
Matching Dynamics with Constraints�

Martin Hoefer1 and Lisa Wagner2

1 Max-Planck-Institut für Informatik and Saarland University, Germany
mhoefer@mpi-inf.mpg.de

2 Dept. of Computer Science, RWTH Aachen University, Germany
lwagner@cs.rwth-aachen.de

Abstract. We study uncoordinated matching markets with additional
local constraints that capture, e.g., restricted information, visibility, or
externalities in markets. Each agent is a node in a fixed matching network
and strives to be matched to another agent. Each agent has a complete
preference list over all other agents it can be matched with. However,
depending on the constraints and the current state of the game, not all
possible partners are available for matching at all times.

For correlated preferences, we propose and study a general class of he-
donic coalition formation games that we call coalition formation games
with constraints. This class includes and extends many recently studied
variants of stable matching, such as locally stable matching, socially sta-
ble matching, or friendship matching. Perhaps surprisingly, we show that
all these variants are encompassed in a class of “consistent” instances
that always allow a polynomial improvement sequence to a stable state.
In addition, we show that for consistent instances there always exists
a polynomial sequence to every reachable state. Our characterization is
tight in the sense that we provide exponential lower bounds when each
of the requirements for consistency is violated.

We also analyze matching with uncorrelated preferences, where we
obtain a larger variety of results. While socially stable matching always
allows a polynomial sequence to a stable state, for other classes different
additional assumptions are sufficient to guarantee the same results. For
the problem of reaching a given stable state, we show NP-hardness in
almost all considered classes of matching games.

1 Introduction

Matching problems are at the basis of many important assignment and alloca-
tion tasks in computer science, operations research, and economics. A classic
approach in all these areas is stable matching, as it captures distributed control
and rationality of participants that arise in many assignment markets. In the
standard two-sided variant, there is a set of men and a set of women. Each man
(woman) has a preference list over all women (men) and strives to be matched
to one woman (man). A (partial) matching M has a blocking pair (m,w) if both
m and w prefer each other to their current partner in M (if any). A matching
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M is stable if it has no blocking pair. A large variety of allocation problems in
markets can be analyzed using variants and extensions of stable matching, e.g.,
the assignment of jobs to workers, organs to patients, students to dormitory
rooms, buyers to sellers, etc. In addition, stable matching problems arise in the
study of distributed resource allocation problems in networks.

In this paper, we study uncoordinated matching markets with dynamic match-
ing constraints. An underlying assumption in the vast majority of works on stable
matching is that matching possibilities are always available – deviations of agents
are only restricted by their preferences. In contrast, many assignment markets
in reality are subject to additional (dynamic) constraints in terms of informa-
tion, visibility, or externalities that prohibit the formation of certain matches (in
certain states). Agents might have restricted information about the population
and learn about other agents only dynamically through a matching process. For
example, in scientific publishing we would not expect any person to be able to
write a joint paper with a possible collaborator instantaneously. Instead, agents
first have to get to know about each other to engage in a cooperation. Alterna-
tively, agents might have full information but exhibit externalities that restrict
the possibility to form certain matches. For example, an agent might be more
reluctant to accept a proposal from the current partner of a close friend knowing
that this would leave the friend unmatched.

Recent work has started to formalize some of these intuitions in generalized
matching models with dynamic restrictions. For example, the lack of information
motivates socially [5] or locally stable matching [4], externalities between agents
have been addressed in friendship matching [3]. On a formal level, these are
matching models where the definition of blocking pair is restricted beyond the
condition of mutual improvement and satisfies additional constraints depend-
ing on the current matching M (expressing visibility/externalities/...). Conse-
quently, the resulting stable states are supersets of stable matchings. Our main
interest in this paper are convergence properties of dynamics that evolve from it-
erative resolution of such restricted blocking pairs. Can a stable state be reached
from every initial state? Can we reach it in a polynomial number of steps? Will
randomized dynamics converge (with probability 1 and/or in expected poly-
nomial time)? Is it possible to obtain a particular stable state from an initial
state (quickly)? These questions are prominent also in the economics literature
(for a small survey see below) and provide valuable insights under which condi-
tions stable matchings will evolve (quickly) in uncoordinated markets. Also, they
highlight interesting structural and algorithmic aspects of matching markets.

