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Abstract. We examine the Fisher market model when buyers, as well as
sellers, have an intrinsic value for money. We show that when the buyers
have oligopsonistic power they are highly incentivized to act strategically
with their monetary reports, as their potential gains are unbounded. This
is in contrast to the bounded gains that have been shown when agents
strategically report utilities [5]. Our main focus is upon the consequences
for social welfare when the buyers act strategically. To this end, we define
the Price of Imperfect Competition (PoIC) as the worst case ratio of the
welfare at a Nash equilibrium in the induced game compared to the
welfare at a Walrasian equilibrium. We prove that the PoIC is at least 1

2

in markets with CES utilities with parameter 0 ≤ ρ ≤ 1 – this includes
the classes of Cobb-Douglas and linear utility functions. Furthermore, for
linear utility functions, we prove that the PoIC increases as the level of
competition in the market increases. Additionally, we prove that a Nash
equilibrium exists in the case of Cobb-Douglas utilities. In contrast, we
show that Nash equilibria need not exist for linear utilities. However, in
that case, good welfare guarantees are still obtained for the best response
dynamics of the game.

1 Introduction

General equilibrium is a fundamental concept in economics, tracing back to
1872 with the seminal work of Walras [20]. Traditionally, the focus has been
upon perfect competition, where the number of buyers and sellers in the market
are so huge that the contribution of any individual is infinitesimal. In particular,
the participants are price-takers.

In practice, however, this assumption is unrealistic. This observation has mo-
tivated researchers to study markets where the players have an incentive to act
strategically. A prominent example is the seminal work of Shapely and Shu-
bik [17]. They defined trading post games for exchange markets and examined
whether Nash equilibria there could implement competitive equilibrium prices
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and allocations. Another example, and a prime motivator of our research, is
the Cournot-Walras market model introduced by Codognato and Gabszewicz [6]
and Gabszewicz and Michel [10], which extends oligopolistic competition into
the Arrow-Debreu setting. The importance of this model was demonstrated by
Bonniseau and Florig [2] via a connection, in the limit, to traditional general equi-
libria models under the standard economic technique of agent replication. More
recently, in the computer science community, Babaioff et al [3] extended Hur-
wicz’s framework [12] to study the welfare of Walrasian markets acting through
an auction mechanism.

Our interest is in analyzing the robustness of the pricing mechanism against
strategic manipulation. Specifically, our primary goal is to quantify the loss in
social welfare due price-making rather than price-taking behaviour. To do this,
we define the Price of Imperfect Competition (PoIC) as the ratio of the social
welfare at the worst Nash equilibrium to the social welfare at the perfectly-
competitive Walrasian equilibrium.

Two remarks are pertinent here. First, we are interested in changes in the wel-
fare produced by the market mechanism under the two settings of price-takers
and price-makers. We are not interested in comparisons with the optimum social
welfare, which requires the mechanism to possess the unrealistic power to per-
form total welfare redistribution. In particular, we are not concerned here with
the Price of Anarchy or Price of Stability. Interestingly, though, the ground-
breaking Price of Anarchy results of Johari and Tzitsiklis [15] on the propor-
tional allocation mechanism for allocating one good (bandwidth) can be seen
as the first Price of Imperfect Competition results. This is because in their set-
ting the proportional allocation mechanism will produce optimal allocations in
non-stategic settings; in contrast, for our markets, Walrasian equilibrium can be
arbitrarily poor in comparison to optimal allocations.

Second, in some markets the Price of Imperfect Competition may actually
be larger than one. Thus, strategic manipulations by the agents can lead to
improvements in social welfare! Indeed, we will discuss examples where the social
welfare increases by an arbitrarily large factor when the agents act strategically.

In this paper, we analyze the Price of Imperfect Competition in Fisher markets
with strategic buyers, a special case of the Cournot-Walras model. This scenario
models the case of an oligopsonistic market, where the price-making power lies
with the buyers rather than the sellers (as in an oligopoly).1 Adsul et al. [1]
study Fisher markets where buyers can lie about their preferences. They gave
a complete characterization of its symmetric Nash equilibria (SNE) and showed
that market equilibrium prices can be implemented at one of the SNE. Later
Chen et. al. [5] studied incentive ratios in such markets to show that a buyer
can gain no more than twice by strategizing in markets with linear, Leontief and
Cobb-Douglas utility functions. In upcoming work, Branzei et al [4] study the
Price of Anarchy in the game of Adsul et al. and prove polynomial lower and

1 The importance of oligopsonies was recently highlighted by the price-fixing behaviour
of massive technology companies in San Francisco.
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upper bounds for it. Furthermore, they show Nash equilibria exist for linear,
Leontieff, and Cobb-Douglas utilities.

