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Abstract. A major challenge faced by the marketers attempting to optimize their
advertising campaigns is to deal with budget constraints. The problem is even
harder in the face of multidimensional budget constraints, particularly in the pres-
ence of many decision variables involved, and the interplay among the decision
variables through these such constraints. Concise bidding strategies help adver-
tisers deal with this challenge by introducing fewer variables to act on.

In this paper, we study the problem of finding optimal concise bidding strate-
gies for advertising campaigns with multiple budget constraints. Given bid
landscapes—i.e., predicted value (e.g., number of clicks) and cost per click for
any bid—that are typically provided by ad-serving systems, we optimize the value
given budget constraints. In particular, we consider bidding strategies that consist
of no more than k different bids for all keywords. For constant k, we provide
a PTAS to optimize the profit, whereas for arbitrary k we show how constant-
factor approximation can be obtained via a combination of solution enumeration
and dependent LP-rounding techniques.

Finally, we evaluate the performance of our algorithms on real datasets in two
regimes with 1- and 3-dimensional budget constraint. In the former case where
uniform bidding has provable performance guarantee, our algorithm beats the
state of the art by an increase of 1% to 6% in the expected number of clicks.
This is achieved by only two or three clusters—contrast with the single cluster
permitted in uniform bidding. With only three dimensions in the budget constraint
(one for total consumption, and another two for enforcing minimal diversity),
the gap between the performance of our algorithm and an enhanced version of
uniform bidding grows to an average of 5% to 6% (sometimes as high as 9%).
Although the details of experiments for the multidimensional budget constraint
to the full version of the paper are deferred to the full version of the paper, we
report some highlights from the results.

1 Introduction

The Internet has become a major advertising medium, with billions of dollars at stake;
according to the recent IAB report [18], Internet advertising revenues in the United
States totaled $31.7 billion in 2011 with sponsored search accounting for 46.5% of this
revenue. Search engines provide simple ways to quickly set up an advertising campaign,
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track expenses, monitor effectiveness of the campaigns, and tinker with campaign pa-
rameters, and this has made it relatively easy even for small advertisers to enter online
advertising market. Even with all available tools to monitor and optimize ad campaigns,
proper allocation of the marketing budget is far from trivial. A major challenge faced
by the marketers attempting to optimize their campaigns is in the sheer number of vari-
ables they can possibly change. The problem is even more challenging in the presence
of multiple budget constraints; i.e., in setting up a campaign that aims to target vari-
ous categories of users or queries, or target a diverse set of demographics, the goal of
an advertiser may be to allocate at least a fraction of its budget to each category, and
therefore it may be facing several budget constraints at the same time. Even within a
single advertising channel on a particular search engine, the advertiser can optimize by
reallocating the budget across different keywords, choosing a particular bidding strat-
egy to use within a single ad auction, deciding on the daily advertising budget or what
demographics of users to target. This is in particular challenging in the presence of
many decision variables involved and an interplay among these variables. To deal with
the challenge, we propose concise bidding strategies to help advertisers by introducing
fewer variables to act on. The idea is to consider the set of keywords that an advertiser
may be interested in bidding on, and partition them into a small number of clusters
such that the advertiser is going to have the same bid on each cluster. Such concise
bidding strategies are inspired by uniform bidding strategies that have been shown to
achieve relatively good results [11]. In this paper, we develop near-optimal concise bid-
ding strategies for allocating advertising budgets across different keywords in a general
setting in the presence of multiple budget constraints. In the following, we first motivate
the problem and give an overview of our contributions, before elaborating on our model
and our results in the following sections.

Setting. Any online advertising market such as sponsored search consists of three main
players: Users, Advertisers, and Publishers (or search engines). In sponsored search,
users pose queries on a search engine like Bing or Google, declaring their intention and
interests. Advertisers seek to place ads and target them to users’ intentions as expressed
by their queries, and finally publishers (or search engines in the case of sponsored
search), provide a suitable mechanism for showing ads to users, through an ad-serving
system. A common mechanism for allocating ads to users is based on having advertis-
ers bid on the search query issued by the user, and the search engine run an auction at
the time the user poses the query to determine the advertisements that will be shown
to the user. A lot of research has focused on the algorithmic and game-theoretic prob-
lems behind such advertising markets, both from the publisher/search engine’s point of
view [1, 22, 7, 19, 5, 6, 12], and advertiser’s point of view [4, 11, 21, 23, 20, 8, 2]. In
this paper, we focus on optimization problems faced by advertisers.

