
Optimal Cost-Sharing in Weighted Congestion

Games

Vasilis Gkatzelis, Konstantinos Kollias, and Tim Roughgarden

Stanford University, Stanford CA 94305, USA

Abstract. We identify how to share costs locally in weighted congestion
games with polynomial cost functions in order to minimize the worst-case
price of anarchy (PoA). First, we prove that among all cost-sharing meth-
ods that guarantee the existence of pure Nash equilibria, the Shapley
value minimizes the worst-case PoA. Second, if the guaranteed existence
condition is dropped, then the proportional cost-sharing method mini-
mizes the worst-case PoA over all cost-sharing methods. As a byproduct
of our results, we obtain the first PoA analysis of the simple marginal
contribution cost-sharing rule, and prove that marginal cost taxes are
ineffective for improving equilibria in (atomic) congestion games.
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1 Introduction

Sharing Costs to Optimize Equilibria. Weighted congestion games [35] are a
simple class of competitive games that are flexible enough to model diverse
settings (e.g., routing [38], network design [3], and scheduling [26]). These games
consist of a ground set of resources E and a set of players N who are competing
for the use of these resources. Every player i ∈ N is associated with a weight
wi, and has a set of strategies Pi ⊆ 2E , each of which corresponds to a subset
of the resources. Given a strategy profile P = (Pi)i∈N , where Pi ∈ Pi. The
set of players Sj = {i : j ∈ Pi} using some resource j ∈ E generates a social
cost Cj(fj) on this resource (e.g., Cj(fj) = α · fd

j ), which is a function of their
total weight fj =

∑
i∈Sj

wi; this joint cost could represent monetary cost, or

a physical cost such as aggregate queueing delay [40]. The social cost of every
resource can be distributed among the players using it. As a result, each player
i suffers some cost cij(P ) from each of the resources j ∈ Pi, and its goal is to
choose a strategy that minimizes the cost

∑
j∈Pi

cij(P ) that it suffers across all
the resources that it uses.

How can a system designer minimize the sum of the players’ costs

∑

i∈N

∑

j∈Pi

cij(P ) =
∑

j∈E

Cj(fj) (1)

over all possible outcomes P? The answer depends on what the designer can do.
We are interested in settings where centralized optimization is infeasible, and
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the designer can only influence players’ behavior through local design decisions.
Precisely, we allow a designer to choose a cost-sharing rule that defines what
share ξj(i, Sj) of the joint cost Cj(fj) each player i ∈ Sj is responsible for
(so cij(P ) = ξj(i, Sj)). Such cost-sharing rules are “local” in the sense that they
depend only on the set of players using the resource, and not on the users of other
resources. Given a choice of a cost-sharing rule, we can quantify the inefficiency
in the resulting game via the price of anarchy (PoA) — the ratio of the total cost
at the worst equilibrium and the optimal cost. The set of equilibria and hence
the PoA are a complex function of the chosen cost-sharing rule.

The goal of this paper is to answer the following question.

Which cost-sharing rule minimizes the worst-case PoA in polynomial
weighted congestion games?

In other words, when a system designer can only indirectly influence the game
outcome through local design decisions, what should he or she do?

The present work is the first to study this question. Previous work on the
PoA in weighted congestion games, reviewed next, has focused exclusively on
evaluating the worst-case PoA with respect to a single cost-sharing rule. Previous
work on how to best locally influence game outcomes in other models is discussed
in Section 1.2.

Example: Proportional Cost Sharing. Almost all previous work on weighted con-
gestion games has studied the proportional cost-sharing rule [4, 6, 18, 20, 21, 29,
30, 36]. According to this rule, at each resource j, each player i ∈ Sj is responsi-
ble for a wi/fj fraction of the joint cost, i.e., a fraction proportional to its weight.
The worst-case PoA is well understood in games with proportional cost sharing.
For polynomial cost functions Cj(fj) of maximum degree d, the worst-case PoA
is φd

d, where φd = Θ(d/ ln d) is the positive root of fd(x) = xd − (x + 1)d−1 [2].
One of the main disadvantages of this cost-sharing rule is that it does not guar-
antee the existence of a pure Nash equilibrium (PNE), but the upper bounds
are still meaningful since they apply to much more general equilibrium concepts,
like coarse correlated equilibria, which do exist [37].