In the above games (and the Fisher model itself), only the sellers have an
intrinsic utility for money. In contrast, we postulate that buyers (and not just
sellers) have utility for money. Thus, buyers may also benefit by saving money for
later use. This incentivizes buyers to withhold money from the market. This de-
fines our Fisher Market Game, where agents strategize on the amount of money
they wish to spend, and obtain utility one from each unit of saved money. Con-
trary to the bound of two on gains when strategizing on utility functions [5],
we observe that strategizing on money may facilitate unbounded gains (see the
full paper). These incentives can induce large variations between the allocations
produced at a Market equilibrium and at a Nash equilibrium. Despite this, we
prove the Price of Imperfect Competition is at least 1

2 for Fisher markets when
the buyers’ utility functions belong to the utililty class of Constant Elasticity
of Substitution (CES) with the weak gross substitutability property – this class
includes linear and Cobb-Douglas functions.

1.1 Overview of Paper

In Section 2, we define the Fisher Game, give an overview of CES utility func-
tions, and present our welfare metrics. In Section 3, we prove that Price of
Imperfect Competition is at least 1

2 , for CES utilities which satisfy the weak
gross substitutability property. In Section 4, we apply the economic technique
of replication to demonstrate that, for linear utilities, the PoIC bound improves
as the level of competition in the market increases. In Section 5, we turn our
attention to the question of existence of Nash equilibria. We establish that Nash
equilibria exist for the subclass of Cobb-Douglas utilities. However, they need
not exist for all CES utilities. In particular, Nash equilibria need not exist for
linear utilities. To address this possibility of non-existence, in Section 6, we ex-
amine the dynamics of the linear Fisher Game and provide logarithmic welfare
guarantees.

2 Preliminaries

We now define the Fisher market model and the corresponding game where
agents strategize on how much money to spend. We require the following no-
tation. Vectors are shown in bold-face letters, and are considered as column
vectors. To denote a row vector we use xT . The ith coordinate of x is denoted
by xi, and x−i denotes the vector x with the ith coordinate removed.

2.1 The Fisher Market

A Fisher market M, introduced by Irving Fisher in his 1891 PhD thesis, consists
of a set B of buyers and and a set G of divisible goods (owned by sellers). Let
n = |B| and g = |G|. Buyer i brings mi units of money to the market and wants
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to buy a bundle of goods that maximizes her utility. Here, a non-decreasing,
concave function Ui : R

g
+ → R+ measures the utility she obtains from a bundle

of goods. Without loss of generality, the aggregate quantity of each good is one.
Given prices p = (p1, . . . , pg), where pj is price of good j, each buyer demands

a utility maximizing (an optimal) bundle that she can afford. The prices p are
said to be a market equilibrium (ME) if agents can be assigned an optimal bundle
such that demand equals supply, i.e. the market clears. Formally, let xij be the
amount of good j assigned to buyer i. So xi = (xi1, . . . , xig) is her bundle. Then,

1. Supply = Demand: ∀j ∈ G, ∑
i xij = 1 whenever pj > 0.

2. Utility Maximization: xi is a solution of maxUi(z) s.t
∑

j pjzij ≤ mi.

We denote by yij the amount of money player i invests in item j after prices are
set. Thus yij = pjxij . Equivalently yij can be thought of as player i’s demand
for item j in monetary terms.