More specifically, when a user submits a search query to a search engine, she receives
next to the search results a number of ads. If the user finds any of the ads interesting
and relevant, she may click on the ad. Advertisers interested in a search query submit
their bids and the auction determines (1) which ads “win” to be displayed to the user,
and (2) how much each is charged. Charging can be based on “impressions” (each
time the ad being displayed to the user), “clicks” (only if the the user clicks on the
ad), or “conversions” (only if the user purchases the product or installs the software).
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In sponsored search, advertisers mainly pay if the user clicks on their ad (the “pay-per-
click” model), and the amount they pay is determined by the auction mechanism, but
will be no larger than their bid.

While the impact of a bidding strategy is a complicated phenomenon based on com-
plex dynamics among other advertisers’ bidding strategies and the arrival pattern of user
queries, search engines help advertisers optimize their campaigns by providing general
statistics about the final predicted cost and value (e.g., number of clicks) of a bidding
strategy. In particular, they provide for each advertiser a set of bid landscapes1 [11] for
keywords; i.e., for each keyword w, advertisers get bid landscape functions valuew and−−→
costw corresponding to different bids on keyword w.

For ease of presentation, here we mostly focus on the most common case of cost-
per-click (CPC) charging and consider the bid landscapes for cost and number of clicks,
however, unlike most previous work [11, 20], our results directly apply to more general
pay-per-impression or pay-per-conversion models along with other value functions, and
even to settings with nonconcave value or cost functions.

To set up an advertising campaign, advertisers specify a set of user queries (or key-
words), determine a bid for each type of query/keyword, and declare an upper bound
on their advertising budget for the campaign. Next, we discuss these constraints.

Multidimensional Budget Constraints. Budget constraints play a major role in setting
up an online advertising campaign, both from the auctioneer point of view and from
advertiser’s marketing strategy. It gives advertisers a robust knob to hedge against the
uncertainty in the cost and benefits of the advertising campaign. In fact, some automated
tools provided by search engines ask for a budget as part of the input, e.g., [13, 14].
While setting up an advertising campaign, marketers often aim to target a diverse set
of demographics, and therefore need to spread their budget spent on various keywords.
One way to enforce a diversified spent is to set an upper bound on the budget spent on
a subset of keywords corresponding to a subcategory of users targeted in the campaign
or a particular category of keywords.

As an example, consider an advertising campaign by a real-estate agency website to
generate customers (or leads) for rentals in three of the boroughs in New York City,
namely, Manhattan, Brooklyn, and Queens. Given a $1000 daily budget for the whole
campaign, the advertiser might want to diversify the campaign throughout different bor-
oughs, and therefore, spend at most $500 of the budget for the keywords related to Man-
hattan, at most $400 for those related to Brooklyn, and at most $250 for those related
to Queens. Moreover, the advertiser might want to diversify among the different rental
types as well, and to spend at most $700 on the keywords relevant to condominiums
and/or apartments and at most $600 on those searches relevant to townhouses and/or
houses. By this example, we would like to emphasize that even very natural preferences
such as the above (and consequently, their relevant budget constraints) could have very
complicated structures. In particular, the budget constraints are not limited to the special
multidimensional case in which the constraints are only defined over disjoint subsets of
keywords. As a result, different budget constraints interact with each other and their
corresponding decisions would affect one another. We want our model to be able to

1 Also referred to as “bid simulator” or “traffic estimator” [15, 16].
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capture such general multidimensional budget constraints. We describe the details of
these budget constraints in Section 2.

Concise Bidding Strategies. Advertisers usually need to submit their bidding strategy
to the search engine ahead of time, so that whenever a relevant query enters the system,
the auction can run in real time. Advertisers can optimize their campaigns by reallo-
cating their budget across different keywords, choosing a particular bidding strategy to
use, or deciding on what demographics of users to target. This optimization is partic-
ularly challenging when facing many decision variables or the interplay among them
through the multidimensional budget constraints. To deal with this challenge, we pro-
pose concise bidding strategies by introducing fewer variables to act on. The idea is
to represent the bidding strategy by a small number of bids with each bid acting on a
cluster of keywords, i.e., partitioning the target set of keywords into a small number of
clusters so that the advertiser is going to have the same bid on each cluster.

