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Abstract. Cournot competition, introduced in 1838 by Antoine Augustin Cournot,
is a fundamental economic model that represents firms competing in a single mar-
ket of a homogeneous good. Each firm tries to maximize its utility—naturally a
function of the production cost as well as market price of the product—by decid-
ing on the amount of production. This problem has been studied comprehensively
in Economics and Game Theory; however, in today’s dynamic and diverse econ-
omy, many firms often compete in more than one market simultaneously, i.e., each
market might be shared among a subset of these firms. In this situation, a bipartite
graph models the access restriction where firms are on one side, markets are on
the other side, and edges demonstrate whether a firm has access to a market or not.
We call this game Network Cournot Competition (NCC). Computation of equilib-
rium, taking into account a network of markets and firms and the different forms
of cost and price functions, makes challenging and interesting new problems.

In this paper, we propose algorithms for finding pure Nash equilibria of NCC
games in different situations. First, we carefully design a potential function for
NCC, when the price function for each market is a linear function of it total pro-
duction. This result lets us leverage optimization techniques for a single func-
tion rather than multiple utility functions of many firms. However, for nonlinear
price functions, this approach is not feasible—there is indeed no single potential
function that captures the utilities of all firms for the case of nonlinear price func-
tions. We model the problem as a nonlinear complementarity problem in this case,
and design a polynomial-time algorithm that finds an equilibrium of the game for
strongly convex cost functions and strongly monotone revenue functions. We also
explore the class of price functions that ensures strong monotonicity of the rev-
enue function, and show it consists of a broad class of functions. Moreover, we
discuss the uniqueness of equilibria in both these cases: our algorithms find the
unique equilibria of the games. Last but not least, when the cost of production
in one market is independent from the cost of production in other markets for all
firms, the problem can be separated into several independent classical Cournot
Oligopoly problems in which the firms compete over a single market. We give the
first combinatorial algorithm for this widely studied problem. Interestingly, our al-
gorithm is much simpler and faster than previous optimization-based approaches.
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1 Introduction

In the crude oil market the equilibrium price is set by the interplay of supply and de-
mand. Since there are several ways for transporting crude oil from an oil-producing
country to an oil-importing country, the market for crude oil seems to be an oligopoly
with almost a single worldwide price1. In particular, the major portion of the market
share belongs to the members of the Organization of Petroleum Exporting Countries
(OPEC). The worldwide price for crude oil is mainly influenced by OPEC, and the few
fluctuations in regional prices are negligible.

The power of an oil-producing country, in market for crude oil, mainly depends on
its resources and its cost of production rather than its position in the network. 2

The market for natural gas behaves differently from that for crude oil and matches
our study well. Unlike the crude oil market with a world-wide price, the natural gas
market is segmented and regional [40, 35]. Nowadays, pipelines are the most efficient
way for transporting natural gas from one region to another. This fragments the market
into different regional markets with their own prices. Therefore, the market for natural
gas can be modeled by a network where the power of each country highly depends
on its position in the network. For example, an importing country with access to only
one exporting country suffers a monopolistic price, while an importing country having
access to multiple suppliers enjoys a lower price as a result of the price competition. As
an evidence, EU Commission Staff Working Document (2006) reports different prices
for natural gas in different markets, varying from almost 0 to C300 per thousand cubic
meters [15].

In this paper we study selling a utility with a distribution network—e.g., natural gas,
water and electricity—in several markets when the clearing price of each market is de-
termined by its supply and demand. The distribution network fragments the market into
different regional markets with their own prices. Therefore, the relations between suppli-
ers and submarkets form a complex network [11, 39, 10, 18, 15]. For example, a market
with access to only one supplier suffers a monopolistic price, while a market having
access to multiple suppliers enjoys a lower price as a result of the price competition.

Antoine Augustin Cournot introduced the first model for studying the duopoly com-
petition in 1838. He proposed a model where two individuals own different springs of
water, and sell it independently. Each individual decides on the amount of water to sup-
ply, and then the aggregate water supply determines the market price through an inverse
demand function. Cournot characterizes the unique equilibrium outcome of the market
when both suppliers have the same marginal costs of production, and the inverse de-
mand function is linear. He argued that in the unique equilibrium outcome, the market
price is above the marginal cost.