Utility Functions
An important sub-class of Fisher markets occurs when we restrict utility func-
tions to what are known as Constant Elasticity of Substitution (CES) utilities
[18]. These functions have the form:

Ui(xi) = (
∑

j

uijx
ρ
ij)

1
ρ

for some fixed ρ ≤ 1 and some coefficients uij ≥ 0. The elasticity of substitution
for these markets are 1

1−ρ . Hence, for ρ = 1, i.e. linear utilities, the goods are
perfect substitutes; for ρ → −∞, the goods are perfect complements. As ρ → 0,
we obtain the well-known Cobb-Douglas utility function:

Ui(xi) =
∏

j

x
uij

ij

where each uij ≥ 0 and
∑

j uij = 1. In this paper, we will focus on the cases of
0 < ρ ≤ 1 and the case ρ → 0. These particular markets satisfy the property of
weak gross substitutability, meaning that increasing the price of one good cannot
decrease demand for other goods. It is also known that for these particular
markets, one can determine the market prices and allocations by solving the
Eisenberg-Gale convex program (see [8], [9], [14]):

max
(∑

i

mi logUi(xi) :
∑

i

xij ≤ 1, ∀j; xij ≥ 0, ∀i, j.) (1)

2.2 The Fisher Game

An implicit assumption within the Fisher market model is that money has an
intrinsic value to the sellers, stemming from its potential use outside of the
market or at a later date. Thus, money is not just a numéraire. We assume
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this intrinsic value applies to all market participants including the buyers. This
assumption induces a strategic game in which the buyers may have an incentive
to save some of their money.

This Fisher Game is a special case of the general Cournot-Walras game in-
troduced by Codognato, Gabszewicz, and Michel ([6], [10]). Here the buyers can
choose some strategic amount of money si < mi to bring to the market, which
will affect their budget constraint. They gain utility both from the resulting mar-
ket equilibria (with si substituted for mi) and from the money they withhold
from the market. Observe, in the Fisher market model, the sellers have no value
for the goods in the market. Thus, in the corresponding game, they will place
all their goods on sale as their only interest is in money. (Equivalently, we may
assume the sellers are non-strategic.)

Thus, we are in an oligopsonistic situation where buyers have indirect price-
making power. The set of strategies available to buyer i isMi = {s ≥ 0 | s ≤ mi}.
When each buyer decides to spend si ∈ Mi, then p(s) and x(s) are the prices
and allocations, respectively, produced by the Fisher market mechanism. These
can be determined from the Eisenberg-Gale program (1) by substituting si for
mi. Thus, total payoff to buyer i is

Ti(s) = Ui(xi(s)) + (mi − si) (2)

Our primary tool to analyze the Fisher Game is via the standard solution con-
cept of a Nash equilibrium. A strategy profile s is said to be a Nash equilib-
rium if no player gains by deviating unilaterally. Formally, ∀i ∈ B, Ti(s) ≥
Ti(s

′, s−i), ∀s′ ∈ Mi. For the market game defined on market M, let NE(M)
denote its set of NE strategy profiles.

The incentives in the Fisher Game can be high. In particular, in the full paper,
we show that for any L ≥ 0, there is a market with linear utility functions where
an agent improve his payoff by a multiplicative factor of L by acting strategically.

The Price of Imperfect Competition
The social welfare of a strategy is the aggregate payoff of both buyers and sellers.
At a state s, with prices p = p(s) and allocations x = x(s), the social welfare is:

W(s) =
∑

i∈B
(Ui(xi) +mi − si) +

∑

j∈G
pj =

∑

i∈B
Ui(xi) +

∑

i∈B
mi (3)

Note, here, that the cumulative payoff of sellers is
∑

j∈G pj =
∑

i∈B si.
The focus of this paper is how strategic manipulations of the market mecha-

nism affect the overall social welfare. Thus, we must compare the social welfare
of the strategic Nash equilibrium to that of the unstrategic market equilibrium
where all buyers simply put all of their money onto the market. This latter
equilibrium is the Walrasian equilibrium (WE). This comparison gives rise to
a welfare ratio, which we term the Price of Imperfect Competition (PoIC), the
ratio of the minimum welfare amongst strategic Nash equilibria in the market
game to the welfare of the unstrategic Walrasian equilibrium. Formally, for a
given market M,
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PoIC(M) = min
s∈NE(M)

W(s)

W(m)

Thus the Price of Imperfect Competition is a measure of how robust, with re-
spect to social welfare, the market mechanism is against oligopsonist behaviour.
Observe that the Price of Imperfect Competition could be either greater or less
than 1. Indeed, in the full paper, we show that a Nash Equilibrium may produce
arbitrarily higher welfare than a Walrasian Equilibrium. Of course, one may
expect that welfare falls when the mechanism is gamed and we do present an
example in the full paper where the welfare at a Nash Equilibrium is slightly
lower than at the Walrasian Equilibrium. This leads to the question of whether
the welfare at a Nash can be much worse than at a market equilibrium. We will
show that the answer is no; a Nash always produces at least a constant factor
of the welfare of a market equilibrium.