Such concise bidding strategies are already studied in the context of uniform bidding
strategies, introduced by the seminal paper of Feldman et al. [11]. In uniform bidding
strategies, the advertiser bids uniformly on all keywords. Uniform bidding, although
naı̈ve at first glance, has been shown to achieve relatively good results, both in theory
and practice [11, 20]. In fact, the simplicity of uniform bidding along with its reasonable
performance make it a desirable solution in practice which is robust and less reliant on
the uncertain information provided by the advertising tool. Using such strategies, ad-
vertisers understand what their campaign is doing and where it is spending the budget.
Although effective in simplistic setting, uniform bidding mainly applies to a specific
setting with a single budget constraint and concave cost and value functions. Search
engines do give advertisers the ability to bid differently on each keyword. Employing
more complicated bidding strategies—in particular, using this ability to bid differently
on different keywords—may benefit the advertiser, search engine users, and the search
engine company. However, finding a different bid value for each keyword will result in
information overload for the advertiser. It may make the campaign management over-
whelming and impossible. Therefore, we take a middle-ground approach, and instead
of declaring only one bid for all keywords, we cluster the keywords into a small number
of subsets and apply a uniform bidding strategy on each subset, i.e., we use k distinct
bids and let each bid act on an appropriate subset of keywords.

Goal. Given all the above, our goal is to help advertisers find optimal concise bidding
strategies respecting multiple budget constraints. Given a number k, a set of keywords
relevant to an ad campaign, a value bid landscape and multiple budget landscapes for
each keyword, the advertiser’s goal is to find k clusters of keywords, and a bid for each
cluster so as to maximize the value the advertiser receives from this bidding strategy
(e.g., the expected number of clicks) subject to its budget constraints.

Our Results and Techniques. In this paper, we propose concise bidding strategies,
and develop an algorithm to find optimal concise bidding strategies for allocating ad-
vertising budgets across different keywords in a general setting in the presence of
multiple budget constraints. We formalize the concise bid optimization problem with
multiple budget constraints as motivated and sketched above, and formally defined in
Section 2, and present approximation algorithms for this problem. The problem with
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super-constant number of budget constraints r does not admit a reasonable approxi-
mation algorithm as it is harder than set packing. The latter is known not to have any
ω(r1−ε) approximation unless NP ⊆ ZPP [17]. In this paper, we focus on the problem
with a constant number of budget constraints r.

Our main theoretical contribution in this paper is a constant-factor approximation
for arbitrary number of clusters k. This constant-factor approximation algorithm is ob-
tained using a dependent LP-rounding technique (performed in three phases) combined
with solution enumeration. The linear-programming (LP) formulation of this problem
and the dependent-rounding approach used to obtain an integral solution are of indepen-
dent interest. The rounding algorithm is very simple to implement and is linear-time,
however, its analysis uses a new technique to bound the loss incurred.

For the case of constant number of clusters k, we provide a polynomial-time approx-
imation scheme (PTAS) to optimize the value. This PTAS is based on a careful dynamic
program that enumerates various ways to satisfy the budge constraints. If a factor 1 + ε
violation of budget constraints is permitted, it is relatively easy to extend the standard
PTAS for the knapsack problem to solve our problem with multiple budget constraints.
However, to eliminate the budget violations completely is pretty involved and requires
careful enumeration and modification of the residual instance.

Finally, we evaluate our algorithms on real data sets and compare their performance
with the uniform bidding strategy. Even in a simple setting of maximizing the expected
number of clicks subject to one budget constraint (for which uniform bidding is prov-
ably good), we show that using a small number of clusters can improve the expected
number of clicks by 1% to 4%. We see more improvement with increasing number of
clusters when the budget constraint is more tight. We also evaluate our algorithm in data
sets with more budget constraints, and notice significant improvement (as high as 20%)
compared to uniform bidding. Moreover, we observe that we lose less than 1% when
we round the solution from fractional LP solution to a feasible integral solution. In the
interest of space, some of the proofs will be deferred to the full version of the paper.