Joseph Bertrand 1883 criticized the Cournot model, where the strategy of each player
is the quantity to supply, and in turn suggested to consider prices, rather than quantities,
as strategies. In the Bertrand model each firm chooses a price for a homogeneous good,
and the firm announcing the lowest price gets all the market share. Since the firm with
the lowest price receives all the demand, each firm has incentive to price below the

1 An oligopoly is a market that is shared between several sellers.
2 However, political relations may also affect the power of a country.
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current market price unless the market price matches its cost. Therefore, the market
price will be equal to the marginal cost in an equilibrium outcome of the Bertrand
model, assuming all marginal costs are the same and there are at least two competitors
in the market.

The Cournot and Bertrand models are two basic tools for investigating the competi-
tive market price, and have attracted much interest for modeling real markets; see, e.g.,
[11, 39, 10, 18]. In particular, the predictive power of each strongly depends on the na-
ture of the market, and varies from application to application. For example, the Bertrand
model explains the situation where firms literally set prices, e.g., the cellphone market,
the laptop market, and the TV market. On the other hand, Cournot’s approach would be
suitable for modeling markets like those of crude oil, natural gas, and electricity, where
firms decide about quantities rather than prices.

There are several attempts to find equilibrium outcomes of the Cournot or Bertrand
competitions in the oligopolistic setting, where a small number of firms compete in
only one market; see, e.g., [27, 36, 34, 21, 20, 41]. Nevertheless, it is not entirely clear
what equilibrium outcomes of these games are when firms compete over more than
one market. In this paper, we investigate the problem of finding equilibrium outcomes
of the Cournot competition in a network setting where there are several markets for a
homogeneous good and each market is accessible to a subset of firms.

The reader is referred to the full version of the paper to see a warm-up basic ex-
ample for the Cournot competition in the network setting. In general due to interest of
space, all missing proofs and examples are in the longer version of this paper on arXiv
(http://arxiv.org/abs/1405.1794).

1.1 Related Work

Despite several papers that investigate the Cournot competition in an oligopolistic set-
ting (see, e.g., [36, 21, 20, 41]), little is known about the Cournot competition in a
network. Independently and in parallel to our work, Bimpikis et al. [6] (EC’14) study
the Cournot competition in a network setting, and considers a network of firms and mar-
kets where each firm chooses a quantity to supply in each accessible market. The core
of their work lies in building connections between the equilibrium outcome of the game
and paths in the underlying network, and changes in profits and welfares upon coalition
of two firms. While Bimpikis et al. [6] (EC’14) only consider the competition for lin-
ear inverse demand functions and quadratic cost functions (of total production), in this
study, we consider the same model when the cost functions and the demand functions
may have quite general forms. We show the game with linear inverse demand functions
is a potential game and therefore has a unique equilibrium outcome. Furthermore, we
present two polynomial-time algorithms for finding an equilibrium outcome for a wide
range of cost functions and demand functions.

While we investigate the Cournot competition in networks, there is a paper which
considers the Bertrand competition in network setting [3], albeit in a much more re-
stricted case of only two firms competing in each market. While we investigate the
Cournot competition in networks, there is a recent line of research exploring bargaining
processes in networks; see, e.g., Bateni et al. [4], Kanoria et al. [24], Farczadi et al.
[16], Chakraborty et al. [9]. Agents may cooperate to generate surplus to be divided

http://arxiv.org/abs/1405.1794
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based on an agreement. A bargaining process determines how this surplus is divided
between the participants.

The final price of each market in the Cournot competition is one that clears the mar-
ket. Finding a market clearance equilibrium is a well-established problem, and several
papers propose polynomial-time algorithms for computing such equilibria. Examples
include Arrow-Debreu market and its special case Fisher market (see related work on
these markets [14, 13, 23, 12, 19]). The first polynomial-time algorithm for finding an
Arrow-Debreu market equilibrium is proposed by Jain [23] for a special case with lin-
ear utilities. The Fisher market, a special case of the Arrow-Debreu market, attracted a
lot of attention as well. Eisenberg and Gale [14] present the first polynomial-time al-
gorithm by transferring the problem to a concave cost maximization problem. Devanur
et al. [13] design the first combinatorial algorithm which runs in polynomial time and
finds the market clearance equilibrium when the utility functions are linear. This result
is later improved by Orlin [33].