3 Bounds on the Price of Imperfect Competition

In this section we establish bounds on the PoIC for the Fisher Game for CES
utilities with 0 < ρ ≤ 1 and for Cobb-Douglas utilities. The example discussed
above shows that there is no upper bound on PoIC for the Fisher Game. Thus,
counterintuitively, even for linear utilities, it may be extremely beneficial to
society if the players are strategic.

In the rest of this section, we demonstrate a lower bound of 1
2 on the PoIC.

Consider a market with Cobb-Douglas or CES utility functions (where 0 <
ρ ≤ 1). The key to proving the factor 1

2 lower bound on the PoIC is the following
lemma showing the monotonicity of prices.

Lemma 1. Given two strategic allocations of money s∗ ≤ s, then the corre-
sponding equilibrium prices satisfy p∗ ≤ p, where p∗ = p(s∗) and p = p(s).

Proof. We break the proof up into three classes of utility function.
(i) Cobb-Douglas Utilities

The case of Cobb-Douglas utility functions is simple. To see this, recall a result
of Eaves [7]. He showed that, when buyer i spends si, the prices and allocations
for the Fisher market are given by

pj =
∑

i

uijsi xij =
uijsi∑
k ukjsk

(4)

It follows that if strategic allocations of money increase, then so must prices.

(ii) CES Utilities with 0 < ρ < 1
Recall that market equilibria for CES Utilities can be calculated via the
Eisenberg-Gale convex program (1). From the KKT conditions of this program,
where pj is the dual variable of the budget constraint, we observe that:

∀j, pj > 0 ⇒ ∑
i xij = 1

∀(i, j), siuij

Ui(x)ρx
1−ρ
ij

≤ pj and xij > 0 ⇒ siuij

Ui(x)ρx
1−ρ
ij

= pj
(5)
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Claim. If players have CES utilities with 0 < ρ < 1 and s ≥ 0, then xij >
0, ∀(i, j) with uij > 0.

Proof. Consider the derivative of Ui with respect to xij as xij → 0:

lim
xij→0

∂Ui(xi)

∂xij
= lim

xij→0

uijUi(xi)
1−ρ

x1−ρ
ij

= +∞ (6)

The claim follows since pj ≤
∑

i si and is, thus, finite. 	

We may now proceed by contradiction. Suppose ∃k s.t. pk < p∗k. Choose

a good j such that
pj

p∗
j
is minimal and therefore less than 1, by assumption.

Take any player i such that uij > 0. By the above claim, we have xij , x
∗
ij > 0.

Consequently, by the KKT conditions (5), we have:

uij

pjx
1−ρ
ij

=
Ui(xi)

ρ

si
and

uij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρ

s∗i
(7)

Taking a ratio gives:

pjx
1−ρ
ij

p∗jx
∗1−ρ
ij

=
Ui(x

∗
i )

ρsi
Ui(xi)ρs∗i

(8)

Indeed, this equation also holds for every good t ∈ G with uit > 0. Next consider
the following two cases:

Case 1: xij ≤ x∗
ij for some player i.

From (8) we must then have that Ui(xi) > Ui(x
∗
i ). However, by the minimality

of
pj

p∗
j
, and since (8) holds for every t ∈ G with uit > 0, we obtain xit ≤ x∗

it for

all such t. This implies Ui(xi) ≤ Ui(x
∗
i ), a contradiction.

Case 2: xij > x∗
ij for every player i.

Since p∗j > pj , we must have p∗j > 0. By (5) it follows that
∑

i x
∗
ij = 1. But

now we obtain the contradiction that demand must exceed supply as
∑

i xij >∑
i x

∗
ij = 1.