1.1 Related Work

As a central issue in online advertising, optimizing under budget constraints have been
studied extensively both from publishers’ (or search engines’) point of view [19, 5,
6, 12], and from advertisers’ point of view [4, 11, 21, 23, 20, 8, 2]. One well-studied
problem from publisher’s perspective is to deal with online allocation of ads in the
presence of budget constraints [19, 5, 10, 9], and another line of research is dedicated
to designing efficient mechanisms addressing incentive issues, and respecting budget
constraints [6, 12]. More relevant to this paper, the bid optimization with budget con-
straints has also been studied from advertisers’ perspective: either in a repeated auction
setting [4], or in the context of broad-match ad auctions [8], or the case of long-term
carryover effects [2].

This work is most related to the seminal paper of Feldman et al. [11] in which the au-
thors propose uniform bidding as a means for bid optimization in the presence of budget
constraints in sponsored-search ad auctions. Our results differ from those of Feldman
et al. [11] and Muthukrishnan et al. [20] in several aspects: The uniform bidding result
and its guaranteed approximation ratio of 1 − 1/e applies to CPC settings where the
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goal is to maximize the expected number of clicks and the cost and click landscapes
follow a specific structure. Besides, those results apply only in the case of one budget
constraint and (the proofs) do not easily generalize to settings with multiple budget con-
straints. Our results however apply to any set of monotone cost and value bid landscape
functions (e.g., for the case of maximizing conversions), and more importantly handles
multiple budget constraints. In addition, we compare our solution to the best solution
with the same number of clusters, however, Feldman et al. compare their solution to
the optimum of the knapsack problem with arbitrarily number of clusters and also in
a more general query language model. As a result, we can get a PTAS for the case of
constant number of clusters, but Feldman et al. can only get a 1 − 1/e approximation
ratio. In fact, generalizing the results of Feldman et al. to multiple budget constraints is
not possible, and we needed a new solution concept and a set of tools and techniques
for this problem.

2 Preliminaries

Let [k] for an integer k denote the set {1, 2, . . . , k}. We denote a vector v by v to
emphasize its multidimensionality. The length of the vector is omitted and understood
from the context; it is r, unless otherwise specified, since our vectors are mostly used for
capturing the multidimensional resource constraints. To denote different components of
a vector v of length r, we use the notation v(q) for q ∈ [r]. For any real number z, the
vector z is one all whose components are z. The length of these vectors is understood
from the context. We say v ≤ w if they have the same length and every component of
v is at most the corresponding component of w. Otherwise, we can write v �≤ w.

2.1 Formal Problem Definition

In order to optimize their campaigns, we assume that advertisers get “bid land-
scapes” [11] as an input: For each keyword w, they get (i) a monotone nonnegative
function valuew that maps any bid value to the expected value (e.g., number of clicks),
and (ii) a nonnegative function

−−→
costw mapping any bid value to an r-dimensional cost

vector incurred by the advertiser. These functions are left-continuous, but they do not
necessarily satisfy Lipschitz smoothness conditions. (See [11] for an example of how
these are derived.)

In addition, we have an r-dimensional budget limit vector (or resource usage vector),
and a number k indicating the number of clusters we can produce in our suggested
bidding strategy. The bid clustering problem is formally the following:

Problem 1. Given are an integer k, a number r of budget constraints (resources), a real
vector L ∈ R

r, a set K of keywords as well as value and cost landscape functions
valuew : bids �→ R and

−−→
costw : bids �→ R

r for each keyword w ∈ K. Find a partition
of K into k clusters K1,K2, . . . ,Kk, and a set of bids bi for i ∈ [k] such that the
expected resource consumption of the advertiser is no more than his budget vector L,
i.e.,

∑
i∈[k]

∑
w∈Ki

−−→
costw(bi) ≤ L, and the advertiser’s value (e.g., expected number

of clicks), i.e.,
∑

i∈[k]

∑
w∈Ki

valuew(bi) is (approximately) maximized. We can also
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consider a weighted objective where clicks coming from different keywords may be of
varying degrees of importance.