Perhaps surprisingly, there is a unified approach to study these questions
in all the above mentioned scenarios (and additional ones) via a novel class
of coalition formation games with constraints. In these games, the coalitions
available for deviation in a state are specified by the interplay of generation and
domination rules. We provide a tight characterization of the rules that allow to
show polynomial-time convergence results. They encompass all above mentioned
matching models and additional ones proposed in this paper. In addition, we
provide lower bounds in each model.
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Contribution and Outline. A formal definition of stable matching games, so-
cially stable, locally stable, and friendship matching can be found in Section 1.1.
In addition, we describe a novel scenario that we term considerate matching.

In Section 2 we concentrate on stable matching with correlated preferences,
in which each matched pair generates a single number that represents the utility
of the match to both agents. Blocking pair dynamics in stable matching with
correlated preferences give rise to a lexicographical potential function [1, 2]. In
Section 2.1 we present a general approach on coalition formation games with
constraints. These games are hedonic coalition formation games, where deviat-
ing coalitions are characterized by sets of generation and domination rules. We
concentrate on classes of rules that we term consistent. For correlated preferences
all matching scenarios introduced in Section 1.1 can be formulated as coalition
formation games with constraints and consistent rules. For games with consis-
tent rules we show that from every initial coalition structure a stable state can
be reached by a sequence of polynomially many iterative deviations. This shows
that for every initial state there is always some stable state that can be reached
efficiently. In other words, there are polynomial “paths to stability” for all con-
sistent games. Consistency relies on three structural assumptions, and we show
that if either one of them is relaxed, the result breaks down and exponentially
many deviations become necessary. This also implies that in consistent games
random dynamics converge with probability 1 in the limit. While it is easy to
observe convergence in expected polynomial time for socially stable matching,
such a result is impossible for all consistent games due to exponential lower
bounds for locally stable matching. The question for considerate and friendship
matching remains an interesting open problem.

In Section 2.2 we study the same question for a given initial state and a given
stable state. We first show that if there is a sequence leading to a given stable
state, then there is also another sequence to that state with polynomial length.
Hence, there is a polynomial-size certificate to decide if a given (stable) state
can be reached from an initial state or not. Consequently, this problem is in
NP for consistent games. We also provide a generic reduction in Section 2.2 to
show that it is NP-complete for all, socially stable, locally stable, considerate,
and friendship matching, even with strict correlated preferences in the two-sided
case. Our reduction also works for traditional two-sided stable matching with
either correlated preferences and ties, or strict (non-correlated) preferences.

In Section 3 we study general preferences with incomplete lists and ties that
are not necessarily correlated.We show that for socially and classes of considerate
and friendship matching we can construct for every initial state a polynomial
sequence of deviations to a stable state. Known results for locally stable matching
show that such a result cannot hold for all consistent games.

Related Work. For a general introduction to stable matching and variants of
the model we refer to textbooks in the area [26]. Over the last decade, there
has been significant interest in dynamics, especially in economics, but usually
there is no consideration of worst-case convergence times or computational com-
plexity. While the literature is too broad to survey here, a few directly related
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works are as follows. If agents iteratively resolve blocking pairs in the two-sided
stable marriage problem, dynamics can cycle [25]. On the other hand, there is
always a “path to stability”, i.e., a sequence of (polynomially many) resolutions
converging to a stable matching [28]. If blocking pairs are chosen uniformly at
random at each step, the worst-case convergence time is exponential. In the case
of weighted or correlated matching, however, random dynamics converge in ex-
pected polynomial time [2,27]. More recently, several works studied convergence
time of random dynamics using combinatorial properties of preferences [20], or
the probabilities of reaching certain stable matchings via random dynamics [8].