For the sake of completeness, we refer to recent works in the computer science lit-
erature [22, 17], which investigate the Cournot competition in an oligopolistic setting.
Immorlica et al. [22] study a coalition formation game in a Cournot oligopoly. In this
setting, firms form coalitions, and the utility of each coalition, which is equally divided
between its members, is determined by the equilibrium of a Cournot competition be-
tween coalitions. They prove the price of anarchy, which is the ratio between the social
welfare of the worse stable partition and the social optimum, is Θ(n2/5) where n is
the number of firms. Fiat et al. [17] consider a Cournot competition where agents may
decide to be non-myopic. In particular, they define two principal strategies to maximize
revenue and profit (revenue minus cost) respectively. Note that in the classic Cournot
competition all agents want to maximize their profit. However, in their study each agent
first chooses its principal strategy and then acts accordingly. The authors prove this
game has a pure Nash equilibrium and the best response dynamics will converge to
an equilibrium. They also show the equilibrium price in this game is lower than the
equilibrium price in the standard Cournot competition.

1.2 Results and Techniques

We consider the problem of Cournot competition on a network of markets and firms
(NCC) for different classes of cost and inverse demand functions. Adding these two di-
mensions to the classical Cournot competition which only involves a single market and
basic cost and inverse demand functions yields an engaging but complicated problem
that requires advanced techniques to analyze. For simplicity of notation we model the
competition by a bipartite graph rather than a hypergraph: vertices on one side denote
the firms, and vertices on the other side denote the markets. An edge between a firm
and a market shows that the firm has access to the market. The complexity of finding
the equilibrium, in addition to the number of markets and firms, depends on the classes
that inverse demand and production cost functions belong to.
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Cost functions Inverse demand functions Running time Technique
Convex Linear O(E3) Convex optimization, Poten-

tial game formulation

Convex Strongly monotone marginal
revenue function3 poly(E)

Reduction to a nonlinear
complementarity problem

Convex, separable Concave O(n log2 Qmax) Supermodular optimization,
nested binary search

We summarize our results in the above table, where E denotes the number of edges
of the bipartite graph, n denotes the number of firms, and Qmax denotes the maximum
possible total quantity in the oligopoly network at any equilibrium. In our results we
assume the inverse demand functions are nonincreasing functions of total production in
the market. This is the basic assumption in the classical Cournot Competition model:
As the price in the market increases, it is reasonable to believe that the buyers drop out
of the market and demand for the product decreases. The classical Cournot Competi-
tion model as well as many previous works on Cournot Competition model assumes
linearity of the inverse demand function [6, 22]. In fact there is little work on general-
izing the inverse demand function in this model. The second and third rows of the table
show we have developed efficient algorithms for more general inverse demand func-
tions satisfying concavity rather than linearity. The assumption of monotonicity of the
inverse demand function is a standard assumption in Economics [2, 1, 30]. We assume
cost functions to be convex which is the case in many works related to both Cournot
Competition and Bertrand Network [28, 42]. In a previous work [6], the author consid-
ers NCC, however, assumes that inverse demand functions are linear and all the cost
functions are quadratic function of the total production by the firm in all markets which
is quite restrictive. Most of the results in other related works in Cournot Competition
and Bertrand Network require linearity of the cost functions [3, 22]. Next comes a brief
overview of our results.

Linear Inverse Demand Functions. In case inverse demand functions are linear and
production costs are convex, we present a fast algorithm to obtain the equilibrium. This
approach works by showing that NCC belongs to a class of games called potential
games. In such games, the collective strategy of the independent players is to maximize
a single potential function. The potential function is carefully designed so that changes
made by one player reflects in the same way in the potential function as in their own util-
ity function. Based on network structure, we design a potential function for the game,
and establish the desired property. Moreover, in the case of convex cost functions, we
prove concavity of the designed potential function (Theorem 6) concluding convex op-
timization methods can be employed to find the optimum and hence, the equilibrium of
the original Cournot competition. We also discuss uniqueness of equilibria if the cost
functions are strictly concave. We prove the following theorems in Section 3.

Theorem 1. NCC with linear inverse demand functions forms a potential game.

3 Marginal revenue function is the vector function mapping production quantities on edges to
marginal revenue along them.
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Theorem 2. Our designed potential function for NCC with linear inverse demand func-
tions is concave provided that the cost functions are convex. Furthermore, the poten-
tial function is strictly concave if the cost functions are strictly convex, and hence the
equilibrium for the game is unique. In addition, a polynomial-time algorithm finds the
optimum of the potential function which describes the market clearance prices.