For ease of exposition, we use the shorthands cqib =
−−→
cost

(q)
i (b) to refer to each budget

constraint limit and pib = valuei(b) for values. We also refer to each of the r budget
constraints as a resource constraint, i.e., the qth resource (or budget) constraint is the
following:

∑
i∈[k]

∑
w∈Ki

−−→
cost

(q)
i (b) ≤ Lq. Finally, throughout this paper, we use n =

|K| to denote the number of keywords, k for the number of clusters, and r for the
number of budget (or resource) constraints.2

2.2 Approach

As discussed earlier, we know that if r, the number of different budget constraints (or re-
source constraints) is not a constant, the bid-clustering problem even with no restriction
on the number of clusters is inapproximable. This is due to the fact that this problem
is harder than the set packing or the independent set problem which is known to be
inapproximable within a factor better than n1−ε unless NP ⊂ ZPP [17]. As a result,
henceforth we assume that r is a small constant. In fact, the running times of our algo-
rithms depend exponentially on this parameter. We note that all the previous work in
advertising bid optimization only consider the case of r = 1 [11, 20, 8, 2].

Uniform resource limits. First note that we can assume without loss of generality that
the resource usage limit vector L = 1. To see this, note that we consider each resource
separately. Therefore, if a resource limit q in L is positive, we can scale it to 1 while
modifying cost(q)w appropriately for all w ∈ K. On the other hand, a limit of zero inL for
some resource q implies that we cannot place a bid b on a keyword w if cost(q)w (b) > 0.

Hence, by setting such values of cost(q)w (b) to ∞ we can change the limit of q in L to 1.

Small set of potential bids. We next show that, although the cost and value landscapes
have a continuous nature (provided to us, perhaps, by oracle access), we can settle with
a polynomial-size description thereof while incurring a small loss in the guarantees. In
particular, we show that there are only a polynomial number of different bid values that
matter. The proof of the following lemma can be found in the full version of the paper.

Lemma 1. Given any δ > 0, we can find (in polynomial time) a set B of size poly(n, 1
δ )

such that there exists a (1 − δ)-approximate solution (to the problem) all whose bids
fall in B.

In what follows, we consider two input regimes and present algorithms for each. For
the general case, we present a constant factor approximation algorithm. If k, the number

2 Note that different resource constraints are not for disjoint sets of keywords; had this been the
case, the problem would have been decomposed into separate single-resource special cases. We
emphasize, however, that in the example provided, different resource constraints correspond
to different markets, each drawing from all keywords, albeit with different coefficients. These
techniques can be potentially used to obtain lower bounds on each resource consumption, in
effect, capturing diversification objectives better.
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of permissible clusters, is a constant, the following theorem guarantees the existence of
a polynomial-time approximation scheme (PTAS) based on dynamic programming for
the problem. The proof is deferred to the full version of the paper.

Theorem 1. There is a polynomial-time approximation scheme for the bid-clustering
problem if k is a constant.

3 Approximation Algorithm

In the following, we approach to the bid-clustering problem by solving a very simple
linear-programming relaxation and then applying a three-stage dependent randomized
rounding scheme. Even though the analysis is not straightforward, the algorithm is very
simple to implement and use in practice.

3.1 Linear Programming Relaxation

Here we introduce a linear-programming relaxation for the problem. We will argue that
we only need to round this LP for the case that each bid has a small contribution to
the solution, otherwise, a PTAS from Theorem 1 suffices to find a good solution for
keywords with big contributions in the solution.

max
∑

i,b pibxib (1)

s.t.
∑

i,b c
q
ibxib ≤ L(q) ∀q ∈ [r]

∑
b yb ≤ k ∀i
xib ≤ yb ∀i, b
yb ≤ 1 ∀b

∑
b xib ≤ 1 ∀i (2)

xib, yb ≥ 0 ∀i, b. (3)

Consider a variable xib for each keyword i ∈ K
and each relevant bid b ∈ B. In the integer linear
program,xib denotes whether the advertiser should
place a bid b on keyword i and in the LP relax-
ation, we relax it to a positive real variable. In ad-
dition, there is a variable yb for each relevant bid b,
denoting whether there is a cluster with bid b. To
make the LP more concise and readable, we use the
shorthands pib = valuei(b) and cqib =

−−→
cost

(q)
i (b).