In the roommates problem, where every pair of players is allowed to match,
stable matchings can be absent, but deciding existence can be done in polyno-
mial time [23]. If there exists a stable matching, there are also paths to stabil-
ity [13]. Similar results hold for more general concepts like P -stable matchings
that always exist [21]. Ergodic sets of the underlying Markov chain have been
studied [22] and related to random dynamics [24]. Alternatively, several works
have studied the computation of (variants of) stable matchings using iterative
entry dynamics [7,9,10], or in scenarios with payments or profit sharing [3,6,18].

Locally stable matching was introduced by [4] in a two-sided job-market
model, in which links exist only among one partition. More recently, we studied
locally stable matching with correlated preferences in the roommates case [16],
and with strict preferences in the two-sided case [19]. For correlated preferences,
we can always reach a locally stable matching using polynomially many resolu-
tions of local blocking pairs. The expected convergence time of random dynam-
ics, however, is exponential. For strict non-correlated preferences, no converging
sequence might exist, and existence becomes NP-hard to decide. Even if they ex-
ist, the shortest sequence might require an exponential number of steps. These
convergence properties improve drastically if agents have random memory.

Friendship and other-regarding preferences in stable matching games have
been addressed by [3] in a model with pairwise externalities. They study existence
of friendship matchings and bound prices of anarchy and stability in correlated
games as well as games with unequal sharing of matching benefits. In friendship
matching, agents strive to maximize a weighted linear combination of all agent
benefits. In addition, we here propose and study considerate matching based on
a friendship graph, where no agent accepts a deviation that deteriorates a friend.
Such ordinal externalities have been considered before in the context of resource
selection games [17].

Our general model of coalition formation games with constraints is related
to hedonic coalition formation games [11, 12, 14]. A prominent question in the
literature is the existence and computational complexity of stable states (for
details and references see, e.g., a recent survey [29]).

1.1 Preliminaries

A matching game consists of a graph G = (V,E) where V is a set of vertices
representing agents and E ⊆ {{u, v} | u, v ∈ V, u �= v} defines the potential
matching edges. A state is a matching M ⊆ E such that for each v ∈ V we
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have |{e | e ∈ M, v ∈ e}| ≤ 1. An edge e = {u, v} ∈ M provides utilities
bu(e), bv(e) > 0 for u and v, respectively. If for every e ∈ E we have some
bu(e) = bv(e) = b(e) > 0, we speak of correlated preferences. If no explicit
values are given, we will assume that each agent has an order � over its possible
matching partners, and for every agent the utility of matching edges is given
according to this ranking. In this case we speak of general preferences. Note that
in general, the ranking is allowed to be an incomplete list or to have ties. We
define B(M,u) to be bu(e) if u ∈ e ∈ M and 0 otherwise. A blocking pair for
matching M is a pair of agents {u, v} �∈ M such that each agent u and v is either
unmatched or strictly prefers the other over its current partner (if any). A stable
matching M is a matching without blocking pair.

Unless otherwise stated, we consider the roommates case without assumptions
on the topology of G. In contrast, the two-sided or bipartite case is often referred
to as the stable marriage problem. Here V is divided into two disjoint sets U and
W such that E ⊆ {{u,w}| u ∈ U,w ∈ W}. Further we will consider matchings
when each agent can match with up to k different agents at the same time.

In this paper, we consider broad classes of matching games, in which additional
constraints restrict the set of available blocking pairs. Let us outline a number
of examples that fall into this class and will be of special interest.

Socially Stable Matching. In addition to the graph G, there is a (social)
network of links (V, L) which models static visibility. A state M has a social
blocking pair e = {u, v} ∈ E if e is blocking pair and e ∈ L. Thus, in a social
blocking pair both agents can strictly increase their utility by generating e (and
possibly dismissing some other edge thereby). A state M that has no social
blocking pair is a socially stable matching. A social improvement step is the
resolution of such a social blocking pair, that is, the blocking pair is added to
M and all conflicting edges are removed.

Locally Stable Matching. In addition to G, there is a network (V, L) that
models dynamic visibility by taking the current matching into account. To de-
scribe stability, we assume the pair {u, v} is accessible in state M if u and v
have hop-distance at most 2 in the graph (V, L ∪M), that is, the shortest path
between u and v in (V, L∪M) is of length at most 2 (where we define the shortest
path to be of length ∞, if u and v are not in the same connected component). A
state M has a local blocking pair e = {u, v} ∈ E if e is blocking pair and u and
v are accessible. Consequently, a locally stable matching is a matching without
local blocking pair. A local improvement step is the resolution of such a local
blocking pair, that is, the blocking pair is added to M and all conflicting edges
are removed.