Example: Shapley Cost Sharing. The only other cost-sharing rule for which the
worst-case PoA of weighted congestion games is known is the Shapley cost shar-
ing rule. The cost shares defined by the Shapley value can be derived in the
following manner: given an ordering over the users of a resource, these users
are introduced to the resource in that order and each user is responsible for
the marginal increase of the cost caused by its arrival. The Shapley cost share
of each user is then defined as its average marginal increase over all orderings.
Unlike proportional cost sharing, this cost-sharing rule guarantees the existence
of a PNE in weighted congestion games [25]. The worst-case PoA of this rule
for polynomials of maximum degree d is χd

d, where χd ≈ 0.9 · d is the root of
gd(x) = 3 · xd − (x+ 1)d − 1 [25].
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Other Cost-Sharing Rules. Without the condition of guaranteed PNE existence,
there is obviously a wide range of possible cost-sharing rules. The space of rules
that guarantee the existence of PNE is much more limited but still quite rich. [19]
showed that the space of such rules correspond exactly to the weighted Shapley
values. This class of cost-sharing rules generalizes the Shapley cost sharing rule
by assigning a sampling weight λi to each player i. The cost shares of the play-
ers are then defined to be an appropriately weighted average of their marginal
increases over different orderings (see Section 2.1); hence the “design space” is
(k − 1)-dimensional, where k is the number of players.1

1.1 Our Results

Our two main results resolve the question of how to optimally share cost in
weighted congestion games to minimize the worst-case PoA.

Main Result 1 (Informal): Among all cost-sharing rules that guarantee the
existence of PNE, the worst-case PoA of weighted congestion games is minimized
by the Shapley cost sharing rule.

For example, the plot of Figure 1 shows how the worst-case PoA varies for a
well-motivated subclass of the weighted Shapley rules parameterized by a vari-
able γ (details are in Section 2.1). The PoA of these cost-sharing rules varies and
it exhibits discontinuous behavior, but in all cases it is at least as large as the
PoA when the parameter value is γ = 0, which corresponds to the (unweighted)
Shapley cost-sharing rule.

Main Result 2 (Informal): Among all cost-sharing rules, the worst-case PoA
of weighted congestion games is minimized by the proportional cost sharing rule.

In the second result, we generously measure the PoA of pure Nash equilibria
only in instances where such equilbria exist. That is, our lower bounds construct
games that have a PNE that is far from optimal. For the optimal rule (propor-
tional cost-sharing), however, the PoA upper bound applies more generally to
equilibrium concepts that are guaranteed to exist, including coarse correlated
equilibria.

As a byproduct of our results, we also obtain tight bounds for the worst-
case PoA of the marginal contribution cost-sharing rule (see Section 2.2). The
marginal contribution rule defines individual cost shares that may in general add
up to more than the total joint costs, but we show that, even if any additional
costs are disregarded, which reduces this policy to marginal cost taxes, the worst-
case PoA remains high.

1 The sampling weights λi can be chosen to be related to the players’ weights wi, or
not. The joint cost is a function of players’ weights wi; the sampling weights only
affect how this joint cost is shared amongst them.



Optimal Cost-Sharing in Weighted Congestion Games 75

−5 0 5
2

4

6

γ

P
o
A

Fig. 1. PoA of parameterized weighted Shapley values for quadratic resource costs

1.2 Further Related Work

This paper contributes to the literature on how to design and modify games
to minimize the inefficiency of equilibria. Several previous works consider how
the choice of a cost-sharing rule affects this inefficiency in other models: [33] in
participation games; [11, 15] in the network cost-sharing games of [3]; [32, 31, 22]
in queueing games; and [28] in distributed welfare games. Closely related in
spirit is previous work on coordination mechanisms, beginning with [12] and
more recently in [23, 5, 24, 8, 13, 1, 14]. Most work on coordination mechanisms
concerns scheduling games, and how the price of anarchy varies with the choice
of local machine policies (i.e., the order in which to process jobs assigned to
the same machine). Some of the recent work comparing the price of anarchy of
different auction formats, such as [27, 7, 41], also has a similar flavor.

1.3 Organization of the Paper

In Section 2, we restrict ourselves to cost-sharing rules that guarantee the exis-
tence of PNE and we prove worst-case PoA bounds for such policies. In Section 3,
we remove this restriction and we provide lower bounds for the worst-case PoA
of arbitrary cost-sharing rules.

2 Cost-Sharing Rules That Guarantee PNE Existence

In this section we restrict our attention to cost-sharing rules that guarantee the
existence of a PNE. This class of cost-sharing rules corresponds to weighted
Shapley values, parameterized by a set of sampling weights λi, one for each
player i [19]. We focus on congestion games with resource cost functions Cj(fj)
that are polynomials with positive coefficients and maximum degree d ≥ 1, and
we provide worst-case PoA bounds parameterized by d. Note that every game
with such cost functions has an equivalent game such that all cost functions
have the form α · xk for α ≥ 0 and k ∈ [1, d] (each resource is decomposed into
many resources of this form that can only be used as a group). Hence, we will
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be assuming that all games studied in what follows have cost functions of the
form Cj(x) = αj ·xkj . We conclude this section with a byproduct of our results:
tight worst-case PoA bounds for the marginal contribution cost-sharing rule.

