numbers and

the argument (M,w) has been omitted.

The Shapley Value in Knapsack Budgeted Games 117

The above definitions apply broadly and suggest the following framework for
cooperative games that we term algorithmic representation; we represent each
cooperative game (N, v) in terms of an alternative representation I and an ac-
companying algorithm A that computes v. As we can represent any cooperative
game by a table with exponentially many entries for v values and a simple
lookup algorithm, the algorithmic representation always exist. The main chal-
lenge is to determine an “efficient” algorithmic representation for cooperative
games in general. The algorithmic representation framework subsumes the con-
cise representation schemes in [7, 11, 1] as these assume specific structures on the
alternative representation I. It also captures the notion of classes of cooperative
games for we can represent a class of cooperative games by a set of alternative
representations corresponding to those games in the class. In this framework,
Theorems 5 and 6 show that if the algorithms for computing v satisfy the de-
composability properties outlined in Definitions 1 and 2, then the Shapley value
can be computed efficiently as long as these algorithms are efficient.

Using the generalizations, we can reproduce many previous results on efficient
computation of the Shapley value up to a (pseudo) polynomial factor in the
running time.5 As concrete examples, we prove several such results (and a new
one on the Data Mining Problem in Section 1). We defer proofs to [6]:

Corollary 1. (Weighted Majority Games) Assume a cooperative game (N, v)
has a representation given by |N | + 1 nonnegative integers q, w1, . . . , w|N | such
that v(S) is 1 if

∑
i∈S wi ≥ q, or 0 otherwise. Then, the Shapley value can be

computed in pseudo-polynomial time O(q|N |2) for each agent. (Identical to [15])

Corollary 2. (MC-net Representation) Assume a cooperative game (N, v) has
a marginal-contribution (MC) net representation with boolean rules R = {r1, . . . ,
rm} with each ri having value vi and of the form (p1 ∧ . . .∧ pa ∧¬n1 ∧ . . .∧¬nb)
such that v(S) =

∑
ri:Ssatisfies ri

vi for all S ⊆ N .6 Then, the Shapley value can

be computed in O(m|N |2(maxi |ri|)2) for each agent, where |r| is the number of
literals in rule r. (Compare to O(mmaxi |ri|), linear time in the representation
size, in [11])

Corollary 3. (Multi-Issue Representation) Assume a cooperative game (N, v)
has a multi-issue representation with subsets C1, . . . , Ct ⊆ N and characteristic
functions vi : 2

Ci → R for all i such that v(S) =
∑t

i=1 vi(S ∩Ci) for all S ⊆ N .
Then, the Shapley value can be computed in O(t2maxi |Ci||N |2 maxi |Ci|) for each
agent. (Compare to O(t2maxi |Ci|) in [7])

Corollary 4. (Data Mining Problem) Assume a cooperative game (N, v) has a
representation given by |N | + 1 nonnegative integers k, w1, . . . , w|N | such that

5 The slightly slower running times can be attributed to our generalizations’ inability
to derive closed form expressions on a game-by-game basis; for instance, evaluating
the sum

∑n
i=1 i in O(n) instead of using the identity n(n+1)

2
=

∑n
i=1 i in O(1). As

generalizations apply in a black-box manner, we argue the loss in running time is
reasonable for (pseudo) polynomial time computation.

6 If r = (1 ∧ 2 ∧ ¬3), then S = {1, 2} satisfies r, but S = {1, 3} does not.

118 S. Bhagat et al.

v(S) = maxS′⊆S:|S′|≤k w(S
′). Then, the Shapley value can be computed in poly-

nomial time O(|N |3) for each agent. (This is our own problem.)

7 Further Discussion

We have introduced a class of cooperative games called budgeted games and
investigated the computational complexity of the Shapley value in the knapsack
version, knapsack budgeted games, in particular. We presented exact and ap-
proximation algorithms for knapsack budgeted games and a pseudo-polynomial
time algorithm for closely related greedy knapsack budgeted games. These algo-
rithms have only polynomial dependence on |N |, the number of agents, and are
more efficient than the näıve exponential time algorithm when |N | is large. Our
results extend to knapsack budgeted games with multiple budget constraints. We
believe knapsack budgeted games are useful in modeling value division problems
in real-life scenarios and our algorithms applicable; for example, when finding a
profit distribution solution for a joint venture of, say, 100-plus agents.

We also provided generalizations and proposed the algorithmic representation
framework in which we represent each cooperative game in terms of an alterna-
tive representation and an accompanying algorithm that computes the underly-
ing value function. We formalized efficient algorithmic representations and used
the generalizations to show that computing the Shapley value in those coopera-
tive games with efficient algorithmic representations can be done efficiently. To
demonstrate the generalizations’ applicability, we proved old and new results on
the efficient computation of the Shapley value.