Considerate Matching. In this case, the (social) network (V, L) symbolizes
friendships and consideration. We assume the pair {u, v′} is not accessible in
state M if there is agent v such that {u, v} ∈ M , and (a) {u, v} ∈ L or (b)
{v, v′} ∈ L. Otherwise, the pair is called accessible in M . Intuitively, this implies
a form of consideration – formation of {u, v′} would leave a friend v unmatched,
so (a) u will not propose to v′ or (b) v′ will not accept u’s proposal. A state
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M has a considerate blocking pair e = {u, v} ∈ E if e is blocking pair and it is
accessible. A state M that has no considerate blocking pair is a considerate stable
matching. A considerate improvement step is the resolution of such a considerate
blocking pair.

Friendship Matching. In this scenario, there are numerical values αu,v ≥ 0
for every unordered pair u, v ∈ V , u �= v, representing how much u and v care
for each other’s well-being. Thus, instead of the utility gain through its direct
matching partner, u now receives a perceived utility Bp(M,u) = B(M,u) +∑

v∈V \{u} αu,vB(M, v). In contrast to all other examples listed above, this def-
inition requires cardinal matching utilities and cannot be applied directly on
ordinal preferences. A state M has a perceived blocking pair e = {u, v} ∈ E if
Bp(M,u) < Bp((M \ {e′ | e ∩ e′ �= ∅}) ∪ {e}, u) and Bp(M, v) < Bp((M \ {e′ |
e∩e′ �= ∅})∪{e}, v). A state M that has no perceived blocking pair is a perceived
or friendship stable matching. A perceived improvement step is the resolution of
such a perceived blocking pair.

2 Correlated Preferences

2.1 Coalition Formation Games with Constraints

In this section, we consider correlated matching where agent preferences are
correlated via edge benefits b(e). In fact, we will prove our results for a straight-
forward generalization of correlated matching – in correlated coalition formation
games that involve coalitions of size larger than 2. In such a coalition formation
game there is a set N of agents, and a set C ⊆ 2N of hyper-edges, the possible
coalitions. We denote n = |N | and m = |C|. A state is a coalition structure
S ⊆ C such that for each v ∈ N we have |{C | C ∈ S, v ∈ C}| ≤ 1. That is,
each agent is involved in at most one coalition. Each coalition C has a weight or
benefit w(C) > 0, which is the profit given to each agent v ∈ C. For a coalition
structure S, a blocking coalition is a coalition C ∈ C \ S with w(C) > w(Cv)
where v ∈ Cv ∈ S for every v ∈ C which is part of a coalition in S. Again, the
resolution of such a blocking coalition is called an improvement step. A stable
state or stable coalition structure S does not have any blocking coalitions. Cor-
related matching games are a special case of coalition formation games where C
is restricted to pairs of agents and thereby defines the edge set E.

To embed the classes of matching games detailed above into a more general
framework, we define coalition formation games with constraints. For each state
S we consider two sets of rules – generation rules that determine candidate
coalitions, and domination rules that forbid some of the candidate coalitions. The
set of undominated candidate coalitions then forms the blocking coalitions for
state S. Using suitable generation and domination rules, this allows to describe
socially, locally, considerate and friendship matching in this scenario.

More formally, there is a set T ⊆ {(T , C) | T ⊂ C, C ∈ C} of generation rules.
If in the current state S we have T ⊆ S and C �∈ S, then C becomes a candidate
coalition. For convenience, we exclude generation rules of the form (∅, C) from T
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and capture these rules by a set Cg ⊆ C of self-generating coalitions. A coalition
C ∈ Cg is a candidate coalition for all states S with C �∈ S. In addition, there
is a set D ⊆ {(T , C) | T ⊂ C, C ∈ C} of domination rules. If T ⊆ S for
the current state S, then C must not be inserted. To capture the underlying
preferences of the agents, we assume that D always includes at least the set
Dw = {({C1}, C2) | w(C1) ≥ w(C2), C1 ∩ C2 �= ∅, C1 �= C2} of all weight
domination rules.