2.1 Weighted Shapley Values

We first describe how a weighted Shapley value defines payments for the players
S that share a cost given by function C(·). For a given ordering π of the players
in S, the marginal cost increase caused by player i is C(fπ

i +wi)−C(fπ
i ), where

fπ
i denotes the total weight of the players preceding i in π. Given a distribution
over orderings, the cost share of player i is given by

Eπ [C(fπ
i + wi)− C(fπ

i )] . (2)

A weighted Shapley value then defines a distribution over orderings by assigning
to each player i a sampling parameter λi > 0: the last player of the ordering is
picked with probability proportional to its λi; given this choice, the penultimate
player is chosen randomly from the remaining ones, again with probability pro-
portional to its λi, and so on. Below we present an example of how the values
of the λi’s lead to the distribution over orderings of the players.

Example 1. Consider players a, b, c, with sampling parameters 1, 2, 3, respec-
tively. The probability that a is the last in the ordering is 1/(1+2+3). Similarly
we get 2/(1 + 2 + 3) for player b and 3/(1 + 2 + 3) for player c. Also, suppose c
was chosen to be the last, then the probability that b is the second is 2/(1 + 2),
while the probability that a is the second is 1/(1 + 2). This yields the following
distribution over orderings: 1/3 probability for ordering (a, b, c), 1/4 for (a, c, b),
1/6 for (b, a, c), 1/10 for (b, c, a), 1/12 for (c, a, b), and 1/15 for (c, b, a).

Defining a weighted Shapley value reduces to choosing a λi value for each
player i. In weighted congestion games the weight wi of each player fully defines
the impact that this player has on the social cost of the resources it uses. Hence,
this is the only pertinent attribute of the player and it would be natural to
assume that λi depends only on the value of wi. Nevertheless, our results hold
even if we allow the value of λi to also depend on the ID of player i, which enables
treating players with the same weight wi differently in an arbitrary fashion.

We first focus on an interesting subclass of weighted Shapley values for which
λi is a function of wi parameterized by a real number γ. In particular, we let the
sampling parameter λi of each player i be λi = λ(wi) = wγ

i . Within this class,
which contains all the previously studied weighted Shapley value variants, we
prove that the unweighted Shapley value is optimal with respect to the PoA. We
then extend this result, proving that the optimality of the unweighted Shapley
value remains true even if we let λi be an arbitrary continuous function.

A parameterized class of weighted Shapley values. For the weighted Shapley
values induced by a function of the form λ(wi) = wγ

i , we show that their PoA
lies between that of the (unweighted) Shapley value, i.e., approximately (0.9·d)d,
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and (1.4 · d)d. This class of λi values is interesting because it contains all the
well-known weighted Shapley values: If γ = 0, then the induced cost-sharing
rule is equivalent to the (unweighted) Shapley value. With γ = −1, we recover
the most common weighted Shapley value [39]. For γ → +∞ (resp. γ → −∞)
we get the order-based cost-sharing rule that introduces players to the resource
from smallest to largest (resp. largest to smallest) and charges them the increase
they cause to the joint cost when they are introduced. Also, as we show with
Lemma 1, this class of λi values is natural because these are the only ones
that induce scale-independent cost-sharing rules when the cost functions of the
resources are homogeneous (e.g., in our setting which has Cj(x) = αj · xk

j ).

Lemma 1. For any homogeneous cost function, the weighted Shapley value cost-
sharing rule is scale-independent if and only if λ(w) = wγ for some γ ∈ R.

The parameter γ fully determines our cost-sharing rule. Higher values of λi

for some player i imply higher cost shares so, if γ > 0, this benefits lower weight
players, and if γ < 0, this benefits higher weight players. We therefore use γ in
order to parameterize the PoA that the cost-sharing rules of this class yield. The
following theorem, which follows directly from Lemma 2 and Lemma 3, shows
that, for any value of γ other than 0, the PoA of the induced cost-sharing rule
is strictly worse. Figure 1 plots the PoA for d = 2.

Theorem 1. The optimal PoA among weighted Shapley values of the form
λ(wi) = wγ

i is achieved for γ = 0, which recovers the (unweighted) Shapley
value. Hence, the optimal PoA is approximately (0.9 · d)d.

Before presenting our lower bounds in Lemma 2 and Lemma 3, we begin with
an upper bound on the PoA of any weighted Shapley value, for polynomials with
maximum degree d.

Theorem 2. The PoA of any weighted Shapley value is at most

(
2

1
d − 1

)−d

≈ (1.4 · d)d .