For the case when all cqib ≤ εL, this LP has a small integrality gap, and the LP can
be rounded to obtain an approximation ratio of 0.54 − ε. In fact, this can be done if

cqb =
∑

i c
q
ib
xib

yb
≤ εL(q) for all b and q; see Section 3.2.

To solve the problem, we consider two cases. First, if there is a solution of value at
least βopt (β to be determined later) for which the above condition holds, we can add
cqb ≤ εL(q) conditions to the LP as follows.

∑
i c

q
ibxib ≤ εL(q)yb ∀b, q. (4)

and then solve and round the LP to get a guarantee of β(0.54− ε).
Second case happens when there is a solution of value at least (1 − β)opt that uses

only large-cost clusters, i.e., each cluster of the solution has cost at least εL(q) for some
q. In this case, there will be at most rε−1 clusters in the solution, therefore, we can use
Theorem 1 to get an approximation ratio of 1− β − ε. Letting β = 1

1.54 , and outputing
the best solution of the two methods yields an approximation ratio of 1 − β ≈ 0.3506
for the general case of the problem.
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3.2 Rounding the LP

The above LP is rounded in three stages. In the first stage, we modify the fractional
solution so that only k nonzero yb variables remain. This is done carefully without
losing more than 1 − ε factor in the objective value. At this point, we have an LP
solution that is almost feasible—some constraints (2) may be violated. The second stage
addresses this issue by modifying xib variables so that, at the end, all LP constraints are
satisfied. The third stage, which we may even skip depending on the type of solution we
need, is a standard randomized assignment of each keyword to one bid, and may lose
up to a factor 1− ε.

Stage 1: Rounding yb Variables. Variables yb are considered one by one, and are
rounded to either zero or one, and the value of the remaining (i.e., as of now uncon-
sidered) variables yb are adjusted accordingly. In particular, each variable yb, when
considered, is rounded up to one with probability yb and is rounded down to zero with
probability 1 − yb. The remaining yb variables are scaled such that their sum stays the
same. During the process, xib variables are also scaled such that each xib/yb remains a
constant throughout. This process is a martingale, hence we have concentration bounds
for

∑
b c

q
byb (if all individual contributions are small). We scale down all xib variables

by a factor 1 + ε, so that the cost constraints are satisfied.
Let LP be the objective value of the linear program. Further, denote by LP(l) the

objective values for the LP solutions after stage l ∈ [3]. Notice that, although LP itself

is a certain value, each LP(l) is a random variable. We have E
[
LP(1)

]
≥ 1

1+εLP.

Stage 2: Modifying xib Variables to Get a Feasible Solution. Note that after round-
ing the yb variables and scaling the xib variables appropriately, some constraints (2) may
be violated. In particular, for certain keywords i, we may have

∑
b xib > 1. For each

such keyword, we scale down all xib variables at the same rate to obtain
∑

b xib = 1.
Clearly, these operations do not violate any new constraints, and fix all the violated ones,
hence the result is a feasible solution. It only remains to show the loss in the objective
due to these operations is not too much. More specifically, we prove the following.

Lemma 2. We have E
[
LP(2)

]
≥ λE

[
LP(1)

]
for a positive constant value of λ =

0.539968.

Here, we provide a weaker proof of the above lemma for λ = 1
4 . At the end of the

proof we discuss the ideas to strengthen our analysis to λ = 0.539968. The complete
proof is deferred to the full version of the paper.

Define random variable Xib to be xib/yb with probability yb and zero otherwise.
Let random variable Xi denote

∑
b Xib. Furthermore, define random variable Pi =∑

b pibXib, which is the contribution of keyword i to the objective value after Stage 1.

Note that E [Xib] = xib, E [Pi] =
∑

b pibxib, and E
[
LP(1)

]
=

∑
iE [Pi].

Consider the contribution of all keywords i with Xi > 2 to the value of LP(1). Let
random variable P̂i denote this contribution. By the following inequalities, we show
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that E[P̂i] ≤ E[Pi]/2, which means that in expectation at least half of the value of
LP(1) comes from keywords i with Xi ≤ 2.

