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Abstract. Cluster formation games are games in which self-organized
groups (or clusters) are created as a result of the strategic interactions of
independent and selfish players. We consider fractional hedonic games,
that is, cluster formation games in which the happiness of each player in
a group is the average value she ascribes to its members. We adopt Nash
stable outcomes, where no player can improve her utility by unilaterally
changing her own group, as the target solution concept and study their
existence, complexity and performance for games played on general and
specific graph topologies.

1 Introduction

Hedonic games, introduced in [6], are games in which players have preferences
over the set of all possible player partitions (called clusterings). In particular, the
utility of each player only depends on the composition or structure of the cluster
she belongs to. Cluster formation is of fundamental importance in a variety of
social, economic, and political problems. Therefore, a big stream of research con-
sidered this topic from a strategic cooperative point of view [5,7,9]. Nevertheless,
studying strategic solutions under a non-cooperative scenario becomes important
when considering huge environments (like the Internet) lacking a social planner
or where the cost of coordination is tremendously high. In this setting, a cluster-
ing is Nash stable if no player can improve her utility by unilaterally changing
her own cluster. A non-cooperative research on hedonic games can be found in
[8].

A notably class of hedonic games is that of additively separable ones [2,5],
in which the utility of a player is given by the sum of the weights of the edges
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being incident to the other players belonging to the same cluster. Moreover,
within this class of games, the symmetric case, where the weights are given by
an undirected edge-weighted graph in which nodes represent players and edge
weights measure the happiness of the players for belonging to the same cluster,
has received significant attention [3,5].

In this paper, we consider the class of (symmetric) fractional hedonic games
recently introduced in [1]. The main difference with respect to additive separable
hedonic games is that, in the fractional model, the utility of each player in a clus-
ter is divided by the number of players belonging to it. In such a way, fractional
hedonic games model natural behavioral dynamics in social environments that
are not captured by additive separable ones: one usually prefers having a couple
of good friends in a cluster composed by few other people rather than being part
of a crowded cluster populated by uninteresting guys. We analyze this class of
games from a non-cooperative perspective, with the aim of understanding the
existence, computability and performance of Nash stable clusterings.

We first show that in presence of negative edge weights, Nash stable cluster-
ings are not guaranteed to exist, while, if edge weights are non-negative, the
basic outcome in which all players belong to the same cluster (basic Nash stable
clustering) is Nash stable. Then, we evaluate their performance by means of the
widely used notions of price of anarchy and price of stability. We give an upper
bound of O(n) on the price of anarchy for weighted graphs and show that it is
asymptotically tight even for unweighted paths. We also prove a lower bound
of Ω(n) on the price of stability holding even for weighted stars. We observe
that, being the basic Nash stable clustering the responsible for such a bad per-
formance, one may ask whether Nash stable clusterings of better quality may
exist and be efficiently computed. To this aim, we show that Nash stable clus-
terings may not be reached by independent selfish agents unless some kind of
centralized control is enforced in the game (that is, uncoordinated best-response
dynamics may not converge to stable outcomes), even for unweighted bipartite
graphs. This last result, in particular, rises the question of the existence of effi-
cient algorithms for the determination of good quality Nash stable clusterings.
To this aim, however, we prove that computing the best quality Nash stable
clustering, as well as an optimal (non necessarily stable) one, is an NP-hard
problem. Given the above negative and impossibility results, we focus on frac-
tional hedonic games played on particular graph topologies such as unweighted
bipartite graphs and unweighted trees which already pose challenging questions
and require non-trivial approaches. For bipartite graphs we show that the price
of stability is strictly greater than 1 and provide a polynomial time algorithm
computing a Nash stable clustering approximating the social optimum by a fac-
tor strictly smaller than 2 (thus proving that 2 is an upper bound to the price of
stability in this setting). For trees, we prove that the price of stability is 1 and
show how to constructively compute in polynomial time an optimal Nash stable
clustering.

Due to space limitations, most of the proofs are omitted. All details can be
found in the full version of the paper.
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2 Definitions, Notation and Preliminaries

For an integer n > 0, denote with [n] the set {1, . . . , n}. Let G = (N,E,w),
with w : E → R>0 (we consider positive weights because in Lemma 1 we prove
that Nash stable clusterings may not exist with negative weights), be an edge
weighted connected undirected graph. We denote with n = |N | and with wu,v

the weight of edge (u, v) ∈ E. Furthermore, given any set of edges X ⊆ E, let
W (X) =

∑
(u,v)∈X wu,v. We say that G is unweighted when wu,v = 1 for each

(u, v) ∈ E. Given a subset of nodes S ⊆ N , GS = (S,ES) is the subgraph of
G induced by the set S, i.e., ES = {(u, v) ∈ E : u, v ∈ S}. Nu(S) denotes the
neighbors of u in S, i.e., Nu(S) = {v ∈ S : (u, v) ∈ E}, and Eu(S) the edges in
ES being incident to u, i.e., Eu(S) = {(u, v) ∈ E : (u, v) ∈ ES}.