The General Case. Since the above approach does not work for nonlinear inverse
demand functions, we design another interesting but more involved algorithm to cap-
ture more general forms of inverse demand functions. We show that an equilibrium
of the game can be computed in polynomial time if the production cost functions are
convex and the revenue function is monotone. Moreover, we show under strict mono-
tonicity of the revenue function, the solution is unique, and therefore our results in
this section is structural; i.e., we find the one and only equilibrium4. For convergence
guarantee we also need Lipschitz condition on derivatives of inverse demand and cost
functions. We start the section by modeling our problem as a complementarity prob-
lem. Then we prove how holding the aforementioned conditions for cost and revenue
functions yields satisfying Scaled Lipschitz Condition (SLC) and semidefiniteness for
matrices of derivatives of the profit function. SLC is a standard condition widely used
in convergence analysis for scalar and vector optimization [43]. Finally, we present our
algorithm, and show how meeting these new conditions by inverse demand and cost
functions helps us to guarantee polynomial running time of our algorithm. We also give
examples of classes of inverse demand functions satisfying the above conditions. These
include many families of inverse demand functions including quadratic functions, cubic
functions and entropy functions. The following theorem is the main result of Section 4
which summarizes the performance of our algorithm.

Theorem 3. A solution to NCC can be found in polynomial number of iterations under
the following conditions:

1. The cost functions are (strongly) convex.
2. The marginal revenue function is (strongly5) monotone.
3. The first derivative of cost functions and inverse demand functions and the sec-
ond derivative of inverse demand functions are Lipschitz continuous.

Furthermore, the solution is unique assuming only the first condition. Therefore, our
algorithm finds the unique equilibrium of NCC.

Cournot Oligopoly. Another reasonable model for considering cost functions of the
firms is the case where the production cost in a market depends only on the quantity
produced by the firm in that specific market (and not on quantities produced by this
firm in other markets). In other words, the firms have completely independent sections

4 It is worth mentioning that Bimpikis et al. [6] prove the uniqueness of the equilibrium in a
concurrent work.

5 For at least one of the first two conditions, strong version of condition should be satisfied, i.e.,
either cost functions should be strongly convex or the marginal revenue function should be
strongly monotone.
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for producing different goods in various markets, and there is no correlation between
production cost in separate markets. In this case the competitions are separable; i.e.,
equilibrium for NCC can be found by finding the quantities at equilibrium for each
market individually. This motivates considering Cournot game where the firms compete
over a single market. We present a new algorithm for computing equilibrium quantities
produced by firms in a Cournot oligopoly, i.e., when the firms compete over a single
market. Cournot Oligopoly is a well-known model in Economics, and computation of
its Cournot Equilibrium has been subject to a lot of attention. It has been considered in
many works including [37, 25, 32, 29, 8] to name a few. The earlier attempts for calcu-
lating equilibrium for a general class of inverse demand and cost functions are mainly
based on solving a Linear Complementarity Problem or a Variational Inequality. These
settings can be then turned into convex optimization problems of size O(n) where n
is the number of firms. This means the runtime of the earlier works cannot be better
than O(n3) which is the runtime of the most efficient algorithm known for convex opti-
mization. We give a novel combinatorial algorithm for this important problem when the
quantities produced are integral. Our algorithm runs in time O(n log2(Qmax)) where
Qmax is an upper bound on total quantity produced at equilibrium. The following is the
main result of Section 5.

Theorem 4. A polynomial-time algorithm successfully computes the quantities pro-
duced by each firm at an equilibrium of the Cournot oligopoly if the inverse demand
function is nonincreasing, and the cost functions are convex. In addition, the algorithm
runs in time O(n log2(Qmax)) where Qmax is the maximum possible total quantity in
the oligopoly network at any equilibrium.

2 Notations

Suppose we have a set of n firms denoted by F and a set of m markets denoted by M.
A single good is produced in each market. Each firm may or may not be able to supply
a particular market. A bipartite graph is used to demonstrate these relations. In this
graph, the markets are denoted by the numbers 1, 2, . . . ,m on one side, and the firms
are denoted by the numbers 1, 2, . . . , n on the other side. For simplicity, throughout the
paper we use the notation i ∈ M meaning the market i, and j ∈ F meaning firm j.
For firm j ∈ F and market i ∈ M there exists an edge between the corresponding
vertices in the bipartite graph if and only if firm j is able to produce the good in market
i. This edge will be denoted (i, j). The set of edges of the graph is denoted by E , and the
number of edges in the graph is shown by E. For each market i ∈ M, the set of vertices
NM(i) is the set of firms that this market is connected to in the graph. Similarly, NF(j)
denotes the set of neighbors of firms j among markets. The edges in E are sorted and
numbered 1, . . . , E, first based on the number of their corresponding market and then
based on the number of their corresponding firm. More formally, edge (i, j) ∈ E is
ranked above edge (l, k) ∈ E if i < l or i = l and j < k. The quantity of the good
that firm j produces in market i is denoted by qij . The vector q is an E × 1 vector that
contains all the quantities produced over the edges of the graph in the same order that
the edges are numbered.
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The demand for good i denoted by Di is
∑