The undominated candidate coalitions represent the blocking coalitions for
S. In particular, the latter assumption on D implies that a blocking coalition
must at least yield strictly better profit for every involved agent. Note that in
an improvement step, one of these coalitions is inserted, and every coalition that
is dominated in the resulting state is removed. By assumption on D, we remove
at least every overlapping coalition with smaller weight. A coalition structure is
stable if the set of blocking coalitions is empty.

Note that we could also define coalition formation games with constraints for
general preferences. Then Dw = {({C1}, C2) | C1 ∩ C2 �= ∅, C1 �= C2, ∃v ∈ C1 :
wv(C1) ≥ wv(C2)}. However, a crucial point in our proofs is that in a chain
of succeeding deletions no coalition can appear twice. This is guaranteed for
correlated preferences as coalitions can only be deleted by more worthy ones.
For general preferences on the other hand there is no such argument.

In the following we define consistency for generation and for domination rules.
This encompasses many classes of matching cases described above and is key for
reaching stable states (quickly).

Definition 1. The generation rules of a coalition formation game with con-
straints are called consistent if T ⊆ {({C1}, C2) | C1 ∩ C2 �= ∅}, that is, all
generation rules have only a single coalition in their precondition and the candi-
date coalition shares at least one agent.

Definition 2. The domination rules of a coalition formation game with con-
straints are called consistent if D ⊆ {(S, C) | S ⊂ C, C ∈ C, C /∈ S, ∃S ∈ S :
S∩C �= ∅}, that is, at least one of the coalitions in S overlaps with the dominated
coalition. Note that weight domination rules are always consistent.

Theorem 1. In every correlated coalition formation game with constraints and
consistent generation and domination rules, for every initial structure S there
is a sequence of polynomially many improvement steps that results in a stable
coalition structure. The sequence can be computed in polynomial time.

Proof. At first we analyze the consequences of consistency in generation and
domination rules. For generation rules we demand that there is only a single pre-
condition coalition and that this coalition overlaps with the candidate coalition.
Thus if we apply such a generation rule we essentially replace the precondition
with the candidate. The agents in the intersection of the two coalitions would
not approve such a resolution if they would not improve. Therefore, the only
applicable generation rules are those where the precondition is of smaller value
than the candidate.
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Now for domination rules we allow an arbitrary number of coalitions in the
precondition, but at least one of them has to overlap with the dominated coali-
tion. In consequence a larger set of coalitions might dominate a non-existing
coalition, but to remove a coalition they can only use the rules in Dw. That is
due to the fact that when a coalition C already exists, the overlapping coalition
of the precondition cannot exist at the same time. But this coalition can only
be created if C does not dominate it. Especially C has to be less worthy than
the precondition. Thus the overlapping precondition alone can dominate C via
weight.

The proof is inspired by the idea of the edge movement graph [15]. Given a
coalition formation game with consistent constraints and some initial coalition
structure S0, we define an object movement hypergraph

Gmov = (V, Vg , Tmov, Dmov).

A coalition structure corresponds to a marking of the vertices in Gmov. The
vertex set is V = {vC | C ∈ C}, and Vg = {vC | C ∈ Cg} the set of vertices
which can generate a marking by themselves. The directed exchange edges are
Tmov = {(vC1 , vC2) | ({C1}, C2) ∈ E,w(C1) < w(C2)}. The directed domination
hyperedges are given by Dmov = D1 ∪ Dw, where D1 = {({vS | S ∈ S}, vC) |
(S, C) ∈ D}. This covers the rule that a newly inserted coalition must represent
a strict improvement for all involved agents. The initial structure is represented
by a marking of the vertices V0 = {vC | C ∈ S0}.