Proof. Let P be a PNE and P ∗ the optimal profile. We get

∑

j∈E

Cj(fj) =
∑

j∈E

∑

i∈N

ξj(i, Sj) =
∑

i∈N

∑

j∈Pi

ξj(i, Sj) ≤
∑

i∈N

∑

j∈P∗
i

ξj(i, Sj ∪ {i}). (3)

The inequality follows from the equilibrium condition on P . Note that, when
the cost-sharing method is a weighted Shapley value and the resource costs are
convex, the cost share of any player on any resource is upper bounded by the
increase that would be caused to the joint resource cost if that player was be the
last in the ordering. This means that for every j ∈ P ∗

i we get

ξj(i, Sj ∪ {i}) ≤ Cj(fj + wi)− Cj(fj). (4)
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Combining (3) with (4), we get

∑

j∈E

Cj(fj) ≤
∑

i∈N

∑

j∈P∗
i

Cj(fj + wi)− Cj(fj) (5)

=
∑

j∈E

∑

i:j∈P∗
i

Cj(fj + wi)− Cj(fj) (6)

≤
∑

j∈E

Cj(fj + f∗
j )− Cj(fj), (7)

where f∗
j is the total weight on j in P ∗. The last inequality follows by convexity

of the expression as a function of wi. We now claim that the following is true,
for any x, y > 0, and d ≥ 1:

(x+ y)d − xd ≤ λ̂ · yd + μ̂ · xd, (8)

with

λ̂ = 2(d−1)/d ·
(
21/d − 1

)−(d−1)

and μ̂ = 2(d−1)/d − 1. (9)

We can verify this as follows. Note that, without loss of generality, we can set
y = 1 (equivalent to dividing both sides of (8) with yd and renaming x/y to q).
We can then see that the value of q that maximizes (q + 1)d − (μ̂+ 1) · qd, and,
hence, is the worst case for (8), is q = 1/(21/d − 1), for which inequality (8) is

tight. Also, note that the expressions for λ̂ and μ̂ are increasing as functions of
d, which implies that the given values for degree d, satisfy (8) for smaller degrees
as well. This means we can combine (7), (8), and (9), to get

∑

j∈E

Cj(fj) ≤
∑

j∈E

λ̂ · Cj(f
∗
j ) + μ̂ · Cj(fj). (10)

Rearranging, we get
∑

j∈E Cj(fj)/
∑

j∈E Cj(f
∗
j ) ≤ λ̂/(μ̂ + 1) =

(
21/d − 1

)−d
,

which completes the proof. 
�
We now proceed with our lower bounds for γ �= 0.

Lemma 2. The PoA of any weighted Shapley value of the form λ(wi) = wγ
i ,

for γ > 0 is at least
(
2

1
d − 1

)−d

≈ (1.4 · d)d .

Proof. Define ρ = (21/d − 1)−1 and let T be a set of ρ/ε players with weight ε
each, where ε > 0 is an arbitrarily small parameter. Consider a player i with
weight wi = 1 and suppose she uses a resource j with cost function Cj(x) = xd

with the players in T , for our weighted Shapley value with γ > 0. We now argue
that, as we let ε → 0, the cost share of i in j becomes (ρ+1)d−ρd. Consider the
probability p that i is not among the last δ · |T | players of the random ordering
generated by our sampling weights (i.e., i is not among the first δ · |T | players
sampled), for some δ < 1. This probability is upper bounded by the probability
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that i is not drawn, using our sampling weights, among everyone in T ∪ {i},
δ · |T | = δ · ρ/ε times. Note that the sampling weight of i is 1 and the total
sampling weight of the players in T is ρ · εγ−1. Hence, if γ ≥ 1, we get:

p ≤
(

1− 1

1 + ρ · εγ−1

)δ·ρ/ε
≤

(

1− 1

1 + ρ

)δ·ρ/ε
, (11)

which goes to 0 as ε → 0. Similarly, if γ < 1, we get:

p ≤
(

1− 1

1 + ρ · εγ−1

)δ·ρ/ε
≤ exp

(

−δ · ρ
ε
· 1

1 + ρ · εγ−1

)

, (12)

which always goes to 0 as ε → 0, for any arbitrarily small δ > 0. Then, by letting
δ → 0, our claim that the cost share of i is (ρ+1)d−ρd follows by the definition
of the weighted Shapley value. Similarly, it follows that if a player with weight w
shares a resource with cost function a ·xd with ρ/ε players with weight w ·ε each,
her cost share will be a ·wd · ((ρ+ 1)d − ρd) (since scaling the cost function and
the player weights does not change the fractions of the cost that are assigned to
the players), which, for our choice of ρ is equal to a · wd · ρd.

