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Abstract. In situations without central coordination, the price of anar-
chy relates the quality of any Nash equilibrium to the quality of a global
optimum. Instead of assuming that all players choose their actions simul-
taneously, we consider games where players choose their actions sequen-
tially. The sequential price of anarchy, recently introduced by Paes Leme,
Syrgkanis, and Tardos [13], relates the quality of any subgame perfect
equilibrium to the quality of a global optimum. The effect of sequen-
tial decision making on the quality of equilibria, depends on the specific
game under consideration. We analyze the sequential price of anarchy
for atomic congestion games with affine cost functions. We derive several
lower and upper bounds, showing that sequential decisions mitigate the
worst case outcomes known for the classical price of anarchy [2,5]. Next
to tight bounds on the sequential price of anarchy, a methodological con-
tribution of our work is, among other things, a “factor revealing” linear
programming approach we use to solve the case of three players.

1 Model and Notation

We consider atomic congestion games with affine cost functions. The input of
an instance I ∈ I consists of a finite set of resources R, a finite set of players
N = {1, . . . , n}, and for each player i ∈ N a collection Ai of possible actions
Ai ⊆ R. We say a resource r ∈ R is chosen by player i if r ∈ Ai, where Ai is the
action chosen by player i. By A = (Ai)i∈N we denote a possible outcome, that
is, a complete profile of actions chosen by all players i ∈ N .

Each resource r ∈ R has a constant activation cost dr ≥ 0 and a variable cost
or weight wr ≥ 0 that expresses the fact that the resource gets more congested
the more players choose it. The total cost of resource r ∈ R, for outcome A, is
then fr(A) = dr+wr ·nr(A), where nr(A) denotes the number of players choosing
resource r in A. Given outcome A, the total cost of all resources chosen by player
i is costi(A) =

∑
r∈Ai

fr(A). Players aim to minimize their costs. The total cost
over all players of an outcome A is denoted by cost(A) =

∑
i∈N costi(A).

Note that this class of problems includes as a special case the celebrated
network routing games as studied e.g. in [2,15]. Another special case is singleton

� Research supported by CTIT (www.ctit.nl) and 3TU.AMI (www.3tu.nl), project
“Mechanisms for Decentralized Service Systems”.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 429–434, 2014.
c© Springer International Publishing Switzerland 2014



430 J. de Jong and M. Uetz

congestion games, where actions Ai are all singletons, |Ai| = 1. This model, and
variants thereof, are also known as load balancing games and, with respect to
the quality of equilibria, have a vast literature, e.g. [4,11].

Pure Nash equilibria are outcomes (Ai)i∈N in which no player can decrease his
costs by unilaterally deviating from choosing Ai. The price of anarchy PoA [9],
measures the quality of any Nash equilibrium relative to the quality of a globally
optimal allocation,OPT . HereOPT is an outcome minimizing the total costs over
all players1. Our goal is to compare the quality of Nash equilibria to the quality
of subgame perfect equilibria of an extensive form game as introduced in [10,16].
We assume that the players choose their actions in an arbitrary, predefined
order 1, 2, . . . , n, so that the i-th player must choose his action Ai, observing
the actions of players preceding i, but not knowing the actions of the players
succeeding him. A strategy Si then specifies for player i the actions he chooses,
one for each potential profile of actions chosen by his predecessors 1, . . . , i − 1.
We denote by S a strategy profile (Si)i∈N . The outcome A(S) = (A(S)i)i∈N of
a game is then the set of actions chosen by each player resulting from a given
strategy profile S. We denote by cost(S) the cost in the outcome A(S).