j∈NM(i) qij . The price of good i, denoted
by the function Pi(Di), is only a decreasing function of total demand for this good and
not the individual quantities produced by each firm in this market. For a firm j, the
vector sj denotes the strategy of firm j, which is the vector of all quantities produced
by this firm in the markets NF(j). Firm j ∈ F has a cost function related to its strategy
denoted by cj(sj). The profit that firm j makes is equal to the total money that it obtains
by selling its production minus its cost of production. More formally, the profit of firm
j is πj =

∑
i∈NF (j) Pi(Di)qij − cj(sj).

3 Cournot Competition and Potential Games

In this section, we design an efficient algorithm for the case where the price functions
are linear. More specifically, we design an innovative potential function that captures
the changes of all the utility functions simultaneously, and therefore, show how finding
the quantities at the equilibrium would be equivalent to finding the set of quantities
that maximizes this function. We use the notion of potential games as introduced in
Monderer and Shapley [31]. In that paper, the authors introduce potential games as the
set of games for which there exists a potential function P ∗ such that the pure strategy
equilibrium set of the game coincides with the pure strategy equilibrium set of a game
where every party’s utility function is P ∗.

Next we design a potential function for NCC if the price functions are linear. Inter-
estingly, this holds for any cost function meaning NCC with arbitrary cost functions is
a potential game as long as the price functions are linear. Furthermore, we show when
the cost functions are convex, the potential function is concave, and hence any convex
optimization method can find the equilibrium of such a Network Cournot Competition.
In case cost functions are strictly convex, the potential function is strictly concave. We
show the equilibrium that we find is the one and only equilibrium of the game. The
pure strategy equilibrium set of any potential game coincides with the pure strategy
equilibrium set of a game with the potential function P ∗ as all parties’ utility function.

Theorem 5. NCC with linear price functions (of quantities) is a potential game.

We can efficiently compute the equilibrium of the game if the potential function P ∗ is
easy to optimize. Below we show that this function is concave.

Theorem 6. The potential function P ∗ from the previous theorem is concave provided
that the cost functions of the firms are convex. Moreover, if the cost functions are strictly
convex then the potential function is strictly concave.

The following well-known theorem discusses the uniqueness of the solution to a
convex optimization problem.

Theorem 7. Let f : K → R
n be a strictly concave and continuous function for some

finite closed convex space K ∈ R
n. Then the convex optimization problem max f(x) :

x ∈ K has a unique solution.
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By Theorem 6, if the cost functions are strictly convex then the potential function is
strictly concave and hence, by Theorem 7 the equilibrium of the game is unique.

Let ConvexP (E , (α1, . . . , αm), (β1, . . . , βm), (c1, . . . , cn)) be the following con-
vex optimization program:

min −
∑

i∈M

[

αi

∑

j∈NM(i)

qij − βi

∑

j∈NM(i)

q2ij − βi

∑

k≤j
k,j∈NM(i)

qijqik −
∑

j∈NM(i)

cj(sj)

|NF (j)|
]

(1)

subject to qij ≥ 0 ∀(i, j) ∈ E .

Note that in this optimization program we are trying to maximize P ∗ for a bipartite
graph with set of edges E , linear price functions characterized by the pair (αi, βi) for
each market i, and cost functions cj for each firm j. This algorithm has a time complex-
ity equal to the time complexity of a convex optimization algorithm with E variables.
The best such algorithm has a running time O(E3) [7].

4 Finding Equilibrium for Cournot Game with General Cost and
Inverse Demand Functions

In this section, we focus on a much more general class of price and cost functions.
Our approach is based on reducing NCC to a polynomial time solvable class of Non-
linear Complementarity Problem (NLCP). First in 4.1, we introduce our marginal profit
function as the vector of partial derivatives of all firms with respect to the quantities
they produce. Then in 4.2, we show how this marginal profit function helps in reducing
NCC to a general NLCP. We also discuss uniqueness of equilibrium in this situation.
Unfortunately, in its most general form, NLCP is computationally intractable. For a
large class of functions, though, these problems are polynomial time solvable. In 4.3,
we rigorously define the conditions under which NLCP is polynomial time solvable. We
then present our algorithm with a theorem, showing it converges in polynomial number
of steps. To show the conditions required for quick convergence are not restrictive, we
refer the reader to the full version of this paper on arXiv, where we explore a wide range
of important price functions that satisfy them.