(iii) Linear Utilities

We begin with some notation. Let Si = {j ∈ G : xij > 0} be the set of goods
purchased by buyer i at strategy s. Let βij =

uij

pj
be the rate-of-return of good

j for buyer i at prices p. Let βi = maxj∈G βij be the bang-for-buck buyer i can
obtain at prices p. It can be seen from the KKT conditions of the Eisenberg-Gale
program (1) that at {p,x}, every good j ∈ Si will have a rate-of-return equal to
the bang-for-buck (see, for example, [19]). Similarly, let S∗

i , β
∗
i be correspondingly

defined for strategy s∗.
Note that, assuming for each good j, ∃i, uij > 0, we have that p,p∗ > 0. Thus,

we can partition the goods into groups based on the price ratios
p∗
j

pj
. Suppose

there are k distinct price ratios over all the goods (thus k ≤ g), then partition
the goods into k groups, say G1, . . . ,Gk such that all the goods in a group have
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the same ratio. Let the ratio in group j be λj and let λ1 < λ2 < · · · < λk. Thus
G1 are the goods whose prices have fallen the most (risen the least) and Gk are
the goods whose prices have fallen the least (risen the most).

Let Ik = {i : ∃j ∈ Gk, xij > 0} and I∗
k = {i : ∃j ∈ Gk, x

∗
ij > 0}. Thus Ik

and I∗
k are the collections of buyers that purchase goods in Gk in each of the

allocations. Take any buyer i ∈ I∗
k ; so there is some good j ∈ S∗

i ∩ Gk.

If Si ∩
⋃k−1

�=1 G� = ∅ then buyer i would not desire good j at prices p∗j . To see

this, take a good j′ ∈ Si ∩
⋃k−1

�=1 G�. Then βij′ = βi ≥ βij . Therefore

β∗
i ≥ uij′

p∗j′
≥ uij′

λk−1 · pj′ >
uij′

λk · pj′

=
1

λk
· uij′

pj′
≥ 1

λk
· uij

pj

=
uij

p∗j
= β∗

i

This contradiction tells us that Si ⊆ Gk and I∗
k ⊆ Ik. It follows that ∪i∈I∗

k
Si ⊆

Gk. Putting this together, we obtain that
∑

i∈I∗
k

si ≤
∑

i∈Ik

si ≤
∑

j∈Gk

pj (9)

Now recall that all goods must be sold by the market mechanism (as p,p∗ > 0).
Thus the buyers I∗

k must be able to afford all of the goods in Gk. Thus

∑

i∈I∗
k

s∗i ≥
∑

j∈Gk

p∗j = λk ·
∑

j∈Gk

pj (10)

But s∗i ≤ si for all i. Consequently, Inequalities (9) and (10) imply that λk ≤ 1.
Thus no price in p∗ can be higher than in p. 	


First we use Lemma 1 to provide lower bounds on the individual payoffs.

Lemma 2. Let si be a best response for agent i against the strategies s−i. Then
Ti(s) ≥ max(Ûi,mi), where Ûi is her utility at the Walrasian equilibrium.

Proof. Clearly Ti(s) ≥ mi, otherwise player i could save all her money and
achieve a payoff of mi. For Ti(s) ≥ Ûi, let p = p(m) and x = x(m) be the
prices and allocation at Walrasian equilibrium. If buyer i decides to spend all
his money when the others play s−i, the resulting equilibrium prices will be less
than p, by Lemma 1. Therefore, she can afford to buy bundle xi. Thus, her best
response payoff must be at least Ûi.

It is now easy to show the lower bound on the Price of Imperfect Competition.

Theorem 1. In the Fisher Game with Cobb-Douglas or CES utilities with 0 <
ρ ≤ 1, we have PoIC ≥ 1

2 . That is, W(s∗) ≥ 1
2W(m), for any Nash equilibrium

s∗.
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Proof. Let p∗ = p(s∗) and x∗ = x(s∗). Let p and x be the Walrasian equilibrium
prices and allocations, respectively. At the Nash equilibrium s∗ we have Ti(s

∗) ≥
max(mi, Ui(xi)) for each player i, by Lemma 2. Thus, we obtain:

2
∑

i

Ti(s
∗) ≥

∑

i

Ui(xi) +
∑

i

mi (11)

Therefore W(s∗) ≥ 1
2W(m), as desired. 	