Using facts from the previous paragraph as building blocks, we construct a
game such that the total cost in the worst equilibrium is ρd times the optimal.
Suppose our resources are organized in a tree graph G = (E,A), where each
vertex corresponds to a resource. There is a one-to-one mapping between the set
of edges of the tree, A, and the set of players of the game, N . The player i, that
corresponds to edge (j, j′), has strategy set {{j}, {j′}}, i.e., she must choose one
of the two endpoints of her designated edge. Tree G has branching factor ρ/ε
and l levels, with the root positioned at level 1.

Player weight. The weight of every player (edge) between resources (vertices) at
levels j and j + 1 of the tree is εj−1.

Cost functions. The cost function of any resource (vertex) at level j = 1, 2, . . . , l−
1, is:

Cj(x) =

(
1

ρ · εd−1

)j−1

· xd. (13)

The cost functions of any resource (vertex) at level l is equal to:

Cl(x) =
ρd−l+1

ε(d−1)·(l−1)
· xd. (14)

Pure Nash equilibrium. Let P be the outcome that has all players play the
resource closer to the root. We claim that this outcome is a PNE. The cost
of every player, using a resource at level j < l, in P , is (ρ/ε)d−j. If one of
the players that are adjacent to the leaves were to switch to her other strategy
(play the leaf resource), she would incur a cost equal to (ρ/ε)d−l+1, which is
the same as the one she has in P . Consider any other player and her potential
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deviation from the resource at level j, to the resource at level j + 1. By the
analysis in the first paragraph of this proof (she would be a player with weight
εj−1 sharing a resource with ρ/ε players with weight εj), her cost would be
(ρ · εd−1)j · εd·(j−1) · ρd = (ρ/ε)d−j, which is her current cost in P . This proves
that the equilibrium condition holds for all players in P .

Price of anarchy. As we have shown, every player using a resource at level j
has cost (ρ/ε)d−j in P . There are (ρ/ε)j such players, which implies the total
cost of P is (l − 1) · (ρ/ε)d, since there are l − 1 levels of nonempty resources,
and every level has the same total cost, (ρ/ε)d. Now, let P ∗ be the outcome that
has all players play the resource further from the root. In this outcome, every
player using a resource at level j = 2, . . . , l − 1, has cost ρ−j+1/εd−j+1. There
are (ρ/ε)j−1 such players, hence, the total cost at level j is (1/ε)d. Similarly, we
get that the total cost at level l is (ρ/ε)d. In total, the cost of P ∗ is (l − 2) ·
(1/ε)d +(ρ/ε)d. We can then see that, as l → +∞, the ratio between the cost of
P and the cost of P ∗ becomes ρd. 
�
Lemma 3. The PoA of any weighted Shapley value of the form λ(wi) = wγ

i ,
for γ < 0 is at least dd.

Proof. We construct a game such that the total cost in the worst equilibrium
is dd times the optimal. Suppose our resources are organized in a tree graph
G = (E,A), where each vertex corresponds to a resource. There is a one-to-
one mapping between the set of edges of the tree, A, and the set of players
of the game, N . The player i, that corresponds to edge (j, j′), has strategy set
{{j}, {j′}}, i.e., she must choose one of the two endpoints of her designated edge.
Tree G has branching factor 1/(d · ε), with ε > 0 an arbitrarily small parameter,
and l levels.

Player weights. The weight of every player (edge) between resources (vertices)
at levels j and j + 1 of the tree is εj−1.

Cost functions. The cost function of any resource (vertex) at level j = 2, 3, . . . , l,
is:

Cj(x) =

(
d

εd−1

)j−2

· xd. (15)

The cost functions of the root is:

C1(x) = xd. (16)

PNE. Let P be the outcome that has all players play the resource further from
the root. We prove that this outcome is a PNE. The cost of every player that has
played a resource at level j is (d · ε)j−2. If one of the players that are adjacent
to the root were to switch to her other strategy (play the root), she would incur
a cost equal to 1, which is the same as the one she has in P . Consider any other
player and her potential deviation from the resource at level j, to the resource at
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level j−1. Since our construction considers ε arbitrarily close to 0, the deviating
player will go last with probability 1 in the Shapley ordering (since γ < 0) and
her cost will be equal to (d/εd−1)j−3 · ((εj−1 + εj−2)d − ε(j−1)·d) = (d · ε)j−2,
which is equal to her current cost in P . Hence, the equilibrium condition holds
for all players.