Assumptions. Throughout the rest of this section we assume that the price functions are
decreasing and concave and the cost functions are strongly convex (to be defined later).
We also assume that for each firm there is a finite quantity at which extra production
ceases to be profitable even if that is the only firm operating in the market. Thus, all pro-
duction hence supply quantities are finite. In addition, we assume Lipschitz continuity
and finiteness of the first and the second derivatives of price and cost functions. We note
that these Lipschitz continuity assumptions are very common for convergence analysis
in convex optimization [7] and finiteness assumptions are implied by Lipschitz continu-
ity. In addition, they are not very restrictive as we do not expect unbounded price/cost
fluctuation with supply change. For sake of brevity, we use the terms inverse demand
function and price function interchangeably.
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4.1 Marginal Profit Function

For the rest of this section, we assume that Pi and ci are twice differentiable functions
of quantities. For a firm j and a market i such that (i, j) ∈ E , we define fij = − ∂πj

∂qij
=

−Pi(Di)− ∂Pi(Di)
∂qij

qij+
∂cj
∂qij

. Recall that the price function of a market is only a function
of the total production in that market and not the individual quantities produced by
individual firms. Thus ∂Pi(Di)

∂qij
= ∂Pi(Di)

∂qik
∀j, k ∈ NM(i). Therefore, we replace these

terms by P ′
i (Di) to obtain fij = −Pi(Di)− P ′

i (Di)qij +
∂cj
∂qij

.
Let vector F be the vector of all fij’s corresponding to the edges of the graph in

the same format that we defined the vector q. Note that F is a function of q. Moreover,
we separate the part representing marginal revenue from the part representing marginal
cost in function F . More formally, we split F into two functions R and S such that F =
R + S, and the element corresponding to the edge (i, j) ∈ E in the marginal revenue
function R(q) is rij = − ∂πj

∂qij
= −Pi(Di)− P ′(Di)qij , whereas for the marginal cost

function S(q) is sij =
∂cj
∂qij

.

4.2 Non-linear Complementarity Problem

We now formally define NLCP, and prove our problem is an NLCP.

Definition 1. Let F : Rn → R
n be a continuously differentiable function on R

n
+. The

complementarity problem seeks a vector x ∈ R
n that satisfies x ≥ 0, F (x) ≥ 0, and

xTF (x) = 0.

Theorem 8. The problem of finding the vector q at equilibrium in the Cournot game is
a complementarity problem.

Definition 2. F : K → R
n is said to be strictly monotone at x∗ if 〈[F (x)−F (x∗)]T , x−

x∗〉 ≥ 0, ∀x ∈ K. Then, F is said to be strictly monotone if it is strictly monotone at any
x∗ ∈ K. Equivalently, F is strictly monotone if its Jacobian matrix is positive definite.

The following theorem is a well known theorem for Complementarity Problems.

Theorem 9. [26] Let F : K → R
n be a continuous and strictly monotone function

with a point x ∈ K such that F (x) ≥ 0 (i.e., there exists a potential solution to the
CP). Then the Complementarity Problem introduced in Definition 1 characterized by
function F has a unique solution.

Hence, the Complementarity Problem characterized by functionF has a unique solu-
tion under the assumption that the revenue function is strongly monotone (special case
of strictly monotone). In the next subsection, we aim to find this unique equilibrium of
the NCC problem.

4.3 Designing a Polynomial-Time Algorithm

In this subsection, we present an algorithm to find the equilibrium of NCC, and establish
its polynomial time convergence by Theorem 10. This theorem requires the marginal
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profit function to satisfy Scaled Lipschitz Condition (SLC) and monotonicity. We first
introduce SLC, and show how the marginal profit function satisfies SLC and mono-
tonicity by Lemmas 1 to 5. We present in in Lemma 5 the conditions that the cost and
price functions should have in order for the marginal profit function to satisfy SLC
and monotonicity. Finally, in Theorem 10, we show convergence of our algorithm in
polynomial time.

Before introducing the next theorem, we explain what the Jacobians ∇R, ∇S, and
∇F are for the Cournot game. First note that these are E × E matrices. Let (i, j) ∈ E
and (l, k) ∈ E be two edges of the graph. Let e1 denote the index of edge (i, j), and e2
denote the index of edge (l, k) in the vector as we discussed in the first section. Then the
element in row e1 and column e2 of matrix ∇R, denoted ∇Re1e2 , is equal to ∂rij

∂qlk
. We

name the corresponding elements in ∇F and ∇S similarly. We have ∇F = ∇R+∇S
as F = R + S.