We represent improvement steps by adding, deleting, and moving markings
over exchange edges to undominated vertices of the object movement graph.
Suppose we are given a state S and assume we have a marking at every vC
with C ∈ S. We call a vertex v in Gmov currently undominated if for every
hyperedge (U, v) ∈ Dmov at least one vertex in U is currently unmarked. An
improvement step that inserts coalition C is represented by marking vC . For
this vC must be unmarked and undominated. We can create a new marking
if vC ∈ Vg. Otherwise, we must move a marking along an exchange edge to
vC . Note that this maps the generation rules correctly as we have seen, that we
exchange the precondition for the candidate. To implement the resulting deletion
of conflicting coalitions from the current state, we delete markings at all vertices
which are now dominated through a rule in Dmov. That is, we delete markings
at all vertices v with (U, v) ∈ D and every vertex in U marked.

Observe that Tmov forms a DAG as the generation of the candidate coalition
deletes its overlapping precondition coalition and thus the rule will only be ap-
plied if the candidate coalition yields strictly more profit for every agent in the
coalition.

Lemma 1. The transformation of markings in the object movement graph cor-
rectly mirrors the improvement dynamics in the coalition formation game with
constraints.

Proof. Let S be a state of the coalition formation game and let C be a blocking
coalition for S. Then C can be generated either by itself (that is, C ∈ Cg) or
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through some generation rule with fulfilled precondition C′ ∈ S, and is not
dominated by any subset of S via D. Hence, for the set of marked vertices
VS = {vC | C ∈ S} it holds that vC can be generated either because vC ∈
Vg or because there is a marking on some vC′ with (vC′ , vC) ∈ Tmov, and is
further not dominated via D. Hence, we can generate a marking on vC . It is
straightforward to verify that if vC gets marked, then in the resulting deletion
step only domination rules of the form {({vS}, vT ) | S, T ∈ C, S ∩ T �= ∅ and
w(S) ≥ w(T )} are relevant. Thus, deletion of markings is based only on overlap
with the newly inserted coalition C. These are exactly the coalitions we lose
when inserting C in S.

Conversely, let VS be a set of marked vertices of Gmov such that S = {C |
vC ∈ VS} does not violate any domination rule (i.e., for every (U , C) ∈ D,
we have U �⊆ S or C �∈ S). Then S is a feasible coalition structure. Now if
vC is an unmarked vertex in Gmov, then C /∈ S. Furthermore, assume vC is
undominated and can be marked, because vC ∈ Vg or because some marking
can be moved to vC via an edge in Tmov. Thus for every {SC , C} ∈ D vC being
undominated implies SC �⊂ S. The property that vC can be marked implies that
C is self-generating or can be formed from S using a generation rule. Hence C
is a blocking coalition in S. The insertion C again causes the deletion of exactly
the coalitions whose markings get deleted when vC is marked. ��

To show the existence of a short sequence of improvement steps we consider
two phases.

Phase 1. In each round we check whether there is an exchange edge from a
marked vertex to an undominated one. If this is the case, we move the
marking along the exchange edge and start the next round. Otherwise for
each unmarked, undominated v ∈ Vg we compute the set of reachable posi-
tions. This can be done by doing a forward search along the exchange edges
that lead to an unmarked undominated vertex. Note that the vertex has to
remain undominated when there are the existing markings and a marking on
the source of the exchange edge. If we find a reachable position that domi-
nates an existing marking, we create a marking at the associated v ∈ Vg and
move it along the exchange edges to the dominating position. Then we start
the next round. If we cannot find a reachable position which dominates an
existing marking, we switch to Phase 2.

Phase 2. Again we compute all reachable positions from v ∈ Vg. We iteratively
find a reachable vertex vC with highest weight w(C), generate a marking at
the corresponding v ∈ Vg and move it along the path of exchange edges to
vC . We repeat this phase until no reachable vertex remains.

To prove termination and bound the length, we consider each phase separately.
In Phase 1 in each round we replace an existing marking by a marking of higher
value either by using an exchange edge or by deleting it through domination by
weight. Further the remaining markings either stay untouched or get deleted.
Now the number of improvements that can be made per marking is limited by
m and the number of markings is limited by n. Hence, there can be at most
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mn rounds in Phase 1. Additionally, the number of steps we need per round is
limited m again, as we move the marking along the DAG structure of exchange
edges. Thus, phase 1 generates a total of O(n ·m2) steps.