We note that further improvement to our algorithmic results might be possi-
ble. While the exact algorithm in Theorem 2 has polynomial time dependence
on |N |, it is not a pseudo-polynomial time algorithm and the hardness result in
Theorem 1 does not preclude the existence of a polynomial time algorithm for
the Shapley value computation in the restricted case of |N | � lbin.

7 Similarly,
we do not know if the results in Theorems 3 and 4 are the best possible. We
pose these as open problems.

Finally, we believe our techniques can have applications beyond the games
considered in this paper and to other economic concepts such as the Banzhaf
index. It would be also interesting to investigate the computational complexity
of the Shapley value in other kinds of budgeted games.

Acknowledgements. We would like to thank Vasilis Gkatzelis for his helpful
comments.

7 In this case, the O(|N |lbin) dynamic programming time algorithm for the classical
knapsack problem algorithm in Footnote 3 becomes an O(|N |2) algorithm, and the
classical knapsack problem can be solved in polynomial time.

The Shapley Value in Knapsack Budgeted Games 119

References

[1] Aadithya, K.V., Michalak, T.P., Jennings, N.R.: Representation of coalitional
games with algebraic decision diagrams. In: AAMAS 2011 (2011)

[2] Aziz, H., Sorensen, T.B.: Path coalitional games. In: CoopMAS 2011 (2011)
[3] Bachrach, Y., Lev, O., Lovett, S., Rosenschein, J.S., Zadimoghaddam, M.: Coop-

erative weakest link games. In: AAMAS 2014 (to appear, 2014)
[4] Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A.D., Rosenschein, J.S.,

Saberi, A.: Approximating power indices: Theoretical and empirical analysis. In:
Autonomous Agents and Multi-Agent Systems (March 2010)

[5] Bachrach, Y., Porat, E.: Path disruption games. In: AAMAS 2010 (2010)
[6] Bhagat, S., Kim, A., Muthukrishnan, S., Weinsberg, U.: The shapley value in

knapsack budgeted games. arXiv:1409.5200 (2014)
[7] Conitzer, V., Sandholm, T.: Computing shapley values, manipulating value divi-

sion schemes, and checking core membership in multi-issue domains. In: AAAI
2004 (2004)

[8] Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution con-
cepts. Mathematics of Operations Research 19(2) (1994)

[9] Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative
games. Zeitschrift für Operations Research 38(2) (1993)

[10] Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for
the shapley value. Artificial Intelligence 172(14) (2008)

[11] Ieong, S., Shoham, Y.: Marginal contribution nets: A compact representation
scheme for coalitional games. In: EC 2005 (2005)

[12] Ieong, S., Shoham, Y.: Multi-attribute coalitional games. In: EC 2006 (2006)
[13] Kuipers, J.: Bin packing games. Mathematical Methods of Operations Re-

search 47(3) (1998)
[14] Ma, R.T., Chiu, D., Lui, J.C., Misra, V., Rubenstein, D.: Internet economics: The

use of shapley value for isp settlement. In: CoNEXT 2007 (2007)
[15] Matsui, T., Matsui, Y.: A survey of algorithms for calculating power indices of

weighted majority games. J. Oper. Res. Soc. Japan (2000)
[16] Matsui, Y., Matsui, T.: Np-completeness for calculating power indices of weighted

majority games. Theoretical Computer Science (2001)
[17] Michalak, T.P., Aadithya, K.V., Szczepanski, P.L., Ravindran, B., Jennings, N.R.:

Efficient computation of the shapley value for game-theoretic network centrality.
J. Artif. Int. Res. (January 2013)

[18] Misra, V., Ioannidis, S., Chaintreau, A., Massoulié, L.: Incentivizing peer-assisted
services: A fluid shapley value approach. In: SIGMETRICS 2010 (2010)

[19] Narayanam, R., Narahari, Y.: A shapley value-based approach to discover influ-
ential nodes in social networks. IEEE Transactions on Automation Science and
Engineering 8(1), 130–147 (2011)

[20] Qiu, X.: Bin packing games. Master’s thesis, University of Twente (2010)
[21] Shapley, L.S.: A value for n-person games. Contributions to the Theory of

Games 2, 307–317 (1953)
[22] Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York, Inc., New

York (2001)

	The Shapley Value in Knapsack Budgeted
Games
	1 Introduction
	2 Preliminaries
	3 Knapsack Budgeted Games
	4 The Shapley Value in Knapsack Budgeted Games
	4.1 Exact Computation
	4.2 Additive Approximation

	5 Greedy Knapsack Budgeted Games
	6 Generalizations
	7 Further Discussion
	References