Definition 3 (Scaled Lipschitz Condition (SLC)). A function G : D 	→ R
n, D ⊆ R

n

is said to satisfy Scaled Lipschitz Condition (SLC) if there exists a scalar λ > 0 such
that ∀ h ∈ R

n, ∀ x ∈ D, such that ‖X−1h‖ ≤ 1, we have ‖X [G(x + h) − G(x) −
∇G(x)h]‖∞ ≤ λ|hT∇G(x)h|, where X is a diagonal matrix with diagonal entries
equal to elements of the vector x in the same order, i.e., Xii = xi for all i ∈ M.

Satisfying SLC and monotonicity are essential for marginal profit function in The-
orem 10. In Lemma 5 we discuss the assumptions for cost and revenue function under
which these conditions hold for our marginal profit function. We use Lemmas 1 to 5 to
show F satisfies SLC. More specifically, we demonstrate in Lemma 1, if we can derive
an upperbound for LHS of SLC for R and S, then we can derive an upperbound for
LHS of SLC for F = R + S too. Then in Lemma 2 and Lemma 3 we show LHS of S
and R in SLC definition can be upperbounded. Afterwards, we show monotonicity of
S in Lemma 4. In Lemma 5 we aim to prove F satisfies SLC under some assumptions
for cost and revenue functions. We use the fact that LHS of SLC for F can be upper-
bounded using Lemma 3 and Lemma 2 combined with Lemma 1. Then we use the fact
that RHS of SLC can be upperbounded using strong monotonicity of R and Lemma 4.
Using these two facts, we conclude F satisfies SLC in Lemma 5.

Lemma 1. Let F,R, S be three R
n → R

n functions such that F (q) = R(q) + S(q),
∀q ∈ R

n. Let R and S satisfy the following inequalities for some C > 0 and ∀ h such
that ‖X−1h‖ ≤ 1:

‖X [R(q + h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2,
‖X [S(q + h)− S(q)−∇S(q)h]‖∞ ≤ C‖h‖2,

where X is the diagonal matrix with Xii = qi. Then we have:

‖X [F (q + h)− F (q)−∇F (q)h]‖∞ ≤ 2C‖h‖2.

The following lemmas give upper bounds for LHS of the SLC for S and R
respectively.
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Lemma 2. Assume X is the diagonal matrix with Xii = qi. ∀ h such that ‖X−1h‖ ≤
1, there exists a constant C > 0 satisfying: ‖X [S(q + h) − S(q) − ∇S(q)h]‖∞ ≤
C‖h‖2.

Lemma 3. Assume X is the diagonal matrix with Xii = qi. ∀ h such that ‖X−1h‖ ≤
1, ∃C > 0 such that‖X [R(q+ h)−R(q)−∇R(q)h]‖∞ ≤ C‖h‖2.

If R is assumed to be strongly monotone, we immediately have a lower bound on
RHS of the SLC for R. The following lemma gives a lower bound on RHS of the SLC
for S.

Lemma 4. If cost functions are (strongly) convex, S is (strongly) monotone.

The following lemma combines the results of Lemma 2 and Lemma 3 using Lemma
1 to derive an upper bound for LHS of the SLC for F . We bound RHS of the SLC from
below by using strong monotonicity of R and Lemma 4.

Lemma 5. F satisfies SLC and is monotone if: (1) Cost functions are convex. (2)
Marginal revenue function is monotone. (3) Cost functions are strongly convex or
marginal revenue function is strongly monotone.

We wrap up with the description of the algorithm. The algorithm first constructs
the vector F of length E. It then finds the initial feasible solution (F (x0), x0) for the
complementarity problem. (This solution should satisfy x0 ≥ 0 and F (x0) ≥ 0.) If
finally run Algorithm 3.1 from [43] to find the solution (F (x∗), x∗) to the CP char-
acterized by F , which gives the vector q of quantities produced by firms at equilib-
rium. Lemma 5 guarantees that our problem satisfies the two conditions mentioned in
Zhao and Han 1999. Therefore, we can prove the following theorem.

Theorem 10. The algorithm converges to an equilibrium of Network Cournot Compe-
tition in time O

(
E2 log(μ0/ε)

)
under the following assumptions:

1. The cost functions are strongly convex.
2. The marginal revenue function is strongly monotone.
3. The first derivative of cost functions and price functions and the second deriva-
tive of price functions are Lipschitz continuous.