Extensive form games can be represented in a game tree, with the nodes on
one level representing the possible situations that a single player can encounter,
and the edges emanating from any node representing the possible actions of
that player in the given situation. The nodes of the game tree are also called
information sets2. Subgame perfect equilibria are defined by Selten [16] as strat-
egy profiles that induce Nash equilibria in any subgame of the game tree. The
sequential price of anarchy of an instance I is defined by

SPoA(I) = max
S∈SPE(I)

cost(S)

cost(OPT (I))
, (1)

where SPE(I) denotes the set of subgame perfect equilibria of instance I in
extensive game form, and OPT (I) denotes a social optimum outcome of I. The
sequential price of anarchy of a class of instances I is defined as in [13] by
SPoA(I) = supI∈I SPoA(I). Throughout the paper, when the class of instances
is clear from the context, we write PoA and SPoA. Also, we use OPT and SPE
to denote optimal and subgame perfect equilibrium outcomes respectively.

2 Related Work and Contribution

Recently, the sequential price of anarchy was introduced by Paes Leme et al.
[13] as an alternative way to measure the costs of decentralization. Compared
to the classical price of anarchy of Papadimitriou and Koutsoupias [9], it avoids

1 Note that we consider a utilitarian global objective, that is, the global objective is
to minimize the sum of the costs of all players. This is one of the standard models,
yet different than the egalitarian makespan objective as studied, e.g., in [9].

2 We deal with a game with perfect information, so all information sets are trivial,
and subgame perfect equilibria can be computed by backward induction.
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the “curse of simultaneity” inherent in certain games [13]. More specifically, for
machine cost sharing games, generic unrelated machine scheduling games and
generic consensus games, the SPoA is smaller than the PoA [13]. However, for
the latter two games, the ‘generic’ condition is indeed necessary [3]. Also, Bilò
et al. [3] show that for many games myopic behaviour leads to better equilibria
than the farsighted behaviour of subgame perfect equilibria. For throughput
scheduling games, or more generally, set packing games, the SPoA is lower than
the PoA [6]. For isolation games, however, the PoA is not worse than the SPoA
in general [1]. These results leave a mixed impression, and lead to the natural
question which classes of games possess an SPoA which is lower than the PoA.
We address this question for atomic congestion games with affine cost functions.
Congestion games were introduced by Rosenthal [14]. A special case is linear
atomic congestion games, for which the price of anarchy is known to equal 2 in
the case of two players, and 2.5 in the case of three or more players [2,5].

Our contributions are both lower and upper bounds on the sequential price of
anarchy for atomic congestion games with affine cost functions. For two and three
players, we prove tight bounds of 1.5. and 2 63

488 ≈ 2.13, respectively. For n = 4
players, we derive a lower bound ≈ 2.46, yet we have not been able to derive
a nontrivial constant upper bound (yet). In that respect note that, trivially,
SPoA ≤ n. We also consider the special case of singleton congestion games for
which the PoA is 2.5 [4]. Here we give a parametric family of instances that
yields a lower bound of 2+1/e ≈ 2.37, and we give an upper bound of n−1. We
substantially improve on these results for symmetric singleton congestion games,
where we show that the SPoA equals 4/3, which matches the bound known for
the PoA [8]. For each of the theorems in this paper we only give an outline of the
proof. For full proofs and lower bound examples, we refer to our full paper[7].

3 General Linear Atomic Congestion Games

Theorem 1. SPoA = 1.5 for atomic congestion games with two players and
affine cost functions.

We prove the theorem by considering only the relevant part of the game tree. For
player 1, we only need to consider two actions; the action he chooses in a social
optimum, and the action he chooses in a subgame perfect equilibrium. For player
2 we only need to consider 3 actions; the action he chooses in a social optimum,
and his subgame perfect responses to both of player 1’s actions. Therefore we
only need to consider 6 outcomes. The general situation is shown in Figure 1.
We lower bound the total cost in the subgame perfect equilibrium in terms of
the total cost in the social optimum. The tight lower bound example uses only
2 actions per player and 3 resources in total.

Considering the simplicity of the lower bound example for 2 players, one
might wonder whether it is possible to prove upper bounds in a more elegant
fashion, for instance using smoothness or potential arguments. But, contrary to
what one might expect, not every outcome of a subgame perfect equilibrium
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Fig. 1. All relevant actions in the game tree for 2 players. Fat lines correspond to
subgame perfect actions.

is a Nash equilibrium of the corresponding strategic form game.3 In fact, we
have constructed examples where it is subgame perfect for a player to choose an
action that is strictly dominated in the corresponding strategic game. Therefore
it is not easy to derive useful properties of SPE outcomes. Instead, for 3 players
we use a linear programming (LP) approach.