PoA. As we have shown, every player playing a resource at level j has cost
(d · ε)j−2 in P . There are 1/(d · ε)j−1 such players, hence, the total cost at level j
is 1/(d ·ε). Then, it follows that the total cost of P is (l−1)/(d ·ε). Now let P ∗ be
the outcome that has all players play the resource closer to the root. Then the
joint cost at the root is 1/(d · ε)d. The joint cost of every other resource at level
j is (d · ε)j−2/dd, and the number of resources at level j is 1/(d · ε)j−1. Hence, we
get in total, that the cost of P ∗ is (l− 2)/(dd+1 · ε) + 1/(d · ε)d. We can then see
that, as l → +∞, the ratio of the cost of P to the cost of P ∗ becomes dd. 
�

We defer details on deriving the plot in Figure 1 to our full version.

Main result. We now state the main result of the section. The proof applies
arguments similar to the ones we used for Lemma 2 and Lemma 3 but on a more
technical level. We defer the details to the full version.

Theorem 3. The optimal PoA among weighted Shapley values induced by a
collection of continuous functions λi(·) is achieved by the (unweighted) Shapley
value.

2.2 Marginal Contribution

We now focus on the marginal contribution cost-sharing rule which dictates
that every player i is responsible for the marginal increase it causes to the joint
resource cost. Namely, the cost share of player i ∈ Sj on resource j is equal to
Cj(fj)−Cj(fj−wi). Although the marginal contribution rule does induce games
that always possess PNE, the total cost suffered by the players will, in general,
be greater than the total cost that they generate, something that places the
marginal contribution rule outside the scope of our model. To see this, note that
in (1) the left hand side can be larger than the right hand side when the marginal
contribution rule is used. In fact, for polynomial cost functions of maximum
degree d the total cost suffered can be up to d times the generated cost. The
following theorem, which is a byproduct of our previous results, provides the
exact worst-case PoA of this cost-sharing rule.

Theorem 4. The PoA of the marginal contribution rule is

(
2

1
d − 1

)−d

≈ (1.4 · d)d .

Theorem 4, shows that the worst-case PoA of marginal contribution is equal to
that of the worst weighted Shapley value (see Theorem 2). In fact, this holds even
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if the equilibrium cost on each resource j is measured as
∑

i∈Sj
ξj(i, Sj) instead

of Cj(fj), i.e., even if the additional costs that the marginal contribution rule
enforces are disregarded when evaluating the quality of the outcome. Measuring
the PoA with respect to the cost generated by the players (instead of the cost that
they actually suffer) can be motivated by thinking of the costs suffered by the
players as tolls that the system uses in order to affect the incentives of the players.
There has been a sequence of results focusing on designing tolls of this form in
order to optimize this PoA measure for atomic congestion games [10, 17, 9, 16],
and the marginal contribution rule is known as marginal cost pricing tolls in this
literature. In this context, Theorem 4 leads to the following corollary.

Corollary 1. There exists a weighted congestion game with marginal cost pric-
ing tolls that has a PNE with joint cost (21/d − 1)−d times the optimal joint
cost.

3 Unrestricted Cost-Sharing Rules

In this section we consider any possible cost-sharing rule and show that the
price of anarchy is always at least Θ(d/ ln d)d. In fact, our lower bound is ap-
proximately (1.3·d/ ln d)d, which is also the approximate value of the PoA of pro-
portional sharing. Before presenting this main result, we provide, as a warm-up,
the proof of a weaker, but still exponential in d, lower bound for all cost-sharing
rules; this simpler proof carries some of the ideas used in the more elaborate
proof of Theorem 5. A key idea in the proof is to define a tournament amongst
the players, with the winner of a match of players i, j corresponding to the player
with the larger cost share when i and j are together. This tournament admits a
Hamiltonian path [34], which we use to construct a bad example.

Proposition 1. The PoA of any cost-sharing rule is at least 2d−1.

Proof. The structure of this proof resembles the proof structure of the main
theorem of this section: we begin by partly defining the elements of the problem
instance (the number of players and resources, as well as the cost functions of
the resources), and then, using any given cost-sharing rule as input, we come up
with a set of strategies for each player. This way, even though the cost-sharing
rule may not be anonymous, we can still ensure that we “place” each players in a
role such that some inefficient strategy profile is a PNE for the given cost-sharing
rule.

Instance initialization: Our resources are organized as a line graph G = (E,A).
The edge between resources i and i+1 is a player that has to pick one of the two
resources. All players have unit weight. Call vertex (resource) 1, which has cost
C1(x) = xd, the root. As we move along the path, resources are getting better
by a factor of 2d−1, which means Ci(x) = xd/2(i−1)·(d−1). Resource n is the only
exception and has the same cost function as its neighbor. For the instance to
be complete, we now also need to define what the strategy set of each player is.
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We are given identities of n− 1 players and we must decide how to place them
on the edges of G, i.e., determine who will be player i, the one that must choose
between resources i and i+ 1.