This algorithm outputs an approximate solution (F (q∗), q∗) satisfying (q∗)TF (q∗)/n ≤
ε where μ0 = (q0)

TF (q0)/n, and (F (q0), q0) is the initial feasible point 6.

For a discussion of price functions that satisfy the convergence conditions for our
algorithm, we refer the reader to the full version of the paper on arXiv.

5 Algorithm for Cournot Oligopoly

In this section we present a new algorithm for computing the equilibrium in a Cournot
oligopoly, i.e., when the firms compete over a single market. Computation of Cournot

6 Initial feasible solution can be trivially found. E.g., it can be the same production quantity along
each edge, large enough to ensure losses for all firms. Such quantity can easily be found by
binary search between [0, Q].
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Equilibrium is an important problem in its own right. A considerable body of literature
has been dedicated to this problem [37, 25, 29, 8]. All earlier work computing Cournot
equilibrium for a general class of price and cost functions rely on solving a Linear
Complementarity Problem or a Variational Inequality which in turn are set up as con-
vex optimization problems of size O(n) where n is the number of firms in oligopoly.
Thus, the runtime guarantee of the earlier works is O(n3) at best. We give a novel
combinatorial algorithm for this important problem when the quantities produced are
integral. Our algorithm runs in time n log2(Qmax) where Qmax is an upper bound on
total quantity produced at equilibrium. There is always an upper bound for Qmax since
if Q =

∑
i∈F qi is large enough the price function would become negative and no firm

has any incentive to produce a higher quantity. We note that, for two reasons, the re-
striction to integral quantities is practically no restriction at all. Firstly, in real-world
all commodities and products are traded in integral (or rational) units. Secondly, this
algorithm can easily be adapted to compute approximate Cournot-Nash equilibrium for
the continuous case and since the quantities at equilibrium may be irrational numbers,
this is the best we can hope for.

With only a single market present, we simplify the notation. Let [n] = {1, . . . , n}
be the set of firms competing over the single market. Let q = (q1, q2, . . . , qn) be the
set of all quantities they produce, one quantity for each firm. Let Q =

∑
i∈[n] qi. In

this case, there is only a single inverse demand function P : Z 	→ R≥0, which maps
total supply, Q, to market price. We assume that, P is a decreasing function of Q. For
each firm i ∈ [n], the function ci : Z 	→ R≥0 denotes the cost to firm i for producing
quantity qi of the good. We assume convex cost functions. The profit of firm i ∈ [n]
as a function of qi and Q, denoted πi(qi, Q), is P (Q)qi − ci(qi). Also let fi(qi, Q) =
πi(qi + 1, Q + 1) − πi(qi, Q) be the marginal profit for firm i of producing one extra
unit. Although the quantities are nonnegative integers, for simplicity we assume the
functions ci, P , πi and fi are zero whenever any of their inputs are negative. Also, we
refer to the forward difference P (Q+ 1)− P (Q) by P ′(Q).

Polynomial Time Algorithm. We leverage the supermodularity of price functions and
Topkis’ Monotonicity Theorem [38] to design a nested binary search algorithm to find
the Cournot equilibrium. Intuitively, the algorithm works as follows. At each point we
guess Q′ to be the total quantity of good produced by all the firms. Then we check
how good this guess is by computing for each firm the set of quantities that it can
produce at equilibrium if we assume the total quantity is the fixed integer Q′. We
prove that for given Q′, the set of possible quantities for each firm at equilibrium is
a consecutive set of integers. Let Ii = {qli, qli + 1, . . . , qui − 1, qui } be the range of all
possible quantities for firm i ∈ [n] assuming Q′ is the total quantity produced in the
market. We can conclude Q′ was too low a guess if

∑
i∈[n] q

l
i > Q′. This implies our

search should continue among total quantities above Q′. Similarly, if
∑

i∈[n] q
u
i < Q′,

we can conclude our guess was too high, and the search should continues among to-
tal quantities below Q′. If neither case happens, then for each firm i ∈ [n], there
exists a q′i ∈ Ii such that Q′ =

∑
i∈[n] q

′
i and firm i has no incentive to change

this quantity if the total quantity is Q′ and we have found an equilibrium. The pseu-
docode for the algorithm and its correctness is proved in the full version of this paper
(http://arxiv.org/abs/1405.1794).

http://arxiv.org/abs/1405.1794
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