4 Social Welfare and the Degree of Competition

In this section, we examine how the welfare guarantee improves with the degree
of competition in the market. To model the degree of competition, we apply
a common technique in the economics literature, namely replication [17]. In a
replica economy, we take each buyer type in the market and make N duplicates
(the budgets of each duplicate is a factor N smaller than that of the original
buyer). The degree of competition in the resultant market is N . We now consider
the Fisher Game with linear utility functions and show how the lower bound on
Price of Imperfect Competition improves with N .

Theorem 2. Let s∗ be a NE in a market with degree of competition N . Then

W(s∗) ≥ (1− 1

N + 1
) · W(m)

In order to prove Theorem 2, we need a better understanding of how prices
adjust to changes in strategy under different degrees of competition. Towards
this goal, we need the following two lemmas.

Lemma 3. Given an arbitrary strategic money allocation s. If player i increases
(resp. decreases) her spending from si to (1 + δ)si then the price of any good
increases (resp. decreases) by at most a factor of (1 + δ).

Proof. We focus on the case of increase; the argument for the decrease case
is analogous. Suppose all players increase their strategic allocation by a factor
of (1 + δ). Then the allocations to all players would remain the same by the
market mechanism and all prices would be scaled up by a factor of (1+ δ). Then
suppose each player k = i subsequently lowers its money allocation back down
to the original amount sk. By Lemma 1, no price can now increase. The result
follows. 	


Lemma 4. Given an arbitrary strategic money allocation s in a market with
degree of competition N . Let buyer i be the duplicate player of her type with the
smallest money allocation si. If she increases her spending to (1 +N · δ)si then
the price of any good increases by at most a factor (1 + δ).
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Proof. We utilize the symmetry between the N identical players. Let players
i1 = i, i2, ..., iN be the replicas identical to player i. If each of these players
increased their spending by a factor of (1 + δ) then, by Lemma 3, prices would
go up by at most a factor (1 + δ). From the market mechanism’s perspective,
this is equivalent to player i increasing her strategic allocation to si+ δ ·∑k sik .
But this is greater than (1 + N · δ)si. Thus, by Lemma 1, the new prices are
larger by a factor of at most (1 + δ). 	


Now let x = x(m) and x∗ = x(s∗). Since we have rational inputs, x and x∗ must
be rational [14]. Therefore, by appropriately duplicating the goods and scaling
the utility coefficients, we may assume that there is exactly one unit of each good
and that both x and x∗ are {0, 1}-allocations. Recall from the proof of Lemma 1
our definition of Si, S

∗
i and βi, β

∗
i . Under this assumption, Si = {j ∈ G : xij = 1}

and similarly for S∗
i . We are now ready to prove the following welfare lemma.

Lemma 5. For any Nash equilibrium {s∗,p∗,x∗} and any Walrasian equilib-
rium {s = m,p,x}, we have

∑

i∈B

∑

j∈S∗
i

uij ≥
(

1− 1

N

)

·
∑

i∈B

∑

j∈Si

uij (12)

Proof. To prove the lemma we show that total utility produced by goods at NE,
after scaling by a factor N

N−1 , is at least as much as the utility they produce at
the Walrasian equilibrium. We do this by partitioning goods into the sets Si. We
then notice that for each good, the player who receives it at NE must receive
utility from it in excess of the price he paid for it. In many cases, this price is
more than the utility of the player who receives it in Walrasian equilibrium and
we are done. Otherwise we will set up a transfer system where players in NE
who receive more utility for the good than the price paid for it transfer some of
this excess utility to players who need it. This will ultimately allow us to reach
the desired inequality.