The fractional hedonic game induced by G, denoted as G(G), is the non-
cooperative strategic game in which each node u ∈ N is associated with a selfish
player (or agent) and each player chooses to join a certain cluster (assuming that
candidate clusters are numbered from 1 to n). Hence, a state of the game, that
we will call in the sequel a clustering, is a partition of the agents into n clusters
C = {C1, C2, . . . , Cn} such that Cj ⊆ N for each j ∈ [n],

⋃
j∈[n] Cj = N and

Ci ∩Cj = ∅ for any i, j ∈ [n] with i �= j. Notice that every cluster does not need
to be necessarily non-empty. If u ∈ Ci, we say that u is a member of Ci. We
denote by C(u) the cluster in C of which agent u is a member. In a clustering C,

the payoff (or utility) of agent u is defined as pu(C) = W (Eu(C(u)))
|C(u)| . Each agent

chooses the cluster she belongs to with the aim of maximizing her payoff. We
denote by (C, u, j), the new clustering obtained from C by moving agent u from
C(u) to Cj ; formally, (C, u, j) = C \ {C(u), Cj} ∪ {C(u) \ {u}, Cj ∪ {u}}. An
agent deviates if she changes the cluster she belongs to. Given a clustering C, an
improving move (or simply a move) for player u is a deviation to any cluster Cj

that strictly increases her payoff, i.e., pu((C, u, j)) > pu(C). Moreover, player u
performs a best-response in clustering C by choosing a cluster providing her the
highest possible payoff (notice that a best-response is also a move when there
exists a cluster Cj such that pu((C, u, j)) > pu(C)). An agent is stable if she
cannot perform a move; a clustering is Nash stable (or is a Nash equilibrium)
if every agent is stable. An improving dynamics is a sequence of moves, while
a best-response dynamics is a sequence of best-responses. A game has the finite
improvement path property if it does not admit an improvement dynamics of
infinite length. Clearly, a game possessing the finite improvement path property
always admits a Nash stable clustering. We denote with NSC(G(G)) the set of
Nash stable clusterings of G(G). The social welfare of a clustering C is the
summation of the players’ payoffs, i.e., SW(C) =

∑
u∈N pu(C). We overload

the social welfare function by applying it also to single clusters to obtain their
contribution to the social welfare, i.e., SW(Ci) =

∑
u∈Ci

pu(C) so that SW(C) =∑
i∈[n] SW(Ci).

Given a game G(G), an optimal clustering C∗ is one that maximizes the
social welfare of G(G). We denote SW(C∗) as SW∗(G(G)). A clustering C
is feasible if GCi is connected, for every i ∈ [n]. Notice that an optimal
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configuration is always feasible. The price of anarchy of a fractional hedonic game
G(G) is defined as the worst-case ratio between the social welfare of a Nash sta-

ble clustering and the social optimum: PoA(G(G)) = maxC∈NSC(G(G))
SW∗(G(G))

SW(C) .

Analogously, the price of stability of G(G) is defined as the best-case ratio be-
tween the social welfare of a Nash stable clustering and the social optimum:

PoS(G(G)) = minC∈NSC(G(G))
SW∗(G(G))

SW(C) .

Next two lemmas characterize the existence of Nash stable clustering in frac-
tional hedonic games.

Lemma 1. There exists a graph G containing edges with negative weights such
that G(G) admits no Nash stable clusterings.

Lemma 2. For any weighted graph G (with positive weights), NSC(G(G)) �= ∅.

3 General Graphs

This section is devoted to results concerning general graph topologies.

Theorem 1. For any weighted graph G, PoA(G(G)) ≤ n− 1.

Theorem 2. For any integer n ≥ 2, there exists an unweighted path Gn such
that PoA(G(Gn)) = Ω(n).

Theorem 3. For any integer n ≥ 2, there exists a weighted star Gn such that
PoS(G(Gn)) = Ω(n).

Theorem 4. There exists an unweighted bipartite graph G such that G(G) does
not possess the finite improvement path property even under best-response dy-
namics.

Theorem 5. Given a fractional hedonic game, the problem of computing a Nash
stable clustering of maximum social welfare is NP-hard, as well as the problem
of computing an optimal (not necessarily stable) clustering.