Player placement : To determine the strategy sets of the players, we will first
define a permutation π and then we will let player π(i) be the π(i)-th edge of G.
In choosing this permutation, we seek that the following property is satisfied for
all i = 1, 2, . . . , n− 1: when players π(i) and π(i+ 1) share one of the resources
in E, the cost-sharing rule2 distributes at least half of the induced cost to player
π(i). We now show that a permutation satisfying this property always exists.

Consider a directed graph whose vertices correspond to the players of our in-
stance and a directed edge from i to i′ exists if and only if player i suffers at least
half of the cost induced when it shares a resource with player i′. This is a tour-
nament graph and hence it has at least one Hamiltonian path; starting from its
first vertex and following this Hamiltonian path implies a desired permutation.

Now that we have established existence of such a permutation π, we let each
player π(i) pick between resources π(i) and π(i+ 1). Given the property that is
guaranteed by the permutation, it is not hard to verify that the strategy profile
P , which has total cost C, and according to which every player π(i) chooses
resource π(i), is a PNE, while the strategy profile P ∗ according to which every
player π(i) chooses resource π(i + 1) is the one that achieves the optimal total
cost. The corresponding total costs are

n∑

j=1

2−(d−1)·(j−1) and 2−(d−1)·(j−1) +

n−1∑

j=1

2−(d−1)·j.

The ratio of the two approaches 2d−1 as n → +∞. 
�

The main result of this section strengthens this, more intuitive, lower bound
further. Let

Υ (d) =
(
φd�+ 1)2·(d−1)+1 − 
φd�d · (
φd�+ 2)d−1

(
φd�+ 1)d − (
φd�+ 2)d−1 + (
φd�+ 1)d−1 − 
φd�d
,

where φd corresponds to the solution of xd = (x+1)d−1. The following theorem
shows that the PoA of any cost-sharing rule that may depend on the weights
and IDs of the players in an arbitrary fashion has a PoA of at least Υ (d), which

is approximately (1.3 · d/ ln d)d and, in fact, is at least 
φd�d.

Theorem 5. The PoA of any cost-sharing rule is at least Υ (d).

2 Even though it is not necessary for our results we assume for simplicity that if
Cj′(x) = α · Cj(x), then for every i ∈ T we have ξj′(i, T ) = α · ξj(i, T ). To see why
this is not necessary note that in any game we can substitute a resource with cost
function α · C(x) with α · M resources with cost functions C(x) which can only be
used as a group. Here M is a very large number and the incentive structure remains
unaltered.
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Proof. Our resources are organized in a graph G = (E,A), which we describe
below. A vertex of the tree corresponds to a resource, and an edge in A corre-
sponds to a specific player, who must select one of the two endpoints of the edge
as her strategy. All but one of the vertices of G are part of a tree as follows. At
the root there is a complete d-ary tree with k + 1 levels. The leaves of this tree
are roots for complete (d − 1)-ary trees with k + 1 levels, and so on until the
final stage with unary trees with k + 1 levels. The final vertex of G is isolated
and will have only self-loops (i.e., players that will only have this resource as
their possible strategy). The main idea is that in the optimal profile P ∗, all tree
players move away from the root and are alone, while in the worst PNE P all
tree players move towards the root and are congested. The purpose of the iso-
lated resource is to cancel out any benefit the cost-sharing rule could extract by
introducing major asymmetries on the players (using their IDs) as we will see
in what follows. The construction of our lower bound is a three-stage process.
During the first stage, we initialize our instance and set temporary cost functions
for the resources that yield the required PoA. During the second stage we start
with a very large number of players |N |, place a subset of them on the tree, and
fix the rest on the isolated resource. This placement of players will happen in
a way that will allow us to turn P into a PNE in the next stage. During the
final stage we tweak the cost functions on the tree in order to maintain the fact
that the profile with everyone moving towards the root is a PNE while, at the
same time, we manage to keep the total costs of the PNE and the optimal profile
intact.

Instance initialization: The cost function of resource j at level (d − i) · k + j

of the tree is initialized as (
∏d

l=i+1 l/(l + 1))(d−1)·(k−1) · (i/(i + 1))(d−1)·j · xd.

The constant multipliers of xd on the resources are not finalized yet and will
be altered during Stage 3 of our construction. The cost function of the extra
resource is constant δ · xd, with δ arbitrarily small. With P and P ∗ as above
we get a ratio of Υ (d) between the two total costs (see [18] for the detailed
calculation).