Theorem 2. SPoA = 2 63
488 ≈ 2.13 for atomic congestion games with three play-

ers and affine cost functions.

We first use simple combinatorial arguments to argue that a worst case instance
is moderate in size. Specifically, we show that for any instance I, we can construct
an instance I ′ with the same SPoA using only 2,3 and 7 actions for players 1,2
and 3 respectively. Moreover, I ′ has at most 4096 resources, one for every subset
of all actions. Intuitively, the LP works as follows: It maximizes the SPoA over
all instances with the properties described above. The only decision variables are
the weights and constant costs of each of the 4096 resources. This completely
determines the costs in all outcomes. We prespecify all subgame perfect actions
in the game tree and normalize the costs in the social optimum to 1. Our only
set of constraints enforces that in each node of the game tree, each subgame
perfect action has a lower cost than any other action. Our objective is simply to
maximize the total cost in the SPE outcome.

We have implemented this using the AIMMS modeling framework, and using
CPLEX 12.5 we obtain an optimal solution with value 2 63

488 . Given the techniques
used so far, problems with n > 3 players become increasingly difficult. Extending
the LP straightforwardly to the case with 4 players is problematic; using the same
reasoning as in the thee player case, we would need to consider 43 actions for

3 Note that both games have different strategy spaces: In the strategic form game both
players have as strategy space their feasible actions, Ai. In the extensive form game,
however, the strategy space for the second player is more complex, as it specifies an
action A2 ∈ A2 for all information sets (= possible actions of player 1).
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congestion game # players PoA SPoA

general n = 2 2[5,2] 1.5

general n = 3 2.5[5,2] 2 63
488

general n = 4 2.5[5,2] > 2.46

singleton n ≥ 3 2.5[4] ≤ n− 1

singleton n → ∞ 2.5[4] ≥ 2 1
e

singleton & symmetric n ≥ 2 4/3 [8] 4/3

Fig. 2. Results for the SPoA in comparison to the PoA

player 4, and 255 resources. However, using ILP techniques, we have been able
to construct lower bound examples for more than 3 players.

Theorem 3. SPoA ≥ 2.46 for atomic congestion games with four players and
affine cost functions.

4 Singleton Linear Atomic Congestion Games

Next, we present results for the special case of singleton congestion games.

Theorem 4. Asymptotically for n → ∞, SPoA ≥ 2 + 1
e ≈ 2.37 for singleton

atomic congestion games with linear cost functions.

The proof is by a parametric set of lower bound instances.

Theorem 5. For singleton atomic congestion games with affine cost functions,
SPoA ≤ n− 1.

The proof is by contradiction. Suppose the theorem does not hold, then for
some instance I, SPoA(I) > n − 1. Therefore there exists at least one player
i for whom costi(SPE) ≥ (n − 1) costi(OPT ). With this, we can construct a
contradiction. However, note that this bound is close to the trivial upper bound
n that holds for general congestion games.

Theorem 6. For symmetric singleton atomic congestion games with affine cost
functions, SPoA = 4/3.

To prove the theorem, we first prove that any SPE outcome of a sequential game
is also an NE outcome of the corresponding strategic game. Note that this is
not trivial or even true in a more general setting as mentioned in Section 2. Also
note that the theorem is not implied by results in [12]; for the non-generic case,
Milchtaich proves only the existence of an SPE outcome that is an NE outcome.
Intuitively our proof is as follows: we show that for any player i for whom there
exists a resource r′ in an SPE outcome that is less costly than the resource r
he chose, we can find a successor j for whom there exists a less costly resource
in the SPE outcome in the subgame where player i chooses r′. With this, we



434 J. de Jong and M. Uetz

construct a contradiction. The theorem follows from the fact that PoA = 4/3, as
shown in [8], and a matching lower bound example. Figure 2 gives an overview.
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