For the rest of this proof wlog we will restrict our attention to Nash equilibria
where each identical copy of a certain type of player has the same strategy. We are
able to do this as the market could treat the sum of these copies as a single player
and thus we are able to manipulate the allocations between these players without
changing market prices or the total utility derived from market allocations. Thus
if our argument holds for Nash equilibria where identical players have the same
strategy, it will also hold for heterogeneous Nash equilibria. Now take any player
i. There are two cases:
Case 1: s∗i = mi.
By Lemma 1, we know that

∑

j∈S∗
i ∩Si

p∗j ≤
∑

j∈S∗
i ∩Si

pj (13)
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Therefore, by the assumption that s∗i = mi, we have

∑

j∈Si\S∗
i

pj = mi −
∑

j∈S∗
i ∩Si

pj = s∗i −
∑

j∈S∗
i ∩Si

pj ≤ s∗i −
∑

j∈S∗
i ∩Si

p∗j =
∑

j∈S∗
i \Si

p∗j

(14)
Thus buyer i spends more on S∗

i \Si than she did on Si \S∗
i . But, by Lemma 1,

she also receives a better bang-for-buck on S∗
i \ Si than on Si \ S∗

i , as β
∗
i ≥ βi

(Lemma 1). Let β∗
i = 1+ ε∗i . Thus, at the Nash equilibrium, her total utility on

S∗
i \ Si is

∑

j∈S∗
i \Si

uij =
∑

j∈S∗
i \Si

β∗
i · p∗j = (1 + ε∗i ) ·

∑

j∈S∗
i \Si

p∗j

Of this utility, buyer i will allocate p∗j units of utility to each item j ∈ S∗
i \ Si.

The remaining ε∗i · p∗j units of utility derived from good j is reallocated to goods
in Si \ S∗

i .
Consider the goods in Si. Clearly goods in Si∩S∗

i contribute the same utility
to both the Walrasian equilibrium and the Nash equilibrium. So take the items
in Si \ S∗

i . The buyers of these items at NE have obtained at least
∑

j∈Si\S∗
i
p∗j

units of utility from them (as β∗
d ≥ 1, ∀d). In addition, buyer i has reallocated

ε∗i · ∑j∈S∗
i \Si

p∗j to goods in Si \ S∗
i . So the total utility allocated to goods in

Si \ S∗
i is

∑

j∈Si\S∗
i

p∗j + ε∗i ·
∑

j∈S∗
i \Si

p∗j ≥
∑

j∈Si\S∗
i

p∗j + ε∗i ·
∑

j∈Si\S∗
i

p∗j = (1 + ε∗i ) ·
∑

j∈Si\S∗
i

p∗j

= β∗
i ·

∑

j∈Si\S∗
i

p∗j ≥
∑

j∈Si\S∗
i

uij

Here the first inequality follows by (14) and the final inequality follows as β∗
i ≥

uij

p∗
j
, for any good j /∈ S∗

i . Thus the reallocated utility on Si at NE is greater

than the utility it provides in the Walrasian equilibrium (even without scaling
by N

N−1 ).
Case 2: s∗i < mi.
Suppose buyer i increases her spending from s∗i to (1+N ·δ) ·s∗i . Then the prices
of the goods she buys increase by at most a factor (1 + δ) by Lemma 4. Thus
her utility changes by

(mi − (1 + δ ·N) · s∗i ) + s∗i · β∗
i · 1 +N · δ

1 + δ
− (mi − s∗i )− s∗i · β∗

i ≤ 0

where the inequality follows as s∗ is a Nash equilibrium. This simplifies to

s∗i ·
(

−δ ·N + β∗
i · (1 +N · δ

1 + δ
− 1)

)

≤ 0

Now suppose (i) s∗i = 0. In this case we must have uij/p
∗
j ≤ 1 for every good

j. To see this, we argue by contradiction. Suppose uij/p
∗
j = 1+ ε for some good
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j. Notice that if player i changes s∗i to γ the price of good j can go up by at
most γ as we know each price increases by Lemma 1 and the sum of all prices is
at most γ higher (by the market conditions). Thus, if player i puts γ < ε money
onto the market then good j will still have bang-for-buck greater than 1 and so
player i will gain more utility than the loss of savings. Thus, s∗i cannot be an
equilibrium, a contradiction.

Thus uij ≤ p∗j ≤ ui∗j where i∗ is the player who receives good j at NE.
Therefore this player obtains more utility from good j than player i did in the
Walrasian equilibrium, even without scaling or a utility transfer.