Player placement : Suppose the game has a very large number of players |N |.
Some of these players will be used to fill all slots of the tree and the rest will be
fixed on the 0-cost resource. The players on the 0-cost resource will clearly have
no impact on the PNE and optimal costs and their only purpose is to cancel out
any benefit the cost-sharing rule could extract by using the player IDs in order
to introduce asymmetry. Focus on a single resource of the tree. The structure of
the tree clearly dictates how many players should have that resource as the top
endpoint of the corresponding edge (we will call them the children players of the
resource) and that one player should have that resource as the bottom endpoint
of its corresponding edge (we will call this the parent player of the resource).
Our claim is that given a large enough number of players, we can always find a
subset of them to place on the tree such that for every vertex, the parent player
covers for at least its proportional share when all children and the parent are on
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the resource. We will call this the parent property. Once we prove this fact, we
will be ready to finalize the cost functions and prove our result.

Here we describe how the placement of players on the tree is performed. Let S
be the set of available players which is initialized to all players N and is updated
at each iteration. We will fill the edges of the tree in a bottom-up fashion. At
each iteration we select a resource j that has not been assigned children players
and has the maximum depth among such resources. We will select its children
players from S simultaneously. Suppose j must have t children players. We must
find a group T of t players, use them on these edges, and delete them from S.
Then we look at each player i left in S. If i pays at least its proportional share
when using j with the players in T , then i remains in S, otherwise i is assigned
a unique possible strategy, which is the 0-cost resource and is removed from
S. This way we ensure that no matter what our future choices are, the parent
property will hold on resource j. We will pick the set T that maximizes the size
of S after its placement.

The key question is how much smaller does S become at each iteration? The
candidate sets of size t are

(|S|
t

)
. The number of times a t+ 1-th player pays its

fair share and can be a parent of a t-sized group is at least the number of groups
of size t + 1, i.e.,

( |S|
t+1

)
. This means there is a set T for which there exist at

least
( |S|
t+1

)
/
(|S|

t

)
= (|S|− t)/(t+1) players that can be used as its corresponding

parent. So the set S is getting smaller by a factor that is a function of d at each
iteration and the number of iterations is a function of d and k. This means we
can take the initial |N | large enough so that we can complete the process.

Cost function update: Recall P is the strategy profile such that every player
on the tree picks the resource closer to the root. We want this to be a PNE.
We know that, because of Stage 2, the parent property holds on every resource,
hence every deviation has a player pay at least its proportional share on its new
resource. We can also see that the initial cost functions are such that if a player
pays its proportional share in P , then the deviation is at least tight (possibly
the deviation costs more depending on what the cost-sharing rule does, but it
is at least tight due to the parent property). To ensure that P is a PNE in our
construction we make the following update on the cost functions. We start from
the root and move towards the leaves examining every player i. If player i pays
γi times its proportional share on its resource in P , then the cost function of
the resource j it can deviate to, and the cost functions of the resources of the
whole subtree rooted at j, are multiplied by γi. Given the facts described above
with respect to the parent property and the cost functions, it follows that P is
a PNE in our game.

Recall P ∗ is the profile such that every player picks the resource that is further
from the root. At this point, all that is left to show is that the total cost of P
and P ∗ do not change after we update the cost functions. Since, both in P and
in P ∗, at every level the total weight on every resource is the same, the initial
multipliers of every resource cost function were identical, and the sum of the
scaling factors we applied is equal to 1, it follows that the total costs remain
unchanged. 
�
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T.: The price of stability for network design with fair cost allocation. SIAM Journal
on Computing 38(4), 1602–1623 (2008)

[4] Awerbuch, B., Azar, Y., Epstein, L.: The price of routing unsplittable flow. In: Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC),
pp. 57–66 (2005)

[5] Azar, Y., Jain, K., Mirrokni, V.: (almost) optimal coordination mechanisms for
unrelated machine scheduling. In: Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 323–332. Society for
Industrial and Applied Mathematics, Philadelphia (2008)

[6] Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: Price
of anarchy, universal worst-case examples, and tightness. In: de Berg, M., Meyer,
U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 17–28. Springer, Heidelberg
(2010)

[7] Bhawalkar, K., Roughgarden, T.: Simultaneous single-item auctions. In: Goldberg,
P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 337–349. Springer, Heidelberg (2012)

[8] Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2009, pp. 815–824. Society for Industrial and Applied Mathe-
matics, Philadelphia (2009)

[9] Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Improving the efficiency of
load balancing games through taxes. In: Papadimitriou, C., Zhang, S. (eds.) WINE
2008. LNCS, vol. 5385, pp. 374–385. Springer, Heidelberg (2008)

[10] Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic con-
gestion games. ACM Transactions on Algorithms 7(1), 13 (2010)

[11] Chen, H., Roughgarden, T., Valiant, G.: Designing network protocols for good
equilibria. SIAM Journal on Computing 39(5), 1799–1832 (2010)

[12] Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms.
Theor. Comput. Sci. 410(36), 3327–3336 (2009)

[13] Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for
selfish routing via coordination mechanisms. In: Demetrescu, C., Halldórsson,
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