4 Bipartite Graphs

In this section, we focus on games played on unweighted bipartite graphs.

Theorem 6. There exists an unweighted bipartite graph G such that
PoS(G(G)) > 1.

We now show how to constructively compute in polynomial time a Nash stable
clustering for such graph topology with good social welfare. As an implication,
we obtain an upper bound to the price of stability. Given an unweighted bipartite
graph G, let V C be a minimum vertex cover of G, and let V C = N \ V C. It
is well known that V C is a maximum independent set of G. Moreover, due to
the König’s theorem, we know that, in a bipartite graph, the number of vertices
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in a minimum vertex cover equals the number of edges in a maximum matching
and the minimum vertex cover can be computed in polynomial time. We will
construct a Nash stable clustering that is composed by |V C| non-empty clusters
where, for each player u ∈ V C, we have a different cluster Cu that is a star
graph having node u as its center. We obtain such a clustering by considering a
particular dynamics of the game G(G). Candidate clusters are numbered from 1
to |V C|, that is, one cluster for each node in V C. Let Cu be the cluster associated
to player u ∈ V C. We fix the strategy of each player u ∈ V C to Cu and let only
players in V C move in the dynamics. The strategy set of a player u ∈ V C is
{Cv|(u, v) ∈ E}. We consider the dynamics starting from a clustering where
each cluster contains at least 2 nodes whose existence is guaranteed by König’s
theorem, i.e., for each edge (u, v) of the maximum matching associated to V C,
without loss of generality we assume u ∈ V C and v ∈ V C, therefore we have a
cluster Cu and the starting strategy of v ∈ V C is the cluster Cu. In this section,
we refer to such a dynamics as D. The following property holds.

Property 1. At each step of the dynamics D, for each u ∈ V C, we have |Cu| ≥ 2.

Lemma 3. The dynamics D converges after a number of moves which is poly-
nomial in the number of players.

Next lemma claims that, once the dynamics reaches a stable clustering (which
is guaranteed by Lemma 3) henceforth called CD, the players in V C are also
stable and therefore CD is Nash stable for the game G(G).

Lemma 4. CD is Nash stable for G(G).

We conclude by proving the approximation guarantee yielded by CD

Theorem 7. The Nash stable clustering CD is such that SW(C∗)
SW(CD) < 2.

Proof. Let V C be the minimum vertex cover of G used to define the dynamics D.
By Property 1, we get that the contribution to the social welfare of any cluster
CD(u), where u ∈ V C, is at least 1, i.e., SW(CD(u)) ≥ 1 for any u ∈ V C. Let
C∗

i be a non-empty cluster of an optimal clustering C∗. We partition the nodes

of C∗
i in two sets XV C

i = C∗
i ∩V C and XV C

i = C∗
i ∩V C. We distinguish between

two cases:
i) XVC

i = ∅; it follows that C∗
i ⊆ V C. Therefore, since V C is an independent

set, it follows that SW(C∗
i ) = 0.

ii) XV C
i �= ∅; in this case the total number of edges in C∗

i is at most

|XV C
i ||XVC

i |+ 1
2 |XV C

i |2.
Hence, the contribution to the optimal social welfare of cluster C∗

i verifies

SW(C∗
i ) ≤ 2

|XV C
i ||XV C

i |+ 1
2 |XV C

i |2
|XV C

i |+ |XVC
i |

= 2|XV C
i | |X

V C
i |+ 1

2 |XV C
i |

|XV C
i |+ |XV C

i |
. (1)

On the other hand, in the Nash stable clustering CD, for any u ∈ XV C
i , there

is a cluster CD(u) whose contribution to the social welfare is at least one; thus,
we get
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∑

u∈XV C
i

SW(CD(u)) ≥ |XV C
i |. (2)

Dividing (1) by (2) we obtain

SW(C∗
i )∑

u∈XV C
i

SW(CD(u))
≤ 2

|XVC
i |+ 1

2 |XVC
i |

|XV C
i |+ |XV C

i |
< 2.

By summing over all the non-empty clusters C∗
i of the optimal clustering C∗

the theorem follows. ��

5 Trees

In this section, we focus on games played on unweighted trees.

Theorem 8. For any unweighted tree graph G, PoS(G(G)) = 1. Moreover, an
optimal clustering for G(G) can be computed in polynomial time.

6 Conclusions

There are several open problems that still need to be addressed. For instance,
some of the provided upper and lower bounds are not tight, so there are some
gaps that need to be closed. Among them, the major one is that requiring the de-
termination of significant bounds to the price of stability for general unweighted
graphs. Another interesting research direction would be considering directed
graphs where the weight of a directed arc (u, v) denotes the value player u has
for player v.
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