E
[
P̂i

]
= E

[
Pi

∣
∣Xi > 2

] ·Pr [Xi > 2] = E

[
∑

b

pibXib

∣
∣
∣Xi > 2

]

·Pr [Xi > 2]

=
∑

b

E
[
pibXib

∣
∣Xi > 2

] ·Pr [Xi > 2] (5)

=
∑

b

E
[
pibXib

∣
∣Xi > 2 ∧Xib > 0

] ·Pr [Xib > 0] ·Pr
[
Xi > 2

∣
∣Xib > 0

]

=
∑

b

E

[

pibXib

∣
∣
∣Xi > 2 ∧Xib =

xib

yb

]

·Pr

[

Xib =
xib

yb

]

·Pr

[

Xi > 2
∣
∣
∣Xib =

xib

yb

]

=
∑

b

pib
xib

yb
· yb ·Pr

[

Xi > 2
∣
∣
∣Xib =

xib

yb

]

=
∑

b

pibxib ·Pr

[

X−b
i > 2− xib

yb

∣
∣
∣Xib =

xib

yb

]

≤
∑

b

pibxib ·
E
[
X−b

i

∣
∣Xib =

xib

yb

]

2− xib

yb

≤
∑

b

pibxib ·
1− xib

yb

2− xib

yb

≤
∑

b

pibxib · 1
2
=

1

2
E [Pi] . (6)

Now, note that in Stage 2, for each keyword i with Xi > 1 we scale down all Xib

variables by Xi. Hence, for each keyword i with Xi ≤ 2, we lose at most a factor of
2 in the scaling process of Stage 2. However, Inequality (6) shows that at least half of
the value of E[LP(1)] is coming from such keywords. Hence, a quarter of E[LP(1)] is
preserved after Stage 2, or, λ ≥ 1

4 .
The above analysis is suboptimal for two reasons. First, it ignores the contribution

of pibxib to the objective if Xi happens to be greater than two. Second, it treats all key-
words i for which Xi ≤ 2 similarly, and divides all of them by two although some may
only require a small scaling factor (or none at all). The deferred analysis takes advantage
of these observations and some concentration bounds to achieve λ = 0.539968.

Stage 3: Rounding xib Variables. We can simply pick one bid b for each keyword
i with probability proportional to xib. This independent rounding enjoys concentration
properties (via Chernoff bounds) for total value as well as the cost vector. This follows
from the assumption that no cqib or pib is larger than ε or εopt, respectively, otherwise
we would use the PTAS in Theorem 1. Therefore, we argue that, with high probability,
both are within a factor 1 ± ε of the semi-integral LP solution. Then, since individual
contributions to cost are small, we can remove, and throw away a small portion of the
cost with a loss in value that is no more than a 1− ε factor.

The discussions in this section so far can be summarized in the following theorem.

Theorem 2. The above algorithm provides a 0.54-approximate integral solution to the
LP (1)-(3) with additional constraints (4). This, combined with Theorem 1, can be used
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to obtain a 0.35-approximate solution for the general concise bidding problem, i.e.,
LP (1)-(3).

In the full version of the paper, we provide an instance of the aforementioned LP
with an integrality gap of 0.63.

4 Experimental Study

In order to evaluate the practical performance of our algorithms, we apply our algo-
rithms to real datasets collected from a sponsored search advertising system, and com-
pare our results with a baseline method, i.e., uniform bidding. For a set of (randomly
selected, anonymous) advertisers, we consider a set of queries on which they might
wish to advertise. We use a traffic estimator tool to estimate the number of clicks the
advertiser will get and the cost he will have to pay when he bids a bid b. Such tools are
provided for major sponsored search advertising systems [3, 15].

The datasets contain varying number of queries (from tens to tens of thousands). For
each query we obtain estimates of clicks and cost for bids in the range [$0.10, $2].

We then run our algorithms, an appropriate version of the uniform bidding algo-
rithm and an algorithm that computes the optimal bid for each query against each of
the datasets. We apply these algorithms at different budget values to see the impact of
changing the budget in the relative performance of different algorithms.

4.1 A One-Dimensional Budget Constraint

Our initial experiments involve only one budget constraint. Note that this is the setting
in which the uniform-bidding algorithm was proposed and analyzed [11].

We first see how the total amount of clicks that can be obtained grows as the number
of permitted bids increases.