If in Phase 1 we cannot come up with an improvement, there is no way
to (re)move the existing markings, no matter which other steps are made in
subsequent iterations. This relies on the fact that the presence of additional
markings can only restrict the subgraph of reachable positions. For the same
reason, iteratively generating the reachable marking of highest weight results
in markings that cannot be deleted in subsequent steps. Thus, at the end of
every iteration in Phase 3, the number of markings is increased by one, and all
markings are un(re)movable. Consequently, in Phase 2 there are O(m · n) steps.

For computation of the sequence, the relevant tasks are constructing the graph
Gmov, checking edges in Tmov for possible improvement of markings, or con-
structing subgraphs and checking connectivity of single vertices to Vg. Obviously,
all these tasks can be executed in time polynomial in n, m, |T | and |D| using
standard algorithmic techniques. ��

Next, we want to analyze whether consistency of generation and domination
rules is necessary for the existence of short sequences or can be further relaxed.

Proposition 1. If the generation rules contain more than one coalition in the
precondition-set, there are instances and initial states such that every sequence
to a stable state requires an exponential number of improvement steps.

The proof uses a coalition formation game with constraints and inconsistent
generation rules obtained from locally stable matching, when agents are allowed
to match with partners at a hop distance of at most � = 3 in (V, L∪M). For this
setting in [16, Theorem 3] we have given an instance such that every sequence to
a stable state requires an exponential number of improvement steps. Note that
the example is minimal in the sense that now we have at most 2 coalitions in
the precondition-set. The detailed proof can be found in the full version.

Proposition 2. If the generation rules have non-overlapping precondition- and
target-coalitions, there are instances and initial states such that every sequence
to a stable state requires an exponential number of improvement steps.

The construction used for the proof exploits the fact that if precondition- and
target-coalition do not overlap the precondition can remain when the target-
coalition is formed. Then the dynamics require additional steps to clean up the
leftover precondition-coalitions which results in an exponential blow-up. The
entire proof as well as a sketch of the resulting movement graph can be found in
the full version.

Proposition 3. If the domination rules include target-coalitions that do not
overlap with any coalition in the precondition, there are instances and starting
states such that every sequence cycles.

Consistent generation and domination rules arise in a large variety of settings,
not only in basic matching games but also in some interesting extensions.
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Corollary 1. Consistent generation and domination rules are present in

– locally stable matching if agents can create k = 1 matching edges and have
lookahead � = 2 in G = (V,M ∪ L).

– socially stable matching, even if agents can create k ≥ 1 matching edges.
– considerate matching, even if agents can create k ≥ 1 matching edges.
– friendship matching, even if agents can create k ≥ 1 matching edges.

Due to space restrictions we cannot give a detailed description of the embed-
ding into coalition formation games with constraints. In most cases the embedding
is quite straightforward. Agents and edge set are kept as well as the benefits. The
generation and domination rules often follow directly from the definitions. The ex-
act embedding for every type of game can be found in the full version. Additionally
an exemplar proof for correctness is stated.

Unlike for the other cases, for locally stable matching we cannot guarantee
consistent generation rules if we increase the number of matching edges. The
same holds for lookahead > 2. In both cases the accessibility of an edge might
depend on more than one matching edge. There are exponential lower bounds
in [16, 19] for those extensions which proves that it is impossible to find an
embedding with consistent rules even with the help of auxiliary constructions.

2.2 Reaching a Given Matching

In this section we consider the problem of deciding reachability of a given stable
matching from a given initial state. We first show that for correlated coalition
formation games with constraints and consistent rules, this problem is in NP. If
we can reach it and there exists a sequence, then there always exists a polynomial-
size certificate due to the following result.

Theorem 2. In a correlated coalition formation game with constraints and con-
sistent generation and domination rules, for every coalition structure S∗ that is
reachable from an initial state S0 through a sequence of improvement steps, there
is also a sequence of polynomially many improvement steps from S0 to S∗.