On the other hand, suppose (ii) s∗i > 0. This can only occur if we have both
β∗
i ≥ 1 and

β∗
i · (N − 1) · δ

1 + δ
≤ δ ·N (15)

Therefore 1 ≤ β∗
i ≤ (1 + δ) · (1 + 1

N−1 ). Since this holds for all δ, as we take

δ → 0 we must have β∗
i ≤ N

N−1 . Thus
uij

p∗
j

≤ N
N−1 for every good j. Thus if we

multiply the utility of the player receiving good j in the Nash equilibrium by
N

N−1 he will be getting more utility from it than player i did in the Walrasian
equilibrium. 	

Proof of Theorem 2. Given the other buyers strategies s∗−i suppose buyer i
sets si = mi. Then, by Lemma 1, prices cannot be higher for (mi, s

∗
−i) than at

the Walrasian equilibrium p(m). Therefore, by selecting si = mi, buyer i could
afford to buy the entire bundle Si at the resultant prices. Consequently, her best
response strategy s∗i must offer at least that much utility. This is true for each
buyer, so we have

∑

i∈B

⎛

⎝(mi − s∗i ) +
∑

j∈G
uij · x∗

ij

⎞

⎠ ≥
∑

i∈B

∑

j∈G
uij · xij (16)

Thus

W(s∗) =
∑

i∈B

∑

j∈G
uij · x∗

ij +
∑

i∈B
mi =

∑

i∈B

⎛

⎝(mi − s∗i ) +
∑

j∈G
uij · x∗

ij

⎞

⎠+
∑

i∈B
s∗i

≥
∑

i∈B

∑

j∈G
uij · xij +

∑

i∈B
s∗i (17)

On the other hand, Lemma 5 implies that

W(s∗) =
∑

i∈B

∑

j∈G
uij ·x∗

ij +
∑

i∈B
mi ≥

(

1− 1

N

)

·
∑

i∈B

∑

j∈G
uij ·xij +

∑

i∈B
mi (18)

Taking a convex combination of Inequalities (17) and (18) gives

W(s∗) ≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi + (1− α) ·
∑
i∈B

s∗i
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≥
(
α · (1− 1

N
) + (1− α)

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi

=
(
1− α

N

)
·
∑
i∈B

∑
j∈G

uij · xij + α ·
∑
i∈B

mi (19)

Thus plugging α = N
N+1 in (19) gives

W(s∗) ≥
(

1− 1

N + 1

)

·
⎛

⎝
∑

i∈B

∑

j∈G
uij · xij +

∑

i∈B
mi

⎞

⎠ =

(

1− 1

N + 1

)

·W(m)

(20)
This completes the proof. 	


5 Existence of Nash Equilibria

We have demonstrated bounds for the Price of Imperfect Competition in the
Fisher Game under both CES and Cobb-Douglas utilities. However, these welfare
results only apply to strategies that are Nash equilibria. In the full paper, we
prove that Nash equilibria exist for the Cobb-Douglas case, but need not exist
for linear utilities. For games without Nash equilibria, we may still recover some
welfare guarantees; we discuss this in Section 6, by examining the dynamics of
the Fisher Game with linear utilities.

6 Social Welfare under Best Response Dynamics

Whilst Nash equilibria need not exist in the Fisher Game with linear utilities,
we can still obtain a good welfare guarantee in the dynamic setting. Specifically,
in the dynamic setting we assume that in every round (time period), each player
simultaneously plays a best response to what they observed in the previous
round. Dynamics are a natural way to view how a game is played and a well-
studied question is whether or not the game dynamics converge to an equilibrium.
Regardless of the answer, it is possible to quantify the average social welfare over
time of the dynamic process. This method was introduced by Goemans et al in
[11] and we show how it can be applied here to bound the Dynamic Price of
Imperfect Competition - the worst case ratio of the average welfare of states in
the dynamic process to the welfare of the Walrasian equilibrium.

For best responses to be well defined in the dynamic Fisher Game, we need
the concept of a minimum monetary allocation si. Thus we discretize the game
by allowing players to submit strategies which are rational numbers of precision
up to Φ. This has the added benefit of making the game finite. In the full paper,
we prove the following bound on the Dynamic Price of Imperfect Competition.

Theorem 3. In the dynamic Fisher Game with linear utilities, the Dynamic
Price of Imperfect Competition is lower bounded by Ω(1/ log(Mφ )) where M =
maxi mi.
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