Fig. 1. Comparison of performance by number of
clusters for all datasets

Figure 1 plots the performance of
the bid allocation we find for different
number of bids. It shows how the ob-
jective value of the fractional LP for
each dataset grows with the number of
clusters. This interesting point confirms
the intuition that additional clusters al-
low for more refined bidding on various
queries, hence better performance. We
also note that, conveniently, with a few
clusters, we can achieve the almost op-
timal solution, and there is no need for
a complicated strategy.

Next we consider the deterministic solutions constructed by our algorithm for each
of these datasets. The values in the figures are normalized with respect to the optimal
solution that chooses an individual bid for each query. We report performance of our
algorithm for number of clusters k = 1, 2, 3, 4. We also report the performance of our
implementation of uniform bidding that chooses an optimal set of two bids, with some
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Fig. 2. Plots comparing performance of various algorithms on the three datasets. The x axis has
budget in dollars, whereas the y axis shows the percentage of the (unrestricted) optimal solution.

probability chooses the first bid for all queries and otherwise chooses the other bid for
all queries. This algorithm was described and analyzed in [11].

Plots in Figure 2 compare the performance of integer solutions produced by LP
rounding with the uniform bidding benchmark.

We see that all algorithms perform equally well at high budgets or when the instance
is fairly small, where even the optimal fractional solution is almost integral. On the other
hand at lower values of budget and specially in the larger instances, we see superiority
of our algorithms as the number of clusters grows. In particular, for the large dataset
L, we see improvements of 4% to 6% in the expected number of clicks compared to
the uniform bidding strategy when we increase the number of clusters to four. For other
datasets which are smaller the average improvement in number of clicks is about 1%.

4.2 A Multidimensional Budget Constraint

A virtue of our algorithm is that it is naturally taking care of the setting where multiple
budget constraints are present. These additional budget constraints may arise when an
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advertiser, considering the semantic meaning of different queries, wishes to restrict how
much of her budget is spent on specific queries or domains. In the full version of this
paper we report detailed results of evaluating our algorithms on experimental data in
the presence of multidimensional budget constraint.

5 Conclusion and Future Directions

We formulate the problem of finding the concise bidding strategy for advertisers in order
to obtain the maximum number of clicks (or maximize other monotone profit function)
subject to a multidimensional budget constraint.

When the budget constraint has constant dimension, we propose a polynomial-time
approximation scheme. Otherwise, we present an LP-rounding algorithm that is both
fast and simple to implement. While the approximation guarantee for this algorithm
is ≈ 0.54, it performs much better in practice. In particular, even for the case of a
one-dimensional budget constraint, our algorithm beats the state of the art algorithm
(uniform bidding) by 1% to 6%. Conveniently this is achieved by very concise bidding
strategies that use only two or three different bids (where uniform bidding uses one).
The gap between the performance of our algorithm and the enhanced uniform bidding
widens in the case of having a small number (e.g., two) extra dimensions in the budget
constraint to guarantee diversity for advertisement targeting. In this case, our algorithms
outperforms the state of the art by an average of 5% to 6% (and sometimes up to 9%).

One obvious future direction would be to improve the analysis of our LP rounding.
We conjecture that the integrality gap is 1 − 1

e and that our current rounding approach
indeed achieves this approximation factor.

Another possible research direction is to investigate the effect of k (the maximum
number of possible bids provided to the advertiser) on the optimum solution of the prob-
lem. Currently, we assume that the value of k is given, and based on that we provide a
set of—at most—k bids to the advertiser to choose the bid from. However, it is not clear
how the value of k itself should be determined. The trade-off here is between simplicity
(i.e., lower values k that lead to a more concise set of possible bids) and performance
(higher values of k which lead to a broader set of feasible solutions and consequently,
improve the optimum solution). One approach to this question would be to examine the
value of the optimum solutions for different values of k. A preliminary study of this
question for one-dimensional budget constraints (as reported in Figure 1) suggests that
the expected marginal gain from allowing one more possible bid (i.e., adding one unit to
k) is diminishing. In other words, the expected profit is a concave function of k. Also,
the reported result suggests that the marginal gains rapidly diminish and most of the
gain is captured by going from k = 1 to k = 2, where we go from “forcing the solution
to use the single bid available” to “allowing the solution to optimize over two available
bids”. Formalizing these observations would be very helpful in providing better insight
about the nature of the problem and the challenges we face.
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