For the proof we analyze an arbitrary sequence of improvement steps from S0

to S∗ and show that, if the sequence is too long, there are unnecessary steps, that
is, coalitions are created and deleted without making a difference for the final
outcome. By identifying and removing those superfluous steps we can reduce
every sequence to one of polynomial length. The detailed proof can be found in
the full version.

For locally stable matching, the problem of reaching a given locally stable
matching from a given initial matching is known to be NP-complete [19]. Here
we provide a generic reduction that shows NP-completeness for socially, locally,
considerate, and friendship matching, even in the two-sided case. Surprisingly,
it also applies to ordinary two-sided stable matching games that have either
correlated preferences with ties, or non-correlated strict preferences. Observe
that the problem is trivially solvable for ordinary stable matching and correlated



172 M. Hoefer and L. Wagner

preferences without ties, as in this case there is a unique stable matching that
can always be reached using the greedy construction algorithm [2].

Theorem 3. It is NP-complete to decide if for a given matching game, initial
matching M0 and stable matching M∗, there is a sequence of improvement steps
leading form M0 to M∗. This holds even for bipartite games with strict correlated
preferences in the case of

1. socially stable matching and locally stable matching,
2. considerate matching, and
3. friendship matching for symmetric α-values in [0, 1].

In addition, it holds for ordinary bipartite stable matching in the case of

4. correlated preferences with ties,
5. strict preferences.

3 General Preferences

In this section we consider convergence to stable matchings in the two-sided
case with general preferences that may be incomplete and have ties. For locally
stable matching it is known that in this case there are instances and initial
states such that no locally stable matching can be reached using local blocking
pair resolutions. Moreover, deciding the existence of a converging sequence of
resolutions is NP-hard [19].

We here study the problem for socially, considerate, and friendship matching.
Our positive results are based on the following procedure from [2] that is known
to construct a sequence of polynomial length for unconstrained stable matching.
The only modification of the algorithm for the respective scenarios is to resolve
“social”, “considerate” or “perceived blocking pairs” in both phases.

Phase 1. Iteratively resolve only blocking pairs involving a matched vertex
w ∈ W . Phase 1 ends when for all blocking pairs {u,w} we have w ∈ W
unmatched.

Phase 2. Choose an unmatched w ∈ W that is involved in a blocking pair.
Resolve one of the blocking pairs {u,w} that is most preferred by w. Repeat
until there are no blocking pairs.

It is rather straightforward to see that the algorithm can be applied directly
to build a sequence for socially stable matching.

Theorem 4. In every bipartite instance of socially stable matching G = (V =
U ∪̇W,E) with general preference lists and social network L, for every initial
matching M0 there is a sequence of polynomially many improvement steps that
results in a socially stable matching. The sequence can be computed in polynomial
time.
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For extended settings the algorithm still works for somewhat restricted social
networks. For considerate matching we assume that the link set is only within
L ⊆ (U × U) ∪ (U ×W ), i.e., no links within partition W .

Theorem 5. In every bipartite instance of considerate matching G = (V =
U ∪̇W,E) with general preference lists and social network L such that {w,w′} /∈ L
for all w,w′ ∈ W , for every initial matching M0 there is a sequence of poly-
nomially many improvement steps that results in a considerate matching. The
sequence can be computed in polynomial time.

We also apply the algorithm to friendship matching in case there can be
arbitrary friendship relations αu,u′ , αu′,u ≥ 0 for each pair u, u′ ∈ U . Here we
allow asymmetry with αu,u′ �= αu′,u. Otherwise, for all u ∈ U,w,w′ ∈ W we
assume that αu,w = αw,u = αw,w′ = 0, i.e., friendship only exists within U .

Theorem 6. In every bipartite instance of friendship matching G = (V =
U ∪̇W,E) with benefits b and friendship values α such that αu,u′ > 0 only for
u, u′ ∈ U , for every initial matching M0 there is a sequence of polynomially
many improvement steps that results in a friendship matching. The sequence
can be computed in polynomial time.

The algorithm works fine with links between partitions U and W for the
considerate setting, but it fails for positive α between partitions in the friendship
case. We defer a discussion to the full version of the paper.
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